251
|
Kulasekara BR, Kamischke C, Kulasekara HD, Christen M, Wiggins PA, Miller SI. c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility. eLife 2013; 2:e01402. [PMID: 24347546 PMCID: PMC3861689 DOI: 10.7554/elife.01402] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Individual cell heterogeneity is commonly observed within populations, although its molecular basis is largely unknown. Previously, using FRET-based microscopy, we observed heterogeneity in cellular c-di-GMP levels. In this study, we show that c-di-GMP heterogeneity in Pseudomonas aeruginosa is promoted by a specific phosphodiesterase partitioned after cell division. We found that subcellular localization and reduction of c-di-GMP levels by this phosphodiesterase is dependent on the histidine kinase component of the chemotaxis machinery, CheA, and its phosphorylation state. Therefore, individual cell heterogeneity in c-di-GMP concentrations is regulated by the activity and the asymmetrical inheritance of the chemotaxis organelle after cell division. c-di-GMP heterogeneity results in a diversity of motility behaviors. The generation of diverse intracellular concentrations of c-di-GMP by asymmetric partitioning is likely important to the success and survival of bacterial populations within the environment by allowing a variety of motility behaviors. DOI:http://dx.doi.org/10.7554/eLife.01402.001 Bacterial populations have traditionally been assumed to be made up of identical cells. However, while the bacteria within a population may be genetically identical, individual cells have different growth rates, metabolisms and motilities, among other things. This ‘phenotypic heterogeneity’ has been observed in many different species of bacteria, and in some cases it can be attributed to changes in the concentration of molecules called second messengers that help to relay signals from the external environment to targets within the cell. It can be challenging to monitor changes in the concentration of specific molecules inside cells, but researchers recently developed a form of microscopy based on FRET (short for Forster resonance energy transfer) that can measure the levels of a second messenger molecule called cyclic di-guanylate (c-di-GMP) inside individual cells. This technique was used to study P. aeruginosa, a bacterium that has a single corkscrew-shaped propeller that enables it to swim through liquid. P. aeruginosa divides to form two daughter cells—one with a propeller and one without. Although the daughter cell that does not have a propeller quickly grows one, FRET-based microscopy revealed that the daughter cell with a propeller had less c-di-GMP than the daughter without a propeller, but the reasons underlying this difference and its effects on bacterial behavior were not clear. Now Kulasekara et al. show that the cell that inherits the propeller contains an enzyme that degrades c-di-GMP, and that the low levels of this second messenger molecule—caused by the enzyme being concentrated near the base of the propeller, and the presence of a protein (CheA) that enables the bacteria to swim towards sources of nutrients—result in faster swimming speeds and increased responsiveness to nutrients. In other words, although the two daughter cells are genetically identical, they behave quite differently because of the different levels of this second messenger molecule. The existence of heterogeneity within a bacterial population likely leads to increased success and survival within changing diverse environments, and this work sets the stage for similar investigations into what establishes heterogeneity in other bacterial populations. DOI:http://dx.doi.org/10.7554/eLife.01402.002
Collapse
Affiliation(s)
- Bridget R Kulasekara
- Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| | | | | | | | | | | |
Collapse
|
252
|
Kerényi F, Wawer I, Sikorski PJ, Kufel J, Silhavy D. Phosphorylation of the N- and C-terminal UPF1 domains plays a critical role in plant nonsense-mediated mRNA decay. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:836-48. [PMID: 24118551 DOI: 10.1111/tpj.12346] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 09/10/2013] [Accepted: 09/20/2013] [Indexed: 05/11/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is an essential quality control system that degrades aberrant transcripts containing premature termination codons and regulates the expression of several normal transcripts. Targets for NMD are selected during translational termination. If termination is slow, the UPF1 NMD factor binds the eRF3 protein of the termination complex and then recruits UPF2 and UPF3. Consequently, the UPF1-2-3 NMD complex induces SMG7-mediated degradation of the target mRNA. It is unknown how formation of the NMD complex and transcript degradation are linked in plants. Previously we have shown that the N- and C-terminal domains of UPF1 act redundantly and that the N-terminal domain is phosphorylated. To clarify the role of UPF1 phosphorylation in plant NMD, we generated UPF1 mutants and analyzed their phosphorylation status and the NMD competency of the mutants. We show that although several residues in the N-terminal domain of UPF1 are phosphorylated, only three phosphorylated amino acids, S3, S13 and T29, play a role in NMD. Moreover, we found that the C-terminal domain consists of redundant S/TQ-rich segments and that S1076 is involved in NMD. All NMD-relevant phosphorylation sites were in the S/TQ context. Co-localization and fluorescence resonance energy transfer-fluorescence lifetime imaging assays suggest that N-terminal and probably also C-terminal phosphorylated S/TQ residues are the binding platform for SMG7. Our data support the hypothesis that phosphorylation of UPF1 connects NMD complex formation and the SMG7-mediated target transcript degradation steps of NMD. SMG7 binds the phosphorylated S/TQ sites of the UPF1 component of the NMD complex, and then it induces the degradation of the NMD target.
Collapse
Affiliation(s)
- Farkas Kerényi
- Agricultural Biotechnology Center, Szent-Györgyi 4, H-2100, Gödöllõ, Hungary
| | | | | | | | | |
Collapse
|
253
|
Crosby KC, Postma M, Hink MA, Zeelenberg CHC, Adjobo-Hermans MJW, Gadella TWJ. Quantitative analysis of self-association and mobility of annexin A4 at the plasma membrane. Biophys J 2013; 104:1875-85. [PMID: 23663830 DOI: 10.1016/j.bpj.2013.02.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/19/2013] [Accepted: 02/27/2013] [Indexed: 11/19/2022] Open
Abstract
Annexins, found in most eukaryotic species, are cytosolic proteins that are able to bind negatively-charged phospholipids in a calcium-dependent manner. Annexin A4 (AnxA4) has been implicated in diverse cellular processes, including the regulation of exocytosis and ion-transport; however, its precise mechanistic role is not fully understood. AnxA4 has been shown to aggregate on lipid layers upon Ca(2+) binding in vitro, a characteristic that may be critical for its function. We have utilized advanced fluorescence microscopy to discern details on the mobility and self-assembly of AnxA4 after Ca(2+) influx at the plasma membrane in living cells. Total internal reflection microscopy in combination with Förster resonance energy transfer reveals that there is a delay between initial plasma membrane binding and the beginning of self-assembly and this process continues after the cytoplasmic pool has completely relocated. Number-and-brightness analysis suggests that the predominant membrane bound mobile form of the protein is trimeric. There also exists a pool of AnxA4 that forms highly immobile aggregates at the membrane. Fluorescence recovery after photobleaching suggests that the relative proportion of these two forms varies and is correlated with membrane morphology.
Collapse
Affiliation(s)
- Kevin C Crosby
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | | | | | | | | | | |
Collapse
|
254
|
Jezierska J, Goedhart J, Kampinga HH, Reits EA, Verbeek DS. SCA14 mutation V138E leads to partly unfolded PKCγ associated with an exposed C-terminus, altered kinetics, phosphorylation and enhanced insolubilization. J Neurochem 2013; 128:741-51. [DOI: 10.1111/jnc.12491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Justyna Jezierska
- Department of Genetics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - Joachim Goedhart
- Section Molecular Cytology; van Leeuwenhoek Centre for Advanced Microscopy; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Harm H. Kampinga
- Department of Cell Biology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - Eric A. Reits
- Department of Cell Biology and Histology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Dineke S. Verbeek
- Department of Genetics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| |
Collapse
|
255
|
Wille T, Wagner C, Mittelstädt W, Blank K, Sommer E, Malengo G, Döhler D, Lange A, Sourjik V, Hensel M, Gerlach RG. SiiA and SiiB are novel type I secretion system subunits controlling SPI4-mediated adhesion ofSalmonella enterica. Cell Microbiol 2013; 16:161-78. [DOI: 10.1111/cmi.12222] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Thorsten Wille
- Nachwuchsgruppe 3; RKI Bereich Wernigerode; Wernigerode Germany
| | - Carolin Wagner
- Mikrobiologisches Institut; Universitätsklinikum Erlangen; Erlangen Germany
- Abt. Mikrobiologie; Universität Osnabrück; Osnabrück Germany
| | | | - Kathrin Blank
- Nachwuchsgruppe 3; RKI Bereich Wernigerode; Wernigerode Germany
| | - Erik Sommer
- Zentrum für Molekulare Biologie der Universität Heidelberg; DKFZ-ZMBH-Alliance; Heidelberg Germany
| | - Gabriele Malengo
- Zentrum für Molekulare Biologie der Universität Heidelberg; DKFZ-ZMBH-Alliance; Heidelberg Germany
| | - Daniela Döhler
- Mikrobiologisches Institut; Universitätsklinikum Erlangen; Erlangen Germany
| | - Anna Lange
- Nachwuchsgruppe 3; RKI Bereich Wernigerode; Wernigerode Germany
| | - Viktor Sourjik
- Zentrum für Molekulare Biologie der Universität Heidelberg; DKFZ-ZMBH-Alliance; Heidelberg Germany
| | - Michael Hensel
- Abt. Mikrobiologie; Universität Osnabrück; Osnabrück Germany
| | | |
Collapse
|
256
|
Müller SM, Galliardt H, Schneider J, Barisas BG, Seidel T. Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells. FRONTIERS IN PLANT SCIENCE 2013; 4:413. [PMID: 24194740 PMCID: PMC3810607 DOI: 10.3389/fpls.2013.00413] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/29/2013] [Indexed: 05/20/2023]
Abstract
Förster resonance energy transfer (FRET) describes excitation energy exchange between two adjacent molecules typically in distances ranging from 2 to 10 nm. The process depends on dipole-dipole coupling of the molecules and its probability of occurrence cannot be proven directly. Mostly, fluorescence is employed for quantification as it represents a concurring process of relaxation of the excited singlet state S1 so that the probability of fluorescence decreases as the probability of FRET increases. This reflects closer proximity of the molecules or an orientation of donor and acceptor transition dipoles that facilitates FRET. Monitoring sensitized emission by 3-Filter-FRET allows for fast image acquisition and is suitable for quantifying FRET in dynamic systems such as living cells. In recent years, several calibration protocols were established to overcome to previous difficulties in measuring FRET-efficiencies. Thus, we can now obtain by 3-filter FRET FRET-efficiencies that are comparable to results from sophisticated fluorescence lifetime measurements. With the discovery of fluorescent proteins and their improvement toward spectral variants and usability in plant cells, the tool box for in vivo FRET-analyses in plant cells was provided and FRET became applicable for the in vivo detection of protein-protein interactions and for monitoring conformational dynamics. The latter opened the door toward a multitude of FRET-sensors such as the widely applied Ca(2+)-sensor Cameleon. Recently, FRET-couples of two fluorescent proteins were supplemented by additional fluorescent proteins toward FRET-cascades in order to monitor more complex arrangements. Novel FRET-couples involving switchable fluorescent proteins promise to increase the utility of FRET through combination with photoactivation-based super-resolution microscopy.
Collapse
Affiliation(s)
- Sara M. Müller
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld UniversityBielefeld, Germany
| | - Helena Galliardt
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld UniversityBielefeld, Germany
| | - Jessica Schneider
- Bioinformatic Resource Facility, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - B. George Barisas
- Chemistry Department, Colorado State UniversityFort Collins, CO, USA
| | - Thorsten Seidel
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld UniversityBielefeld, Germany
- *Correspondence: Thorsten Seidel, Dynamic Cell Imaging, Faculty of Biology, Bielefeld University, Universitätsstraße 25, 33501 Bielefeld, Germany e-mail:
| |
Collapse
|
257
|
A C-terminal acidic domain regulates degradation of the transcriptional coactivator Bob1. Mol Cell Biol 2013; 33:4628-40. [PMID: 24061476 DOI: 10.1128/mcb.01590-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bob1 (Obf-1 or OCA-B) is a 34-kDa transcriptional coactivator encoded by the Pou2af1 gene that is essential for normal B-cell development and immune responses in mice. During lymphocyte activation, Bob1 protein levels dramatically increase independently of mRNA levels, suggesting that the stability of Bob1 is regulated. We used a fluorescent protein-based reporter system to analyze protein stability in response to genetic and physiological perturbations and show that, while Bob1 degradation is proteasome mediated, it does not require ubiquitination of Bob1. Furthermore, degradation of Bob1 in B cells appears to be largely independent of the E3 ubiquitin ligase Siah. We propose a novel mechanism of Bob1 turnover in B cells, whereby an acidic region in the C terminus of Bob1 regulates the activity of degron signals elsewhere in the protein. Changes that make the C terminus more acidic, including tyrosine phosphorylation-mimetic mutations, stabilize the instable murine Bob1 protein, indicating that B cells may regulate Bob1 stability and activity via signaling pathways. Finally, we show that expressing a stable Bob1 mutant in B cells suppresses cell proliferation and induces changes in surface marker expression commonly seen during B-cell differentiation.
Collapse
|
258
|
Activation and control of p53 tetramerization in individual living cells. Proc Natl Acad Sci U S A 2013; 110:15497-501. [PMID: 24006363 DOI: 10.1073/pnas.1311126110] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homo-oligomerization is found in many biological systems and has been extensively studied in vitro. However, our ability to quantify and understand oligomerization processes in cells is still limited. We used fluorescence correlation spectroscopy and mathematical modeling to measure the dynamics of the tetramers formed by the tumor suppressor protein p53 in single living cells. Previous in vitro studies suggested that in basal conditions all p53 molecules are bound in dimers. We found that in resting cells p53 is present in a mix of oligomeric states with a large cell-to-cell variation. After DNA damage, p53 molecules in all cells rapidly assemble into tetramers before p53 protein levels increase. We developed a model to understand the connection between p53 accumulation and tetramerization. We found that the rapid increase in p53 tetramers requires a combination of active tetramerization and protein stabilization, however tetramerization alone is sufficient to activate p53 transcriptional targets. This suggests triggering tetramerization as a mechanism for activating the p53 pathway in cancer cells. Many other transcription factors homo-oligomerize, and our approach provides a unique way for probing the dynamics and functional consequences of oligomerization.
Collapse
|
259
|
Bücherl CA, van Esse GW, Kruis A, Luchtenberg J, Westphal AH, Aker J, van Hoek A, Albrecht C, Borst JW, de Vries SC. Visualization of BRI1 and BAK1(SERK3) membrane receptor heterooligomers during brassinosteroid signaling. PLANT PHYSIOLOGY 2013; 162:1911-25. [PMID: 23796795 PMCID: PMC3729770 DOI: 10.1104/pp.113.220152] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/21/2013] [Indexed: 05/18/2023]
Abstract
The leucine-rich repeat receptor-like kinase BRASSINOSTEROID-INSENSITIVE1 (BRI1) is the main ligand-perceiving receptor for brassinosteroids (BRs) in Arabidopsis (Arabidopsis thaliana). Binding of BRs to the ectodomain of plasma membrane (PM)-located BRI1 receptors initiates an intracellular signal transduction cascade that influences various aspects of plant growth and development. Even though the major components of BR signaling have been revealed and the PM was identified as the main site of BRI1 signaling activity, the very first steps of signal transmission are still elusive. Recently, it was shown that the initiation of BR signal transduction requires the interaction of BRI1 with its SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) coreceptors. In addition, the resolved structure of the BRI1 ectodomain suggested that BRI1-ASSOCIATED KINASE1 [BAK1](SERK3) may constitute a component of the ligand-perceiving receptor complex. Therefore, we investigated the spatial correlation between BRI1 and BAK1(SERK3) in the natural habitat of both leucine-rich repeat receptor-like kinases using comparative colocalization analysis and fluorescence lifetime imaging microscopy. We show that activation of BR signaling by exogenous ligand application resulted in both elevated colocalization between BRI1 and BAK1(SERK3) and an about 50% increase of receptor heterooligomerization in the PM of live Arabidopsis root epidermal cells. However, large populations of BRI1 and BAK1(SERK3) colocalized independently of BRs. Moreover, we could visualize that approximately 7% of the BRI1 PM pool constitutively heterooligomerizes with BAK1(SERK3) in live root cells. We propose that only small populations of PM-located BRI1 and BAK1(SERK3) receptors participate in active BR signaling and that the initiation of downstream signal transduction involves preassembled BRI1-BAK1(SERK3) heterooligomers.
Collapse
Affiliation(s)
- Christoph A. Bücherl
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - G. Wilma van Esse
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Alex Kruis
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Jeroen Luchtenberg
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Adrie H. Westphal
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - José Aker
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Arie van Hoek
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Catherine Albrecht
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Jan Willem Borst
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | | |
Collapse
|
260
|
Lee S, Lim WA, Thorn KS. Improved blue, green, and red fluorescent protein tagging vectors for S. cerevisiae. PLoS One 2013; 8:e67902. [PMID: 23844123 PMCID: PMC3699464 DOI: 10.1371/journal.pone.0067902] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/22/2013] [Indexed: 12/21/2022] Open
Abstract
Fluorescent protein fusions are a powerful tool to monitor the localization and trafficking of proteins. Such studies are particularly easy to carry out in the budding yeast Saccharomyces cerevisiae due to the ease with which tags can be introduced into the genome by homologous recombination. However, the available yeast tagging plasmids have not kept pace with the development of new and improved fluorescent proteins. Here, we have constructed yeast optimized versions of 19 different fluorescent proteins and tested them for use as fusion tags in yeast. These include two blue, seven green, and seven red fluorescent proteins, which we have assessed for brightness, photostability and perturbation of tagged proteins. We find that EGFP remains the best performing green fluorescent protein, that TagRFP-T and mRuby2 outperform mCherry as red fluorescent proteins, and that mTagBFP2 can be used as a blue fluorescent protein tag. Together, the new tagging vectors we have constructed provide improved blue and red fluorescent proteins for yeast tagging and three color imaging.
Collapse
Affiliation(s)
- Sidae Lee
- UCSF Center for Systems and Synthetic Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Wendell A. Lim
- UCSF Center for Systems and Synthetic Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biomedical Research, San Francisco, California, United States of America
| | - Kurt S. Thorn
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
261
|
Sun Y, Rombola C, Jyothikumar V, Periasamy A. Förster resonance energy transfer microscopy and spectroscopy for localizing protein-protein interactions in living cells. Cytometry A 2013; 83:780-93. [PMID: 23813736 DOI: 10.1002/cyto.a.22321] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 04/08/2013] [Accepted: 05/23/2013] [Indexed: 12/15/2022]
Abstract
The fundamental theory of Förster resonance energy transfer (FRET) was established in the 1940s. Its great power was only realized in the past 20 years after different techniques were developed and applied to biological experiments. This success was made possible by the availability of suitable fluorescent probes, advanced optics, detectors, microscopy instrumentation, and analytical tools. Combined with state-of-the-art microscopy and spectroscopy, FRET imaging allows scientists to study a variety of phenomena that produce changes in molecular proximity, thereby leading to many significant findings in the life sciences. In this review, we outline various FRET imaging techniques and their strengths and limitations; we also provide a biological model to demonstrate how to investigate protein-protein interactions in living cells using both intensity- and fluorescence lifetime-based FRET microscopy methods.
Collapse
Affiliation(s)
- Yuansheng Sun
- The W.M. Keck Center for Cellular Imaging (KCCI), Department of Biology, Physical and Life Sciences Building, University of Virginia, Charlottesville, Virginia
| | | | | | | |
Collapse
|
262
|
Pietraszewska-Bogiel A, Lefebvre B, Koini MA, Klaus-Heisen D, Takken FLW, Geurts R, Cullimore JV, Gadella TW. Interaction of Medicago truncatula lysin motif receptor-like kinases, NFP and LYK3, produced in Nicotiana benthamiana induces defence-like responses. PLoS One 2013; 8:e65055. [PMID: 23750228 PMCID: PMC3672211 DOI: 10.1371/journal.pone.0065055] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/20/2013] [Indexed: 11/19/2022] Open
Abstract
Receptor(-like) kinases with Lysin Motif (LysM) domains in their extracellular region play crucial roles during plant interactions with microorganisms; e.g. Arabidopsis thaliana CERK1 activates innate immunity upon perception of fungal chitin/chitooligosaccharides, whereas Medicago truncatula NFP and LYK3 mediate signalling upon perception of bacterial lipo-chitooligosaccharides, termed Nod factors, during the establishment of mutualism with nitrogen-fixing rhizobia. However, little is still known about the exact activation and signalling mechanisms of MtNFP and MtLYK3. We aimed at investigating putative molecular interactions of MtNFP and MtLYK3 produced in Nicotiana benthamiana. Surprisingly, heterologous co-production of these proteins resulted in an induction of defence-like responses, which included defence-related gene expression, accumulation of phenolic compounds, and cell death. Similar defence-like responses were observed upon production of AtCERK1 in N. benthamiana leaves. Production of either MtNFP or MtLYK3 alone or their co-production with other unrelated receptor(-like) kinases did not induce cell death in N. benthamiana, indicating that a functional interaction between these LysM receptor-like kinases is required for triggering this response. Importantly, structure-function studies revealed that the MtNFP intracellular region, specific features of the MtLYK3 intracellular region (including several putative phosphorylation sites), and MtLYK3 and AtCERK1 kinase activity were indispensable for cell death induction, thereby mimicking the structural requirements of nodulation or chitin-induced signalling. The observed similarity of N. benthamiana response to MtNFP and MtLYK3 co-production and AtCERK1 production suggests the existence of parallels between Nod factor-induced and chitin-induced signalling mediated by the respective LysM receptor(-like) kinases. Notably, the conserved structural requirements for MtNFP and MtLYK3 biological activity in M. truncatula (nodulation) and in N. benthamiana (cell death induction) indicates the relevance of the latter system for studies on these, and potentially other symbiotic LysM receptor-like kinases.
Collapse
Affiliation(s)
- Anna Pietraszewska-Bogiel
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Benoit Lefebvre
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France
| | - Maria A. Koini
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Dörte Klaus-Heisen
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France
| | - Frank L. W. Takken
- Section of Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - René Geurts
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Julie V. Cullimore
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France
| | - Theodorus W.J. Gadella
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
263
|
Takagi C, Sakamaki K, Morita H, Hara Y, Suzuki M, Kinoshita N, Ueno N. Transgenic Xenopus laevis for live imaging in cell and developmental biology. Dev Growth Differ 2013; 55:422-33. [PMID: 23480392 DOI: 10.1111/dgd.12042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 01/28/2023]
Abstract
The stable transgenesis of genes encoding functional or spatially localized proteins, fused to fluorescent proteins such as green fluorescent protein (GFP) or red fluorescent protein (RFP), is an extremely important research tool in cell and developmental biology. Transgenic organisms constructed with fluorescent labels for cell membranes, subcellular organelles, and functional proteins have been used to investigate cell cycles, lineages, shapes, and polarity, in live animals and in cells or tissues derived from these animals. Genes of interest have been integrated and maintained in generations of transgenic animals, which have become a valuable resource for the cell and developmental biology communities. Although the use of Xenopus laevis as a transgenic model organism has been hampered by its relatively long reproduction time (compared to Drosophila melanogaster and Caenorhabditis elegans), its large embryonic cells and the ease of manipulation in early embryos have made it a historically valuable preparation that continues to have tremendous research potential. Here, we report on the Xenopus laevis transgenic lines our lab has generated and discuss their potential use in biological imaging.
Collapse
Affiliation(s)
- Chiyo Takagi
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
264
|
Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng JX, Huang B, Fang N. Single cell optical imaging and spectroscopy. Chem Rev 2013; 113:2469-527. [PMID: 23410134 PMCID: PMC3624028 DOI: 10.1021/cr300336e] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anthony S. Stender
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Kyle Marchuk
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Chang Liu
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Suzanne Sander
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Matthew W. Meyer
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Emily A. Smith
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Bhanu Neupane
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Gufeng Wang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Junjie Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Bo Huang
- Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Ning Fang
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| |
Collapse
|
265
|
Chatterjee A, Xiao H, Yang PY, Soundararajan G, Schultz PG. A tryptophanyl-tRNA synthetase/tRNA pair for unnatural amino acid mutagenesis in E. coli. Angew Chem Int Ed Engl 2013; 52:5106-9. [PMID: 23554007 DOI: 10.1002/anie.201301094] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Abhishek Chatterjee
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
266
|
Seward HE, Basran J, Denton R, Pfuhl M, Muskett FW, Bagshaw CR. Halide and proton binding kinetics of yellow fluorescent protein variants. Biochemistry 2013; 52:2482-91. [PMID: 23514090 DOI: 10.1021/bi3016839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A T203Y substitution in green fluorescent protein causes a red shift in emission to yield a class of mutants known as yellow fluorescent protein (YFP). Many of these YFP mutants bind halides with affinities in the millimolar range, which often results in the chromophore pK values being shifted into the physiological range. While such sensitivities may be exploited for halide and pH sensors, it is desirable to reduce such environmental sensitivities in other studies, such as in Förster resonance energy transfer probes to measure conformational changes within fusion proteins. Venus and Citrine are two such variants that have been developed with much reduced halide sensitivities. Here we compare the kinetics of halide binding, and the coupled protonation reaction, for several YFP variants and detect slow kinetics (dissociation rate constants in the range of 0.1-1 s(-1)), indicative of binding to an internal site, in all cases. The effective halide affinity for Venus and Citrine is much reduced compared with that of the original YFP 10C construct, primarily through a reduced association rate constant. Nuclear magnetic resonance studies of YFP 10C confirm halide binding occurs on a slow time scale (<4 s(-1)) and that perturbations in the chemical shift occur throughout the sequence and structure.
Collapse
Affiliation(s)
- Harriet E Seward
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | | | | | |
Collapse
|
267
|
Chatterjee A, Xiao H, Yang PY, Soundararajan G, Schultz PG. A Tryptophanyl-tRNA Synthetase/tRNA Pair for Unnatural Amino Acid Mutagenesis inE. coli. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
268
|
Akerboom J, Carreras Calderón N, Tian L, Wabnig S, Prigge M, Tolö J, Gordus A, Orger MB, Severi KE, Macklin JJ, Patel R, Pulver SR, Wardill TJ, Fischer E, Schüler C, Chen TW, Sarkisyan KS, Marvin JS, Bargmann CI, Kim DS, Kügler S, Lagnado L, Hegemann P, Gottschalk A, Schreiter ER, Looger LL. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 2013; 6:2. [PMID: 23459413 PMCID: PMC3586699 DOI: 10.3389/fnmol.2013.00002] [Citation(s) in RCA: 504] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/11/2013] [Indexed: 12/17/2022] Open
Abstract
Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Here we describe red, single-wavelength GECIs, “RCaMPs,” engineered from circular permutation of the thermostable red fluorescent protein mRuby. High-resolution crystal structures of mRuby, the red sensor RCaMP, and the recently published red GECI R-GECO1 give insight into the chromophore environments of the Ca2+-bound state of the sensors and the engineered protein domain interfaces of the different indicators. We characterized the biophysical properties and performance of RCaMP sensors in vitro and in vivo in Caenorhabditis elegans, Drosophila larvae, and larval zebrafish. Further, we demonstrate 2-color calcium imaging both within the same cell (registering mitochondrial and somatic [Ca2+]) and between two populations of cells: neurons and astrocytes. Finally, we perform integrated optogenetics experiments, wherein neural activation via channelrhodopsin-2 (ChR2) or a red-shifted variant, and activity imaging via RCaMP or GCaMP, are conducted simultaneously, with the ChR2/RCaMP pair providing independently addressable spectral channels. Using this paradigm, we measure calcium responses of naturalistic and ChR2-evoked muscle contractions in vivo in crawling C. elegans. We systematically compare the RCaMP sensors to R-GECO1, in terms of action potential-evoked fluorescence increases in neurons, photobleaching, and photoswitching. R-GECO1 displays higher Ca2+ affinity and larger dynamic range than RCaMP, but exhibits significant photoactivation with blue and green light, suggesting that integrated channelrhodopsin-based optogenetics using R-GECO1 may be subject to artifact. Finally, we create and test blue, cyan, and yellow variants engineered from GCaMP by rational design. This engineered set of chromatic variants facilitates new experiments in functional imaging and optogenetics.
Collapse
Affiliation(s)
- Jasper Akerboom
- Janelia Farm Research Campus, Howard Hughes Medical Institute Ashburn, VA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
From FRET Imaging to Practical Methodology for Kinase Activity Sensing in Living Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 113:145-216. [DOI: 10.1016/b978-0-12-386932-6.00005-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
270
|
Erard M, Fredj A, Pasquier H, Beltolngar DB, Bousmah Y, Derrien V, Vincent P, Merola F. Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging. ACTA ACUST UNITED AC 2013. [DOI: 10.1039/c2mb25303h] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
271
|
|
272
|
Tamiello C, Kamps MAF, van den Wijngaard A, Verstraeten VLRM, Baaijens FPT, Broers JLV, Bouten CCV. Soft substrates normalize nuclear morphology and prevent nuclear rupture in fibroblasts from a laminopathy patient with compound heterozygous LMNA mutations. Nucleus 2013; 4:61-73. [PMID: 23324461 PMCID: PMC3585029 DOI: 10.4161/nucl.23388] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Laminopathies, mainly caused by mutations in the LMNA gene, are a group of inherited diseases with a highly variable penetrance; i.e., the disease spectrum in persons with identical LMNA mutations range from symptom-free conditions to severe cardiomyopathy and progeria, leading to early death. LMNA mutations cause nuclear abnormalities and cellular fragility in response to cellular mechanical stress, but the genotype/phenotype correlations in these diseases remain unclear. Consequently, tools such as mutation analysis are not adequate for predicting the course of the disease.
Here, we employ growth substrate stiffness to probe nuclear fragility in cultured dermal fibroblasts from a laminopathy patient with compound progeroid syndrome. We show that culturing of these cells on substrates with stiffness higher than 10 kPa results in malformations and even rupture of the nuclei, while culture on a soft substrate (3 kPa) protects the nuclei from morphological alterations and ruptures. No malformations were seen in healthy control cells at any substrate stiffness. In addition, analysis of the actin cytoskeleton organization in this laminopathy cells demonstrates that the onset of nuclear abnormalities correlates to an increase in cytoskeletal tension.
Together, these data indicate that culturing of these LMNA mutated cells on substrates with a range of different stiffnesses can be used to probe the degree of nuclear fragility. This assay may be useful in predicting patient-specific phenotypic development and in investigations on the underlying mechanisms of nuclear and cellular fragility in laminopathies.
Collapse
Affiliation(s)
- Chiara Tamiello
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
273
|
Chao JA, Yoon YJ, Singer RH. Imaging translation in single cells using fluorescent microscopy. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a012310. [PMID: 22960595 DOI: 10.1101/cshperspect.a012310] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The regulation of translation provides a mechanism to control not only the abundance of proteins, but also the precise time and subcellular location that they are synthesized. Much of what is known concerning the molecular basis for translational control has been gleaned from experiments (e.g., luciferase assays and polysome analysis) that measure average changes in the protein synthesis of a population of cells, however, mechanistic insights can be obscured in ensemble measurements. The development of fluorescent microscopy techniques and reagents has allowed translation to be studied within its cellular context. Here we highlight recent methodologies that can be used to study global changes in protein synthesis or regulation of specific mRNAs in single cells. Imaging of translation has provided direct evidence for local translation of mRNAs at synapses in neurons and will become an important tool for studying translational control.
Collapse
Affiliation(s)
- Jeffrey A Chao
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
274
|
Houben F, De Vos WH, Krapels IPC, Coorens M, Kierkels GJJ, Kamps MAF, Verstraeten VLRM, Marcelis CLM, van den Wijngaard A, Ramaekers FCS, Broers JLV. Cytoplasmic localization of PML particles in laminopathies. Histochem Cell Biol 2012; 139:119-34. [PMID: 22918509 DOI: 10.1007/s00418-012-1005-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2012] [Indexed: 01/01/2023]
Abstract
There is growing evidence that laminopathies, diseases associated with mutations in the LMNA gene, are caused by a combination of mechanical and gene regulatory distortions. Strikingly, there is a large variability in disease symptoms between individual patients carrying an identical LMNA mutation. This is why classical genetic screens for mutations appear to have limited predictive value for disease development. Recently, the widespread occurrence of repetitive nuclear ruptures has been described in fibroblast cultures from various laminopathy patients. Since this phenomenon was strongly correlated with disease severity, the identification of biomarkers that report on these rupture events could have diagnostic relevance. One such candidate marker is the PML nuclear body, a structure that is normally confined to the nuclear interior, but leaks out of the nucleus upon nuclear rupture. Here, we show that a variety of laminopathies shows the presence of these cytoplasmic PML particles (PML CPs), and that the amount of these protein aggregates increases with severity of the disease. In addition, between clinically healthy individuals, carrying LMNA mutations, significant differences can be found. Therefore, we postulate that detection of PML CPs in patient fibroblasts could become a valuable marker for diagnosis of disease development.
Collapse
Affiliation(s)
- F Houben
- Department of Molecular Cell Biology, CARIM, School for Cardiovascular Diseases, Maastricht University Medical Center, UNS50 Box 17, P.O. Box 616, NL-6200 MD, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
von Stetten D, Noirclerc-Savoye M, Goedhart J, Gadella TWJ, Royant A. Structure of a fluorescent protein from Aequorea victoria bearing the obligate-monomer mutation A206K. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:878-82. [PMID: 22869113 PMCID: PMC3412764 DOI: 10.1107/s1744309112028667] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/24/2012] [Indexed: 11/10/2022]
Abstract
The green fluorescent protein (GFP) from the jellyfish Aequoria victoria has been shown to dimerize at high concentrations, which could lead to artefacts in imaging experiments. To ensure a truly monomeric state, an A206K mutation has been introduced into most of its widely used variants, with minimal effect on the spectroscopic properties. Here, the first structure of one of these variants, the cyan fluorescent protein mTurquoise, is presented and compared with that of its dimeric version mTurquoise-K206A. No significant structural change is detected in the chromophore cavity, reinforcing the notion that this mutation is spectroscopically silent and validating that the structural analysis performed on dimeric mutants also applies to monomeric versions. Finally, it is explained why cyan versions of GFP containing the Y66W and N146I mutations do not require the A206K mutation to prevent dimerization at high concentrations.
Collapse
Affiliation(s)
- David von Stetten
- Structural Biology Group, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble, France
| | - Marjolaine Noirclerc-Savoye
- CNRS, Institut de Biologie Structurale Jean-Pierre Ebel, 41 Rue Jules Horowitz, 38027 Grenoble, France
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, 41 Rue Jules Horowitz, 38027 Grenoble, France
- Université Joseph Fourier, Institut de Biologie Structurale Jean-Pierre Ebel, 41 Rue Jules Horowitz, 38027 Grenoble, France
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Theodorus W. J. Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoine Royant
- Structural Biology Group, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble, France
- CNRS, Institut de Biologie Structurale Jean-Pierre Ebel, 41 Rue Jules Horowitz, 38027 Grenoble, France
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, 41 Rue Jules Horowitz, 38027 Grenoble, France
- Université Joseph Fourier, Institut de Biologie Structurale Jean-Pierre Ebel, 41 Rue Jules Horowitz, 38027 Grenoble, France
| |
Collapse
|
276
|
Frei dit Frey N, Mbengue M, Kwaaitaal M, Nitsch L, Altenbach D, Häweker H, Lozano-Duran R, Njo MF, Beeckman T, Huettel B, Borst JW, Panstruga R, Robatzek S. Plasma membrane calcium ATPases are important components of receptor-mediated signaling in plant immune responses and development. PLANT PHYSIOLOGY 2012; 159:798-809. [PMID: 22535420 PMCID: PMC3375942 DOI: 10.1104/pp.111.192575] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/24/2012] [Indexed: 05/18/2023]
Abstract
Plasma membrane-resident receptor kinases (RKs) initiate signaling pathways important for plant immunity and development. In Arabidopsis (Arabidopsis thaliana), the receptor for the elicitor-active peptide epitope of bacterial flagellin, flg22, is encoded by FLAGELLIN SENSING2 (FLS2), which promotes plant immunity. Despite its relevance, the molecular components regulating FLS2-mediated signaling remain largely unknown. We show that plasma membrane ARABIDOPSIS-AUTOINHIBITED Ca(2+)-ATPase (ACA8) forms a complex with FLS2 in planta. ACA8 and its closest homolog ACA10 are required for limiting the growth of virulent bacteria. One of the earliest flg22 responses is the transient increase of cytosolic Ca(2+) ions, which is crucial for many of the well-described downstream responses (e.g. generation of reactive oxygen species and the transcriptional activation of defense-associated genes). Mutant aca8 aca10 plants show decreased flg22-induced Ca(2+) and reactive oxygen species bursts and exhibit altered transcriptional reprogramming. In particular, mitogen-activated protein kinase-dependent flg22-induced gene expression is elevated, whereas calcium-dependent protein kinase-dependent flg22-induced gene expression is reduced. These results demonstrate that the fine regulation of Ca(2+) fluxes across the plasma membrane is critical for the coordination of the downstream microbe-associated molecular pattern responses and suggest a mechanistic link between the FLS2 receptor complex and signaling kinases via the secondary messenger Ca(2+). ACA8 also interacts with other RKs such as BRI1 and CLV1 known to regulate plant development, and both aca8 and aca10 mutants show morphological phenotypes, suggesting additional roles for ACA8 and ACA10 in developmental processes. Thus, Ca(2+) ATPases appear to represent general regulatory components of RK-mediated signaling pathways.
Collapse
|
277
|
Luijsterburg MS, Lindh M, Acs K, Vrouwe MG, Pines A, van Attikum H, Mullenders LH, Dantuma NP. DDB2 promotes chromatin decondensation at UV-induced DNA damage. ACTA ACUST UNITED AC 2012; 197:267-81. [PMID: 22492724 PMCID: PMC3328393 DOI: 10.1083/jcb.201106074] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to its role in DNA lesion recognition, the damaged DNA-binding protein DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A–RING ubiquitin ligase (CRL4) complex. In this paper, we report a new function of DDB2 in modulating chromatin structure at DNA lesions. We show that DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Our data reveal a marked adenosine triphosphate (ATP)–dependent reduction in the density of core histones in chromatin containing UV-induced DNA lesions, which strictly required functional DDB2 and involved the activity of poly(adenosine diphosphate [ADP]–ribose) polymerase 1. Finally, we show that lesion recognition by XPC, but not DDB2, was strongly reduced in ATP-depleted cells and was regulated by the steady-state levels of poly(ADP-ribose) chains.
Collapse
Affiliation(s)
- Martijn S Luijsterburg
- Department of Cell and Molecular Biology, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
278
|
Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC. Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules 2012; 17:4047-132. [PMID: 22469598 PMCID: PMC6268795 DOI: 10.3390/molecules17044047] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 03/21/2012] [Accepted: 03/21/2012] [Indexed: 12/19/2022] Open
Abstract
Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Förster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research.
Collapse
Affiliation(s)
- Hellen C. Ishikawa-Ankerhold
- Ludwig Maximilian University of Munich, Institute of Anatomy and Cell Biology, Schillerstr. 42, 80336 München, Germany
| | - Richard Ankerhold
- Carl Zeiss Microimaging GmbH, Kistlerhofstr. 75, 81379 München, Germany
| | - Gregor P. C. Drummen
- Bionanoscience and Bio-Imaging Program, Cellular Stress and Ageing Program, Bio&Nano-Solutions, Helmutstr. 3A, 40472 Düsseldorf, Germany
| |
Collapse
|
279
|
Klasen K, Hollatz D, Zielke S, Gisselmann G, Hatt H, Wetzel CH. The TRPM8 ion channel comprises direct Gq protein-activating capacity. Pflugers Arch 2012; 463:779-97. [PMID: 22460725 DOI: 10.1007/s00424-012-1098-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 11/29/2022]
Abstract
The transient receptor potential (TRP) family of ion channels comprises receptors that are activated by a vast variety of physical as well as chemical stimuli. TRP channels interact in a complex manner with several intracellular signaling cascades, both up- and downstream of receptor activation. Investigating cascades stimulated downstream of the cold and menthol receptor TRPM8, we found evidence for both, functional and structural interaction of TRPM8 with Gαq. We demonstrated menthol-evoked increase in intracellular Ca(2+) under extracellular Ca(2+)-free conditions, which was blocked by the PLC inhibitors U73122 or edelfosine. This metabotropic Ca(2+) signal could be observed also in cells expressing a channel-dead (i.e. non-conducting) or a chloride-conducting TRPM8 pore mutant. However, this intracellular metabotropic Ca(2+) signal could not be detected in Gαq deficient cells or in the presence of dominant-negative GαqX. Evidence for a close spatial proximity necessary for physical interaction of TRPM8 and Gαq was provided by acceptor bleaching experiments demonstrating FRET between TRPM8-CFP and Gαq-YFP. A Gαq-YFP mobility assay (FRAP) revealed a restricted diffusion of Gαq-YFP under conditions when TRPM8 is immobilized in the plasma membrane. Moreover, a menthol-induced and TRPM8-mediated G protein activation could be demonstrated by FRET experiments monitoring the dissociation of Gαq-YFP from a Gβ/Gγ-CFP complex, and by the exchange of radioactive [(35)S]GTPγS for GDP. Our observations lead to a view that extends the operational range of the TRPM8 receptor from its function as a pure ion channel to a molecular switch with additional metabotropic capacity.
Collapse
Affiliation(s)
- Katharina Klasen
- Lehrstuhl für Zellphysiologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
280
|
Potzkei J, Kunze M, Drepper T, Gensch T, Jaeger KE, Büchs J. Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor. BMC Biol 2012; 10:28. [PMID: 22439625 PMCID: PMC3364895 DOI: 10.1186/1741-7007-10-28] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/22/2012] [Indexed: 11/20/2022] Open
Abstract
Background Molecular oxygen (O2) is one of the key metabolites of all obligate and facultative aerobic pro- and eukaryotes. It plays a fundamental role in energy homeostasis whereas oxygen deprivation, in turn, broadly affects various physiological and pathophysiological processes. Therefore, real-time monitoring of cellular oxygen levels is basically a prerequisite for the analysis of hypoxia-induced processes in living cells and tissues. Results We developed a genetically encoded Förster resonance energy transfer (FRET)-based biosensor allowing the observation of changing molecular oxygen concentrations inside living cells. This biosensor named FluBO (fluorescent protein-based biosensor for oxygen) consists of the yellow fluorescent protein (YFP) that is sensitive towards oxygen depletion and the hypoxia-tolerant flavin-binding fluorescent protein (FbFP). Since O2 is essential for the formation of the YFP chromophore, efficient FRET from the FbFP donor domain to the YFP acceptor domain only occurs in the presence but not in the absence of oxygen. The oxygen biosensor was used for continuous real-time monitoring of temporal changes of O2 levels in the cytoplasm of Escherichia coli cells during batch cultivation. Conclusions FluBO represents a unique FRET-based oxygen biosensor which allows the non-invasive ratiometric readout of cellular oxygen. Thus, FluBO can serve as a novel and powerful probe for investigating the occurrence of hypoxia and its effects on a variety of (patho)physiological processes in living cells.
Collapse
Affiliation(s)
- Janko Potzkei
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Juelich Research Center, Wilhelm-Johnen-Straße, D-52425 Juelich, Germany
| | | | | | | | | | | |
Collapse
|
281
|
Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren L, Gadella TWJ, Royant A. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 2012; 3:751. [PMID: 22434194 PMCID: PMC3316892 DOI: 10.1038/ncomms1738] [Citation(s) in RCA: 519] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/08/2012] [Indexed: 11/09/2022] Open
Abstract
Cyan variants of green fluorescent protein are widely used as donors in Förster resonance energy transfer experiments. The popular, but modestly bright, Enhanced Cyan Fluorescent Protein (ECFP) was sequentially improved into the brighter variants Super Cyan Fluorescent Protein 3A (SCFP3A) and mTurquoise, the latter exhibiting a high-fluorescence quantum yield and a long mono-exponential fluorescence lifetime. Here we combine X-ray crystallography and excited-state calculations to rationalize these stepwise improvements. The enhancement originates from stabilization of the seventh β-strand and the strengthening of the sole chromophore-stabilizing hydrogen bond. The structural analysis highlighted one suboptimal internal residue, which was subjected to saturation mutagenesis combined with fluorescence lifetime-based screening. This resulted in mTurquoise2, a brighter variant with faster maturation, high photostability, longer mono-exponential lifetime and the highest quantum yield measured for a monomeric fluorescent protein. Together, these properties make mTurquoise2 the preferable cyan variant of green fluorescent protein for long-term imaging and as donor for Förster resonance energy transfer to a yellow fluorescent protein.
Collapse
Affiliation(s)
- Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Ferrari ML, Gomez GA, Maccioni HJF. Spatial organization and stoichiometry of N-terminal domain-mediated glycosyltransferase complexes in Golgi membranes determined by fret microscopy. Neurochem Res 2012; 37:1325-34. [PMID: 22388569 DOI: 10.1007/s11064-012-0741-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/13/2012] [Accepted: 02/20/2012] [Indexed: 01/25/2023]
Abstract
The functional link between glycolipid glycosyltransferases (GT) relies on the ability of these proteins to form organized molecular complexes. The organization, stoichiometry and composition of these complexes may impact their sorting properties, sub-Golgi localization, and may determine relative efficiency of GT in different glycolipid biosynthetic pathways. In this work, by using Förster resonance energy transfer microscopy in live CHO-K1 cells, we investigated homo- and hetero-complex formation by different GT as well as their spatial organization and molecular stoichiometry on Golgi membranes. We find that GalNAcT and GalT2 Ntd are able to form hetero-complexes in a 1:2 molar ratio at the trans-Golgi network and that GalT2 but not GalNAcT forms homo-complexes. Also, GalNAcT/GalT2 complexes exhibit a stable behavior reflected by its clustered lateral organization. These results reveals that particular topological organization of GTs may have functional implications in determining the composition of glycolipids in cellular membranes.
Collapse
Affiliation(s)
- Mariana L Ferrari
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-UNC-CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
283
|
Lefebvre B, Klaus-Heisen D, Pietraszewska-Bogiel A, Hervé C, Camut S, Auriac MC, Gasciolli V, Nurisso A, Gadella TWJ, Cullimore J. Role of N-glycosylation sites and CXC motifs in trafficking of medicago truncatula Nod factor perception protein to plasma membrane. J Biol Chem 2012; 287:10812-23. [PMID: 22334694 DOI: 10.1074/jbc.m111.281634] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The lysin motif receptor-like kinase, NFP (Nod factor perception), is a key protein in the legume Medicago truncatula for the perception of lipochitooligosaccharidic Nod factors, which are secreted bacterial signals essential for establishing the nitrogen-fixing legume-rhizobia symbiosis. Predicted structural and genetic analyses strongly suggest that NFP is at least part of a Nod factor receptor, but few data are available about this protein. Characterization of a variant encoded by the mutant allele nfp-2 revealed the sensitivity of this protein to the endoplasmic reticulum quality control mechanisms, affecting its trafficking to the plasma membrane. Further analysis revealed that the extensive N-glycosylation of the protein is not essential for biological activity. In the NFP extracellular region, two CXC motifs and two other Cys residues were found to be involved in disulfide bridges, and these are necessary for correct folding and localization of the protein. Analysis of the intracellular region revealed its importance for biological activity but suggests that it does not rely on kinase activity. This work shows that NFP trafficking to the plasma membrane is highly sensitive to regulation in the endoplasmic reticulum and has identified structural features of the protein, particularly disulfide bridges involving CXC motifs in the extracellular region that are required for its biological function.
Collapse
Affiliation(s)
- Benoit Lefebvre
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, F-31326 Castanet-Tolosan, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Rademacher E, Lokerse A, Schlereth A, Llavata-Peris C, Bayer M, Kientz M, Freire Rios A, Borst J, Lukowitz W, Jürgens G, Weijers D. Different Auxin Response Machineries Control Distinct Cell Fates in the Early Plant Embryo. Dev Cell 2012; 22:211-22. [DOI: 10.1016/j.devcel.2011.10.026] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 08/10/2011] [Accepted: 10/26/2011] [Indexed: 10/14/2022]
|
285
|
Su T, Zhang Z, Luo Q. Ratiometric fluorescence imaging of dual bio-molecular events in single living cells using a new FRET pair mVenus/mKOκ-based biosensor and a single fluorescent protein biosensor. Biosens Bioelectron 2012; 31:292-8. [DOI: 10.1016/j.bios.2011.10.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/14/2011] [Accepted: 10/18/2011] [Indexed: 10/16/2022]
|
286
|
Seitz A, Terjung S, Zimmermann T, Pepperkok R. Quantifying the influence of yellow fluorescent protein photoconversion on acceptor photobleaching-based fluorescence resonance energy transfer measurements. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:011010. [PMID: 22352644 DOI: 10.1117/1.jbo.17.1.011010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fluorescence resonance energy transfer (FRET) efficiency measurements based on acceptor photobleaching of yellow fluorescent protein (YFP) are affected by the fact that bleaching of YFP produces a fluorescent species that is detectable in cyan fluorescent protein (CFP) image channels. The presented quantitative measurement of this conversion makes it possible to correct the obtained FRET signal to increase the accuracy of intensity based CFP/YFP FRET measurements. The described method can additionally be used to compare samples with very different fluorescence levels.
Collapse
Affiliation(s)
- Arne Seitz
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Meyerhofstr 1, 69117 Heidelberg, Germany.
| | | | | | | |
Collapse
|
287
|
van Oort B, ter Veer MJT, Groot ML, van Stokkum IHM. Excited state proton transfer in strongly enhanced GFP (sGFP2). Phys Chem Chem Phys 2012; 14:8852-8. [DOI: 10.1039/c2cp40694b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
288
|
Quantitative co-expression of proteins at the single cell level--application to a multimeric FRET sensor. PLoS One 2011; 6:e27321. [PMID: 22114669 PMCID: PMC3219669 DOI: 10.1371/journal.pone.0027321] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 10/13/2011] [Indexed: 01/05/2023] Open
Abstract
Background Co-expression of proteins is generally achieved by introducing two (or more) independent plasmids into cells, each driving the expression of a different protein of interest. However, the relative expression levels may vary strongly between individual cells and cannot be controlled. Ideally, co-expression occurs at a defined ratio, which is constant among cells. This feature is of particular importance for quantitative single cell studies, especially those employing bimolecular Förster Resonance Energy Transfer (FRET) sensors. Methodology/Principal Findings Four co-expression strategies based on co-transfection, a dual promotor plasmid, an internal ribosome entry site (IRES) and a viral 2A peptide were selected. Co-expression of two spectrally separable fluorescent proteins in single living cells was quantified. It is demonstrated that the 2A peptide strategy can be used for robust equimolar co-expression, while the IRES sequence allows expression of two proteins at a ratio of approximately 3:1. Combined 2A and IRES elements were used for the construction of a single plasmid that drives expression of three individual proteins, which generates a FRET sensor for measuring heterotrimeric G-protein activation. The plasmid drives co-expression of donor and acceptor tagged subunits, with reduced heterogeneity, and can be used to measure G-protein activation in single living cells. Conclusions/Significance Quantitative co-expression of two or more proteins can be achieved with little cell-to-cell variability. This finding enables reliable co-expression of donor and acceptor tagged proteins for FRET studies, which is of particular importance for the development of novel bimolecular sensors that can be expressed from single plasmid.
Collapse
|
289
|
Ali S, Champagne DL, Spaink HP, Richardson MK. Zebrafish embryos and larvae: a new generation of disease models and drug screens. ACTA ACUST UNITED AC 2011; 93:115-33. [PMID: 21671352 DOI: 10.1002/bdrc.20206] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Technological innovation has helped the zebrafish embryo gain ground as a disease model and an assay system for drug screening. Here, we review the use of zebrafish embryos and early larvae in applied biomedical research, using selected cases. We look at the use of zebrafish embryos as disease models, taking fetal alcohol syndrome and tuberculosis as examples. We discuss advances in imaging, in culture techniques (including microfluidics), and in drug delivery (including new techniques for the robotic injection of compounds into the egg). The use of zebrafish embryos in early stages of drug safety-screening is discussed. So too are the new behavioral assays that are being adapted from rodent research for use in zebrafish embryos, and which may become relevant in validating the effects of neuroactive compounds such as anxiolytics and antidepressants. Readouts, such as morphological screening and cardiac function, are examined. There are several drawbacks in the zebrafish model. One is its very rapid development, which means that screening with zebrafish is analogous to "screening on a run-away train." Therefore, we argue that zebrafish embryos need to be precisely staged when used in acute assays, so as to ensure a consistent window of developmental exposure. We believe that zebrafish embryo screens can be used in the pre-regulatory phases of drug development, although more validation studies are needed to overcome industry scepticism. Finally, the zebrafish poses no challenge to the position of rodent models: it is complementary to them, especially in early stages of drug research.
Collapse
Affiliation(s)
- Shaukat Ali
- Institute of Biology, Leiden University, Sylvius Laboratory, The Netherlands
| | | | | | | |
Collapse
|
290
|
Christiansen KM, Gu Y, Rodibaugh N, Innes RW. Negative regulation of defence signalling pathways by the EDR1 protein kinase. MOLECULAR PLANT PATHOLOGY 2011; 12:746-58. [PMID: 21726375 PMCID: PMC3296526 DOI: 10.1111/j.1364-3703.2011.00708.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The enhanced disease resistance 1 (edr1) mutant of Arabidopsis confers enhanced resistance to bacterial and fungal pathogens. To better understand how edr1-mediated resistance occurs, we performed transcriptome analyses on wild-type and edr1 plants inoculated with the fungal pathogen Golovinomyces cichoracearum (powdery mildew). The expression of many known and putative defence-associated genes was more rapidly induced, and to higher levels, in edr1 plants relative to the wild-type. Many of the genes with elevated expression encoded WRKY transcription factors and there was enrichment for their binding sites in promoters of the genes upregulated in edr1. Confocal microscopy of transiently expressed EDR1 protein showed that a significant fraction of EDR1 was localized to the nucleus, suggesting that EDR1 could potentially interact with transcription factors in the nucleus. Analysis of gene ontology annotations revealed that genes associated with the endomembrane system, defence, reactive oxygen species (ROS) production and protein kinases were induced early in the edr1 mutant, and that elevated expression of the endomembrane system, defence and ROS-related genes was maintained for at least 4 days after infection.
Collapse
|
291
|
De Vos WH, Houben F, Kamps M, Malhas A, Verheyen F, Cox J, Manders EMM, Verstraeten VLRM, van Steensel MAM, Marcelis CLM, van den Wijngaard A, Vaux DJ, Ramaekers FCS, Broers JLV. Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum Mol Genet 2011; 20:4175-86. [PMID: 21831885 DOI: 10.1093/hmg/ddr344] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The nuclear lamina provides structural support to the nucleus and has a central role in nuclear organization and gene regulation. Defects in its constituents, the lamins, lead to a class of genetic diseases collectively referred to as laminopathies. Using live cell imaging, we observed the occurrence of intermittent, non-lethal ruptures of the nuclear envelope in dermal fibroblast cultures of patients with different mutations of lamin A/C. These ruptures, which were absent in normal fibroblasts, could be mimicked by selective knockdown as well as knockout of LMNA and were accompanied by the loss of cellular compartmentalization. This was demonstrated by the influx of cytoplasmic transcription factor RelA and regulatory protein Cyclin B1 into the nucleus, and efflux of nuclear transcription factor OCT1 and nuclear structures containing the promyelocytic leukemia (PML) tumour suppressor protein to the cytoplasm. While recovery of enhanced yellow fluorescent protein-tagged nuclear localization signal in the nucleus demonstrated restoration of nuclear membrane integrity, part of the mobile PML structures became permanently translocated to the cytoplasm. These satellite PML structures were devoid of the typical PML body components, such as DAXX, SP100 or SUMO1. Our data suggest that nuclear rupture and loss of compartmentalization may add to cellular dysfunction and disease development in various laminopathies.
Collapse
Affiliation(s)
- Winnok H De Vos
- Department of Molecular Cell Biology, CARIM-School for Cardiovascular Diseases, Maastricht University Medical Center, PO Box 616, NL-6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
De Rybel B, van den Berg W, Lokerse A, Liao CY, van Mourik H, Möller B, Peris CL, Weijers D. A versatile set of ligation-independent cloning vectors for functional studies in plants. PLANT PHYSIOLOGY 2011; 156:1292-9. [PMID: 21562332 PMCID: PMC3135924 DOI: 10.1104/pp.111.177337] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/05/2011] [Indexed: 05/18/2023]
Abstract
With plant molecular biology entering the omics era, there is a need for simple cloning strategies that allow high throughput to systematically study the expression and function of large numbers of genes. Such strategies would facilitate the analysis of gene (sub)families and/or sets of coexpressed genes identified by transcriptomics. Here, we provide a set of 34 ligation-independent cloning (LIC) binary vectors for expression analysis, protein localization studies, and misexpression that will be made freely available. This set of plant LIC vectors offers a fast alternative to standard cloning strategies involving ligase or recombination enzyme technology. We demonstrate the use of this strategy and our new vectors by analyzing the expression domains of genes belonging to two subclades of the basic helix-loop-helix transcription factor family. We show that neither the closest homologs of TARGET OF MONOPTEROS7 (TMO7/ATBS1) nor the members of the ATBS1 INTERACTING FACTOR subclade of putative TMO7 interactors are expressed in the embryo and that there is very limited coexpression in the primary root meristem. This suggests that these basic helix-loop-helix transcription factors are most likely not involved in TMO7-dependent root meristem initiation.
Collapse
|
293
|
Crosby KC, Pietraszewska-Bogiel A, Gadella TW, Winkel BS. Förster resonance energy transfer demonstrates a flavonoid metabolon in living plant cells that displays competitive interactions between enzymes. FEBS Lett 2011; 585:2193-8. [DOI: 10.1016/j.febslet.2011.05.066] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/26/2011] [Accepted: 05/29/2011] [Indexed: 01/17/2023]
|
294
|
Newman RH, Fosbrink MD, Zhang J. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 2011; 111:3614-66. [PMID: 21456512 PMCID: PMC3092831 DOI: 10.1021/cr100002u] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Robert H. Newman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Matthew D. Fosbrink
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
295
|
A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range. PLoS One 2011; 6:e19170. [PMID: 21559477 PMCID: PMC3084777 DOI: 10.1371/journal.pone.0019170] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/21/2011] [Indexed: 11/19/2022] Open
Abstract
FRET-based sensors for cyclic Adenosine Mono Phosphate (cAMP) have revolutionized the way in which this important intracellular messenger is studied. The currently prevailing sensors consist of the cAMP-binding protein Epac1, sandwiched between suitable donor- and acceptor fluorescent proteins (FPs). Through a conformational change in Epac1, alterations in cellular cAMP levels lead to a change in FRET that is most commonly detected by either Fluorescence Lifetime Imaging (FLIM) or by Sensitized Emission (SE), e.g., by simple ratio-imaging. We recently reported a range of different Epac-based cAMP sensors with high dynamic range and signal-to-noise ratio. We showed that constructs with cyan FP as donor are optimal for readout by SE, whereas other constructs with green FP donors appeared much more suited for FLIM detection. In this study, we present a new cAMP sensor, termed TEpacVV, which employs mTurquoise as donor. Spectrally very similar to CFP, mTurquoise has about doubled quantum efficiency and unlike CFP, its fluorescence decay is strictly single-exponential. We show that TEpacVV appears optimal for detection both by FLIM and SE, that it has outstanding FRET span and signal-to-noise ratio, and improved photostability. Hence, TEpacVV should become the cAMP sensor of choice for new experiments, both for FLIM and ratiometric detection.
Collapse
|
296
|
Liu J, Choi M, Stanenas AG, Byrd AK, Raney KD, Cohan C, Bianco PR. Novel, fluorescent, SSB protein chimeras with broad utility. Protein Sci 2011; 20:1005-20. [PMID: 21462278 DOI: 10.1002/pro.633] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 11/09/2022]
Abstract
The Escherichia coli single-stranded DNA binding protein (SSB) is a central player in DNA metabolism where it organizes genome maintenance complexes and stabilizes single-stranded DNA (ssDNA) intermediates generated during DNA processing. Due to the importance of SSB and to facilitate real-time studies, we developed a dual plasmid expression system to produce novel, chimeric SSB proteins. These chimeras, which contain mixtures of histidine-tagged and fluorescent protein(FP)-fusion subunits, are easily purified in milligram quantities and used without further modification, a significant enhancement over previous methods to produce fluorescent SSB. Chimeras retain the functionality of wild type in all assays, demonstrating that SSB function is unaffected by the FPs. We demonstrate the power and utility of these chimeras in single molecule studies providing a great level of insight into the biochemical mechanism of RecBCD. We also utilized the chimeras to show for the first time that RecG and SSB interact in vivo. Consequently, we anticipate that the chimeras described herein will facilitate in vivo, in vitro and single DNA molecule studies using proteins that do not require further modification prior to use.
Collapse
Affiliation(s)
- Juan Liu
- Center for Single Molecule Biophysics, Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York 14214, USA
| | | | | | | | | | | | | |
Collapse
|
297
|
Abstract
Ligand binding to cell membrane receptors sets off a series of protein interactions that convey the nuances of ligand identity to the cell interior. The information may be encoded in conformational changes, the interaction kinetics and, in the case of multichain immunoreceptors, by chain rearrangements. The signals may be modulated by dynamic compartmentalization of the cell membrane, cellular architecture, motility, and activation-all of which are difficult to reconstitute for studies of receptor signaling in vitro. In this paper, we will discuss how protein interactions in general and receptor signaling in particular can be studied in living cells by different fluorescence imaging techniques. Particularly versatile are methods that exploit Förster resonance energy transfer (FRET), which is exquisitely sensitive to the nanometer-range proximity and orientation between fluorophores. Fluorescence correlation microscopy (FCM) can provide complementary information about the stoichiometry and diffusion kinetics of large complexes, while bimolecular fluorescence complementation (BiFC) and other complementation techniques can capture transient interactions. A continuing challenge is extracting from the imaging data the quantitative information that is necessary to verify different models of signal transduction.
Collapse
Affiliation(s)
- Tomasz Zal
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Houston TX, USA
| |
Collapse
|
298
|
Gu Y, Innes RW. The KEEP ON GOING protein of Arabidopsis recruits the ENHANCED DISEASE RESISTANCE1 protein to trans-Golgi network/early endosome vesicles. PLANT PHYSIOLOGY 2011; 155:1827-38. [PMID: 21343429 PMCID: PMC3091131 DOI: 10.1104/pp.110.171785] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 02/18/2011] [Indexed: 05/20/2023]
Abstract
Loss-of-function mutations in the Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced resistance to powdery mildew infection, enhanced senescence, and enhanced programmed cell death under both abiotic and biotic stress conditions. All edr1-mediated phenotypes can be suppressed by a specific missense mutation (keg-4) in the KEEP ON GOING (KEG) gene, which encodes a multidomain protein that includes a RING E3 ligase domain, a kinase domain, ankyrin repeats, and HERC2-like (for HECT and RCC1-like) repeats. The molecular and cellular mechanisms underlying this suppression are poorly understood. Using confocal laser scanning microscopy and fluorescent protein fusions, we determined that KEG localizes to trans-Golgi network/early endosome (TGN/EE) vesicles. Both the keg-4 mutation, which is located in the carboxyl-terminal HERC2-like repeats, and deletion of the entire HERC2-like repeats reduced endosomal localization of KEG and increased localization to the endoplasmic reticulum and cytosol, indicating that the HERC2-like repeats facilitate the TGN/EE targeting of KEG. EDR1 colocalized with KEG to the TGN/EE when coexpressed but localized primarily to the endoplasmic reticulum when expressed alone. Yeast two-hybrid and coimmunoprecipitation analyses revealed that EDR1 and KEG physically interact. Deletion of the HERC2-like repeats abolished the interaction between KEG and EDR1 as well as the KEG-induced TGN/EE localization of EDR1, indicating that the recruitment of EDR1 to the TGN/EE is based on a direct interaction between EDR1 and KEG mediated by the HERC2-like repeats. Collectively, these data suggest that EDR1 and KEG function together to regulate endocytic trafficking and/or the formation of signaling complexes on TGN/EE vesicles during stress responses.
Collapse
Affiliation(s)
| | - Roger W. Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405–7107
| |
Collapse
|
299
|
Kinetic study of de novo chromophore maturation of fluorescent proteins. Anal Biochem 2011; 414:173-8. [PMID: 21459075 DOI: 10.1016/j.ab.2011.03.036] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 03/22/2011] [Accepted: 03/29/2011] [Indexed: 11/20/2022]
Abstract
Green fluorescent protein (GFP) has a chromophore that forms autocatalytically within the folded protein. Although many studies have focused on the precise mechanism of chromophore maturation, little is known about the kinetics of de novo chromophore maturation. Here we present a simple and efficient method for examining the de novo kinetics. GFP with an immature chromophore was synthesized in a reconstituted cell-free protein synthesis system under anaerobic conditions. Chromophore maturation was initiated by rapid dilution in an air-saturated maturation buffer, and the time course of fluorescence development was monitored. Comparison of the de novo maturation rates in various GFP variants revealed that some folding mutations near the chromophore promoted rapid chromophore maturation and that the accumulation of mutations could reduce the maturation rate. Our method will contribute to the design of rapidly maturing fluorescent proteins with improved characteristics for real-time monitoring of cellular events.
Collapse
|
300
|
Markwardt ML, Kremers GJ, Kraft CA, Ray K, Cranfill PJC, Wilson KA, Day RN, Wachter RM, Davidson MW, Rizzo MA. An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching. PLoS One 2011; 6:e17896. [PMID: 21479270 DOI: 10.1371/journal.pone.0017896] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/14/2011] [Indexed: 11/18/2022] Open
Abstract
Cyan fluorescent proteins (CFPs), such as Cerulean, are widely used as donor fluorophores in Förster resonance energy transfer (FRET) experiments. Nonetheless, the most widely used variants suffer from drawbacks that include low quantum yields and unstable flurorescence. To improve the fluorescence properties of Cerulean, we used the X-ray structure to rationally target specific amino acids for optimization by site-directed mutagenesis. Optimization of residues in strands 7 and 8 of the β-barrel improved the quantum yield of Cerulean from 0.48 to 0.60. Further optimization by incorporating the wild-type T65S mutation in the chromophore improved the quantum yield to 0.87. This variant, mCerulean3, is 20% brighter and shows greatly reduced fluorescence photoswitching behavior compared to the recently described mTurquoise fluorescent protein in vitro and in living cells. The fluorescence lifetime of mCerulean3 also fits to a single exponential time constant, making mCerulean3 a suitable choice for fluorescence lifetime microscopy experiments. Furthermore, inclusion of mCerulean3 in a fusion protein with mVenus produced FRET ratios with less variance than mTurquoise-containing fusions in living cells. Thus, mCerulean3 is a bright, photostable cyan fluorescent protein which possesses several characteristics that are highly desirable for FRET experiments.
Collapse
Affiliation(s)
- Michele L Markwardt
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|