251
|
Chabrol E, Nurisso A, Daina A, Vassal-Stermann E, Thepaut M, Girard E, Vivès RR, Fieschi F. Glycosaminoglycans are interactants of Langerin: comparison with gp120 highlights an unexpected calcium-independent binding mode. PLoS One 2012; 7:e50722. [PMID: 23226363 PMCID: PMC3511376 DOI: 10.1371/journal.pone.0050722] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/24/2012] [Indexed: 12/29/2022] Open
Abstract
Langerin is a C-type lectin specifically expressed in Langerhans cells. As recently shown for HIV, Langerin is thought to capture pathogens and mediate their internalisation into Birbeck Granules for elimination. However, the precise functions of Langerin remain elusive, mostly because of the lack of information on its binding properties and physiological ligands. Based on recent reports that Langerin binds to sulfated sugars, we conducted here a comparative analysis of Langerin interaction with mannose-rich HIV glycoprotein gp120 and glycosaminoglycan (GAGs), a family of sulfated polysaccharides expressed at the surface of most mammalian cells. Our results first revealed that Langerin bound to these different glycans through very distinct mechanisms and led to the identification of a novel, GAG-specific binding mode within Langerin. In contrast to the canonical lectin domain, this new binding site showed no Ca(2+)-dependency, and could only be detected in entire, trimeric extracellular domains of Langerin. Interestingly binding to GAGs, did not simply rely on a net charge effect, but rather on more discrete saccharide features, such as 6-O-sulfation, or iduronic acid content. Using molecular modelling simulations, we proposed a model of Langerin/heparin complex, which located the GAG binding site at the interface of two of the three Carbohydrate-recognition domains of the protein, at the edge of the a-helix coiled-coil. To our knowledge, the binding properties that we have highlighted here for Langerin, have never been reported for C-type lectins before. These findings provide new insights towards the understanding of Langerin biological functions.
Collapse
Affiliation(s)
- Eric Chabrol
- Groupe Membrane & Pathogens, Institut de Biologie Structurale, Université Joseph Fourier, Grenoble, France
- UMR 5075, CNRS, Grenoble, France
- Departement des sciences du vivant, CEA, Grenoble, France
| | - Alessandra Nurisso
- Département de Pharmacochimie, Université de Genève, Genève, Switzerland
| | - Antoine Daina
- Département de Pharmacochimie, Université de Genève, Genève, Switzerland
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Emilie Vassal-Stermann
- UMR 5075, CNRS, Grenoble, France
- Departement des sciences du vivant, CEA, Grenoble, France
- Groupe SAGAG, Institut de Biologie Structurale, Université Joseph Fourier, Grenoble, France
| | - Michel Thepaut
- Groupe Membrane & Pathogens, Institut de Biologie Structurale, Université Joseph Fourier, Grenoble, France
- UMR 5075, CNRS, Grenoble, France
- Departement des sciences du vivant, CEA, Grenoble, France
| | - Eric Girard
- UMR 5075, CNRS, Grenoble, France
- Departement des sciences du vivant, CEA, Grenoble, France
- Groupe ELMA, Institut de Biologie Structurale, Université Joseph Fourier, Grenoble, France
| | - Romain R. Vivès
- UMR 5075, CNRS, Grenoble, France
- Departement des sciences du vivant, CEA, Grenoble, France
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Franck Fieschi
- Groupe Membrane & Pathogens, Institut de Biologie Structurale, Université Joseph Fourier, Grenoble, France
- UMR 5075, CNRS, Grenoble, France
- Departement des sciences du vivant, CEA, Grenoble, France
- Institut Universitaire de France, Paris, France
- * E-mail:
| |
Collapse
|
252
|
Abstract
The immune response against Mycobacterium tuberculosis is multifactorial, involving a network of innate and adaptive immune responses. Characterization of the immune response, a clear understanding of the dynamics and interplay of different arms of the immune response are critical to allow the development of better tools for combating tuberculosis. Dendritic cells (DCs) are one of the key cells in bridging innate and adaptive immune response through their significant role in capturing, processing and presenting antigens. The outcome of interaction of M. tuberculosis with DCs is not fully understood and the available reports are contradictory were some findings reported that DCs strengthen the cellular immune response against mycobacterium infection whereas others reported M. tuberculosis impairs the function of DCs were infected DCs are poor stimulators of M. tuberculosis Ag-specific CD4 T cells. Other studies showed that the outcome depends on M. tuberculosis strain type and type of receptor on DCs during recognition. In this review I shall highlight the recent findings in the outcome of interaction of Mycobacterium tuberculosis with DCs.
Collapse
Affiliation(s)
- Adane Mihret
- Armauer Hansen Research Institute; Addis Ababa, Ethopia.
| |
Collapse
|
253
|
Scharenberg M, Schwardt O, Rabbani S, Ernst B. Target Selectivity of FimH Antagonists. J Med Chem 2012; 55:9810-6. [PMID: 23088608 DOI: 10.1021/jm3010338] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mannose-based FimH antagonists are considered new therapeutics for the treatment of urinary tract infections (UTIs). They prevent the adhesion of uropathogenic Escherichia coli (UPEC) to urothelial cell surfaces triggered by the lectin FimH, which is located at the tip of bacterial type 1 pili. Because all reported FimH antagonists are α-d-mannosides, they are also potential ligands of mannose receptors of the human host system. We therefore investigated the selectivity range of five FimH antagonists belonging to different compound families by comparing their affinities for FimH and eight human mannose receptors. On the basis of the detected selectivity range of approximately 5 orders of magnitude, no adverse side effects resulting from nonselective binding to the human receptors have to be expected. FimH antagonists can therefore be further considered as potential therapeutics for the treatment of UTI.
Collapse
Affiliation(s)
- Meike Scharenberg
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel , Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
254
|
GENDEK-KUBIAK HANNA, GENDEK EWAG. Fascin-expressing Dendritic Cells Dominate in Polymyositis and Dermatomyositis. J Rheumatol 2012; 40:186-91. [DOI: 10.3899/jrheum.120590] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective.Dendritic cells (DC) have been reported among inflammatory infiltrating cells in muscle tissue in idiopathic inflammatory myopathies (IIM), but to our knowledge no studies concerning the expression of langerin (CD207) or fascin (markers of immature and mature DC, respectively) in IIM have been published.Methods.Immunohistochemical analyses of langerin and fascin expression were performed on specimens from normal muscles, as well as those affected by polymyositis (PM) and dermatomyositis (DM). The results were analyzed by Mann-Whitney U test.Results.In PM and DM, fascin-positive cells were numerous in the majority of the studied samples in perimysial, endomysial, and perivascular cellular infiltrates. Sporadic langerin-positive cells were detected.Conclusion.Fascin-positive DC predominance in inflammatory infiltrates in myositic muscles confirms the prevalence of mature forms and indicates that there are conditions stimulating DC maturation in both PM and DM. The induction of immunological tolerance by inhibiting DC maturation may be a promising direction for studies of myositis treatment.
Collapse
|
255
|
Yin Z, Xu J, Zhang Z, Luo D. Effects of topical pimecrolimus 1% on high-dose ultraviolet B-irradiated epidermal Langerhans cells. Int Immunopharmacol 2012; 14:635-40. [PMID: 23079131 DOI: 10.1016/j.intimp.2012.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/30/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
Some studies reported no changes in the number of epidermal Langerhans cells (LC) that were observed in mice treated with pimecrolimus, and low-dose stimulated solar radiation (once)-induced changers in LC are minimally affected by pimecrolimus. This study is to investigate the effects of topical pimecrolimus 1% on high-dose ultraviolet B (UVB)-irradiated epidermal LC. Forty human foreskin tissues were randomly divided into 4 groups of 10 tissues each: Group A, control; Group B, pimecrolimus 1% (once)-only; Group C, 180 mJ/cm(2) UVB (once)-only; Group D, UVB+pimecrolimus. Each tissue was cut into 4 pieces corresponding to 4 time points. All the tissues were cultured at 37 °C. After being treated, the tissues were collected respectively and processed for immunohistochemical staining and immunofluorescence staining. For UVB-only group, epidermal CD1a(+) LC number at 18h decreased from 39.6 ± 8.30 to 22.3 ± 2.26/5 high magnification, compared to CD1a(+) LC number at 0 h (P<0.01). The CD1a(+) LC number of UVB-only group was significantly less than other groups at 18 h, 24h and 48 h (P<0.05, respectively). Similar results were obtained with immunofluorescence staining for CD 1a and immunohistochemical staining for Langerin. The numbers of epidermal HLA-DR(+) LC had no significant differences among all groups at different time points. Our study found a single 180 mJ/cm(2) UVB irradiation significantly reduced epidermal LC numbers at 18 h, 24h and 48 h, however, topical pimecrolimus could reverse these changes. UVB plus pimecrolimus treatment did not affect human LC maturation.
Collapse
Affiliation(s)
- ZhiQiang Yin
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | |
Collapse
|
256
|
Pusztaszeri MP, Sadow PM, Faquin WC. Association of CD1a-positive dendritic cells with papillary thyroid carcinoma in thyroid fine-needle aspirations. Cancer Cytopathol 2012; 121:206-13. [DOI: 10.1002/cncy.21239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 08/25/2012] [Accepted: 08/29/2012] [Indexed: 01/22/2023]
|
257
|
Persat F, Mercier C, Ficheux D, Colomb E, Trouillet S, Bendridi N, Musset K, Loeuillet C, Cesbron-Delauw MF, Vincent C. A synthetic peptide derived from the parasite Toxoplasma gondii triggers human dendritic cells' migration. J Leukoc Biol 2012; 92:1241-50. [PMID: 23033174 DOI: 10.1189/jlb.1211600] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The migration of DCs is a critical function, enabling information to be carried to where the immunological response occurs. Parasites are known to weaken host immunity by interfering with the functions of DCs and thus, may be a source of molecules with immunomodulatory properties. Here, we demonstrate that the soluble protein, GRA5, specific to Toxoplasma gondii, is able to increase the migration of human CD34-DCs toward CCL19. A synthetic Pep29 derived from the GRA5 hydrophilic NT region (Pep29) was found to be internalized by macropinocytosis and to trigger in vitro migration of CD34-DCs via CCR7 expression without activating DCs. Pep29 also induced a decrease in the number of LCs from human skin epidermis. As local depletion of DCs and migration of immature DCs lead to a disruption of the specific innate response, our results highlight the potential of using pathogen-derived synthetic peptides as novel cell modulators with a therapeutic potential to reduce symptoms in inflammatory disorders.
Collapse
Affiliation(s)
- Florence Persat
- Université de Lyon, Université Lyon I, EA 4169, Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Cummings RJ, Gerber SA, Judge JL, Ryan JL, Pentland AP, Lord EM. Exposure to ionizing radiation induces the migration of cutaneous dendritic cells by a CCR7-dependent mechanism. THE JOURNAL OF IMMUNOLOGY 2012; 189:4247-57. [PMID: 23002435 DOI: 10.4049/jimmunol.1201371] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the event of a deliberate or accidental radiological emergency, the skin would likely receive substantial ionizing radiation (IR) poisoning, which could negatively impact cellular proliferation, communication, and immune regulation within the cutaneous microenvironment. Indeed, as we have previously shown, local IR exposure to the murine ear causes a reduction of two types of cutaneous dendritic cells (cDC), including interstitial dendritic cells of the dermis and Langerhans cells of the epidermis, in a dose- and time-dependent manner. These APCs are critical regulators of skin homeostasis, immunosurveillance, and the induction of T and B cell-mediated immunity, as previously demonstrated using conditional cDC knockout mice. To mimic a radiological emergency, we developed a murine model of sublethal total body irradiation (TBI). Our data would suggest that TBI results in the reduction of cDC from the murine ear that was not due to a systemic response to IR, as a loss was not observed in shielded ears. We further determined that this reduction was due, in part, to the upregulation of the chemoattractant CCL21 on lymphatic vessels as well as CCR7 expressed on cDC. Migration as a potential mechanism was confirmed using CCR7(-/-) mice in which cDC were not depleted following TBI. Finally, we demonstrated that the loss of cDC following TBI results in an impaired contact hypersensitivity response to hapten by using a modified contact hypersensitivity protocol. Taken together, these data suggest that IR exposure may result in diminished immunosurveillance in the skin, which could render the host more susceptible to pathogens.
Collapse
Affiliation(s)
- Ryan J Cummings
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
259
|
Öhman J, Magnusson B, Telemo E, Jontell M, Hasséus B. Langerhans cells and T cells sense cell dysplasia in oral leukoplakias and oral squamous cell carcinomas--evidence for immunosurveillance. Scand J Immunol 2012; 76:39-48. [PMID: 22469080 DOI: 10.1111/j.1365-3083.2012.02701.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Leukoplakias (LPLs) are lesions in the oral mucosa that may develop into oral squamous cell carcinoma (OSCC). The objective of this study was to assess presence and distribution of dendritic Langerhans cells (LCs) and T cells in patients with LPLs with or without cell dysplasia and in oral squamous cell carcinoma (OSCC). Biopsy specimens from patients with leukoplakias (LPLs) with or without dysplasia and oral squamous cell carcinoma (OSCC) were immunostained with antibodies against CD1a, Langerin, CD3, CD4, CD8 and Ki67, followed by quantitative analysis. Analyses of epithelium and connective tissue revealed a significantly higher number of CD1a + LCs in LPLs with dysplasia compared with LPLs without dysplasia. Presence of Langerin + LCs in epithelium did not differ significantly between LPLs either with or without dysplasia and OSCC. T cells were found in significantly increased numbers in LPLs with dysplasia and OSCC. The number of CD4+ cells did not differ significantly between LPLs with and without dysplasia, but a significant increase was detected when comparing LPLs with dysplasia with OSCC. CD8+ cells were significantly more abundant in OSCC and LPLs with dysplasia compared with LPLs without dysplasia. Proliferating cells (Ki67+) were significantly more abundant in OSCC compared to LPLs with dysplasia. Confocal laser scanning microscopy revealed colocalization of LCs and T cells in LPLs with dysplasia and in OSCC. LCs and T cells are more numerous in tissue compartments with dysplastic epithelial cells and dramatically increase in OSCC. This indicates an ongoing immune response against cells with dysplasia.
Collapse
Affiliation(s)
- J Öhman
- Department of Oral Medicine and Pathology, Institute of Odontology, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
260
|
Use of the JL1 epitope, which encompasses the nonglycosylation site of CD43, as a marker of immature/neoplastic Langerhans cells. Am J Surg Pathol 2012; 36:1150-7. [PMID: 22790855 DOI: 10.1097/pas.0b013e31825b9914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Langerhans cell histiocytosis (LCH) is the collective designation for a group of proliferative disorders of antigen-presenting cells in the epidermis. Over the past several decades, the etiology of LCH has been a controversial issue, particularly with respect to the pathologic process, that is, whether it is a neoplastic or inflammatory process. Recently, it was reported that the JL1 epitope, which encompasses the nonglycosylation site of CD43, is only exposed in the precursor stages of hematopoietic cells or in neoplastic conditions. We sought to investigate the possible utility of the JL1 monoclonal antibody as a diagnostic marker of LCH. In this study, we compared the staining characteristics of antibodies against the JL1 epitope with those of langerin and CD1a, which are widely used for the diagnosis of LCH. We found substantial differences in the staining patterns of these markers. The JL1 epitope could be bound by antibodies in cases of LCH and Langerhans cell (LC) sarcoma. In non-neoplastic lesions, JL1-positive LCs were found only in dermatitis, reflecting the immaturity of LCs in inflamed skin. However, anti-langerin antibodies were able to identify any form of LC, including those in normal skin, dermatitis, dermatopathic lymphadenopathy, and LCH. On the basis of these findings, we propose that the anti-JL1 antibody is a specific marker of immaturity, a feature that is shared in neoplastic LCs, and can be useful in the diagnosis of LCH.
Collapse
|
261
|
Dzopalic T, Rajkovic I, Dragicevic A, Colic M. The response of human dendritic cells to co-ligation of pattern-recognition receptors. Immunol Res 2012; 52:20-33. [PMID: 22392051 DOI: 10.1007/s12026-012-8279-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) are key antigen-presenting cells that express a wide variety of pattern-recognition receptors (PRRs). Triggering of a single PRR, especially Toll-like receptors (TLRs) and C-type lectins, induces maturation of DCs, but cooperativity between multiple PRRs is needed in order to achieve an effective immune response. In this review, we summarize the published data related to the effect of individual and joint PRR agonists on DCs and Langerhans-like cells derived from monocytes (MoDCs and MoLCs, respectively). Our results demonstrate that MoDCs co-stimulated with TLR3/TLR7 and TLR3/Dectin-1 ligands induced superior T helper (Th)1 and Th17 immune responses, compared to effects of single agonists. The opposite outcome was observed after co-ligation of TLR3 and Langerin on MoLCs. These findings may be relevant to improve strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Tanja Dzopalic
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Crnotravska 17, 11002 Belgrade, Serbia
| | | | | | | |
Collapse
|
262
|
Shi YL, Gu J, Park JJ, Xu YP, Yu FS, Zhou L, Mi QS. Histone deacetylases inhibitor Trichostatin A ameliorates DNFB-induced allergic contact dermatitis and reduces epidermal Langerhans cells in mice. J Dermatol Sci 2012; 68:99-107. [PMID: 22999682 DOI: 10.1016/j.jdermsci.2012.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/28/2012] [Accepted: 09/02/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Histone deacetylases (HDACs) influence chromatin organization, representing a key epigenetic regulatory mechanism in cells. Trichostatin A (TSA), a potent HDAC inhibitor, has anti-tumor and anti-inflammatory effects. Allergic contact dermatitis (ACD) is a T-cell-mediated inflammatory reaction in skin and is regulated by epidermal Langerhans cells (LCs). OBJECTIVE The aim of this study was to investigate if TSA treatment prevents 2,4-dinitrofluorobenzene (DNFB)-induced ACD in mice and regulates epidermal LCs and other immune cells during ACD development. METHODS ACD was induced by sensitizing and challenging with DNFB topically. Mice were treated intraperitoneally with TSA or vehicle DMSO as a control every other day before and during induction of ACD. The ear swelling response was measured and skin biopsies from sensitized skin areas were obtained for histology. Epidermal cells, thymus, spleen and skin draining lymph nodes were collected for immune staining. RESULTS TSA treatment ameliorated skin lesion severity of DNFB-induced ACD. The percentages of epidermal LCs and splenic DCs as well as LC maturation were significantly reduced in TSA-treated mice. However, TSA treatment did not significantly affect the homeostasis of conventional CD4(+) and CD8(+) T cells, Foxp3(+)CD4(+) regulatory T cells, iNKT cells, and γδ T cells in thymus, spleen and draining lymph nodes (dLNs). Furthermore, there were no significant differences in IL-4 and IFN-γ-producing T cells and iNKT cells between TSA- and DMSO-treated mice. CONCLUSION Our findings suggest that TSA may ameliorate ACD through the regulation of epidermal LCs and HDACs could serve as potential therapeutic targets for ACD and other LCs-related skin diseases.
Collapse
Affiliation(s)
- Yu-Ling Shi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States
| | | | | | | | | | | | | |
Collapse
|
263
|
Kang SJ. The bloodline of CD8α(+) dendritic cells. Mol Cells 2012; 34:219-29. [PMID: 22767247 PMCID: PMC3887845 DOI: 10.1007/s10059-012-0058-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 12/23/2022] Open
Abstract
The immune system is highly coordinated by various cell types. Dendritic cells (DCs) orchestrate immune responses at various stages and bridge innate immunity and adaptive immunity. DCs are a family of cells consisting of various subsets distinguished by surface markers, locations, and transcription factors that govern their development, differentiation, and homeostasis. The complexity of DC subset biology has hindered the understanding of the functional differences among DC subsets. The subset expressing the surface molecule CD8α is of particular interest, due to the efficiency of this DC subset in priming CD8(+) cytotoxic T cells and cross-presenting exogenous antigens to CD8(+) T cells. CD8α(+) DCs maintain tolerance to autologous antigens at steady state, but when activated secrete IL-12, polarizing T helper (Th) 1 responses. Recently, novel DC subsets were found to be present in peripheral tissues and the relationship between CD8α(+) DCs in lymphoid organs and DC subsets in peripheral tissues has been revealed. This review describes the pedigree of CD8α(+) DCs and related subsets, including a history of the discovery of DC subsets and their functional characterization.
Collapse
Affiliation(s)
- Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea.
| |
Collapse
|
264
|
BRAFV600E mutant protein is expressed in cells of variable maturation in Langerhans cell histiocytosis. Blood 2012; 120:e28-34. [PMID: 22859608 DOI: 10.1182/blood-2012-06-429597] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is a clinically and histologically heterogeneous disorder. Its classification as either reactive inflammatory or neoplastic has been a matter of debate. However, the recent finding of frequent BRAFV600E mutations in LCH argues for the latter. The exact cell type that harbors the mutation and is responsible for proliferation remains to be identified. We here apply a BRAFV600E mutation-specific antibody to detect the BRAF mutant cells in lesions from 89 patients with LCH. We found BRAFV600E mutations in 34 of 89 (38%) lesions. In lesions with the BRAFV600E mutation, the majority of cells coexpressing S-100 and CD1a harbored mutant BRAFV600E protein. These cells also expressed CD14 and CD36, whereas various fractions exhibited CD207. On the other hand, CD80 and CD86 expression was also present on BRAFV600E-positive cells. Thus, cells of variable maturation, exhibiting an immunohistochemical profile compatible either with myeloid cell or with dedifferentiated Langerhans cell antigens, carry the BRAFV600E mutation. In conclusion, we identify and characterize the neoplastic cells in LCH with BRAFV600E mutations by applying a mutation-specific marker and demonstrate feasibility for routine screening.
Collapse
|
265
|
Affiliation(s)
- E. Gros
- Department of Dermatology and Allergy; University of Bonn; Bonn; Germany
| | - N. Novak
- Department of Dermatology and Allergy; University of Bonn; Bonn; Germany
| |
Collapse
|
266
|
Kawauchi Y, Kuroda Y, Kojima N. Preferences for uptake of carbohydrate-coated liposomes by C-type lectin receptors as antigen-uptake receptors. Glycoconj J 2012; 29:481-90. [DOI: 10.1007/s10719-012-9406-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 12/14/2022]
|
267
|
Mayer WJ, Mackert MJ, Kranebitter N, Messmer EM, Grüterich M, Kampik A, Kook D. Distribution of antigen presenting cells in the human cornea: correlation of in vivo confocal microscopy and immunohistochemistry in different pathologic entities. Curr Eye Res 2012; 37:1012-8. [PMID: 22667765 DOI: 10.3109/02713683.2012.696172] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The purpose of this study was to determine the quantity and distribution of antigen presenting cells (APC) in various inflammatory and non-inflammatory corneal diseases, comparing in vivo confocal microscopy (IVCM) and immunohistochemistry. MATERIAL AND METHODS Corneae of 41 eyes, composed of group 1 (status post herpes-keratitis), group 2 (keratoconus) and group 3 (graft rejection after keratoplasty) were investigated. IVCM was used preoperatively to assess the distribution and density of dendritic cells in the corneal center versus the paracentral area. Afterwards, all patients underwent penetrating keratoplasty. The host corneas were analyzed by immunohistochemistry for antigen presenting cell distribution, density and characterization by using specific markers for CD207/Langerin, CD209/DC-SIGN and HLA-DR. The IVCM findings were compared with immunohistochemistry results in the corneal epithelium. RESULTS Cells with branching dendritic morphology were visualized by IVCM mainly in the basal epithelial layer and subepithelial nerve plexus of the central and paracentral cornea. The density of APC in IVCM decreased in all groups towards the central part of the cornea. The highest gradient was observed in group 2, followed by groups 1 and 3. The corneal paracenter showed similiar distribution of APC in group 1 and 2 (76.7 cells/mm(2) and 74.4 cells/mm(2)). The highest density of central APC was observed in group 1 (53.76 cells/mm(2)), followed by group 3 (27.0 cells/mm(2)) and group 2 (24.2 cells/mm(2)). In immunohistochemistry positive stained, APC were distributed similarly to IVCM but with a higher density (p < 0.05). CONCLUSION Distribution, density and stage of maturation of corneal epithelial APCs can be evaluated on morphological basis by IVCM. However, the corneal APCs density was about three-fold lower compared to immunohistochemistry findings.
Collapse
Affiliation(s)
- Wolfgang J Mayer
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
268
|
Efficient human cytomegalovirus reactivation is maturation dependent in the Langerhans dendritic cell lineage and can be studied using a CD14+ experimental latency model. J Virol 2012; 86:8507-15. [PMID: 22647696 DOI: 10.1128/jvi.00598-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Studies from a number of laboratories have shown that the myeloid lineage is prominent in human cytomegalovirus (HCMV) latency, reactivation, dissemination, and pathogenesis. Existing as a latent infection in CD34(+) progenitors and circulating CD14(+) monocytes, reactivation is observed upon differentiation to mature macrophage or dendritic cell (DC) phenotypes. Langerhans' cells (LCs) are a subset of periphery resident DCs that represent a DC population likely to encounter HCMV early during primary infection. Furthermore, we have previously shown that CD34(+) derived LCs are a site of HCMV reactivation ex vivo. Accordingly, we have utilized healthy-donor CD34(+) cells to study latency and reactivation of HCMV in LCs. However, the increasing difficulty acquiring healthy-donor CD34(+) cells--particularly from seropositive donors due to the screening regimens used--led us to investigate the use of CD14(+) monocytes to generate LCs. We show here that CD14(+) monocytes cultured with transforming growth factor β generate Langerin-positive DCs (MoLCs). Consistent with observations using CD34(+) derived LCs, only mature MoLCs were permissive for HCMV infection. The lytic infection of mature MoLCs is productive and results in a marked inhibition in the capacity of these cells to promote T cell proliferation. Pertinently, differentiation of experimentally latent monocytes to the MoLC phenotype promotes reactivation in a maturation and interleukin-6 (IL-6)-dependent manner. Intriguingly, however, IL-6-mediated effects were restricted to mature LCs, in contrast to observations with classical CD14(+) derived DCs. Consequently, elucidation of the molecular basis behind the differential response of the two DC subsets should further our understanding of the fundamental mechanisms important for reactivation.
Collapse
|
269
|
Yoshino M, Okuyama K, Murata A, Tomura M, Hayashi SI. CCR7-independent transport of skin antigens occurs in the dermis. Eur J Immunol 2012; 42:1459-67. [PMID: 22622847 DOI: 10.1002/eji.201142114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 02/10/2012] [Accepted: 03/05/2012] [Indexed: 11/10/2022]
Abstract
Under homeostatic conditions, skin DCs migrate to regional LNs transporting self-antigens (self-Ags). The transport of self-Ags is considered to be critical for maintaining peripheral tolerance. Although the chemokine receptor CCR7 potently induces the migration of skin DCs to regional LNs, Ccr7(-/-) (Ccr7-KO) mice do not show skin auto-immune diseases. To resolve this inconsistency, we examined Ccr7-KO epidermis- or dermis-hyperpigmented transgenic (Tg) mice, in which the transport of skin self-Ags is traceable by melanin granules (MGs). Under CCR7-deficient conditions, the transport of epidermal MGs to regional LNs was impaired at 7 weeks of age. However, epidermal MGs could be transported when they had accumulated in the dermis. Ccr7-KO-dermis-pigmented Tg mice confirmed the presence of CCR7-independent transport from the dermis. Compared with WT-dermis-pigmented Tg mice, the amount of transported melanin and number of MG-laden CD11c(+) cells were both approximately 40% of the WT levels, while the number of MG-laden CD205(+) or CD207(+) cells decreased to about 10% in skin regional LNs of Ccr7-KO-dermis-pigmented Tg mice. Cell sorting highlighted the involvement of CD11c(+) cells in the CCR7-independent transport. Here, we show that CCR7-independent transport of skin self-Ags occurs in the dermis. This system might contribute to the continuous transport of self-Ags, and maintain peripheral tolerance.
Collapse
Affiliation(s)
- Miya Yoshino
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan.
| | | | | | | | | |
Collapse
|
270
|
Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 2012; 36:873-84. [PMID: 22560445 PMCID: PMC3716276 DOI: 10.1016/j.immuni.2012.03.018] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 09/20/2011] [Accepted: 03/09/2012] [Indexed: 12/18/2022]
Abstract
Recent studies have demonstrated that the skin of a normal adult human contains 10-20 billion resident memory T cells, including various helper, cytotoxic, and regulatory T cell subsets, that are poised to respond to environmental antigens. Using only autologous human tissues, we report that both in vitro and in vivo, resting epidermal Langerhan cells (LCs) selectively and specifically induced the activation and proliferation of skin resident regulatory T (Treg) cells, a minor subset of skin resident memory T cells. In the presence of foreign pathogen, however, the same LCs activated and induced proliferation of effector memory T (Tem) cells and limited Treg cells' activation. These underappreciated properties of LCs, namely maintenance of tolerance in normal skin, and activation of protective skin resident memory T cells upon infectious challenge, help clarify the role of LCs in skin.
Collapse
Affiliation(s)
- Julien Seneschal
- Department of Dermatology/Harvard Skin Disease Research Center,
Brigham and Women’s Hospital, Boston, MA 02115
- Department of Dermatology and Pediatric Dermatology/ University of
Bordeaux, INSERM U1035 and CIRID UMR 5164, Bordeaux, France
| | - Rachael A. Clark
- Department of Dermatology/Harvard Skin Disease Research Center,
Brigham and Women’s Hospital, Boston, MA 02115
| | - Ahmed Gehad
- Department of Dermatology/Harvard Skin Disease Research Center,
Brigham and Women’s Hospital, Boston, MA 02115
| | - Clare M. Baecher-Allan
- Department of Dermatology/Harvard Skin Disease Research Center,
Brigham and Women’s Hospital, Boston, MA 02115
| | - Thomas S. Kupper
- Department of Dermatology/Harvard Skin Disease Research Center,
Brigham and Women’s Hospital, Boston, MA 02115
| |
Collapse
|
271
|
Donadieu J, Chalard F, Jeziorski E. Medical management of langerhans cell histiocytosis from diagnosis to treatment. Expert Opin Pharmacother 2012; 13:1309-22. [PMID: 22578036 DOI: 10.1517/14656566.2012.688028] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
272
|
Gueiros LA, Gondak R, Jorge Júnior J, Coletta RD, Carvalho ADA, Leão JC, de Almeida OP, Vargas PA. Increased number of Langerhans cells in oral lichen planus and oral lichenoid lesions. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113:661-6. [PMID: 22668625 DOI: 10.1016/j.oooo.2011.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/06/2011] [Accepted: 12/01/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The aim of this study was to quantify the presence of Langerhans cells (LC) in oral lichen planus (OLP) and oral lichenoid lesions (OLL), comparing them with normal epithelium. STUDY DESIGN Thirty-six patients with biopsy-proven OLP or OLL were selected for the study, as well as 23 control subjects free of inflammatory conditions. Immunohistochemical reactions were performed using the streptavidin-biotin peroxidase complex method with CD1a and CD83 primary antibodies. Densities were compared between groups and correlated with microscopic findings. RESULTS Patients with lichenoid conditions (OLP + OLL) presented higher densities of CD1a(+) cells than the control subjects (P = .03). Higher densities of CD1a were associated with a thinner layer of inflammatory cells (P = .02). CONCLUSIONS This study indicates that OLP and OLL are characterized by the recruitment of LC, which may play a significant role on its pathogenesis.
Collapse
Affiliation(s)
- Luiz Alcino Gueiros
- Oral Medicine Unit, Department of Clinics and Preventive Dentistry, Federal University of Pernambuco, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
273
|
Epidermal Langerhans cells in small fiber neuropathies. Pain 2012; 153:982-989. [DOI: 10.1016/j.pain.2012.01.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/27/2011] [Accepted: 01/18/2012] [Indexed: 11/22/2022]
|
274
|
Langerhans cells down-regulate inflammation-driven alveolar bone loss. Proc Natl Acad Sci U S A 2012; 109:7043-8. [PMID: 22509018 DOI: 10.1073/pnas.1116770109] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Excessive bone resorption is frequently associated with chronic infections and inflammatory diseases. Whereas T cells were demonstrated to facilitate osteoclastogenesis in such diseases, the role of dendritic cells, the most potent activators of naive T cells, remains unclear. Using a model involving inflammation-driven alveolar bone loss attributable to infection, we showed that in vivo ablation of Langerhans cells (LCs) resulted in enhanced bone loss. An increased infiltration of B and T lymphocytes into the tissue surrounding the bone was observed in LC-ablated mice, including receptor activator of NF-κB ligand (RANKL)-expressing CD4(+) T cells with known capabilities of altering bone homeostasis. In addition, the absence of LCs significantly reduced the numbers of CD4(+)Foxp3(+) T-regulatory cells in the tissue. Further investigation revealed that LCs were not directly involved in presenting antigens to T cells. Nevertheless, despite their low numbers in the tissue, the absence of LCs resulted in an elevated activation of CD4(+) but not CD8(+) T cells. This activation involved elevated production of IFN-γ but not IL-17 or IL-10 cytokines. Our data, thus, reveal a protective immunoregulatory role for LCs in inflammation-induced alveolar bone resorption, by inhibiting IFN-γ secretion and excessive activation of RANKL(+)CD4(+) T cells with a capability of promoting osteoclastogenesis.
Collapse
|
275
|
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are neurological diseases that can be transmitted through a number of different routes. A wide range of mammalian species are affected by the disease. After peripheral exposure, some TSE agents accumulate in lymphoid tissues at an early stage of disease prior to spreading to the nerves and the brain. Much research has focused on identifying the cells and molecules involved in the transmission of TSE agents from the site of exposure to the brain and several crucial cell types have been associated with this process. The identification of the key cells that influence the different stages of disease transmission might identify targets for therapeutic intervention. This review highlights the involvement of mononuclear phagocytes in TSE disease. Current data suggest these cells may exhibit a diverse range of roles in TSE disease from the transport or destruction of TSE agents in lymphoid tissues, to mediators or protectors of neuropathology in the brain.
Collapse
|
276
|
Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo. Proc Natl Acad Sci U S A 2012; 109:E889-97. [PMID: 22411813 DOI: 10.1073/pnas.1117674109] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
After activation, Langerhans cells (LC), a distinct subpopulation of epidermis-resident dendritic cells, migrate from skin to lymph nodes where they regulate the magnitude and quality of immune responses initiated by epicutaneously applied antigens. Modulation of LC-keratinocyte adhesion is likely to be central to regulation of LC migration. LC express high levels of epithelial cell adhesion molecule (EpCAM; CD326), a cell-surface protein that is characteristic of some epithelia and many carcinomas and that has been implicated in intercellular adhesion and metastasis. To gain insight into EpCAM function in a physiologic context in vivo, we generated conditional knockout mice with EpCAM-deficient LC and characterized them. Epidermis from these mice contained increased numbers of LC with normal levels of MHC and costimulatory molecules and T-cell-stimulatory activity in vitro. Migration of EpCAM-deficient LC from skin explants was inhibited, but chemotaxis of dissociated LC was not. Correspondingly, the ability of contact allergen-stimulated, EpCAM-deficient LC to exit epidermis in vivo was delayed, and strikingly fewer hapten-bearing LC subsequently accumulated in lymph nodes. Attenuated migration of EpCAM-deficient LC resulted in enhanced contact hypersensitivity responses as previously described in LC-deficient mice. Intravital microscopy revealed reduced translocation and dendrite motility in EpCAM-deficient LC in vivo in contact allergen-treated mice. These results conclusively link EpCAM expression to LC motility/migration and LC migration to immune regulation. EpCAM appears to promote LC migration from epidermis by decreasing LC-keratinocyte adhesion and may modulate intercellular adhesion and cell movement within in epithelia during development and carcinogenesis in an analogous fashion.
Collapse
|
277
|
Bilateral gingival enlargement of the posterior mandible in an adolescent child. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114:406-10. [PMID: 22986238 DOI: 10.1016/j.oooo.2011.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 10/22/2011] [Accepted: 11/03/2011] [Indexed: 11/23/2022]
|
278
|
|
279
|
Benichou G, Yamada Y, Yun SH, Lin C, Fray M, Tocco G. Immune recognition and rejection of allogeneic skin grafts. Immunotherapy 2012; 3:757-70. [PMID: 21668313 DOI: 10.2217/imt.11.2] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The transplantation of allogeneic skin grafts is associated with a potent inflammatory immune response leading to the destruction of donor cells and the rejection of the graft. Shortly after transplantation, skin dendritic cells (DCs) migrate out of the graft through lymphatic vessels and infiltrate the recipient's draining lymph nodes where they present donor antigens via two mechanisms: the direct pathway, in which T cells recognize intact donor MHC antigens on donor DCs; and the indirect pathway, involving T-cell recognition of donor peptides bound to self-MHC molecules on recipient DCs. Some recent studies have suggested that T cells can become activated via recognition of donor MHC molecules transferred on recipient antigen-presenting cells (semidirect pathway). Activation of T cells via direct or indirect allorecognition is sufficient to trigger acute rejection of allogeneic skin grafts. In addition, allospecific antibodies contribute to the rejection process either by killing allogeneic targets in a complement-dependent fashion or by opsonizing donor cells and forming immune complexes. Finally, several studies demonstrate that NK cells, activated due to missing self-MHC class I molecules on allogeneic cells, are involved in allogeneic skin graft rejection via direct killing of donor cells and through the production of proinflammatory cytokines including IFN-γ and TNF-α.
Collapse
Affiliation(s)
- Gilles Benichou
- Department of Surgery, Transplant Unit & Wellman Photomedicine Center Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
280
|
Abstract
PURPOSE OF REVIEW To summarize novel insights into the immunological mechanisms of sublingual immunotherapy (SLIT). Within the recent decades, several alternative noninvasive allergen application strategies have been investigated in allergen-specific immunotherapy (AIT), of which intra-oral allergen application to sublingual mucosa has been proven to be well tolerated and effective. RECENT FINDINGS To date, SLIT is widely accepted by most allergists as an alternative option to conventional subcutaneous immunotherapy (SCIT). Although detailed immunological mechanisms remain to be elucidated, much scientific effort has been made to shed some light on local and systemic immunological responses to SLIT in mice as well as humans. Only a few studies focused on the detailed mechanisms following allergen application to the oral mucosa as part of the sophisticated mucosal immunological network. Within this network, the pro-tolerogenic properties of local antigen-presenting cells (APCs) such as dendritic cells - which are able to enforce tolerogenic mechanisms and to induce T-cell immune responses - play a central role. Further on, basic research focused not only on the immune response in nasal and bronchial mucosa but also on the systemic T-cell immune response. SUMMARY Thus, much exiting data have been published providing a better understanding of immunological features of SLIT but far more investigations are necessary to uncover further exciting details on the key mechanisms of SLIT.
Collapse
|
281
|
van den Berg LM, Gringhuis SI, Geijtenbeek TB. An evolutionary perspective on C-type lectins in infection and immunity. Ann N Y Acad Sci 2012; 1253:149-58. [DOI: 10.1111/j.1749-6632.2011.06392.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
282
|
Abstract
Myeloid cells are key drivers of physiological responses to pathogen invasion or tissue damage. Members of the C-type lectin receptor (CLR) family stand out among the specialized receptors utilized by myeloid cells to orchestrate these responses. CLR ligands include carbohydrate, protein, and lipid components of both pathogens and self, which variably trigger endocytic, phagocytic, proinflammatory, or anti-inflammatory reactions. These varied outcomes rely on a versatile system for CLR signaling that includes tyrosine-based motifs that recruit kinases, phosphatases, or endocytic adaptors as well as nontyrosine-based signals that modulate the activation of other pathways or couple to the uptake machinery. Here, we review the signaling properties of myeloid CLRs and how they impact the role of myeloid cells in innate and adaptive immunity.
Collapse
Affiliation(s)
- David Sancho
- Department of Vascular Biology and Inflammation, CNIC, Centro Nacional de Investigaciones Cardiovasculares, E-28029, Madrid, Spain.
| | | |
Collapse
|
283
|
Abstract
The long-sought entry receptors for rubella, sindbis and respiratory syncytial viruses (RV, SV and RSV), together with the missing measles virus (MV) receptor for infection of epithelial cells, were identified in 2011. These have been major developments in the field of virus entry. In addition, 2011 was rich in new information about the interactions of MV, RSV and phleboviruses with DC-SIGN during infection of dendritic cells, a crucial step allowing the virus to breach the epithelial barrier and gain access to the lymph nodes. This faciliates dissemination to susceptible tissues where it can develop a vigorous and sustained replication, to eventually target specific organs from which it can propagate into the environment and efficiently infect new hosts, closing the merry-go-round of the virus cycle.
Collapse
|
284
|
Ahmed Z, Czubala M, Blanchet F, Piguet V. HIV impairment of immune responses in dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:201-38. [PMID: 22975877 DOI: 10.1007/978-1-4614-4433-6_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Dendritic cells and their subsets are diverse populations of immune cells in the skin and mucous membranes that possess the ability to sense the presence of microbes and orchestrate an efficient and adapted immune response. Dendritic cells (DC) have the unique ability to act as a bridge between the innate and adaptive immune responses. These cells are composed of a number of subsets behaving with preferential and specific features depending on their location and surrounding environment. Langerhans cells (LC) or dermal DC (dDC) are readily present in mucosal areas. Other DC subsets such as plasmacytoid DC (pDC), myeloid DC (myDC), or monocyte-derived DC (MDDC) are thought to be recruited or differentiated in sites of pathogenic challenge. Upon HIV infection, DC and their subsets are likely among the very first immune cells to encounter incoming pathogens and initiate innate and adaptive immune responses. However, as evidenced during HIV infection, some pathogens have evolved subtle strategies to hijack key cellular machineries essential to generate efficient antiviral responses and subvert immune responses for spread and survival.In this chapter, we review recent research aimed at investigating the involvement of DC subtypes in HIV transmission at mucosal sites, concentrating on HIV impact on cellular signalling and trafficking pathways in DC leading to DC-mediated immune response alterations and viral immune evasion. We also address some aspects of DC functions during the chronic immune pathogenesis and conclude with an overview of the current and novel therapeutic and prophylactic strategies aimed at improving DC-mediated immune responses, thus to potentially tackle the early events of mucosal HIV infection and spread.
Collapse
Affiliation(s)
- Zahra Ahmed
- Department of Dermatology and Wound Healing, Cardiff University School of Medicine, Cardiff, Wales, UK
| | | | | | | |
Collapse
|
285
|
Antiviral immune responses by human langerhans cells and dendritic cells in HIV-1 infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:45-70. [PMID: 22975871 DOI: 10.1007/978-1-4614-4433-6_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The main route of human immunodeficiency virus-1 (HIV-1) infection is via unprotected sexual intercourse, and therefore, vaginal tissues and male foreskin are viral entry sites. Langerhans cells (LCs) and dendritic cells (DCs) are amongst the first immune cells encountering HIV-1 since these cells line these mucosal tissues. Both LCs and DCs are equipped with specific pattern recognition receptors that not only sense pathogens, but induce specific immune responses against these pathogens. LCs express the C-type lectin receptor langerin, which provides protection against HIV-1 infection. In contrast, DCs express the C-type lectin receptor DC-SIGN, which facilitates capture as well as infection of DCs and subsequent transmission to CD4(+) T cells. This chapter gives an update on immune responses elicited against viruses and sheds a light on different immune mechanisms that are hijacked by HIV-1 to infect the host. HIV-1 infection ultimately leads to the worldwide pandemic acquired immunodeficiency syndrome (AIDS).
Collapse
|
286
|
Do Indeterminate Cells Follow the Footsteps of Langerhans Cells and Migrate From the Skin to the Lymph Node? Appl Immunohistochem Mol Morphol 2012; 20:56-61. [DOI: 10.1097/pai.0b013e31822053a7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
287
|
Romani N, Flacher V, Tripp CH, Sparber F, Ebner S, Stoitzner P. Targeting skin dendritic cells to improve intradermal vaccination. Curr Top Microbiol Immunol 2012; 351:113-38. [PMID: 21253784 PMCID: PMC4285659 DOI: 10.1007/82_2010_118] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vaccinations in medicine are typically administered into the muscle beneath the skin or into the subcutaneous fat. As a consequence, the vaccine is immunologically processed by antigen-presenting cells of the skin or the muscle. Recent evidence suggests that the clinically seldom used intradermal route is effective and possibly even superior to the conventional subcutaneous or intramuscular route. Several types of professional antigen-presenting cells inhabit the healthy skin. Epidermal Langerhans cells (CD207/langerin(+)), dermal langerin(neg), and dermal langerin(+) dendritic cells (DC) have been described, the latter subset so far only in mouse skin. In human skin langerin(neg) dermal DC can be further classified based on their reciprocal expression of CD1a and CD14. The relative contributions of these subsets to the generation of immunity or tolerance are still unclear. Yet, specializations of these different populations have become apparent. Langerhans cells in human skin appear to be specialized for induction of cytotoxic T lymphocytes; human CD14(+) dermal DC can promote antibody production by B cells. It is currently attempted to rationally devise and improve vaccines by harnessing such specific properties of skin DC. This could be achieved by specifically targeting functionally diverse skin DC subsets. We discuss here advances in our knowledge on the immunological properties of skin DC and strategies to significantly improve the outcome of vaccinations by applying this knowledge.
Collapse
Affiliation(s)
- N Romani
- Department of Dermatology and Venereology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
288
|
van Cruijsen H, Oosterhoff D, Lindenberg JJ, Lougheed SM, Fehres C, Weijers K, van Boerdonk R, Giaccone G, Scheper RJ, Hoekman K, de Gruijl TD. Glioblastoma-induced inhibition of Langerhans cell differentiation from CD34(+) precursors is mediated by IL-6 but unaffected by JAK2/STAT3 inhibition. Immunotherapy 2011; 3:1051-61. [PMID: 21913828 DOI: 10.2217/imt.11.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AIMS Langerhans cell (LC) infiltration has been observed in glioblastoma, but the glioblastoma microenvironment may be conditioned to resist antitumor immune responses. As little is known about how glioblastoma may affect dendritic cell differentiation, here we set out to delineate the effects of glioblastoma-derived soluble factors on LC differentiation. METHODS CD34(+) precursor cells of the human myeloid cell line MUTZ-3 were differentiated into LC in the presence of conditioned media of the human glioblastoma cell lines U251 or U373 and phenotypically and functionally characterized. RESULTS Glioblastoma-conditioned media inhibited LC differentiation, resulting in functional impairment, as determined by allogeneic mixed leukocyte reactivity, and induction of STAT3 activation. IL-6 blockade completely abrogated these glioblastoma-induced immunosuppressive effects and reduced STAT3 phosphorylation. However, neither addition of JSI-124 (cucurbitacin-I; a JAK2/STAT3 inhibitor), nor of GW5074 (a Raf-1 inhibitor), both of which interfere with signaling pathways reported to act downstream of the IL-6 receptor, prevented the observed inhibitory effects on LC differentiation. CONCLUSION Glioblastoma-derived IL-6 is responsible for the observed suppression of LC differentiation from CD34(+) precursors but appears to exert this effect in a STAT3 and Raf-1 independent fashion.
Collapse
Affiliation(s)
- Hester van Cruijsen
- Division of Medical Oncology, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Abstract
PURPOSE OF REVIEW Relatively little is known with regards to the mechanisms of HIV-1 transmission across a mucosal surface and more specifically what effects host factors have on influencing infection and early viral dissemination. The purpose of this review is to summarize which factors of the innate immune response can influence mucosal transmission of HIV-1. RECENT FINDINGS A large array of cell types reside at the mucosal surface ranging from Langerhans cells, dendritic cells, macrophages as well as CD4⁺ lymphocytes, all of which interact with the virus in a unique and different way and which can contribute to risk of HIV-1 transmission. Numerous factors present in bodily secretions as well as the carrier fluids of HIV-1 (breast milk, vaginal secretions, semen and intestinal mucus) can influence transmission and early virus replication. These range from cytokines, chemokines, small peptides, glycoproteins as well as an array of host intracellular molecules which can influence viral uncoating, reverse transcription as well as egress from the infected cell. SUMMARY Better understanding the cellular mechanisms of HIV-1 transmission and how different host factor can influence infection will aide in the future development of vaccines, microbicides, and therapies.
Collapse
|
290
|
Real-time visualization of macromolecule uptake by epidermal Langerhans cells in living animals. J Invest Dermatol 2011; 132:609-14. [PMID: 22113485 PMCID: PMC3278540 DOI: 10.1038/jid.2011.385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As a skin-resident member of the dendritic cell family, Langerhans cells (LCs) are generally regarded to function as professional antigen-presenting cells. Here we report a simple method to visualize the endocytotic activity of LCs in living animals. BALB/c mice received subcutaneous injection of FITC-conjugated dextran (DX) probes into the ear skin and were then examined under confocal microscopy. Large numbers of FITC(+) epidermal cells became detectable 12-24 hours after injection as background fluorescence signals began to disappear. Most (>90%) of the FITC(+) epidermal cells expressed Langerin, and >95% of Langerin(+) epidermal cells exhibited significant FITC signals. To assess intracellular localization, Alexa Fluor 546-conjugated DX probes were locally injected into IAβ-enhanced green fluorescent protein (EGFP) knock-in mice and Langerin-EGFP-diphtheria toxin receptor mice--three dimensional rotation images showed close association of most of the internalized DX probes with major histocompatibility complex (MHC) class II molecules, but not with Langerin molecules. These observations support the current view that LCs constantly sample surrounding materials, including harmful and innocuous antigens, at the environmental interface. Our data also validate the potential utility of the newly developed imaging approach to monitor LC function in wild-type animals.
Collapse
|
291
|
Stoitzner P, Romani N. Langerin, the "Catcher in the Rye": an important receptor for pathogens on Langerhans cells. Eur J Immunol 2011; 41:2526-9. [PMID: 21952811 DOI: 10.1002/eji.201141934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Langerhans cells (LCs) are a distinct subset of DCs that resides in the epidermis and other epithelia. They are potent antigen-presenting cells and strong inducers of T-cell responses. Like other DC types, LCs express C-type lectins that serve as antigen/pathogen uptake receptors, with Langerin/CD207 being the characteristic LC C-type lectin. In this issue of the European Journal of Immunology, Geijtenbeek and colleagues [Eur. J. Immunol. 2011. 41: 2619-2631] assign a role to Langerin on human LCs for binding and capturing measles virus. Interestingly, however, this function does not correlate with productive infection or with cross-presentation of measles virus. These authors show that measles virus does not infect the LCs via Langerin, and that LCs cannot cross-present the virus to CD8(+) T cells; however, presentation of this virus to CD4(+) T cells occurs and is dependent on virus capture by Langerin. Thus, cross-presentation of measles virus may be left to skin DCs other than LCs. This highlights the complexity of anti-viral T-cell responses that originate in the skin and also emphasizes the need for intensified investigations into human skin DCs in order to be able to ultimately harness their potential for immunotherapy.
Collapse
Affiliation(s)
- Patrizia Stoitzner
- Department of Dermatology & Venereology, Innsbruck Medical University, Innsbruck, Austria.
| | | |
Collapse
|
292
|
Badalian-Very G, Vergilio JA, Degar BA, Rodriguez-Galindo C, Rollins BJ. Recent advances in the understanding of Langerhans cell histiocytosis. Br J Haematol 2011; 156:163-72. [PMID: 22017623 DOI: 10.1111/j.1365-2141.2011.08915.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Langerhans cell histiocytosis (LCH) is a proliferative disease of cells that share phenotypic characteristics with the primary antigen presenting cells of the epidermis. Its clinical manifestations are highly variable, extending from very benign forms to a disseminated, aggressive disease that causes significant mortality. Although many of the fundamental pathogenetic features of LCH have been enigmatic, recent advances have led to a much clearer understanding of the disease. In particular, careful molecular analyses of mouse models and human LCH samples suggest that LCH's cell of origin may not be the epidermal LC itself but a myeloid-derived precursor. Advanced genomic technologies have revealed the presence of activating, somatic BRAF mutations in the majority of patient specimens. Together, these observations have produced a new picture of LCH as a myeloid neoplasm. These advances are likely to have profound implications for the use of targeted therapeutics in LCH.
Collapse
Affiliation(s)
- Gayane Badalian-Very
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
293
|
Zahner SP, Kel JM, Martina CAE, Brouwers-Haspels I, van Roon MA, Clausen BE. Conditional deletion of TGF-βR1 using Langerin-Cre mice results in Langerhans cell deficiency and reduced contact hypersensitivity. THE JOURNAL OF IMMUNOLOGY 2011; 187:5069-76. [PMID: 21998450 DOI: 10.4049/jimmunol.1101880] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The critical role of Langerhans cells (LC) in contact hypersensitivity (CHS) was recently questioned in studies using different LC-depletion mouse models. On one hand, inducible ablation of LC led to diminished ear swelling, suggesting functional redundancy between LC and (Langerin(+)) dermal dendritic cells (DC). On the other hand, constitutive or acute depletion of LC resulted in an enhanced reaction, supporting a regulatory role of LC in CHS. To address this controversy by conditional gene targeting, we generated Langerin-Cre knockin mice. Breeding these mice to a Cre-reporter strain demonstrated robust and specific DNA recombination in LC, as well as other Langerin(+) tissue DC. In agreement with the vital requirement of TGF-β signaling for LC development, crossing Langerin-Cre to mice homozygous for a loxP-flanked TGF-βR1 allele resulted in permanent LC deficiency, whereas the homeostasis of dermal Langerin(+) DC was unaffected. In the absence of LC, induction of CHS in these Langerin(+) DC-specific TGF-βR1-deficient mice elicited decreased ear swelling compared with controls. This novel approach provided further evidence against a regulatory function of LC in CHS. Moreover, these Langerin-Cre mice represent a unique and powerful tool to dissect the role and molecular control of Langerin(+) DC populations beyond LC.
Collapse
Affiliation(s)
- Sonja P Zahner
- Department of Immunology, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
294
|
|
295
|
Lovy J, Savidant GP, Wright GM. Ontogeny and disease responses of Langerhans-like cells in lymphoid tissues of salmonid fish. Cell Tissue Res 2011; 346:111-8. [DOI: 10.1007/s00441-011-1244-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 09/08/2011] [Indexed: 11/30/2022]
|
296
|
Murray M, Dean J, Slater L. Multifocal Oral Langerhans Cell Histiocytosis. J Oral Maxillofac Surg 2011; 69:2585-91. [DOI: 10.1016/j.joms.2011.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
|
297
|
Christie LJ, MacKenzie C, Palmer TJ, Baker L, Goodlad JR. Type and maturational status of dendritic cells in cutaneous B cell lymphoproliferative disorders. Histopathology 2011; 59:421-32. [DOI: 10.1111/j.1365-2559.2011.03967.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
298
|
Sathe P, Wu L. The network of cytokines, receptors and transcription factors governing the development of dendritic cell subsets. Protein Cell 2011; 2:620-30. [PMID: 21904978 DOI: 10.1007/s13238-011-1088-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/14/2011] [Indexed: 12/12/2022] Open
Abstract
The pathways leading to the development of different dendritic cell (DC) subsets have long been unclear. In recent years, a number of precursors on the route to DC development, both under steady state and inflammatory conditions, have been described, and the nature of these pathways is becoming clearer. In addition, the development of various knockout mouse models and an in vitro system modelling DC development have revealed the role of numerous cytokines and transcription factors that influence DC development. Here, we review recent findings on the factors important in DC development in the context of the developmental pathways that have been described.
Collapse
Affiliation(s)
- Priyanka Sathe
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|
299
|
Nguyen VA, Dubrac S, Forstner M, Huter O, Del Frari B, Romani N, Ebner S. CD34+ -derived Langerhans cell-like cells are different from epidermal Langerhans cells in their response to thymic stromal lymphopoietin. J Cell Mol Med 2011; 15:1847-56. [PMID: 21054781 PMCID: PMC3918041 DOI: 10.1111/j.1582-4934.2010.01206.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 09/25/2010] [Indexed: 12/01/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) endows human blood-derived CD11c(+) dendritic cells (DCs) and Langerhans cells (LCs) obtained from human epidermis with the capacity to induce pro-allergic T cells. In this study, we investigated the effect of TSLP on umbilical cord blood CD34(+) -derived LC-like cells. These cells are often used as model cells for LCs obtained from epidermis. Under the influence of TSLP, both cell types differed in several ways. As defined by CD83, CD80 and CD86, TSLP did not increase maturation of LC-like cells when compared with freshly isolated LCs and epidermal émigrés. Differences were also found in the production of chemokine (C-C motif) ligand (CCL)17. LCs made this chemokine only when primed by TSLP and further stimulated by CD40 ligation. In contrast, LC-like cells released CCL17 in response to CD40 ligation, irrespective of a prior treatment with TSLP. Moreover, the CCL17 levels secreted by LC-like cells were at least five times higher than those from migratory LCs. After maturation with a cytokine cocktail consisting of tumour necrosis factor-α, interleukin (IL)-1β, IL-6 and prostaglandin (PG)E(2) LC-like cells released IL-12p70 in response to CD40 ligation. Most importantly and in contrast to LC, TSLP-treated LC-like cells did not induce a pro-allergic cytokine pattern in helper T cells. Due to their different cytokine secretion and the different cytokine production they induce in naïve T cells, we conclude that one has to be cautious to take LC-like cells as a paradigm for 'real' LCs from the epidermis.
Collapse
Affiliation(s)
- Van Anh Nguyen
- Department of Dermatology and Venereology, Innsbruck Medical UniversityInnsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology and Venereology, Innsbruck Medical UniversityInnsbruck, Austria
| | - Markus Forstner
- Department of Dermatology and Venereology, Innsbruck Medical UniversityInnsbruck, Austria
- K1 Center OncotyrolInnsbruck, Austria
| | - Otto Huter
- Department of Obstetrics and Gynaecology, Innsbruck Medical UniversityInnsbruck, Austria
| | - Barbara Del Frari
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical UniversityInnsbruck, Austria
| | - Nikolaus Romani
- Department of Dermatology and Venereology, Innsbruck Medical UniversityInnsbruck, Austria
- K1 Center OncotyrolInnsbruck, Austria
| | - Susanne Ebner
- Department of Dermatology and Venereology, Innsbruck Medical UniversityInnsbruck, Austria
- K1 Center OncotyrolInnsbruck, Austria
| |
Collapse
|
300
|
Le A, Saverin M, Hand AR. Distribution of dendritic cells in normal human salivary glands. Acta Histochem Cytochem 2011; 44:165-73. [PMID: 21927515 PMCID: PMC3168762 DOI: 10.1267/ahc.11010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/13/2011] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DC) are believed to contribute to development of autoimmune sialadenitis, but little is known about their distribution in normal salivary glands. In this study, DC were identified and their distribution was determined in normal human parotid and submandibular glands. For light microscopy, salivary gland sections were stained with H&E or immunocytochemically using antibodies to DC markers. Transmission electron microscopy (TEM) was used to evaluate the ultrastructural characteristics of DC. In H&E sections, elongated, irregularly shaped nuclei were occasionally seen in the striated and excretory duct epithelium. Immunolabeling with anti-HLA-DR, anti-CD11c and anti-S100 revealed DC with numerous processes extending between ductal epithelial cells, often close to the lumen. Morphometric analyses indicated that HLA-DR-positive DC occupied approximately 4–11% of the duct wall volume. Similar reactive cells were present in acini, intercalated ducts and interstitial tissues. TEM observations revealed cells with indented nuclei containing dense chromatin, pale cytoplasm with few organelles, and lacking junctional attachments to adjacent cells. These results indicate that DC are abundant constituents of normal human salivary glands. Their location within ductal and acinar epithelium suggests a role in responding to foreign antigens and/or maintaining immunological tolerance to salivary proteins.
Collapse
Affiliation(s)
- An Le
- Division of Pediatric Dentistry, Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine
| | - Michele Saverin
- Division of Pediatric Dentistry, Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine
| | - Arthur R. Hand
- Division of Pediatric Dentistry, Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine
| |
Collapse
|