251
|
Zeng Y, Zhuang S, Gloddek J, Tseng CC, Boss GR, Pilz RB. Regulation of cGMP-dependent protein kinase expression by Rho and Kruppel-like transcription factor-4. J Biol Chem 2006; 281:16951-16961. [PMID: 16632465 DOI: 10.1074/jbc.m602099200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I cGMP-dependent protein kinase (PKG I) plays a major role in vascular homeostasis by mediating smooth muscle relaxation in response to nitric oxide, but little is known about the regulation of PKG I expression in smooth muscle cells. We found opposing effects of RhoA and Rac1 on cellular PKG I expression: (i) cell density-dependent changes in PKG I expression varied directly with Rac1 activity and inversely with RhoA activity; (ii) RhoA activation by calpeptin suppressed PKG I, whereas RhoA down-regulation by small interfering RNA increased PKG I expression; and (iii) PKG I promoter activity was suppressed in cells expressing active RhoA or Rho-kinase but was enhanced in cells expressing active Rac1 or a dominant negative RhoA. Sp1 consensus sequences in the PKG I promoter were required for Rho regulation and bound nuclear proteins in a cell density-dependent manner, including the Krüppel-like factor 4 (KLF4). KLF4 was identified as a major trans-acting factor at two proximal Sp1 sites; active RhoA suppressed KLF4 DNA binding and trans-activation potential on the PKG I promoter. Experiments with actin-binding agents suggested that RhoA could regulate KLF4 via its ability to induce actin polymerization. Regulation of PKG I expression by RhoA may explain decreased PKG I levels in vascular smooth muscle cells found in some models of hypertension and vascular injury.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Shunhui Zhuang
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Jutta Gloddek
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Chi-Chuan Tseng
- Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Gerry R Boss
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Renate B Pilz
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093.
| |
Collapse
|
252
|
Moissoglu K, Slepchenko BM, Meller N, Horwitz AF, Schwartz MA. In vivo dynamics of Rac-membrane interactions. Mol Biol Cell 2006; 17:2770-9. [PMID: 16597700 PMCID: PMC1474787 DOI: 10.1091/mbc.e06-01-0005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The small GTPase Rac cycles between the membrane and the cytosol as it is activated by nucleotide exchange factors (GEFs) and inactivated by GTPase-activating proteins (GAPs). Solubility in the cytosol is conferred by binding of Rac to guanine-nucleotide dissociation inhibitors (GDIs). To analyze the in vivo dynamics of Rac, we developed a photobleaching method to measure the dissociation rate constant (k(off)) of membrane-bound GFP-Rac. We find that k(off) is 0.048 s(-1) for wtRac and approximately 10-fold less (0.004 s(-1)) for G12VRac. Thus, the major route for dissociation is conversion of membrane-bound GTP-Rac to GDP-Rac; however, dissociation of GTP-Rac occurs at a detectable rate. Overexpression of the GEF Tiam1 unexpectedly decreased k(off) for wtRac, most likely by converting membrane-bound GDP-Rac back to GTP-Rac. Both overexpression and small hairpin RNA-mediated suppression of RhoGDI strongly affected the amount of membrane-bound Rac but surprisingly had only slight effects on k(off). These results indicate that RhoGDI controls Rac function mainly through effects on activation and/or membrane association.
Collapse
Affiliation(s)
| | - Boris M. Slepchenko
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030; and
| | - Nahum Meller
- *Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | | | - Martin A. Schwartz
- *Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
- Microbiology, and
- Biomedical Engineering and
- Mellon Prostate Cancer Research Center, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
253
|
Tricaud N, Perrin-Tricaud C, Brusés JL, Rutishauser U. Adherens junctions in myelinating Schwann cells stabilize Schmidt-Lanterman incisures via recruitment of p120 catenin to E-cadherin. J Neurosci 2006; 25:3259-69. [PMID: 15800180 PMCID: PMC6724905 DOI: 10.1523/jneurosci.5168-04.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schwann cell myelin contains highly compacted layers of membrane as well as noncompacted regions with a visible cytoplasm. One of these cytoplasmic compartments is the Schmidt-Lanterman incisure, which spirals through the compacted layers and is believed to help sustain the growth and function of compact myelin. Incisures contain adherens junctions (AJs), the key components of which are E-cadherin, its cytoplasmic partners called catenins, and F-actin. To explore in vivo the role of cadherin and catenins in incisures, E-cadherin mutant proteins that completely replace endogenous cadherin have been delivered to the cells using adenovirus. When the introduced cadherin lacked its extracellular domain, association of p120 catenin (p120ctn) with the cadherin did not occur, and incisures disappeared. Remarkably, the additional replacement of two phosphorylatable tyrosines by phenylalanine in the cytoplasmic tail of the mutant cadherin restored both p120ctn binding and incisure architecture, indicating that p120ctn recruitment is critical for incisures maintenance and might be regulated by phosphorylations. In addition, the ability of the p120ctn/cadherin complex to support incisures was blocked by mutation of the Rho GTPase regulatory region of the p120ctn, and downregulation of Rac1 activity at the junction reversed this inhibition. Because Rho GTPases regulate the state of the actin filaments, these findings suggest that one role of p120ctn in incisures is to organize the cytoskeleton at the AJ. Finally, developmental studies of Schwann cells demonstrated that p120ctn recruitment from the cytoplasm to the AJ occurs before the appearance of Rac1 GTPase and F-actin at the junction.
Collapse
Affiliation(s)
- Nicolas Tricaud
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
254
|
Perez-Moreno M, Davis MA, Wong E, Pasolli HA, Reynolds AB, Fuchs E. p120-catenin mediates inflammatory responses in the skin. Cell 2006; 124:631-44. [PMID: 16469707 PMCID: PMC2443688 DOI: 10.1016/j.cell.2005.11.043] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 10/04/2005] [Accepted: 11/11/2005] [Indexed: 01/09/2023]
Abstract
Although p120-catenin regulates adherens junction (AJ) stability in cultured cells, genetic studies in lower eukaryotes have not revealed a role for this protein in vivo. Using conditional targeting in mice, we show that p120 null neonatal epidermis exhibits reduced intercellular AJ components but no overt disruption in barrier function or intercellular adhesion. As the mice age, however, they display epidermal hyperplasia and chronic inflammation, typified by hair degeneration and loss of body fat. Using skin engraftments and anti-inflammatory drugs, we show that these features are not attributable to reductions in junctional cadherins and catenins, but rather NFkB activation. Both in vivo and in vitro, p120 null epidermal cells activate nuclear NFkB, triggering a cascade of proinflammatory NFkB targets. Although the underlying mechanism is likely complex, we show that p120 affects NFkB activation and immune homeostasis in part through regulation of Rho GTPases. These findings provide important new insights into p120 function.
Collapse
Affiliation(s)
- Mirna Perez-Moreno
- Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | - Michael A. Davis
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ellen Wong
- Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | - H. Amalia Pasolli
- Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | - Albert B. Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Elaine Fuchs
- Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| |
Collapse
|
255
|
Abstract
The microvascular endothelial cell monolayer localized at the critical interface between the blood and vessel wall has the vital functions of regulating tissue fluid balance and supplying the essential nutrients needed for the survival of the organism. The endothelial cell is an exquisite “sensor” that responds to diverse signals generated in the blood, subendothelium, and interacting cells. The endothelial cell is able to dynamically regulate its paracellular and transcellular pathways for transport of plasma proteins, solutes, and liquid. The semipermeable characteristic of the endothelium (which distinguishes it from the epithelium) is crucial for establishing the transendothelial protein gradient (the colloid osmotic gradient) required for tissue fluid homeostasis. Interendothelial junctions comprise a complex array of proteins in series with the extracellular matrix constituents and serve to limit the transport of albumin and other plasma proteins by the paracellular pathway. This pathway is highly regulated by the activation of specific extrinsic and intrinsic signaling pathways. Recent evidence has also highlighted the importance of the heretofore enigmatic transcellular pathway in mediating albumin transport via transcytosis. Caveolae, the vesicular carriers filled with receptor-bound and unbound free solutes, have been shown to shuttle between the vascular and extravascular spaces depositing their contents outside the cell. This review summarizes and analyzes the recent data from genetic, physiological, cellular, and morphological studies that have addressed the signaling mechanisms involved in the regulation of both the paracellular and transcellular transport pathways.
Collapse
Affiliation(s)
- Dolly Mehta
- Center of Lung and Vascular Biology, Dept. of Pharmacology (M/C 868), University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | |
Collapse
|
256
|
Davis MA, Reynolds AB. Blocked Acinar Development, E-Cadherin Reduction, and Intraepithelial Neoplasia upon Ablation of p120-Catenin in the Mouse Salivary Gland. Dev Cell 2006; 10:21-31. [PMID: 16399075 DOI: 10.1016/j.devcel.2005.12.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 09/02/2005] [Accepted: 12/01/2005] [Indexed: 01/11/2023]
Abstract
p120 catenin is thought to be a key regulator of E-cadherin function and stability, but its role(s) in vivo is poorly understood. To examine these directly, we generated a conditional p120 knockout mouse and targeted p120 ablation to the embryonic salivary gland. Surprisingly, acinar differentiation is completely blocked, resulting in a gland composed entirely of ducts. Moreover, p120 ablation causes E-cadherin deficiency in vivo and severe defects in adhesion, cell polarity, and epithelial morphology. These changes closely phenocopy high-grade intraepithelial neoplasia, a condition that, in humans, typically progresses to invasive cancer. Tumor-like protrusions appear immediately after p120 ablation at e14 and expand into the lumen until shortly after birth, at which time the animals die with completely occluded glands. The data reveal an unexpected role for p120 in salivary acinar development and show that p120 ablation by itself induces effects consistent with a role in tumor progression.
Collapse
Affiliation(s)
- Michael A Davis
- Department of Cancer Biology, Vanderbilt University, 438 Preston Building, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
257
|
Braga VM, Yap AS. The challenges of abundance: epithelial junctions and small GTPase signalling. Curr Opin Cell Biol 2005; 17:466-74. [PMID: 16112561 DOI: 10.1016/j.ceb.2005.08.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 08/03/2005] [Indexed: 01/11/2023]
Abstract
Small GTPases of the Ras superfamily play critical roles in epithelial biogenesis. Many key morphogenetic functions occur when small GTPases act at epithelial junctions, where they mediate an increasingly complex interplay between cell-cell adhesion molecules and fundamental cellular processes, such as cytoskeletal activity, polarity and trafficking. Important recent advances in this field include the role of additional members of the Ras superfamily in cell-cell contact stability and the capacity for polarity determinants to regulate small GTPase signalling. Interestingly, small GTPases may participate in the cross-talk between different adhesive receptors: in tissues classical cadherins can selectively regulate other junctions through cell signalling rather than through a global influence on cell-cell cohesion.
Collapse
Affiliation(s)
- Vania Mm Braga
- Cell and Molecular Biology Section, Division of Biomedical Sciences, Faculty of Life Sciences, Imperial College London, SW7 2AZ, London.
| | | |
Collapse
|
258
|
Broman MT, Kouklis P, Gao X, Ramchandran R, Neamu RF, Minshall RD, Malik AB. Cdc42 regulates adherens junction stability and endothelial permeability by inducing alpha-catenin interaction with the vascular endothelial cadherin complex. Circ Res 2005; 98:73-80. [PMID: 16322481 DOI: 10.1161/01.res.0000198387.44395.e9] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The endothelial adherens junctions (AJs) consist of trans-oligomers of membrane spanning vascular endothelial (VE)-cadherin proteins, which bind beta-catenin through their cytoplasmic domain. beta-Catenin in turn binds alpha-catenin and connects the AJ complex with the actin cytoskeleton. We addressed the in vivo effects of loss of VE-cadherin interactions on lung vascular endothelial permeability and the role of specific Rho GTPase effectors in regulating the increase in permeability induced by AJ destabilization. We used cationic liposomes encapsulating the mutant of VE-cadherin lacking the extracellular domain (DeltaEXD) to interfere with AJ assembly in mouse lung endothelial cells. We observed that lung vascular permeability (quantified as microvessel filtration coefficient [K(f,c)]) was increased 5-fold in lungs expressing DeltaEXD. This did not occur to the same degree on expression of the VE-cadherin mutant, DeltaEXDDeltabeta, lacking the beta-catenin-binding site. The increased vascular permeability was the result of destabilization of VE-cadherin homotypic interaction induced by a shift in the binding of beta-catenin from wild-type VE-cadherin to the expressed DeltaEXD mutant. Because DeltaEXD expression in endothelial cells activated the Rho GTPase Cdc42, we addressed its role in the mechanism of increased endothelial permeability induced by AJ destabilization. Coexpression of dominant-negative Cdc42 (N17Cdc42) prevented the increase in K(f,c) induced by DeltaEXD. This was attributed to inhibition of the association of alpha-catenin with the DeltaEXD-beta-catenin complex. The results demonstrate that Cdc42 regulates AJ permeability by controlling the binding of alpha-catenin with beta-catenin and the consequent interaction of the VE-cadherin/catenin complex with the actin cytoskeleton.
Collapse
Affiliation(s)
- Michael T Broman
- Department of Pharmacology, Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
259
|
Abstract
Kaiso belongs to the zinc finger and broad-complex, tramtrack and bric-a-brac/poxvirus and zinc finger (BTB/POZ) protein family that has been implicated in tumorigenesis. Kaiso was first discovered in a complex with the armadillo-domain protein p120ctn and later shown to function as a transcriptional repressor. As p120ctn seems to relieve Kaiso-mediated repression, its altered intracellular localization in some cancer cells might result in aberrant Kaiso nuclear activity. Intriguingly, Kaiso's target genes include both methylated and sequence-specific recognition sites. The latter include genes that are modulated by the canonical Wnt (beta-catenin-T-cell factor) signalling pathway. Further interest in Kaiso stems from findings that its cytoplasmic versus nuclear localization is modulated by complex cues from the microenvironment.
Collapse
Affiliation(s)
- Frans M van Roy
- Molecular Cell Biology Unit, Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| | | |
Collapse
|
260
|
Bellovin DI, Bates RC, Muzikansky A, Rimm DL, Mercurio AM. Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res 2005; 65:10938-45. [PMID: 16322241 DOI: 10.1158/0008-5472.can-05-1947] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We examined the expression and localization of p120 catenin (p120ctn) as a consequence of the epithelial to mesenchymal transition (EMT) of highly differentiated colon carcinoma cells (LIM1863 cells). This unique line grows in suspension as spheroids and undergoes an EMT within 24 hours following stimulation with transforming growth factor-beta and tumor necrosis factor-alpha. Although p120ctn expression remains stable during the EMT, its localization shifts from cell-cell junctions to the cytoplasm. Interestingly, a marked decrease in RhoA activation coincident with E-cadherin loss occurs during the EMT and correlates with the formation of a p120ctn/RhoA complex. Use of RNA interference showed that p120ctn reduction results in increased RhoA activity and a significant decrease in the motility of post-EMT cells. To determine the relevance of these findings to colorectal cancer progression, we assessed p120ctn expression by immunohistochemistry in 557 primary tumors. Of note, we observed that 53% of tumors presented cytoplasmic staining for p120ctn, and statistical analysis revealed that this localization is predictive of poor patient outcome. Cytoplasmic p120ctn correlated with later-stage tumors, significantly reduced 5- and 10-year survival times and a greater propensity for metastasis to lymph nodes compared with junctional p120ctn. We also confirmed that altered localization of p120ctn corresponded with loss or cytoplasmic localization of E-cadherin. These alterations in E-cadherin are also associated with a significant reduction in patient survival time and an increase in tumor stage and lymph node metastasis. These data provide a compelling argument for the importance of both p120ctn and the EMT itself in the progression of colorectal carcinoma.
Collapse
Affiliation(s)
- David I Bellovin
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
261
|
Dovas A, Couchman J. RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J 2005; 390:1-9. [PMID: 16083425 PMCID: PMC1184558 DOI: 10.1042/bj20050104] [Citation(s) in RCA: 324] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RhoGDI (Rho GDP-dissociation inhibitor) was identified as a down-regulator of Rho family GTPases typified by its ability to prevent nucleotide exchange and membrane association. Structural studies on GTPase-RhoGDI complexes, in combination with biochemical and cell biological results, have provided insight as to how RhoGDI exerts its effects on nucleotide binding, the membrane association-dissociation cycling of the GTPase and how these activities are controlled. Despite the initial negative roles attributed to RhoGDI, recent evidence has come to suggest that it may also act as a positive regulator necessary for the correct targeting and regulation of Rho activities by conferring cues for spatial restriction, guidance and availability to effectors. These potential functions are discussed in the context of RhoGDI-associated multimolecular complexes, the newly emerged shuttling capability and the importance of the particular membrane microenvironment that represents the site of action for GTPases. All these results point to a wider role for RhoGDI than initially perceived, making it a binding partner that can tightly control Rho GTPases, but which also allows them to reach their full spectrum of activities.
Collapse
Affiliation(s)
- Athanassios Dovas
- Division of Biomedical Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - John R. Couchman
- Division of Biomedical Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
262
|
Fox DT, Homem CCF, Myster SH, Wang F, Bain EE, Peifer M. Rho1 regulates Drosophila adherens junctions independently of p120ctn. Development 2005; 132:4819-31. [PMID: 16207756 DOI: 10.1242/dev.02056] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During animal development, adherens junctions (AJs) maintain epithelial cell adhesion and coordinate changes in cell shape by linking the actin cytoskeletons of adjacent cells. Identifying AJ regulators and their mechanisms of action are key to understanding the cellular basis of morphogenesis. Previous studies linked both p120catenin and the small GTPase Rho to AJ regulation and revealed that p120 may negatively regulate Rho. Here we examine the roles of these candidate AJ regulators during Drosophila development. We found that although p120 is not essential for development, it contributes to morphogenesis efficiency, clarifying its role as a redundant AJ regulator. Rho has a dynamic localization pattern throughout ovarian and embryonic development. It preferentially accumulates basally or basolaterally in several tissues, but does not preferentially accumulate in AJs. Further, Rho1 localization is not obviously altered by loss of p120 or by reduction of core AJ proteins. Genetic and cell biological tests suggest that p120 is not a major dose-sensitive regulator of Rho1. However, Rho1 itself appears to be a regulator of AJs. Loss of Rho1 results in ectopic accumulation of cytoplasmic DE-cadherin, but ectopic cadherin does not accumulate with its partner Armadillo. These data suggest Rho1 regulates AJs during morphogenesis, but this regulation is p120 independent.
Collapse
Affiliation(s)
- Donald T Fox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
263
|
Rubio ME, Curcio C, Chauvet N, Brusés JL. Assembly of the N-cadherin complex during synapse formation involves uncoupling of p120-catenin and association with presenilin 1. Mol Cell Neurosci 2005; 30:118-30. [PMID: 16046145 DOI: 10.1016/j.mcn.2005.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 05/17/2005] [Accepted: 06/14/2005] [Indexed: 01/04/2023] Open
Abstract
N-cadherin is an adhesion receptor that participates in both interaction between immature pre- and postsynaptic neurons and in the stabilization and function of matured neuron-neuron synapses. To better understand how the N-cadherin complex contributes to synapse formation, we examined its distribution and composition during synapse formation in the chick ciliary neurons. It was found that at early phases of synaptogenesis, N-cadherin is distributed in small clusters on the cell surface and primarily associates with p120-catenin and beta-catenin. In contrast, as synaptic contacts matured, larger N-cadherin clusters were found localized adjacent to the active zone and associated with PS1 and gamma-catenin, while p120- and beta-catenin were dispersed among other cell regions, including axons. As it is known that PS1 binds gamma-catenin and that uncoupled p120-catenin can alter the cytoskeleton via its effect on Rho GTPases, these changes in the molecular composition of the N-cadherin complex (represented by the uncoupling of p120-catenin and association with PS1) may correspond to distinct functional states of the complex involved in synaptic maturation.
Collapse
Affiliation(s)
- Maria E Rubio
- Department of Physiology and Neurobiology, The University of Connecticut, 3107 Horsebarn Hill Road, Storrs, CT 06269, USA
| | | | | | | |
Collapse
|
264
|
Abstract
Cadherin cell-adhesion proteins mediate many facets of tissue morphogenesis. The dynamic regulation of cadherins in response to various extracellular signals controls cell sorting, cell rearrangements and cell movements. Cadherins are regulated at the cell surface by an inside-out signalling mechanism that is analogous to the integrins in platelets and leukocytes. Signal-transduction pathways impinge on the catenins (cytoplasmic cadherin-associated proteins), which transduce changes across the membrane to alter the state of the cadherin adhesive bond.
Collapse
Affiliation(s)
- Barry M Gumbiner
- Department of Cell Biology, University of Virginia, School of Medicine, PO BOX 800732, Charlottesville, Virginia 22908-0732, USA.
| |
Collapse
|
265
|
Affiliation(s)
- Noam Erez
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
266
|
Kelly KF, Otchere AA, Graham M, Daniel JM. Nuclear import of the BTB/POZ transcriptional regulator Kaiso. J Cell Sci 2005; 117:6143-52. [PMID: 15564377 DOI: 10.1242/jcs.01541] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Kaiso is a BTB/POZ transcription factor that functions in vitro as a transcriptional repressor of the matrix metalloproteinase gene matrilysin and the non-canonical Wnt signaling gene Wnt-11, and as an activator of the acetylcholine-receptor-clustering gene rapsyn. Similar to other BTB/POZ proteins (e.g. Bcl-6, PLZF, HIC-1), endogenous Kaiso localizes predominantly to the nuclei of mammalian cells. To date, however, the mechanism of nuclear import for most POZ transcription factors, including Kaiso, remain unknown. Here, we report the identification and characterization of a highly basic nuclear localization signal (NLS) in Kaiso. The functionality of this NLS was verified by its ability to target a heterologous beta-galactosidase/green-fluorescent-protein fusion protein to nuclei. The mutation of one positively charged lysine to alanine in the NLS of full-length Kaiso significantly inhibited its nuclear localization in various cell types. In addition, wild-type Kaiso, but not NLS-defective Kaiso, interacted directly with the nuclear import receptor Importin-alpha2 both in vitro and in vivo. Finally, minimal promoter assays using a sequence-specific Kaiso-binding-site fusion with luciferase as reporter demonstrated that the identified NLS was crucial for Kaiso-mediated transcriptional repression. The identification of a Kaiso NLS thus clarifies the mechanism by which Kaiso translocates to the nucleus to regulate transcription of genes with diverse roles in cell growth and development.
Collapse
Affiliation(s)
- Kevin F Kelly
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | | | | | | |
Collapse
|
267
|
Piccoli G, Rutishauser U, Brusés JL. N-cadherin juxtamembrane domain modulates voltage-gated Ca2+ current via RhoA GTPase and Rho-associated kinase. J Neurosci 2005; 24:10918-23. [PMID: 15574742 PMCID: PMC6730207 DOI: 10.1523/jneurosci.4020-04.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The juxtamembrane domain (JMD) of N-cadherin cytoplasmic tail is an important regulatory region of the clustering and adhesion activities of the protein. In addition, the JMD binds a diversity of proteins capable of modifying intracellular processes including cytoskeletal rearrangement mediated by Rho GTPases. These GTPases also function as regulators of voltage-activated calcium channels, which in turn modulate neuronal excitability. The present study was designed to determine whether there is a direct functional link, via Rho GTPase, between the N-cadherin JMD and these voltage-activated channels. It was found that the infusion of the soluble JMD into chick ciliary neurons causes a substantial decrease in the amplitude of the high-threshold voltage-activated (HVA) calcium current. The activation time is increased while the inactivation process is reduced, suggesting that the decreased current amplitude reflects a reduction in the number of channels available to open. This effect was reversed by inhibition of RhoA or its downstream effector, Rho-associated kinase (ROCK). Because ROCK determines the active state of myosin, these results suggest that the modulation of HVA by the JMD could be mediated by changes in the status of the actin-myosin cytoskeleton.
Collapse
Affiliation(s)
- Giuseppe Piccoli
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
268
|
Kosik KS, Donahue CP, Israely I, Liu X, Ochiishi T. Delta-catenin at the synaptic-adherens junction. Trends Cell Biol 2005; 15:172-8. [PMID: 15752981 DOI: 10.1016/j.tcb.2005.01.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Delta-catenin belongs to the p120-catenin (p120(ctn)) protein family, which is characterized by ten, characteristically spaced Armadillo repeats that bind to the juxtamembrane segment of the classical cadherins. Delta-catenin is the only member of this family that is expressed specifically in neurons, where it binds to PDZ domain proteins in the post-synaptic compartment. As a component of both adherens and synaptic junctions, delta-catenin can link the adherens junction to the synapse and, thereby, coordinate synaptic input with changes in the adherens junction. By virtue of its restriction to the post-synaptic area, delta-catenin creates an asymmetric adherens junction in the region of the synapse. The crucial nature of the specialized function of delta-catenin in neurons is demonstrated by a targeted gene mutation, which causes deficits in learning and in synaptic plasticity. Taken together, recent evidence indicates that delta-catenin is a sensor of synaptic activity and implements activity-related morphological changes at the synapse.
Collapse
Affiliation(s)
- Kenneth S Kosik
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
269
|
Spring CM, Kelly KF, O'Kelly I, Graham M, Crawford HC, Daniel JM. The catenin p120ctn inhibits Kaiso-mediated transcriptional repression of the β-catenin/TCF target gene matrilysin. Exp Cell Res 2005; 305:253-65. [PMID: 15817151 DOI: 10.1016/j.yexcr.2005.01.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/15/2004] [Accepted: 01/05/2005] [Indexed: 01/11/2023]
Abstract
The POZ-zinc finger transcription factor Kaiso was first identified as a specific binding partner for the Armadillo catenin and cell adhesion cofactor, p120ctn. Kaiso is a unique POZ protein with bi-modal DNA-binding properties; it associates with a sequence-specific DNA consensus Kaiso binding site (KBS) or methylated CpG dinucleotides, and regulates transcription of artificial promoters containing either site. Interestingly, the promoter of the Wnt/beta-catenin/TCF target gene matrilysin possesses two conserved copies of the KBS, which suggested that Kaiso might regulate matrilysin expression. In this study, we demonstrate using chromatin immunoprecipitation analysis that Kaiso associates with the matrilysin promoter in vivo. Minimal promoter assays further confirmed that Kaiso specifically repressed transcription of the matrilysin promoter; mutation of the KBS element or RNAi-mediated depletion of Kaiso abrogated this effect. More importantly, Kaiso blocked beta-catenin-mediated activation of the matrilysin promoter. Consistent with our previous findings, both Kaiso-DNA binding and Kaiso-mediated transcriptional repression of the matrilysin promoter were inhibited by overexpression of wild-type p120ctn, but not by a p120ctn mutant exhibiting impaired nuclear import. Collectively, our data establish Kaiso as a sequence-specific transcriptional repressor of the matrilysin promoter, and suggest that p120ctn and beta-catenin act in a synergistic manner, via distinct mechanisms, to activate matrilysin expression.
Collapse
Affiliation(s)
- Christopher M Spring
- Department of Biology, LSB-331, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | | | | | | | | | | |
Collapse
|
270
|
Kukar T, Murphy MP, Eriksen JL, Sagi SA, Weggen S, Smith TE, Ladd T, Khan MA, Kache R, Beard J, Dodson M, Merit S, Ozols VV, Anastasiadis PZ, Das P, Fauq A, Koo EH, Golde TE. Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Abeta42 production. Nat Med 2005; 11:545-50. [PMID: 15834426 DOI: 10.1038/nm1235] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 03/09/2005] [Indexed: 11/09/2022]
Abstract
Increased Abeta42 production has been linked to the development of Alzheimer disease. We now identify a number of compounds that raise Abeta42. Among the more potent Abeta42-raising agents identified are fenofibrate, an antilipidemic agent, and celecoxib, a COX-2-selective NSAID. Many COX-2-selective NSAIDs tested raised Abeta42, including multiple COX-2-selective derivatives of two Abeta42-lowering NSAIDs. Compounds devoid of COX activity and the endogenous isoprenoids FPP and GGPP also raised Abeta42. These compounds seem to target the gamma-secretase complex, increasing gamma-secretase-catalyzed production of Abeta42 in vitro. Short-term in vivo studies show that two Abeta42-raising compounds increase Abeta42 levels in the brains of mice. The elevations in Abeta42 by these compounds are comparable to the increases in Abeta42 induced by Alzheimer disease-causing mutations in the genes encoding amyloid beta protein precursor and presenilins, raising the possibility that exogenous compounds or naturally occurring isoprenoids might increase Abeta42 production in humans.
Collapse
Affiliation(s)
- Thomas Kukar
- Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Xia X, Brooks J, Campos-González R, Reynolds AB. Serine and threonine phospho-specific antibodies to p120-catenin. ACTA ACUST UNITED AC 2005; 23:343-51. [PMID: 15684660 DOI: 10.1089/hyb.2004.23.343] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
p120-catenin (p120) regulates cadherin turnover and is required for cadherin stability. This role is probably regulated by signaling events that induce p120 phosphorylation, but monitoring individual phosphorylation events and their consequences is technically challenging. Previously, we used phospho-tryptic peptide mapping to identify eight major sites of p120 serine and threonine phosphorylation. Here, we have generated new phospho-specific p120 monoclonal and polyclonal antibodies to phospho-epitopes containing S268, S288, T310, and T910. We have characterized the antibodies with respect to their capabilities and limitations in commonly used assays, including immunoprecipitation (IP), Western blotting (WB), and immunofluorescence (IF). The antibodies should markedly accelerate efforts to delineate the roles of individual p120 modifications and will be particularly useful in identifying upstream signaling events that regulate p120 function.
Collapse
Affiliation(s)
- Xiaobo Xia
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
272
|
Choi HJ, Weis WI. Structure of the Armadillo Repeat Domain of Plakophilin 1. J Mol Biol 2005; 346:367-76. [PMID: 15663951 DOI: 10.1016/j.jmb.2004.11.048] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 11/15/2004] [Accepted: 11/19/2004] [Indexed: 11/26/2022]
Abstract
The p120ctn subfamily of armadillo domain proteins has roles in modulating intercellular adhesion by cadherin-containing junctions. We have determined the crystal structure of the arm repeat domain from plakophilin-1 (PKP1), a member of the p120ctn subfamily that is found in desmosomes. The structure reveals that the domain has nine instead of the expected ten arm repeats. A sequence predicted to be an arm repeat is instead a large insert which serves as a wedge that produces a significant bend in the overall domain structure. Structure-based sequence alignments indicate that the nine repeats and large insert are common to this subfamily of armadillo proteins. A prominent basic patch on the surface of the protein may serve as a binding site for partners of these proteins.
Collapse
Affiliation(s)
- Hee-Jung Choi
- Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive West, Stanford, CA 94305-5126, USA
| | | |
Collapse
|
273
|
Kamai T, Yamanishi T, Shirataki H, Takagi K, Asami H, Ito Y, Yoshida KI. Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clin Cancer Res 2005; 10:4799-805. [PMID: 15269155 DOI: 10.1158/1078-0432.ccr-0436-03] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Rho family of GTPases are involved in actin cytoskeleton organization and associated with carcinogenesis and progression of human cancers. We investigated the roles of Rho family GTPases, prototypes RhoA, Rac1, and Cdc42, and the major downstream targets of RhoA, ROCK-I, and ROCK-II in testicular cancer. We quantified protein expression in paired tumor and nontumor samples from surgical specimens from 57 consecutive patients with testicular germ cell tumors using Western blotting. Protein expression of RhoA, ROCK-I, ROCK-II, Rac1, and Cdc42 was significantly higher in tumor tissue than in nontumor tissue (P < 0.0001). Expression of protein for RhoA, ROCK-I, ROCK-II, Rac1, and Cdc42 was greater in tumors of higher stages than lower stages (P < 0.0001, P < 0.001, P < 0.001, P < 0.0001, P < 0.0001, respectively). Within stage II nonseminoma (31 patients), protein levels of RhoA, ROCK-I, ROCK-II, Rac1, and Cdc42 in the primary tumor were lower in the group of 24 patients with no evidence of disease after therapy compared with 7 patients with disease that was refractory/recurrent (P < 0.05). Rho family GTPases may be involved in the progression of testicular germ cell tumors.
Collapse
Affiliation(s)
- Takao Kamai
- Department of Urology, Dokkyo University School of Medicine, Tochigi, Japan.
| | | | | | | | | | | | | |
Collapse
|
274
|
Abstract
The insulin-like growth factor I receptor (IGF-IR) has been implicated in the development and progression of many common cancers and other neoplastic diseases. The tumorigenic potential of IGF-IR relies on its antiapoptotic and transforming activities. The molecular mechanisms by which IGF-IR controls the proliferation and survival of tumour cells have been extensively studied and many pathways have been delineated. However, the role of IGF-IR in the regulation of non-mitogenic cell functions is less well understood. Here we focus on IGF-IR-dependent cell-cell adhesion. Limited studies suggested that IGF-IR can regulate cell aggregation and intercellular adhesion mediated by cadherins and cadherin-associated proteins. We review the mechanisms of this process and discuss the impact of IGF-IR-dependent cell-cell adhesion on the phenotype of tumour cells.
Collapse
Affiliation(s)
- Loredana Mauro
- Department of Cellular Biology and Faculty of Pharmacy, University of Calabria, 87030 Rende, Italy
| | | |
Collapse
|
275
|
Bryant DM, Wylie FG, Stow JL. Regulation of endocytosis, nuclear translocation, and signaling of fibroblast growth factor receptor 1 by E-cadherin. Mol Biol Cell 2005; 16:14-23. [PMID: 15509650 PMCID: PMC539147 DOI: 10.1091/mbc.e04-09-0845] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 10/14/2004] [Indexed: 12/31/2022] Open
Abstract
Fibroblast growth factor (FGF) receptors (FGFRs) signal to modulate diverse cellular functions, including epithelial cell morphogenesis. In epithelial cells, E-cadherin plays a key role in cell-cell adhesion, and its function can be regulated through endocytic trafficking. In this study, we investigated the location, trafficking, and function of FGFR1 and E-cadherin and report a novel mechanism, based on endocytic trafficking, for the coregulation of E-cadherin and signaling from FGFR1. FGF induces the internalization of surface FGFR1 and surface E-cadherin, followed by nuclear translocation of FGFR1. The internalization of both proteins is regulated by common endocytic machinery, resulting in cointernalization of FGFR1 and E-cadherin into early endosomes. By blocking endocytosis, we show that this is a requisite, initial step for the nuclear translocation of FGFR1. Overexpression of E-cadherin blocks both the coendocytosis of E-cadherin and FGFR1, the nuclear translocation of FGFR1 and FGF-induced signaling to the mitogen-activated protein kinase pathway. Furthermore, stabilization of surface adhesive E-cadherin, by overexpressing p120ctn, also blocks internalization and nuclear translocation of FGFR1. These data reveal that conjoint endocytosis and trafficking is a novel mechanism for the coregulation of E-cadherin and FGFR1 during cell signaling and morphogenesis.
Collapse
Affiliation(s)
- David M Bryant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia 4072
| | | | | |
Collapse
|
276
|
Reynolds AB, Roczniak-Ferguson A. Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene 2004; 23:7947-56. [PMID: 15489912 DOI: 10.1038/sj.onc.1208161] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although originally identified as a Src substrate, p120-catenin (p120) is now known to regulate cell-cell adhesion through its interaction with the cytoplasmic tail of classical and type II cadherins. New evidence indicates that p120 regulates cadherin turnover at the cell surface, thereby controlling the amount of cadherin available for cell-cell adhesion. This function is necessary but not sufficient to promote strong adhesion, which is further controlled by signals acting on the amino-terminal p120 regulatory domain. p120 also modulates the activities of RhoA, Rac, and Cdc42, suggesting that along with other Src substrates, p120 regulates actin dynamics. Thus, p120 is a master regulator of cadherin abundance and activity, and likely participates in regulating the balance between adhesive and motile cellular phenotypes. This review summarizes recent progress in understanding mechanisms of p120 action, and discusses new implications with respect to roles for p120 in disease and cancer.
Collapse
Affiliation(s)
- Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University, 771PRB, 2220 Pierce Ave, Nashville, TN 37232-6840, USA.
| | | |
Collapse
|
277
|
Brunton VG, MacPherson IRJ, Frame MC. Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1692:121-44. [PMID: 15246683 DOI: 10.1016/j.bbamcr.2004.04.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 04/19/2004] [Indexed: 12/31/2022]
Abstract
The interaction of cells with surrounding matrix and neighbouring cells governs many aspects of cell behaviour. Aside from transmitting signals from the external environment, adhesion receptors also receive signals from the cell interior. Here we review the interrelationship between adhesion receptors, tyrosine kinases (both growth factor receptor and non-receptor) and modulators of the actin cytoskeletal network. Deregulation of many aspects of these signalling pathways in cancer highlights the need for a better understanding of the complexities involved.
Collapse
Affiliation(s)
- V G Brunton
- The Beatson Institute for Cancer Research, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD.
| | | | | |
Collapse
|
278
|
Abstract
The Rho-family proteins make up a major branch of the Ras superfamily of small GTPases. To date, 22 human genes encoding at least 25 proteins have been described. The best known 'classical' members are RhoA, Rac1 and Cdc42. Highly related isoforms of these three proteins have not been studied as intensively, in part because it has been assumed that they are functionally identical to their better-studied counterparts. This now appears not to be the case. Variations in C-terminal-signaled modifications and subcellular targeting cause otherwise highly biochemically related isoforms (e.g. RhoA, RhoB and RhoC) to exhibit surprisingly divergent biological activities. Whereas the classical Rho GTPases are regulated by GDP/GTP cycling, other Rho GTPases are also regulated by other mechanisms, particularly by transcriptional regulation. Newer members of the family possess additional sequence elements beyond the GTPase domain, which suggests they exhibit yet other mechanisms of regulation.
Collapse
Affiliation(s)
- Krister Wennerberg
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.
| | | |
Collapse
|
279
|
Ishizaki Y, Omori Y, Momiyama M, Nishikawa Y, Tokairin T, Manabe M, Enomoto K. Reduced expression and aberrant localization of p120catenin in human squamous cell carcinoma of the skin. J Dermatol Sci 2004; 34:99-108. [PMID: 15033192 DOI: 10.1016/j.jdermsci.2003.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 11/27/2003] [Accepted: 12/01/2003] [Indexed: 01/16/2023]
Abstract
BACKGROUND p120catenin (p120ctn), a member of the Armadillo protein family, is ubiquitously expressed and binds to classical cadherins together with other catenins to participate in the adherens junction. p120ctn has numerous isoforms generated through extensive splicing and alternative usage of translation initiation codons. Although the involvement of p120ctn in cell growth control has been postulated, little has so far been known about its expression patterns in the skin and epidermal tumors. OBJECTIVE To identify the isoforms expressed in benign and malignant keratinocytes and to analyze the expression patterns of p120ctn in epidermal tumor specimens. METHODS HaCaT, DJM-1, BSCC-93, HSC-1, HSC-5 and A431 cells along with normal skin tissue were subjected to RT-PCR to identify the expressed isoforms. For immunofluorescence study, surgical specimens including 29 squamous cell carcinomas (SSCs), 4 basal cell carcinomas (BCCs) and 4 seborrheic keratoses as well as 3 normal skin samples were stained with specific antibodies to detect p120ctn and E-cadherin. RESULTS RT-PCR revealed that the isoform 3A was predominantly expressed with faint expression of the isoform 4 and that there was no difference in expressed isoforms between the examined cell lines. Immunofluorescent staining indicated that the expression of p120ctn was significantly reduced in all of the examined squamous cell carcinomas and that p120ctn was frequently localized in cytoplasm. In benign tumors and normal samples, p120ctn was properly expressed in cell-cell boundaries. Furthermore, there were several SCCs where E-cadherin continued to be expressed with no expression of p120ctn. CONCLUSION Reduced expression and aberrant localization of p120ctn are among the most common events during the development and/or progression of SCCs.
Collapse
Affiliation(s)
- Yasuko Ishizaki
- Department of Pathology, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | |
Collapse
|
280
|
Abstract
Mechanical forces play an important role in the organization, growth, maturation, and function of living tissues. At the cellular level, many of the biological responses to external forces originate at two types of specialized microscale structures: focal adhesions that link cells to their surrounding extracellular matrix and adherens junctions that link adjacent cells. Transmission of forces from outside the cell through cell-matrix and cell-cell contacts appears to control the maturation or disassembly of these adhesions and initiates intracellular signaling cascades that ultimately alter many cellular behaviors. In response to externally applied forces, cells actively rearrange the organization and contractile activity of the cytoskeleton and redistribute their intracellular forces. Recent studies suggest that the localized concentration of these cytoskeletal tensions at adhesions is also a major mediator of mechanical signaling. This review summarizes the role of mechanical forces in the formation, stabilization, and dissociation of focal adhesions and adherens junctions and outlines how integration of signals from these adhesions over the entire cell body affects how a cell responds to its mechanical environment. This review also describes advanced optical, lithographic, and computational techniques for the study of mechanotransduction.
Collapse
Affiliation(s)
- Christopher S Chen
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
281
|
Setzer SV, Calkins CC, Garner J, Summers S, Green KJ, Kowalczyk AP. Comparative Analysis of Armadillo Family Proteins in the Regulation of A431 Epithelial Cell Junction Assembly, Adhesion and Migration. J Invest Dermatol 2004; 123:426-33. [PMID: 15304078 DOI: 10.1111/j.0022-202x.2004.23319.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
p0071 is an armadillo family protein related to both the adherens junction protein p120ctn and to the desmosomal proteins plakophilins 1-3. p0071 assembles into both adherens junctions and desmosomes, suggesting that this protein may regulate the balance between adherens junction and desmosome formation. Furthermore, this subfamily of proteins may also regulate cell functions directly influenced by intercellular junctions, including the strength of cell adhesion and the ability of cells to migrate. These possibilities were tested by expressing exogenous p0071 in A431 epithelial cells and monitoring the effects on adhesive junction assembly in comparison to other closely related armadillo family proteins. In this model system, p0071 specifically enhanced adherens junction assembly but dramatically compromised desmosome assembly, resulting in keratin filament retraction from regions of cell-cell contact. Protein interaction studies revealed that p0071 bound to the first 160 amino-terminal residues of desmoplakin and also interacted directly with plakoglobin, suggesting that p0071 may regulate desmosome assembly by controlling plakoglobin availability. Using an in vitro assay to measure the strength of cell-cell contacts, both plakophilin-1 and p120ctn were found to increase the strength of adhesion. Interestingly, p0071 expression caused no overall changes in adhesive strength, but dramatically inhibited the ability of A431 cells to close an in vitro wound. These results suggest that p120ctn/plakophilin family proteins interact with intercellular junction binding partners to differentially modulate the adhesive and migratory behavior of epithelial cells.
Collapse
Affiliation(s)
- Shannon V Setzer
- Departments of Dermatology and Cell Biology, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
282
|
Sarrió D, Pérez-Mies B, Hardisson D, Moreno-Bueno G, Suárez A, Cano A, Martín-Pérez J, Gamallo C, Palacios J. Cytoplasmic localization of p120ctn and E-cadherin loss characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene 2004; 23:3272-83. [PMID: 15077190 DOI: 10.1038/sj.onc.1207439] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accumulating evidences indicate that p120 catenin, a member of the E-cadherin (E-CD)/catenin adhesion complex, plays a role in tumor invasion. To establish the expression pattern of p120 in breast cancer, we analysed 326 breast tissue biopsies by tissue microarray. Most of the lobular tumors (88%) showed exclusive cytoplasmic localization, and 6% of them also had p120 nuclear staining. Cytoplasmic p120 strongly associated with complete loss of E-CD and beta-catenin not only in lobular carcinoma and its metastases but also in atypical lobular hyperplasias. In the latter, loss of heterozygosity of E-CD gene was also observed. Complete loss of E-CD and cytoplasmic and nuclear p120 staining was also observed in primary lobular cancer cell cultures generated by us. In ductal tumors, by contrast, reduction of p120 and E-CD in membrane was very common (57 and 53%, respectively), whereas cytoplasmic p120 staining was rarely seen. This simultaneous reduction of membranous E-CD and p120 was not associated with increased Src kinase activity. To demonstrate that cytoplasmic p120 localization was a consequence of the absence of E-CD, the endogenous E-CD was re-expressed in MDA-231 cells by 5-Aza-2'-deoxycytidine (5Aza) treatment. After treatment, p120 shifted from the cytoplasm to the membrane, where it colocalized with endogenous E-CD. Additionally, suppressing E-CD expression in Madin-Darby canine kidney cells by stable transfection of the transcriptional repressors Snail, E47 or Slug, provokes p120 cytoplasmic localization and p120 isoform switching. In conclusion, abnormal cytoplasmic and nuclear localization of p120, which are mediated by the absence of E-CD, characteristically occur in the early stages of lobular breast cancer and are maintained during tumor progression to metastasis. Consequently, p120 may be an important mediator of the oncogenic effects derived from E-CD inactivation, including enhanced motility and invasion, in lobular breast cancer.
Collapse
Affiliation(s)
- David Sarrió
- Molecular Pathology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Ciesiolka M, Delvaeye M, Van Imschoot G, Verschuere V, McCrea P, van Roy F, Vleminckx K. p120 catenin is required for morphogenetic movements involved in the formation of the eyes and the craniofacial skeleton in Xenopus. J Cell Sci 2004; 117:4325-39. [PMID: 15292404 DOI: 10.1242/jcs.01298] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During Xenopus development, p120 transcripts are enriched in highly morphogenetic tissues. We addressed the developmental function of p120 by knockdown experiments and by expressing E-cadherin mutants unable to bind p120. This resulted in defective eye formation and provoked malformations in the craniofacial cartilage structures, derivatives of the cranial neural crest cells. Closer inspection showed that p120 depletion impaired evagination of the optic vesicles and migration of cranial neural crest cells from the neural tube into the branchial arches. These morphogenetic processes were also affected by p120-uncoupled cadherins or E-cadherin containing a deletion of the juxtamembrane domain. Irrespective of the manipulation that caused the malformations, coexpression of dominant-negative forms of either Rac1 or LIM kinase rescued the phenotypes. Wild-type RhoA and constitutively active Rho kinase caused partial rescue. Our results indicate that, in contrast to invertebrates, p120 is an essential factor for vertebrate development and an adequate balance between cadherin activity and cytoskeletal condition is critical for correct morphogenetic movements.
Collapse
Affiliation(s)
- Malgorzata Ciesiolka
- Developmental Biology Unit, Department of Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology (VIB)-Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
284
|
Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 2004; 84:869-901. [PMID: 15269339 DOI: 10.1152/physrev.00035.2003] [Citation(s) in RCA: 979] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intercellular junctions mediate adhesion and communication between adjoining endothelial and epithelial cells. In the endothelium, junctional complexes comprise tight junctions, adherens junctions, and gap junctions. The expression and organization of these complexes depend on the type of vessels and the permeability requirements of perfused organs. Gap junctions are communication structures, which allow the passage of small molecular weight solutes between neighboring cells. Tight junctions serve the major functional purpose of providing a "barrier" and a "fence" within the membrane, by regulating paracellular permeability and maintaining cell polarity. Adherens junctions play an important role in contact inhibition of endothelial cell growth, paracellular permeability to circulating leukocytes and solutes. In addition, they are required for a correct organization of new vessels in angiogenesis. Extensive research in the past decade has identified several molecular components of the tight and adherens junctions, including integral membrane and intracellular proteins. These proteins interact both among themselves and with other molecules. Here, we review the individual molecules of junctions and their complex network of interactions. We also emphasize how the molecular architectures and interactions may represent a mechanistic basis for the function and regulation of junctions, focusing on junction assembly and permeability regulation. Finally, we analyze in vivo studies and highlight information that specifically relates to the role of junctions in vascular endothelial cells.
Collapse
Affiliation(s)
- Gianfranco Bazzoni
- Istituto di Ricerche Farmacologiche "Mario Negri," Via Eritrea 62, I-20157 Milan, Italy.
| | | |
Collapse
|
285
|
Affiliation(s)
- Zahara M Jaffer
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
286
|
Krakstad BF, Ardawatia VV, Aragay AM. A role for Galpha12/Galpha13 in p120ctn regulation. Proc Natl Acad Sci U S A 2004; 101:10314-9. [PMID: 15240885 PMCID: PMC478569 DOI: 10.1073/pnas.0401366101] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The catenin p120 (p120ctn) is an armadillo repeat domain protein that binds to cadherins and has been shown to facilitate strong cell-cell adhesion. We have investigated a possible link between heterotrimeric G proteins and p120ctn, and found that both Galpha12 and Galpha13 can completely and selectively abrogate the p120ctn-induced branching phenotype in different cell types. Consistent with these observations, the expression of Galpha12 or Galpha13 compensates for the reduction of Rho activity induced by p120ctn. On the other hand, p120ctn can be selectively coimmunoprecipitated with Galpha12, and the coimmunoprecipitation was favored by activation of the G protein. A specific interaction between p120ctn and Galpha12Q231L was also observed in in vitro binding experiments. In addition, p120ctn can be immunoprecipitated along with Galpha12Q231L in L cells in absence of E-cadherin. Interestingly, the expression of Galpha12Q231L increases the amount of p120ctn associated with E-cadherin. These findings demonstrate that Galpha12 and p120ctn are binding partners, and they also suggest a role for Galpha12 in regulating p120ctn activity and its interaction with cadherins. We propose that the Galpha12-p120ctn interaction acts as a molecular switch, which regulates cadherin-mediated cell-cell adhesion.
Collapse
Affiliation(s)
- Beate F Krakstad
- Department of Biomedicine, Section for Anatomy and Cell Biology, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | | | | |
Collapse
|
287
|
Shibata T, Kokubu A, Sekine S, Kanai Y, Hirohashi S. Cytoplasmic p120ctn regulates the invasive phenotypes of E-cadherin-deficient breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:2269-78. [PMID: 15161659 PMCID: PMC1615772 DOI: 10.1016/s0002-9440(10)63783-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In a search for signaling molecules that act downstream of E-cadherin inactivation in cancer, we examined the expression and localization of E-cadherin-associated proteins in lobular carcinoma, in which the E-cadherin gene is frequently inactivated, and found that E-cadherin down-regulation correlated with the cytoplasmic localization of p120ctn. Similar cytoplasmic localization of p120ctn and growth factor-induced accumulation of tyrosine-phosphorylated p120ctn in the protrusive domain were observed in E-cadherin-deficient breast cancer cells. Down-regulation of endogenous p120ctn by RNA interference promoted stress fiber formation and induced a flattened morphology with an increase of Rho-GTPase activity; it also reduced the development of membranous protrusions and migratory activity in E-cadherin-deficient breast cancer cells. Inactivation of E-cadherin in cancer cells is associated with the conversion from epithelial to mesenchymal phenotype, which also occurs in physiological conditions such as developmental processes. Cytoplasmic localization of p120ctn accompanied by E-cadherin down-regulation was observed in mesoderm cells that had undergone epithelial-mesenchymal transition during early mouse embryogenesis. Collectively, our results suggest that cytoplasmic p120ctn may contribute to the invasive phenotype of E-cadherin-deficient breast cancer cells.
Collapse
Affiliation(s)
- Tatsuhiro Shibata
- Pathology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | |
Collapse
|
288
|
Gavard J, Marthiens V, Monnet C, Lambert M, Mège RM. N-cadherin activation substitutes for the cell contact control in cell cycle arrest and myogenic differentiation: involvement of p120 and beta-catenin. J Biol Chem 2004; 279:36795-802. [PMID: 15194693 DOI: 10.1074/jbc.m401705200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
N-cadherin is expressed throughout skeletal myogenesis and has been proposed to be involved in the differentiation program of myogenic precursors. Here, we further characterize the N-cadherin involvement and its mechanism of action at the onset of differentiation, through controlled N-cadherin activation by plating isolated C2 myoblasts on surfaces coated with a chimeric Ncad-Fc homophilic ligand (N-cadherin ectodomain fused to the immunoglobulin G Fc fragment). We show that N-cadherin activation substitutes for the cell density in myogenic differentiation by promoting myogenin and troponin T expression. In addition, N-cadherin adhesion participates to the associated cell cycle arrest through the nuclear accumulation of cyclin-dependent kinase inhibitors p21 and p27. Mouse primary myoblast cultures exhibited similar responses to N-cadherin as C2 cells. RNA interference knockdowns of the N-cadherin-associated cytoplasmic proteins p120 and beta-catenin produced opposite effects on the differentiation pathway. p120 silencing resulted in a decreased myogenic differentiation, associated with a reduction in cadherin-catenin content, which may explain its action on myogenic differentiation. beta-Catenin silencing led to a stimulatory effect on myogenin expression, without any effect on cell cycle. Our results demonstrate that N-cadherin adhesion may account for cell-cell contact-dependent cell cycle arrest and differentiation of myogenic cells, involving regulation through p120 and beta-catenins.
Collapse
Affiliation(s)
- Julie Gavard
- Signalisation et Différenciation Cellulaires dans les Systèmes Nerveux et Musculaire, U440 INSERM/UPMC, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005 Paris, France
| | | | | | | | | |
Collapse
|
289
|
Kelly KF, Spring CM, Otchere AA, Daniel JM. NLS-dependent nuclear localization of p120ctnis necessary to relieve Kaiso-mediated transcriptional repression. J Cell Sci 2004; 117:2675-86. [PMID: 15138284 DOI: 10.1242/jcs.01101] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Armadillo catenin p120ctn regulates cadherin adhesive strength at the plasma membrane and interacts with the novel BTB/POZ transcriptional repressor Kaiso in the nucleus. The dual localization of p120ctn at cell-cell junctions and in the nucleus suggests that its nucleocytoplasmic trafficking is tightly regulated. Here we report on the identification of a specific and highly basic nuclear localization signal (NLS) in p120ctn. The functionality of the NLS was validated by its ability to direct the nuclear localization of a heterologous β-galactosidase-GFP fusion protein. Mutating two key positively charged lysines to neutral alanines in the NLS of full-length p120ctn inhibited both p120ctn nuclear localization as well as the characteristic p120ctn-induced branching phenotype that correlates with increased cell migration. However, while these findings and others suggested that nuclear localization of p120ctn was crucial for the p120ctn-induced branching phenotype, we found that forced nuclear localization of both wild-type and NLS-mutated p120ctn did not induce branching. Recently, we also found that one role of p120ctn was to regulate Kaiso-mediated transcriptional repression. However, it remained unclear whether p120ctn sequestered Kaiso in the cytosol or directly inhibited Kaiso transcriptional activity in the nucleus. Using minimal promoter assays, we show here that the regulatory effect of p120ctn on Kaiso transcriptional activity requires the nuclear translocation of p120ctn. Therefore, an intact NLS in p120ctn is requisite for its first identified regulatory role of the transcriptional repressor Kaiso.
Collapse
Affiliation(s)
- Kevin F Kelly
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | | | | |
Collapse
|
290
|
Vincent PA, Xiao K, Buckley KM, Kowalczyk AP. VE-cadherin: adhesion at arm's length. Am J Physiol Cell Physiol 2004; 286:C987-97. [PMID: 15075197 DOI: 10.1152/ajpcell.00522.2003] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
VE-cadherin was first identified in the early 1990s and quickly emerged as an important endothelial cell adhesion molecule. The past decade of research has revealed key roles for VE-cadherin in vascular permeability and in the morphogenic events associated with vascular remodeling. The details of how VE-cadherin functions in adhesion became apparent with structure-function analysis of the cadherin extracellular domain and with the identification of the catenins, a series of cytoplasmic proteins that bind to the cadherin tail and mediate interactions between cadherins and the cytoskeleton. Whereas early work focused on the armadillo family proteins beta-catenin and plakoglobin, more recent investigations have identified p120-catenin (p120(ctn)) and a related group of armadillo family members as key binding partners for the cadherin tail. Furthermore, a series of new studies indicate a key role for p120(ctn) in regulating cadherin membrane trafficking in mammalian cells. These recent studies place p120(ctn) at the hub of a cadherin-catenin regulatory mechanism that controls cadherin plasma membrane levels in cells of both epithelial and endothelial origin.
Collapse
Affiliation(s)
- Peter A Vincent
- Dept. of Dermatology, Emory Univ. School of Medicine, Woodruff Memorial Bldg., 1639 Pierce Drive, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
291
|
Johnson E, Theisen CS, Johnson KR, Wheelock MJ. R-cadherin influences cell motility via Rho family GTPases. J Biol Chem 2004; 279:31041-9. [PMID: 15143071 DOI: 10.1074/jbc.m400024200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Classical cadherins are the transmembrane proteins of the adherens junction and mediate cell-cell adhesion via homotypic interactions in the extracellular space. In addition, they mediate connections to the cytoskeleton by means of their association with catenins. Decreased cadherin-mediated adhesion has been implicated as an important component of tumorigenesis. Cadherin switching is central to the epithelial to mesenchymal transitions that drive normal developmental processes. Cadherin switching has also been implicated in tumorigenesis, particularly in metastasis. Recently, cadherins have been shown to be engaged in cellular activities other than adhesion, including motility, invasion, and signaling. In this study, we show that inappropriate expression of R-cadherin in tumor cells results in decreased expression of endogenous cadherins (cadherin switching) and sustained signaling through Rho GTPases. In addition, we show that R-cadherin induces cell motility when expressed in epithelial cells and that this increased motility is dependent upon Rho GTPase activity.
Collapse
Affiliation(s)
- Emhonta Johnson
- Department of Oral Biology, College of Dentistry, Eppley Institute for Research in Cancer and Allied Diseases, and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | |
Collapse
|
292
|
Graziano F, Humar B, Guilford P. The role of the E-cadherin gene (CDH1) in diffuse gastric cancer susceptibility: from the laboratory to clinical practice. Ann Oncol 2004; 14:1705-13. [PMID: 14630673 DOI: 10.1093/annonc/mdg486] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Loss of function of the E-cadherin gene (CDH1) has been linked with diffuse gastric cancer susceptibility, and germline inactivating mutations in CDH1 characterise the hereditary diffuse gastric cancer (HDGC) syndrome. Hypermethylation in the CDH1 promoter region is a frequent phenomenon in poorly differentiated, diffuse gastric carcinomas and it was identified as the main mechanism for the inactivation of the remaining wild-type allele in HDGC cases. Specific criteria are used to identify patients with suspected HDGC and who should be investigated for CDH1 germline mutations. Accurate screening is mandatory for unaffected carriers of CDH1 mutations and selected high-risk individuals could be considered for prophylactic gastrectomy. Also, germline CDH1 mutations may predispose to lobular breast carcinoma and prostate cancer. Germline CDH1 mutations are not always detectable in patients who meet the HDGC criteria and the aetiological role of this gene is still under investigation. Families without recognised inactivating CDH1 mutations may have undisclosed CDH1 mutations or mutations in its regulatory sequences or germline mutations in unidentified genes that also contribute to the disease. In recent years, several germline missense CDH1 mutations have been identified, some of which showed a marked negative influence on E-cadherin function in experimental models. CDH1 promoter hypermethylation seems a key event in the carcinogenetic process of poorly differentiated, diffuse gastric cancer and it deserves further investigation as a new target for anticancer therapies with demethylating agents.
Collapse
Affiliation(s)
- F Graziano
- Medical Oncology Unit, Hospital of Urbino, Italy.
| | | | | |
Collapse
|
293
|
Fang X, Ji H, Kim SW, Park JI, Vaught TG, Anastasiadis PZ, Ciesiolka M, McCrea PD. Vertebrate development requires ARVCF and p120 catenins and their interplay with RhoA and Rac. ACTA ACUST UNITED AC 2004; 165:87-98. [PMID: 15067024 PMCID: PMC2172091 DOI: 10.1083/jcb.200307109] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using an animal model system and depletion-rescue strategies, we have addressed the requirement and functions of armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF) and p120 catenins in early vertebrate embryogenesis. We find that xARVCF and Xp120 are essential to development given that depletion of either results in disrupted gastrulation and axial elongation, which are specific phenotypes based on self-rescue analysis and further criteria. Exogenous xARVCF or Xp120 cross-rescued depletion of the other, and each depletion was additionally rescued with (carefully titrated) dominant-negative RhoA or dominant-active Rac. Although xARVCF or Xp120 depletion did not appear to reduce the adhesive function of C-cadherin in standard cell reaggregation and additional assays, C-cadherin levels were somewhat reduced after xARVCF or Xp120 depletion, and rescue analysis using partial or full-length C-cadherin constructs suggested contributory effects on altered adhesion and signaling functions. This work indicates the required functions of both p120 and ARVCF in vertebrate embryogenesis and their shared functional interplay with RhoA, Rac, and cadherin in a developmental context.
Collapse
Affiliation(s)
- Xiang Fang
- Department of Biochemistry and Molecular Biology, Box 117, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030-4095, USA
| | | | | | | | | | | | | | | |
Collapse
|
294
|
Getsios S, Huen AC, Green KJ. Working out the strength and flexibility of desmosomes. Nat Rev Mol Cell Biol 2004; 5:271-81. [PMID: 15071552 DOI: 10.1038/nrm1356] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Spiro Getsios
- Department of Pathology, Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
295
|
Brantley-Sieders DM, Caughron J, Hicks D, Pozzi A, Ruiz JC, Chen J. EphA2 receptor tyrosine kinase regulates endothelial cell migration and vascular assembly through phosphoinositide 3-kinase-mediated Rac1 GTPase activation. J Cell Sci 2004; 117:2037-49. [PMID: 15054110 DOI: 10.1242/jcs.01061] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is critical for vascular remodeling during development and contributes to the pathogenesis of diseases such as cancer. Targeted disruption of several EphB class receptor tyrosine kinases results in vascular remodeling defects during embryogenesis. The role of EphA class receptors in vascular remodeling, however, is not well-characterized. We recently demonstrated that global inhibition of EphA receptors disrupts endothelial migration induced by ephrin, VEGF or tumor-derived signals, though the specific target remained undefined. Here, we report that EphA2 regulates endothelial cell assembly and migration through phosphoinositide (PI) 3-kinase-mediated activation of Rac1 GTPase in two model systems: primary bovine and murine pulmonary microvascular endothelial cells. EphA2-deficient endothelial cells fail to undergo vascular assembly and migration in response to ephrin-A1 in vitro. Ephrin-A1 stimulation induces PI3-kinase-dependent activation of Rac1 in wild-type endothelial cells, whereas EphA2-deficient cells fail to activate Rac1 upon stimulation. Expression of dominant negative PI3-kinase or Rac1 inhibits ephrin-A1-induced endothelial cell migration. Consistent with in vitro data, EphA2-deficient mice show a diminished angiogenic response to ephrin-A1 in vivo. Moreover, EphA2-deficient endothelial cells fail to assemble in vivo when transplanted into recipient mice. These data suggest that EphA2 is an essential regulator of post-natal angiogenesis.
Collapse
Affiliation(s)
- Dana M Brantley-Sieders
- Division of Rhematology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
296
|
Zhang J, Anastasiadis PZ, Liu Y, Thompson EA, Fields AP. Protein kinase C (PKC) betaII induces cell invasion through a Ras/Mek-, PKC iota/Rac 1-dependent signaling pathway. J Biol Chem 2004; 279:22118-23. [PMID: 15037605 DOI: 10.1074/jbc.m400774200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein kinase C betaII (PKCbetaII) promotes colon carcinogenesis. Expression of PKCbetaII in the colon of transgenic mice induces hyperproliferation and increased susceptibility to colon cancer. To determine molecular mechanisms by which PKCbetaII promotes colon cancer, we established rat intestinal epithelial (RIE) cells stably expressing PKCbetaII. Here we show that RIE/PKCbetaII cells acquire an invasive phenotype that is blocked by the PKCbeta inhibitor LY379196. Invasion is not observed in RIE cells expressing a kinase-deficient PKCbetaII, indicating that PKCbetaII activity is required for the invasive phenotype. PKCbetaII induces activation of K-Ras and the Ras effector, Rac1, in RIE/PKCbetaII cells. PKCbetaII-mediated invasion is blocked by the Mek inhibitor, U0126, and by expression of either dominant negative Rac1 or kinase-deficient atypical PKCiota. Expression of constitutively active Rac1 induces Mek activation and invasion in RIE cells, indicating that Rac1 is the critical downstream effector of PKCbetaII-mediated invasion. Taken together, our results define a novel PKCbetaII --> Ras --> PKCiota /Rac1 --> Mek signaling pathway that induces invasion in intestinal epithelial cells. This pathway provides a plausible mechanism by which PKCbetaII promotes colon carcinogenesis.
Collapse
Affiliation(s)
- Jie Zhang
- Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, USA
| | | | | | | | | |
Collapse
|
297
|
Mariner DJ, Davis MA, Reynolds AB. EGFR signaling to p120-catenin through phosphorylation at Y228. J Cell Sci 2004; 117:1339-50. [PMID: 14996911 DOI: 10.1242/jcs.01001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signals to p120(ctn) (p120), implying a role for EGFR in modulating cell-cell adhesion in epithelial tissues. p120 controls cadherin turnover, and may have other roles that modulate cadherin adhesiveness. To clarify the role for EGFR and other tyrosine kinases in regulating p120 function, we have generated and characterized a new phosphospecific antibody to p120 Y228, as well as a novel siRNA-based reconstitution system for analyzing roles of individual p120 phosphorylation events. In A431 cells, epidermal growth factor induced striking p120 phosphorylation at Y228. Y228-phosphorylated p120 localized to adherens junctions and lamellipodia, and was significantly enhanced in cells around the colony periphery. A screen of carcinoma cell lines revealed that some contain unusually high steady state levels of Y228 phosphorylation, suggesting that disregulated kinase activity in tumors may affect adhesion by constitutive cross talk to cadherin complexes. Despite these observations, mutation of Y228 and other prominent Src-associated p120 phosphorylation sites did not noticeably reduce the ability of E-cadherin to assemble junctions and induce compaction of cultured cells. Although A431 cells display significant activation of both EGFR and Src kinases, our data suggest that these account for only a fraction of the steady state activity that targets p120 Y228, and that Src family kinases are not necessary intermediates for epidermal growth factor-induced signaling to p120 Y228.
Collapse
Affiliation(s)
- Deborah J Mariner
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-6840, USA
| | | | | |
Collapse
|
298
|
Abstract
Cadherins are transmembrane glycoproteins that mediate calcium-dependent cell-cell adhesion. The cadherin family is large and diverse, and proteins are considered to be members of this family if they have one or more cadherin repeats in their extracellular domain. Cadherin family members are the transmembrane components of a number of cellular junctions, including adherens junctions, desmosomes, cardiac junctions, endothelial junctions, and synaptic junctions. Cadherin function is critical in normal development, and alterations in cadherin function have been implicated in tumorigenesis. The strength of cadherin interactions can be regulated by a number of proteins, including the catenins, which serve to link the cadherin to the cytoskeleton. Cadherins have been implicated in a number of signaling pathways that regulate cellular behavior, and it is becoming increasingly clear that integration of information received from cell-cell signaling, cell-matrix signaling, and growth factor signaling determines ultimate cellular phenotype and behavior.
Collapse
Affiliation(s)
- Margaret J Wheelock
- Department of Oral Biology, College of Dentistry and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA.
| | | |
Collapse
|
299
|
Gavard J, Lambert M, Grosheva I, Marthiens V, Irinopoulou T, Riou JF, Bershadsky A, Mège RM. Lamellipodium extension and cadherin adhesion: two cell responses to cadherin activation relying on distinct signalling pathways. J Cell Sci 2004; 117:257-70. [PMID: 14657280 DOI: 10.1242/jcs.00857] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell adhesion molecules of the cadherin family contribute to the regulation of cell shape and fate by mediating strong intercellular adhesion through Ca2+-dependent interaction of their ectodomain and association of their cytoplasmic tail to actin. However, the mechanisms co-ordinating cadherinmediated adhesion with the reorganization of the actin cytoskeleton remain elusive. Here, the formation of de novo contacts was dissected by spreading cells on a highly active N-cadherin homophilic ligand. Cells responded to N-cadherin activation by extending lamellipodium and organizing cadherin-catenin complexes and actin filaments in cadherin adhesions. Lamellipodium protrusion, associated with actin polymerization at the leading edge sustained the extension of cadherin contacts through a phosphoinositide 3-kinase (PI 3-kinase)-Rac1 pathway. Cadherin adhesions were formed by PI 3-kinase-independent, Rac1-dependent co-recruitment of adhesion complexes and actin filaments. The expression and localization of p120 at the plasma membrane, associated with an increase in membrane-associated Rac1 was required for both cell responses, consistent with a major role of p120 in signalling pathways initiated by cadherin activation and contributing to Rac1-dependent contact extension and maturation. These results provide additional information on the mechanisms by which cadherin coordinates adhesion with dynamic changes in the cytoskeleton to control cell shape and intercellular junction organization.
Collapse
Affiliation(s)
- Julie Gavard
- Signalisation et Différenciation Cellulaires dans les Systèmes Nerveux et Musculaire, U440 INSERM-UPMC, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
300
|
Chen X, Kojima SI, Borisy GG, Green KJ. p120 catenin associates with kinesin and facilitates the transport of cadherin-catenin complexes to intercellular junctions. ACTA ACUST UNITED AC 2004; 163:547-57. [PMID: 14610057 PMCID: PMC2173663 DOI: 10.1083/jcb.200305137] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
p120 catenin (p120) is a component of adherens junctions and has been implicated in regulating cadherin-based cell adhesion as well as the activity of Rho small GTPases, but its exact roles in cell–cell adhesion are unclear. Using time-lapse imaging, we show that p120-GFP associates with vesicles and exhibits unidirectional movements along microtubules. Furthermore, p120 forms a complex with kinesin heavy chain through the p120 NH2-terminal head domain. Overexpression of p120, but not an NH2-terminal deletion mutant deficient in kinesin binding, recruits endogenous kinesin to N-cadherin. Disruption of the interaction between N-cadherin and p120, or the interaction between p120 and kinesin, leads to a delayed accumulation of N-cadherin at cell–cell contacts during calcium-initiated junction reassembly. Our analyses identify a novel role of p120 in promoting cell surface trafficking of cadherins via association and recruitment of kinesin.
Collapse
Affiliation(s)
- Xinyu Chen
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|