251
|
Abstract
High-valent oxocobalt(IV) species have been invoked as key intermediates in oxidative catalysis, but investigations into the chemistry of proton-coupled redox reactions of such species have been limited. Herein, the reactivity of an established water oxidation catalyst, [Co4O4(OAc)4(py)4][PF6], toward H-atom abstraction reactions is described. Mechanistic analyses and density functional theory (DFT) calculations support a concerted proton-electron transfer (CPET) pathway in which the high energy intermediates formed in stepwise pathways are bypassed. Natural bond orbital (NBO) calculations point to cooperative donor-acceptor σ interactions at the transition state, whereby the H-atom of the substrate is transferred to an orbital delocalized over a Co3(μ3-O) fragment. The mechanistic insights provide design principles for the development of catalytic C-H activation processes mediated by a multimetallic oxo metal cluster.
Collapse
|
252
|
Oda A, Shionoya H, Hotta Y, Takewaki T, Sawabe K, Satsuma A. Spectroscopic Evidence of Efficient Generation of Dicopper Intermediate in Selective Catalytic Reduction of NO over Cu-Ion-Exchanged Zeolites. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03425] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Akira Oda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Hitomi Shionoya
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yuusuke Hotta
- Science & Innovation Center, Inorganic Materials Laboratory, Mitsubishi Chemical Corporation, Yokohama 227-8502, Japan
| | - Takahiko Takewaki
- Science & Innovation Center, Inorganic Materials Laboratory, Mitsubishi Chemical Corporation, Yokohama 227-8502, Japan
| | - Kyoichi Sawabe
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Atsushi Satsuma
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
253
|
Reactivity descriptors for Cu bis-phenanthroline catalysts for the hydrogen peroxide reduction reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
254
|
Jones CB, Khurana I, Krishna SH, Shih AJ, Delgass WN, Miller JT, Ribeiro FH, Schneider WF, Gounder R. Effects of dioxygen pressure on rates of NOx selective catalytic reduction with NH3 on Cu-CHA zeolites. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
255
|
Deng Z, Wu P, Cai Y, Sui Y, Chen Z, Zhang H, Wang B, Xia H. Dioxygen Activation by Internally Aromatic Metallacycle: Crystallographic Structure and Mechanistic Investigations. iScience 2020; 23:101379. [PMID: 32739835 PMCID: PMC7399181 DOI: 10.1016/j.isci.2020.101379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/14/2020] [Accepted: 07/14/2020] [Indexed: 11/19/2022] Open
Abstract
Mononuclear metal-peroxo species are invoked as the key intermediates in metalloenzymatic or synthetic catalysis. However, either transience or sluggishness reactivity of synthetic analogs of metal-peroxo species impedes our understanding of oxygen activation mechanism. Herein, we designed and characterized a dioxygen-derived mononuclear osmium-peroxo complex, in which the peroxo ligand is stabilized by internally aromatic metallacycle. We demonstrate that the osmium-peroxo species shows catalytic activity toward promoterless alcohol dehydrogenations. Furthermore, computational studies provide a new mechanism for the osmium-peroxo-mediated alcohol oxidation, starting with the concerted double-hydrogen transfer and followed by the generation of osmium-oxo species. Interestingly, the internally aromatic metallacycle also plays a vital role in catalysis, which mediates the hydrogen transfer from osmium center to the distal oxygen atom of Os–OOH moiety, thus facilitating the Os–OOH→Os=O conversion. We expect that these insights will advance the development of aromatic metallacycle toward aerobic oxidation catalysis. A dioxygen-derived mononuclear osmium-peroxo complex was characterized The peroxo ligand is stabilized by internally aromatic metallacycle O2 activation involves the reversible aromatization-dearomatization A concerted double-hydrogen transfer mechanism for alcohol dehydrogenation
Collapse
Affiliation(s)
- Zhihong Deng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Peng Wu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yapeng Cai
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanheng Sui
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhixin Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hong Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Binju Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Haiping Xia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
256
|
Yang J, Seo MS, Kim KH, Lee Y, Fukuzumi S, Shearer J, Nam W. Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Kyung Ha Kim
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Jason Shearer
- Department of Chemistry Trinity University San Antonio TX 78212 USA
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
257
|
Panda C, Sarkar A, Sen Gupta S. Coordination chemistry of carboxamide ‘Nx’ ligands to metal ions for bio-inspired catalysis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213314] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
258
|
Brazeau SE, Pope F, Huang VL, Anklin C, Rheingold AL, Doerrer LH. Phosphine ligands as protecting groups for 3d complexes in oxidation by O2. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
259
|
Wu T, MacMillan SN, Rajabimoghadam K, Siegler MA, Lancaster KM, Garcia-Bosch I. Structure, Spectroscopy, and Reactivity of a Mononuclear Copper Hydroxide Complex in Three Molecular Oxidation States. J Am Chem Soc 2020; 142:12265-12276. [PMID: 32531159 DOI: 10.1021/jacs.0c03867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Structural, spectroscopic, and reactivity studies are presented for an electron transfer series of copper hydroxide complexes supported by a tridentate redox-active ligand. Single crystal X-ray crystallography shows that the mononuclear [CuOH]1+ core is stabilized via intramolecular H-bonds between the H-donors of the ligand and the hydroxide anion when the ligand is in its trianionic form. This complex undergoes two reversible oxidation processes that produce two metastable "high-valent" CuOH species, which can be generated by addition of stoichiometric amounts of 1e- oxidants. These CuOH species are characterized by an array of spectroscopic techniques including UV-vis absorption, electron paramagnetic resonance (EPR), and X-ray absorption spectroscopies (XAS), which together indicate that all redox couples are ligand-localized. The reactivity of the complexes in their higher oxidation states toward substrates with modest O-H bond dissociation energies (e.g., 4-substitued-2,6-di-tert-butylphenols) indicates that these complexes act as 2H+/2e- oxidants, differing from the 1H+/1e- reactivity of well-studied [CuOH]2+ systems.
Collapse
Affiliation(s)
- Tong Wu
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853, United States
| | | | - Maxime A Siegler
- Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853, United States
| | - Isaac Garcia-Bosch
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
260
|
Ramírez E, Hossain MK, Flores‐Alamo M, Haukka M, Nordlander E, Castillo I. Oxygen Transfer from Trimethylamine
N
‐Oxide to Cu
I
Complexes Supported by Pentanitrogen Ligands. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Erick Ramírez
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior CU 04510 México México
| | - Md. Kamal Hossain
- Chemical Physics Center for Chemistry and Chemical Engineering Lund University Box 124 221 00 Lund Sweden
| | - Marcos Flores‐Alamo
- Facultad de Química División de Estudios de Posgrado Universidad Nacional Autónoma de México México 04510 México
| | - Matti Haukka
- Department of Chemistry University of Jyväskylä P.O. Box‐35 40014 Jyväskylä Finland
| | - Ebbe Nordlander
- Chemical Physics Center for Chemistry and Chemical Engineering Lund University Box 124 221 00 Lund Sweden
| | - Ivan Castillo
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior CU 04510 México México
| |
Collapse
|
261
|
Askari MS, Effaty F, Gennarini F, Orio M, Le Poul N, Ottenwaelder X. Tuning Inner-Sphere Electron Transfer in a Series of Copper/Nitrosoarene Adducts. Inorg Chem 2020; 59:8678-8689. [PMID: 32073833 DOI: 10.1021/acs.inorgchem.9b03175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A series of copper/nitrosoarene complexes was created that mimics several steps in biomimetic O2 activation by copper(I). The reaction of the copper(I) complex of N,N,N',N'-tetramethypropylenediamine with a series of para-substituted nitrosobenzene derivatives leads to adducts in which the nitrosoarene (ArNO) is reduced by zero, one, or two electrons, akin to the isovalent species dioxygen, superoxide, and peroxide, respectively. The geometric and electronic structures of these adducts were characterized by means of X-ray diffraction, vibrational analysis, ultraviolet-visible spectroscopy, NMR, electrochemistry, and density functional theory (DFT) calculations. The bonding mode of the NO moiety depends on the oxidation state of the ArNO moiety: κN for ArNO, mononuclear η2-NO and dinuclear μ-η2:η1 for ArNO•-, and dinuclear μ-η2:η2 for ArNO2-. 15N isotopic labeling confirms the reduction state by measuring the NO stretching frequency (1392 cm-1 for κN-ArNO, 1226 cm-1 for η2-ArNO•-, 1133 cm-1 for dinuclear μ-η2:η1-ArNO•-, and 875 cm-1 for dinuclear μ-η2:η2 for ArNO2-). The 15N NMR signal disappears for the ArNO•- species, establishing a unique diagnostic for the radical state. Electrochemical studies indicate reduction waves that are consistent with one-electron reduction of the adducts and are compared with studies performed on Cu-O2 analogues. DFT calculations were undertaken to confirm our experimental findings, notably to establish the nature of the charge-transfer transitions responsible for the intense green color of the complexes. In fine, this family of complexes is unique in that it walks through three redox states of the ArNO moiety while keeping the metal and its supporting ligand the same. This work provides snapshots of the reactivity of the toxic nitrosoarene molecules with the biologically relevant Cu(I) ion.
Collapse
Affiliation(s)
- Mohammad S Askari
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Farshid Effaty
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Federica Gennarini
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada.,Laboratoire de Chimie, Électrochimie Moléculaires et Chimie Analytique, UMR, CNRS 6521, Université de Bretagne Occidentale, Brest 29238, France
| | - Maylis Orio
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille 13007, France
| | - Nicolas Le Poul
- Laboratoire de Chimie, Électrochimie Moléculaires et Chimie Analytique, UMR, CNRS 6521, Université de Bretagne Occidentale, Brest 29238, France
| | - Xavier Ottenwaelder
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
262
|
Larson VA, Battistella B, Ray K, Lehnert N, Nam W. Iron and manganese oxo complexes, oxo wall and beyond. Nat Rev Chem 2020; 4:404-419. [PMID: 37127969 DOI: 10.1038/s41570-020-0197-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 11/09/2022]
Abstract
High-valent metal-oxo species with multiply-bonded M-O groups have been proposed as key intermediates in many biological and abiological catalytic oxidation reactions. These intermediates are implicated as active oxidants in alkane hydroxylation, olefin epoxidation and other oxidation reactions. For example, [FeivO(porphyrinato•-)]+ cofactors bearing π-radical porphyrinato•- ligands oxidize organic substrates in cytochrome P450 enzymes, which are common to many life forms. Likewise, high-valent Mn-oxo species are active for H2O oxidation in photosystem II. The chemistry of these native reactive species has inspired chemists to prepare highly oxidized transition-metal complexes as functional mimics. Although many synthetic Fe-O and Mn-O complexes now exist, the analogous oxo complexes of the late transition metals (groups 9-11) are rare. Indeed, late-transition-metal-oxo complexes of tetragonal (fourfold) symmetry should be electronically unstable, a rule commonly referred to as the 'oxo wall'. A few late metal-oxos have been prepared by targeting other symmetries or unusual spin states. These complexes have been studied using spectroscopic and theoretical methods. This Review describes mononuclear non-haem Fe-O and Mn-O species, the nature of the oxo wall and recent advances in the preparation of oxo complexes of Co, Ni and Cu beyond the oxo wall.
Collapse
|
263
|
Paul M, Teubner M, Grimm‐Lebsanft B, Golchert C, Meiners Y, Senft L, Keisers K, Liebhäuser P, Rösener T, Biebl F, Buchenau S, Naumova M, Murzin V, Krug R, Hoffmann A, Pietruszka J, Ivanović‐Burmazović I, Rübhausen M, Herres‐Pawlis S. Exceptional Substrate Diversity in Oxygenation Reactions Catalyzed by a Bis(μ-oxo) Copper Complex. Chemistry 2020; 26:7556-7562. [PMID: 32104930 PMCID: PMC7317579 DOI: 10.1002/chem.202000664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/26/2020] [Indexed: 12/18/2022]
Abstract
The enzyme tyrosinase contains a reactive side-on peroxo dicopper(II) center as catalytically active species in C-H oxygenation reactions. The tyrosinase activity of the isomeric bis(μ-oxo) dicopper(III) form has been discussed controversially. The synthesis of bis(μ-oxo) dicopper(III) species [Cu2 (μ-O)2 (L1)2 ](X)2 ([O1](X)2 , X=PF6 - , BF4 - , OTf- , ClO4 - ), stabilized by the new hybrid guanidine ligand 2-{2-((dimethylamino)methyl)phenyl}-1,1,3,3-tetramethylguanidine (L1), and its characterization by UV/Vis, Raman, and XAS spectroscopy, as well as cryo-UHR-ESI mass spectrometry, is described. We highlight selective oxygenation of a plethora of phenolic substrates mediated by [O1](PF6 )2 , which results in mono- and bicyclic quinones and provides an attractive strategy for designing new phenazines. The selectivity is predicted by using the Fukui function, which is hereby introduced into tyrosinase model chemistry. Our bioinspired catalysis harnesses molecular dioxygen for organic transformations and achieves a substrate diversity reaching far beyond the scope of the enzyme.
Collapse
Affiliation(s)
- Melanie Paul
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Melissa Teubner
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
- Department of PhysicsUniversity of HamburgLuruper Chaussee 14922761HamburgGermany
| | | | - Christiane Golchert
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Yannick Meiners
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Laura Senft
- Department of Chemistry and PharmacyFriedrich-Alexander-University of Erlangen-NürnbergEgerlandstrasse 191058ErlangenGermany
| | - Kristina Keisers
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Patricia Liebhäuser
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Thomas Rösener
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Florian Biebl
- Department of PhysicsUniversity of HamburgLuruper Chaussee 14922761HamburgGermany
| | - Sören Buchenau
- Department of PhysicsUniversity of HamburgLuruper Chaussee 14922761HamburgGermany
| | - Maria Naumova
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Vadim Murzin
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Roxanne Krug
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich52425JülichGermany
| | - Alexander Hoffmann
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Jörg Pietruszka
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich52425JülichGermany
- Institute of Bio- and Geoscience (IBG-1: Biotechnology)Forschungszentrum Jülich GmbH52425JülichGermany
| | - Ivana Ivanović‐Burmazović
- Department of Chemistry and PharmacyFriedrich-Alexander-University of Erlangen-NürnbergEgerlandstrasse 191058ErlangenGermany
| | - Michael Rübhausen
- Department of PhysicsUniversity of HamburgLuruper Chaussee 14922761HamburgGermany
| | - Sonja Herres‐Pawlis
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
264
|
Mondal P, Lovisari M, Twamley B, McDonald AR. Fast Hydrocarbon Oxidation by a High‐Valent Nickel–Fluoride Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Prasenjit Mondal
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Marta Lovisari
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Brendan Twamley
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Aidan R. McDonald
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| |
Collapse
|
265
|
Lin YH, Kutin Y, van Gastel M, Bill E, Schnegg A, Ye S, Lee WZ. A Manganese(IV)-Hydroperoxo Intermediate Generated by Protonation of the Corresponding Manganese(III)-Superoxo Complex. J Am Chem Soc 2020; 142:10255-10260. [PMID: 32412757 DOI: 10.1021/jacs.0c02756] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Earlier work revealed that metal-superoxo species primarily function as radicals and/or electrophiles. Herein, we present ambiphilicity of a MnIII-superoxo complex revealed by its proton- and metal-coupled electron-transfer processes. Specifically, a MnIV-hydroperoxo intermediate, [Mn(BDPBrP)(OOH)]+ (1, H2BDPBrP = 2,6-bis((2-(S)-di(4-bromo)phenylhydroxylmethyl-1-pyrrolidinyl)methyl)pyridine) was generated by treatment of a MnIII-superoxo complex, Mn(BDPBrP)(O2•) (2) with trifluoroacetic acid at -120 °C. Detailed insights into the electronic structure of 1 are obtained using resonance Raman and multi-frequency electron paramagnetic resonance spectroscopies coupled with density functional theory calculations. Similarly, the reaction of 2 with scandium(III) triflate was shown to give a Mn(IV)/Sc(III) bridging peroxo species, [Mn(BDPBrP)(OO)Sc(OTf)n](3-n)+ (4). Furthermore, it is found that deprotonation of 1 quantitatively regenerates 2, and that one-electron oxidation of the corresponding MnIII-hydroperoxo species, Mn(BDPBrP)(OOH) (3), also yields 1.
Collapse
Affiliation(s)
- Yen-Hao Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yury Kutin
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr D-45470, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr D-45470, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr D-45470, Germany
| | - Alexander Schnegg
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr D-45470, Germany
| | - Shengfa Ye
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr D-45470, Germany.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Way-Zen Lee
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
266
|
Mondal P, Lovisari M, Twamley B, McDonald AR. Fast Hydrocarbon Oxidation by a High‐Valent Nickel–Fluoride Complex. Angew Chem Int Ed Engl 2020; 59:13044-13050. [DOI: 10.1002/anie.202004639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Prasenjit Mondal
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Marta Lovisari
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Brendan Twamley
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Aidan R. McDonald
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| |
Collapse
|
267
|
Yang J, Seo MS, Kim KH, Lee Y, Fukuzumi S, Shearer J, Nam W. Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. Angew Chem Int Ed Engl 2020; 59:13581-13585. [DOI: 10.1002/anie.202005091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Kyung Ha Kim
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Jason Shearer
- Department of Chemistry Trinity University San Antonio TX 78212 USA
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
268
|
Abe T, Shiota Y, Itoh S, Yoshizawa K. Theoretical rationalization for the equilibrium between (μ-η 2:η 2-peroxido)Cu IICu II and bis(μ-oxido)Cu IIICu III complexes: perturbational effects from ligand frameworks. Dalton Trans 2020; 49:6710-6717. [PMID: 32368776 DOI: 10.1039/d0dt01001d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations are carried out to investigate the geometric effects of the supporting ligands in the relative energies of the (μ-η2:η2-peroxido)CuIICuII complex 1 and the bis(μ-oxido)CuIIICuIII complex 2. The N3-tridentate ligand bearing acyclic propane diamine framework La preferentially provided 1, whereas the N3-tridentate ligand with cyclic diamine framework such as 1,4-diazacycloheptane Lb gave 2 after the oxygenation of the corresponding CuI complexes as reported previously [S. Itoh, et al., Inorg. Chem., 2014, 53, 8786-8794]. Calculations at the B3LYP*-D3 level of theory can reasonably explain the experimental results in relative energies, structures and harmonic frequencies of 1 and 2. Perturbational effects of the diamine chelates of La and Lb especially on the equilibrium of 1 and 2 are investigated in detail. In the range from 2.30 Å to 3.40 Å of the N-N distance in the diamine moiety, 1 is more stable than 2 by 8.4 kcal mol-1 at the distance of 3.40 Å. Calculated potential energies indicate that the decrease in the N-N distance is associated with a decrease in energy of 2, leading that 2 can be most stabilized at the N-N distance of 2.60 Å. Furthermore, molecular orbitals analyses are performed to explain that the energy gaps between the σ* orbital of the O-O bond and the dx2-y2 orbitals of the CuII ions of 1 get small as the diamine moiety is shrunk, leading to facilitate the O-O bond cleavage from 1 to 2.
Collapse
Affiliation(s)
- Tsukasa Abe
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan.
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan.
| | - Shinobu Itoh
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan.
| |
Collapse
|
269
|
Nesterova OV, Bondarenko OE, Pombeiro AJL, Nesterov DS. Phenoxazinone synthase-like catalytic activity of novel mono- and tetranuclear copper(ii) complexes with 2-benzylaminoethanol. Dalton Trans 2020; 49:4710-4724. [PMID: 32207490 DOI: 10.1039/d0dt00222d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three novel coordination compounds, [Cu(ca)2(Hbae)2] (1), [Cu(va)2(Hbae)2] (2) and [Cu4(va)4(bae)4]·H2O (3), have been prepared by self-assembly reactions of copper(ii) chloride (1 and 2) or tetrafluoroborate (3) and CH3OH (1 and 3) or CH3CN (2) solution of 2-benzylaminoethanol (Hbae) and cinnamic (Hca, 1) or valeric (Hva, 2 and 3) acid. Crystallographic analysis revealed that both 1 and 2 have mononuclear crystal structures, wherein the complex molecules are H-bonded forming extended supramolecular chains. The tetranuclear structure of 3 is based on the {Cu4(μ3-O)4} core, wherein the metal atoms are bound together by μ3 oxygen bridges from 2-benzylaminoethanol forming an overall cubane-like configuration. The strong hydrogen bonding in 1-3 leads to the joining of the neighbouring molecules into 1D chains. Concentration-dependent ESI-MS studies disclosed the equilibria between di-, tri- and tetranuclear species in solutions of 1-3. All three compounds act as catalysts for the aerobic oxidation of o-aminophenol to the phenoxazinone chromophore (phenoxazinone synthase-like activity), with the maximum reaction rates of 4.0 × 10-7, 2.5 × 10-7 and 2.1 × 10-7 M s-1 for 1, 2 and 3, respectively, supported by the quantitative yield of the product after 24 h. The dependence of the reaction rates on catalyst concentrations is evidence of reaction orders higher than one relative to the catalyst. Kinetic and ESI-MS data allowed us to assume that the tetranuclear species, originating from 1, 2 and 3 in solution, possess considerably higher activity than the species of lower nuclearity. Mechanistic and isotopic 18O-labelling experiments suggested that o-aminophenol coordinates to CuII species with the formation of reactive intermediates, while the oxygen from 18O2 is not incorporated into the phenoxazinone chromophore.
Collapse
Affiliation(s)
- Oksana V Nesterova
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Olena E Bondarenko
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Dmytro S Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow 117198, Russia
| |
Collapse
|
270
|
|
271
|
Theoretical and experimental characterization of Cu-doped amorphous silicate glass. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
272
|
Liu Y, Resch SG, Klawitter I, Cutsail GE, Demeshko S, Dechert S, Kühn FE, DeBeer S, Meyer F. An Adaptable N‐Heterocyclic Carbene Macrocycle Hosting Copper in Three Oxidation States. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Liu
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Stefan G. Resch
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Iris Klawitter
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - George E. Cutsail
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Fritz E. Kühn
- Department of Chemistry & Catalysis Research Center Technische Universität München Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Serena DeBeer
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
273
|
Liu Y, Resch SG, Klawitter I, Cutsail GE, Demeshko S, Dechert S, Kühn FE, DeBeer S, Meyer F. An Adaptable N-Heterocyclic Carbene Macrocycle Hosting Copper in Three Oxidation States. Angew Chem Int Ed Engl 2020; 59:5696-5705. [PMID: 31769151 PMCID: PMC7154638 DOI: 10.1002/anie.201912745] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Indexed: 11/07/2022]
Abstract
A neutral hybrid macrocycle with two trans-positioned N-heterocyclic carbenes (NHCs) and two pyridine donors hosts copper in three oxidation states (+I-+III) in a series of structurally characterized complexes (1-3). Redox interconversion of [LCu]+/2+/3+ is electrochemically (quasi)reversible and occurs at moderate potentials (E1/2 =-0.45 V and +0.82 V (vs. Fc/Fc+ )). A linear CNHC -Cu-CNHC arrangement and hemilability of the two pyridine donors allows the ligand to adapt to the different stereoelectronic and coordination requirements of CuI versus CuII /CuIII . Analytical methods such as NMR, UV/Vis, IR, electron paramagnetic resonance, and Cu Kβ high-energy-resolution fluorescence detection X-ray absorption spectroscopies, as well as DFT calculations, give insight into the geometric and electronic structures of the complexes. The XAS signatures of 1-3 are textbook examples for CuI , CuII , and CuIII species. Facile 2-electron interconversion combined with the exposure of two basic pyridine N sites in the reduced CuI form suggest that [LCu]+/2+/3+ may operate in catalysis via coupled 2 e- /2 H+ transfer.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Inorganic ChemistryUniversity of GöttingenTammannstrasse 437077GöttingenGermany
| | - Stefan G. Resch
- Institute of Inorganic ChemistryUniversity of GöttingenTammannstrasse 437077GöttingenGermany
| | - Iris Klawitter
- Institute of Inorganic ChemistryUniversity of GöttingenTammannstrasse 437077GöttingenGermany
| | - George E. Cutsail
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Serhiy Demeshko
- Institute of Inorganic ChemistryUniversity of GöttingenTammannstrasse 437077GöttingenGermany
| | - Sebastian Dechert
- Institute of Inorganic ChemistryUniversity of GöttingenTammannstrasse 437077GöttingenGermany
| | - Fritz E. Kühn
- Department of Chemistry & Catalysis Research CenterTechnische Universität MünchenLichtenbergstrasse 485748Garching bei MünchenGermany
| | - Serena DeBeer
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Franc Meyer
- Institute of Inorganic ChemistryUniversity of GöttingenTammannstrasse 437077GöttingenGermany
| |
Collapse
|
274
|
Electrocatalytic Oxygen Reduction at Multinuclear Metal Active Sites Inspired by Metalloenzymes. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2020. [DOI: 10.1380/ejssnt.2020.81] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
275
|
Mechanistic approaches for chemically modifying the coordination sphere of copper-amyloid-β complexes. Proc Natl Acad Sci U S A 2020; 117:5160-5167. [PMID: 32102914 DOI: 10.1073/pnas.1916944117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurotoxic implications of the interactions between Cu(I/II) and amyloid-β (Aβ) indicate a connection between amyloid cascade hypothesis and metal ion hypothesis with respect to the neurodegeneration associated with Alzheimer's disease (AD). Herein, we report a mechanistic strategy for modifying the first coordination sphere of Cu(II) bound to Aβ utilizing a rationally designed peptide modifier, L1. Upon reacting with L1, a metal-binding histidine (His) residue, His14, in Cu(II)-Aβ was modified through either covalent adduct formation, oxidation, or both. Consequently, the reactivity of L1 with Cu(II)-Aβ was able to disrupt binding of Cu(II) to Aβ and result in chemically modified Aβ with altered aggregation and toxicity profiles. Our molecular-level mechanistic studies revealed that such L1-mediated modifications toward Cu(II)-Aβ could stem from the molecule's ability to 1) interact with Cu(II)-Aβ and 2) foster copper-O2 chemistry. Collectively, our work demonstrates the development of an effective approach to modify Cu(II)-Aβ at a metal-binding amino acid residue and consequently alter Aβ's coordination to copper, aggregation, and toxicity, supplemented with an in-depth mechanistic perspective regarding such reactivity.
Collapse
|
276
|
Nicolay A, Ziegler MS, Small DW, Grünbauer R, Scheer M, Tilley TD. Isomerism and dynamic behavior of bridging phosphaalkynes bound to a dicopper complex. Chem Sci 2020; 11:1607-1616. [PMID: 32206279 PMCID: PMC7069238 DOI: 10.1039/c9sc05835d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/13/2019] [Indexed: 11/21/2022] Open
Abstract
A dicopper complex featuring a symmetrically bridging nitrile ligand and supported by a binucleating naphthyridine-based ligand, [Cu2(μ-η 1 :η 1 -MeCN)DPFN](NTf2)2, was treated with phosphaalkynes (RC[triple bond, length as m-dash]P, isoelectronic analogues of nitriles) to yield dicopper complexes that exhibit phosphaalkynes in rare μ-η 2:η 2 binding coordination modes. X-ray crystallography revealed that these unusual "tilted" structures exist in two isomeric forms (R "up" vs. R "sideways"), depending on the steric profile of the phosphaalkyne's alkyl group (R = Me, Ad, or t Bu). Only one isomer is observed in both solution and the solid state for R = Me (sideways) and t Bu (up). With intermediate steric bulk (R = Ad), the energy difference between the two geometries is small enough that both are observed in solution, and NMR spectroscopy and computations indicate that the solid-state structure corresponds to the minor isomer observed in solution. Meanwhile, treatment of [Cu2(μ-η 1:η 1-MeCN)DPFN](NTf2)2 with 2-butyne affords [Cu2(μ-η 2:η 2-(MeC[triple bond, length as m-dash]CMe))DPFN](NTf2)2: its similar ligand geometry demonstrates that the tilted μ-η 2:η 2 binding mode is not limited to phosphaalkynes but reflects a more general trend, which can be rationalized via an NBO analysis showing maximization of π-backbonding.
Collapse
Affiliation(s)
- Amélie Nicolay
- Department of Chemistry , University of California, Berkeley , Berkeley , CA 94720-1460 , USA . .,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA
| | - Micah S Ziegler
- Department of Chemistry , University of California, Berkeley , Berkeley , CA 94720-1460 , USA . .,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA
| | - David W Small
- Department of Chemistry , University of California, Berkeley , Berkeley , CA 94720-1460 , USA .
| | - Rebecca Grünbauer
- Institut für Anorganische Chemie , Universität Regensburg , 93040 Regensburg , Germany .
| | - Manfred Scheer
- Institut für Anorganische Chemie , Universität Regensburg , 93040 Regensburg , Germany .
| | - T Don Tilley
- Department of Chemistry , University of California, Berkeley , Berkeley , CA 94720-1460 , USA . .,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA
| |
Collapse
|
277
|
Affiliation(s)
- Charles W. Machan
- University of Virginia, McCormick Road,
PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
278
|
Roseborough A, Wheeler KA, Hołyńska M, Stoian SA. Synthesis and electronic structure of a mononuclear copper(II) complex supported by tris(2-hydroxyliminopropyl)amine. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
279
|
Bour JR, Wright AM, He X, Dincă M. Bioinspired chemistry at MOF secondary building units. Chem Sci 2020; 11:1728-1737. [PMID: 32180923 PMCID: PMC7047978 DOI: 10.1039/c9sc06418d] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/23/2020] [Indexed: 01/08/2023] Open
Abstract
This perspective describes recent developments and future directions in bioinorganic chemistry and biomimetic catalysis centered at metal–organic framework secondary building units.
The secondary building units (SBUs) in metal–organic frameworks (MOFs) support metal ions in well-defined and site-isolated coordination environments with ligand fields similar to those found in metalloenzymes. This burgeoning class of materials has accordingly been recognized as an attractive platform for metalloenzyme active site mimicry and biomimetic catalysis. Early progress in this area was slowed by challenges such as a limited range of hydrolytic stability and a relatively poor diversity of redox-active metals that could be incorporated into SBUs. However, recent progress with water-stable MOFs and the development of more sophisticated synthetic routes such as postsynthetic cation exchange have largely addressed these challenges. MOF SBUs are being leveraged to interrogate traditionally unstable intermediates and catalytic processes involving small gaseous molecules. This perspective describes recent advances in the use of metal centers within SBUs for biomimetic chemistry and discusses key future developments in this area.
Collapse
Affiliation(s)
- James R Bour
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , USA .
| | - Ashley M Wright
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , USA .
| | - Xin He
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , USA .
| | - Mircea Dincă
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , USA .
| |
Collapse
|
280
|
Gabrienko AA, Yashnik SA, Kolganov AA, Sheveleva AM, Arzumanov SS, Fedin MV, Tuna F, Stepanov AG. Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods. Inorg Chem 2020; 59:2037-2050. [DOI: 10.1021/acs.inorgchem.9b03462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Anton A. Gabrienko
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Department of Physical Chemistry, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Svetlana A. Yashnik
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia
| | - Alexander A. Kolganov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia
| | - Alena M. Sheveleva
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya Street 3, Novosibirsk, 630090, Russia
- School of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sergei S. Arzumanov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Department of Physical Chemistry, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Matvey V. Fedin
- Faculty of Natural Sciences, Department of Physical Chemistry, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya Street 3, Novosibirsk, 630090, Russia
| | - Floriana Tuna
- School of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Alexander G. Stepanov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Department of Physical Chemistry, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| |
Collapse
|
281
|
Xiong N, Zhang G, Sun X, Zeng R. Metal‐Metal Cooperation in Dinucleating Complexes Involving Late Transition Metals Directed towards Organic Catalysis. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900371] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ni Xiong
- Department of ChemistrySchool of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Guoxiang Zhang
- Department of ChemistrySchool of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Rong Zeng
- Department of ChemistrySchool of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| |
Collapse
|
282
|
Lan Z, Mallikarjun Sharada S. Linear free energy relationships for transition metal chemistry: case study of CH activation with copper–oxygen complexes. Phys Chem Chem Phys 2020; 22:7155-7159. [DOI: 10.1039/d0cp01245a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose a computational framework for developing Taft-like linear free energy relationships to characterize steric effects on the catalytic activity of transition metal complexes.
Collapse
Affiliation(s)
- Zhenzhuo Lan
- Mork Family Department of Chemical Engineering and Materials Science
- USA
| | - Shaama Mallikarjun Sharada
- Mork Family Department of Chemical Engineering and Materials Science
- USA
- Department of Chemistry
- University of Southern California
- Los Angeles
| |
Collapse
|
283
|
Hu Z, Ge H, Yang X. Binuclear O 2 activation and hydrogen transfer mechanism for aerobic oxidation of alcohols. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00025f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations reveal a binuclear O2 activation and hydrogen transfer mechanism with spin-crossovers for aerobic oxidation of alcohols.
Collapse
Affiliation(s)
- Zhiyun Hu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
| | - Hongyu Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
| | - Xinzheng Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
| |
Collapse
|
284
|
Fukuzumi S, Cho KB, Lee YM, Hong S, Nam W. Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chem Soc Rev 2020; 49:8988-9027. [DOI: 10.1039/d0cs01251c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review article focuses on various mechanistic dichotomies in redox reactions of metal–oxygen intermediates with the emphasis on understanding and controlling their redox reactivity from experimental and theoretical points of view.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Graduate School of Science and Engineering
| | - Kyung-Bin Cho
- Department of Chemistry
- Jeonbuk National University
- Jeonju 54896
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Seungwoo Hong
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- School of Chemistry and Chemical Engineering
| |
Collapse
|
285
|
Alkane and alkene oxidation reactions catalyzed by nickel(II) complexes: Effect of ligand factors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213085] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
286
|
Podder N, Mandal S. Aerobic oxidation of 2-aminophenol catalysed by a series of mononuclear copper(ii) complexes: phenoxazinone synthase-like activity and mechanistic study. NEW J CHEM 2020. [DOI: 10.1039/d0nj02558e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biomimetic catalytic oxidation of 2-aminophenol by three mononuclear copper(ii) complexes and the mechanistic aspects are presented.
Collapse
Affiliation(s)
- Nirmalya Podder
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Sukanta Mandal
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
287
|
Gawlig C, Schindler S, Becker S. One‐Pot Conversion of Cyclohexane to Adipic Acid Using a µ
4
‐Oxido‐Copper Cluster as Catalyst Together with Hydrogen Peroxide. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christopher Gawlig
- Institut für Anorganische und Analytische Chemie Justus‐Liebig‐Universität Gießen Heinrich‐Buff‐Ring 17 35392 Gießen Germany
| | - Siegfried Schindler
- Institut für Anorganische und Analytische Chemie Justus‐Liebig‐Universität Gießen Heinrich‐Buff‐Ring 17 35392 Gießen Germany
| | - Sabine Becker
- Fachbereich Chemie Technische Universität Kaiserslautern Erwin‐Schrödinger‐Straße 54/684 67663 Kaiserslautern Germany
| |
Collapse
|
288
|
Sharma N, Lee Y, Nam W, Fukuzumi S. Photoinduced Generation of Superoxidants for the Oxidation of Substrates with High C−H Bond Dissociation Energies. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Namita Sharma
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
- Graduate School of Science and EngineeringMeijo University, Nagoya Aichi 468-8502 Japan
| |
Collapse
|
289
|
Li Y, Handunneththige S, Farquhar ER, Guo Y, Talipov MR, Li F, Wang D. Highly Reactive Co III,IV2(μ-O) 2 Diamond Core Complex That Cleaves C-H Bonds. J Am Chem Soc 2019; 141:20127-20136. [PMID: 31794198 DOI: 10.1021/jacs.9b09531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The selective activation of strong sp3 C-H bonds at mild conditions is a key step in many biological and synthetic transformations and an unsolved challenge for synthetic chemists. In nature, soluble methane monooxygenase (sMMO) is one representative example of nonheme dinuclear iron-dependent enzymes that activate strong sp3 C-H bonds by a high-valent diiron(IV) intermediate Q. To date, synthetic model complexes of sMMO-Q have shown limited abilities to oxidize strong C-H bonds. In this work, we generated a high-valent CoIII,IV2(μ-O)2 complex 3 supported by a tetradentate tris(2-pyridylmethyl)amine (TPA) ligand via one-electron oxidation of its CoIII2(μ-O)2 precursor 2. Characterization of 2 and 3 using X-ray absorption spectroscopy and DFT calculations showed that both species possess a diamond core structure with a short Co···Co distance of 2.78 Å. Furthermore, 3 is an EPR active species showing an S = 1/2 signal with clearly observable hyperfine splittings originated from the coupling of the 59Co nuclear spin with the electronic spin. Importantly, 3 is a highly reactive oxidant for sp3 C-H bonds, and an oxygenation reagent. 3 has the highest rate constant (1.5 M-1 s-1 at -60 °C) for oxidizing 9,10-dihydroanthracene (DHA) compared to diamond core complexes of other first-row transition metals including Mn, Fe and Cu reported previously. Specifically, 3 is about 4-5 orders of magnitude more reactive than the diiron analogs FeIII,IV2(μ-O)2 and FeIV2(μ-O)2 supported by TPA and related ligands. These findings shed light on future development of more reactive approaches for C-H bond activation by bioinspired dicobalt complexes.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59803 , United States
| | - Suhashini Handunneththige
- Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Erik R Farquhar
- CWRU Center for Synchrotron Biosciences, NSLS-II , Brookhaven National Laboratory , Upton , New York 11973 , United States.,School of Medicine , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Yisong Guo
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Marat R Talipov
- Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Feifei Li
- Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59803 , United States
| |
Collapse
|
290
|
Mani P, Devadas S, Gurusamy T, Karthik PE, Ratheesh BP, Ramanujam K, Mandal S. Sodalite-type Cu-based Three-dimensional Metal-Organic Framework for Efficient Oxygen Reduction Reaction. Chem Asian J 2019; 14:4814-4818. [PMID: 31697018 DOI: 10.1002/asia.201901242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/06/2019] [Indexed: 11/10/2022]
Abstract
Inspired by copper-based oxygen reduction biocatalysts, we have studied the electrocatalytic behavior of a Cu-based MOF (Cu-BTT) for oxygen reduction reaction (ORR) in alkaline medium. This catalyst reduces the oxygen at the onset (Eonset ) and half-wave potential (E1/2 ) of 0. 940 V and 0.778 V, respectively. The high halfway potential supports the good activity of Cu-BTT MOF. The high ORR catalytic activity can be interpreted by the presence of nitrogen-rich ligand (tetrazole) and the generation of nascent copper(I) during the reaction. In addition to the excellent activity, Cu-BTT MOF showed exceptional stability too, which was confirmed through chronoamperometry study, where current was unchanged up to 12 h. Further, the 4-electrons transfer of ORR kinetics was confirmed by hydrodynamic voltammetry. The oxygen active center namely copper(I) generation during ORR has been understood by the reduction peak in cyclic voltammetry as well in the XPS analysis.
Collapse
Affiliation(s)
- Prabu Mani
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
| | - Sharat Devadas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
| | - Tamilselvi Gurusamy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Pitchiah Esakki Karthik
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
| | - Balu P Ratheesh
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
| | | | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
291
|
Suzuki T, Oshita H, Yajima T, Tani F, Abe H, Shimazaki Y. Formation of the Cu II -Phenoxyl Radical by Reaction of O 2 with a Cu II -Phenolate Complex via the Cu I -Phenoxyl Radical. Chemistry 2019; 25:15805-15814. [PMID: 31486552 DOI: 10.1002/chem.201903077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/11/2019] [Indexed: 01/13/2023]
Abstract
Reaction of Cu(ClO4 )2 ⋅6 H2 O with a tripodal 2N2O ligand, H2 Me2 NL, having a p-(dimethylamino)phenol moiety, in CH2 Cl2 /MeOH (1:1 v/v) under basic conditions under an inert gas atmosphere gave [Cu(Me2 NL)(H2 O)] (1). The same reaction carried out under aerobic conditions gave [Cu(Me2 NL)(MeOH)]ClO4 (2), which could be obtained also from the isolated complex 1 by reaction with O2 in CH2 Cl2 /MeOH. The X-ray crystal structures of 1 and 2 revealed similar square-pyramidal structures, but 2 showed the (dimethylamino)phenoxyl radical features. Complex 1 exhibits characteristic CuII EPR signals of the d x 2 - y 2 ground state in CH2 Cl2 /MeOH at 77 K, whereas 2 is EPR-silent. The EPR and X-ray absorption fine structure (XAFS) results suggest that 2 is assigned to the CuII -(dimethylamino)phenoxyl radical. However, complex 1 showed different features in the absence of MeOH. The EPR spectrum of the CH2 Cl2 solution of 1 exhibits distortion from the d x 2 - y 2 ground state and a temperature-dependent equilibrium between the CuII -(dimethylamino)phenolate and the CuI -(dimethylamino)phenoxyl radical. From these results, CuII -phenoxyl radical complex 2 is concluded to be formed by the reaction of 1 with O2 via the CuI -phenoxyl radical species.
Collapse
Affiliation(s)
- Takashi Suzuki
- Graduate School of Science and Engineering, Ibaraki University, Mito, 310-8512, Japan
| | - Hiromi Oshita
- Faculty of Chemistry of Functional Molecules, Konan University, Higashinada-ku, Kobe, 658-8501, Japan
| | - Tatsuo Yajima
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Hitoshi Abe
- Institute of Materials Structure Science (IMSS), High Energy Accelerator Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Yuichi Shimazaki
- Graduate School of Science and Engineering, Ibaraki University, Mito, 310-8512, Japan
| |
Collapse
|
292
|
Singh RK, Blossom BM, Russo DA, Singh R, Weihe H, Andersen NH, Tiwari MK, Jensen PE, Felby C, Bjerrum MJ. Detection and Characterization of a Novel Copper-Dependent Intermediate in a Lytic Polysaccharide Monooxygenase. Chemistry 2019; 26:454-463. [PMID: 31603264 DOI: 10.1002/chem.201903562] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Indexed: 01/27/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes capable of oxidizing crystalline cellulose which have large practical application in the process of refining biomass. The catalytic mechanism of LPMOs still remains debated despite several proposed reaction mechanisms. Here, we report a long-lived intermediate (t1/2 =6-8 minutes) observed in an LPMO from Thermoascus aurantiacus (TaLPMO9A). The intermediate with a strong absorption around 420 nm is formed when reduced LPMO-CuI reacts with sub-equimolar amounts of H2 O2 . UV/Vis absorption spectroscopy, electron paramagnetic resonance, resonance Raman and stopped-flow spectroscopy suggest that the observed long-lived intermediate involves the copper center and a nearby tyrosine (Tyr175). Additionally, activity assays in the presence of sub-equimolar amounts of H2 O2 showed an increase in the LPMO oxidation of phosphoric acid swollen cellulose. Accordingly, this suggests that the long-lived copper-dependent intermediate could be part of the catalytic mechanism for LPMOs. The observed intermediate offers a new perspective into the oxidative reaction mechanism of TaLPMO9A and hence for the biomass oxidation and the reactivity of copper in biological systems.
Collapse
Affiliation(s)
- Raushan K Singh
- Department of Chemistry, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Benedikt M Blossom
- Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
| | - David A Russo
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
- Current address: Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Ranjitha Singh
- Department of Chemistry, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Høgni Weihe
- Department of Chemistry, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | | | - Manish K Tiwari
- Department of Chemistry, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Poul E Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
| | - Claus Felby
- Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
| | - Morten J Bjerrum
- Department of Chemistry, University of Copenhagen, DK-2100, Copenhagen, Denmark
| |
Collapse
|
293
|
Su Y, Huang G, Ye F, Qiao P, Ye J, Gao Y, Chen H. Facile access to evodiakine enabled by aerobic copper-catalyzed oxidative rearrangement. Org Biomol Chem 2019; 17:8811-8815. [PMID: 31573009 DOI: 10.1039/c9ob01832h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidation as a fundamentally important method for the synthesis of complex structures is difficult to achieve in a selective manner. Evodiakine, a complex natural product possessing an unprecedented ring system (6/5/5/7/6), has a high oxidation state without a practical solution. Herein, we report the first synthesis of evodiakine via aerobic copper-catalyzed late-stage functionalization of evodiamine.
Collapse
Affiliation(s)
- Yiting Su
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University), Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | | | | | | | | | | | | |
Collapse
|
294
|
Liu YF, Shen J, Chen SL, Qiao W, Zhou S, Hong K. Theoretical study of aromatic hydroxylation of the [Cu 2(H-XYL)O 2] 2+ complex mediated by a side-on peroxo dicopper core and Cu-ligand effects. Dalton Trans 2019; 48:16882-16893. [PMID: 31621734 DOI: 10.1039/c9dt02814e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the aromatic hydroxylation mechanism of the [Cu2(H-XYL)O2]2+ complex mediated by a peroxo dicopper core and Cu-ligand effects are investigated by using hybrid density functional theory (DFT) and the broken symmetry B3LYP method. Based on the calculated free-energy profiles, we proposed two available mechanisms. The first reaction steps of both mechanisms involve concerted O-O bond cleavage and C-O bond formation and the second step involves the Wagner-Meerwein rearrangement of the substrate by a [1,2] H shift (HA shift from CA to CC) or (HA shift from CA to OA) across the phenyl ring to form stable dienone intermediates, and this is followed by the protonation of bridging oxygen atoms to produce the final hydroxylated dicopper(ii) product. The HA shift from CA to CC mechanism is the energetically most favorable, in which the first reaction step is the rate-limiting reaction, with a calculated free-energy barrier of 19.0 kcal mol-1 and a deuterium kinetic isotope effect of 1.0, in agreement with experimental observations. The calculation also shows that the reaction started from the P-type species of [Cu2(H-XYL)O2]2+ which is capable of mediating the direct hydroxylation of aromatic substrates without the intermediacy of an O-type species. Finally, we designed some new complexes with different Cu-ligands and found the complex that computationally possesses a higher activity in mediating the hydroxylation of the ligand based aromatic substrate; here, Cu loses a pyridyl ligand donor by dissociation, compared to the [Cu2(H-XYL)O2]2+ complex.
Collapse
Affiliation(s)
- Yan Fang Liu
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian 223003, China. and Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266061, China
| | - Junliang Shen
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Shi-Lu Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Weiye Qiao
- Chemistry and Chemical Engineering College, University of Xingtai, Xingtai, Hebei 054001, China
| | - Suqin Zhou
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Kun Hong
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian 223003, China.
| |
Collapse
|
295
|
Wu P, Fan F, Song J, Peng W, Liu J, Li C, Cao Z, Wang B. Theory Demonstrated a "Coupled" Mechanism for O 2 Activation and Substrate Hydroxylation by Binuclear Copper Monooxygenases. J Am Chem Soc 2019; 141:19776-19789. [PMID: 31746191 DOI: 10.1021/jacs.9b09172] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiscale simulations have been performed to address the longstanding issue of "dioxygen activation" by the binuclear copper monooxygenases (PHM and DβM), which have been traditionally classified as "noncoupled" binuclear copper enzymes. Our QM/MM calculations rule out that CuM(II)-O2• is an active species for H-abstraction from the substrate. In contrast, CuM(II)-O2• would abstract an H atom from the cosubstrate ascorbate to form a CuM(II)-OOH intermediate in PHM and DβM. Consistent with the recently reported structural features of DβM, the umbrella sampling shows that the "open" conformation of the CuM(II)-OOH intermediate could readily transform into the "closed" conformation in PHM, in which we located a mixed-valent μ-hydroperoxodicopper(I,II) intermediate, (μ-OOH)Cu(I)Cu(II). The subsequent O-O cleavage and OH moiety migration to CuH generate the unexpected species (μ-O•)(μ-OH)Cu(II)Cu(II), which is revealed to be the reactive intermediate responsible for substrate hydroxylation. We also demonstrate that the flexible Met ligand is favorable for O-O cleavage reactions, while the replacement of Met with the strongly bound His ligand would inhibit the O-O cleavage reactivity. As such, the study not only demonstrates a "coupled" mechanism for O2 activation by binuclear copper monooxygenases but also deciphers the full catalytic cycle of PHM and DβM in accord with the available experimental data. These findings of O2 activation and substrate hydroxylation by binuclear copper monooxygenases could expand our understanding of the reactivities of the synthetic monocopper complexes.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Fangfang Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , People's Republic of China
| | - Jinshuai Song
- College of Chemistry, and Institute of Green Catalysis , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , People's Republic of China
| | - Jia Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , People's Republic of China
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , People's Republic of China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen , Fujian 361005 , People's Republic of China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , People's Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , People's Republic of China
| |
Collapse
|
296
|
Unjaroen D, Gericke R, Lovisari M, Nelis D, Mondal P, Pirovano P, Twamley B, Farquhar ER, McDonald AR. High-Valent d 7 Ni III versus d 8 Cu III Oxidants in PCET. Inorg Chem 2019; 58:16838-16848. [PMID: 31804808 DOI: 10.1021/acs.inorgchem.9b03101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxygenases have been postulated to utilize d4 FeIV and d8 CuIII oxidants in proton-coupled electron transfer (PCET) hydrocarbon oxidation. In order to explore the influence the metal ion and d-electron count can hold over the PCET reactivity, two metastable high-valent metal-oxygen adducts, [NiIII(OAc)(L)] (1b) and [CuIII(OAc)(L)] (2b), L = N,N'-(2,6-diisopropylphenyl)-2,6-pyridinedicarboxamidate, were prepared from their low-valent precursors [NiII(OAc)(L)]- (1a) and [CuII(OAc)(L)]- (2a). The complexes 1a/b-2a/b were characterized using nuclear magnetic resonance, Fourier transform infrared, electron paramagnetic resonance, X-ray diffraction, and absorption spectroscopies and mass spectrometry. Both complexes were capable of activating substrates through a concerted PCET mechanism (hydrogen atom transfer, HAT, or concerted proton and electron transfer, CPET). The reactivity of 1b and 2b toward a series of para-substituted 2,6-di-tert-butylphenols (p-X-2,6-DTBP; X = OCH3, C(CH3)3, CH3, H, Br, CN, NO2) was studied, showing similar rates of reaction for both complexes. In the oxidation of xanthene, the d8 CuIII oxidant displayed a small increase in the rate constant compared to that of the d7 NiIII oxidant. The d8 CuIII oxidant was capable of oxidizing a large family of hydrocarbon substrates with bond dissociation enthalpy (BDEC-H) values up to 90 kcal/mol. It was previously observed that exchanging the ancillary anionic donor ligand in such complexes resulted in a 20-fold enhancement in the rate constant, an observation that is further enforced by comparison of 1b and 2b to the literature precedents. In contrast, we observed only minor differences in the rate constants upon comparing 1b to 2b. It was thus concluded that in this case the metal ion has a minor impact, while the ancillary donor ligand yields more kinetic control over HAT/CPET oxidation.
Collapse
Affiliation(s)
- Duenpen Unjaroen
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Robert Gericke
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Marta Lovisari
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Daniel Nelis
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Prasenjit Mondal
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Paolo Pirovano
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Erik R Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source II , Brookhaven National Laboratory II , Upton , New York 11973 , United States
| | - Aidan R McDonald
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| |
Collapse
|
297
|
Devi T, Lee YM, Nam W, Fukuzumi S. Tuning Electron-Transfer Reactivity of a Chromium(III)–Superoxo Complex Enabled by Calcium Ion and Other Redox-Inactive Metal Ions. J Am Chem Soc 2019; 142:365-372. [DOI: 10.1021/jacs.9b11014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tarali Devi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
298
|
Diaz DE, Quist DA, Herzog AE, Schaefer AW, Kipouros I, Bhadra M, Solomon EI, Karlin KD. Impact of Intramolecular Hydrogen Bonding on the Reactivity of Cupric Superoxide Complexes with O−H and C−H Substrates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel E. Diaz
- Chemistry DepartmentJohns Hopkins University Baltimore MD 21218 USA
| | - David A. Quist
- Chemistry DepartmentJohns Hopkins University Baltimore MD 21218 USA
| | - Austin E. Herzog
- Chemistry DepartmentJohns Hopkins University Baltimore MD 21218 USA
| | | | | | - Mayukh Bhadra
- Chemistry DepartmentJohns Hopkins University Baltimore MD 21218 USA
| | | | | |
Collapse
|
299
|
Elwell CE, Mandal M, Bouchey CJ, Que L, Cramer CJ, Tolman WB. Carboxylate Structural Effects on the Properties and Proton-Coupled Electron Transfer Reactivity of [CuO 2CR] 2+ Cores. Inorg Chem 2019; 58:15872-15879. [PMID: 31710477 DOI: 10.1021/acs.inorgchem.9b02293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of complexes {[NBu4][LCuII(O2CR)] (R = -C6F5, -C6H4(NO2), -C6H5, -C6H4(OMe), -CH3, and -C6H2(iPr)3)} were characterized (with the complex R = -C6H4(m-Cl) having been published elsewhere ( Mandal et al. J. Am. Chem. Soc. 2019 , 141 , 17236 )). All feature N,N',N″-coordination of the supporting L2- ligand, except for the complex with R = -C6H2(iPr)3, which exhibits N,N',O-coordination. For the N,N',N″-bound complexes, redox properties, UV-vis ligand-to-metal charge transfer (LMCT) features, and rates of hydrogen atom abstraction from 2,4,6,-tri-t-butylphenol using the oxidized, formally Cu(III) compounds LCuIII(O2CR) correlated well with the electron donating nature of R as measured both experimentally and computationally. Specifically, the greater the electron donation, the lower is the energy for LMCT and the slower is the reaction rate. The results are interpreted to support an oxidatively asynchronous proton-coupled electron transfer mechanism that is sensitive to the oxidative power of the [CuIII(O2CR)]2+ core.
Collapse
Affiliation(s)
- Courtney E Elwell
- Department of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center, and Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Mukunda Mandal
- Department of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center, and Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Caitlin J Bouchey
- Department of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center, and Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry , Washington University in St. Louis , One Brookings Drive, Campus Box 1134 , St. Louis , Missouri 63130 , United States
| | - Lawrence Que
- Department of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center, and Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Christopher J Cramer
- Department of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center, and Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - William B Tolman
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive, Campus Box 1134 , St. Louis , Missouri 63130 , United States
| |
Collapse
|
300
|
Sohtun WP, Muthuramalingam S, Velusamy M, Mayilmurugan R. New class of tridentate 3N ligands and copper(II) complexes: A model for type-2 copper site of phenoxazinone synthase. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|