251
|
Le-The H, Tregouet C, Kappl M, Müller M, Kirchhoff K, Lohse D, van den Berg A, Odijk M, Eijkel JCT. Engulfment control of platinum nanoparticles into oxidized silicon substrates for fabrication of dense solid-state nanopore arrays. NANOTECHNOLOGY 2019; 30:065301. [PMID: 30523814 DOI: 10.1088/1361-6528/aaf114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We found that platinum (Pt) nanoparticles, upon annealing at high temperature of 1000 °C, are engulfed into amorphous fused-silica or thermal oxide silicon substrates. The same phenomenon was previously published for gold (Au) nanoparticles. Similar to the Au nanoparticles, the engulfed Pt nanoparticles connect to the surface of the substrates through conical nanopores, and the size of the Pt nanoparticles decreases with increasing depth of the nanopores. We explain the phenomena as driven by the formation of platinum oxide by reaction of the platinum with atmospheric oxygen, with platinum oxide evaporating to the environment. We found that the use of Pt provides much better controllability than the use of Au. Due to the high vapor pressure of platinum oxide, the engulfment of the Pt nanoparticles into oxidized silicon (SiO2) substrates is faster than of Au nanoparticles. At high temperature annealing we also find that the aggregation of Pt nanoparticles on the substrate surface is insignificant. As a result, the Pt nanoparticles are uniformly engulfed into the substrates, leading to an opportunity for patterning dense nanopore arrays. Moreover, the use of oxidized Si substrates enables us to precisely control the depth of the nanopores since the engulfment of Pt nanoparticles stops at a short distance above the SiO x /Si interface. After subsequent etching steps, a membrane with dense nanopore through-holes with diameters down to sub-30 nm is obtained. With its simple operation and high controllability, this fabrication method provides an alternative for rapid patterning of dense arrays of solid-state nanopores at low-cost.
Collapse
Affiliation(s)
- Hai Le-The
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck Center for Complex Fluid Dynamics, University of Twente, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Danda G, Drndić M. Two-dimensional nanopores and nanoporous membranes for ion and molecule transport. Curr Opin Biotechnol 2019; 55:124-133. [DOI: 10.1016/j.copbio.2018.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/12/2018] [Accepted: 09/11/2018] [Indexed: 01/19/2023]
|
253
|
Sun LZ, Wang CH, Luo MB, Li H. Trapped and non-trapped polymer translocations through a spherical pore. J Chem Phys 2019; 150:024904. [PMID: 30646715 DOI: 10.1063/1.5063331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The polymer translocation through a spherical pore is studied using the Langevin dynamics simulation. The translocation events are classified into two types: one is the trapped translocation in which the entire polymer is trapped in the pore and the other is the non-trapped translocation where the pore cannot hold the whole polymer. We find that the trapped translocation is favored at large spheres and small external voltages. However, the monomer-pore attraction would lead to the non-monotonic behavior of the trapped translocation possibility out of all translocation events. Moreover, both the trapped and non-trapped translocation times are dependent on the polymer length, pore size, external voltage, and the monomer-pore attraction. There exist two pathways for the polymer in the trapped translocation: an actively trapped pathway for the polymer trapped in the pore before the head monomer arrives at the pore exit, and a passively trapped pathway for the polymer trapped in the pore while the head monomer is struggling to move out of the pore. The studies of trapped pathways can provide a deep understanding of the polymer translocation behavior.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chang-Hui Wang
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Haibin Li
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
254
|
Kaur H, Nandivada S, Acharjee MC, McNabb DS, Li J. Estimating RNA Polymerase Protein Binding Sites on λ DNA Using Solid-State Nanopores. ACS Sens 2019; 4:100-109. [PMID: 30561195 DOI: 10.1021/acssensors.8b00976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, using a silicon nitride nanopore based device, we measure the binding locations of RNA Polymerase (RNAP) on 48.5 kbp (16.5 μm) long λ DNA. To prevent the separation of bound RNAPs from a λ DNA molecule in the high electric field inside a nanopore, we cross-linked RNAP proteins to λ DNA by formaldehyde. We compare the current blockage event data measured with a mixture of λ DNA and RNAP under cross-link conditions with our control samples: RNAP, λ DNA, RNAP, and λ DNA incubated in formaldehyde separately and in a mixture. By analyzing the time durations and amplitudes of current blockage signals of events and their subevents, as well as subevent starting times, we can estimate the binding efficiency and locations of RNAPs on a λ DNA. Our data analysis shows that under the conditions of our experiment with the ratio of 6 to 1 for RNAP to λ DNA molecules, the probability of an RNAP molecule to bind a λ DNA is ∼42%, and that RNAP binding has a main peak at 3.51 μm ± 0.53 μm, most likely corresponding to the two strong promoter regions at 3.48 and 4.43 μm of λ DNA. However, individual RNAP binding sites were not distinguished with this nanopore setup. This work brings out new perspectives and complications to study transcription factor RNAP binding at various positions on very long DNA molecules.
Collapse
|
255
|
Gunderson CG, Barlow ST, Zhang B. FIB-Milled Quartz Nanopores in a Sealed Nanopipette. J Electroanal Chem (Lausanne) 2019; 833:181-188. [PMID: 31447621 PMCID: PMC6707750 DOI: 10.1016/j.jelechem.2018.11.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report the use of laser-pulled quartz nanopipettes as a new platform for microfabricated nanopores. A quartz nanopipette is prepared on a laser puller and sealed closed prior to focused-ion beam (FIB) milling. A quartz nanopore can then be FIB-milled into the side walls of the sealed pipette and used to analyze single nanoparticles. This method is fast, reproducible and creates nearly cylindrical nanopores in ultrathin quartz walls with controllable diameter down to 66 nm. Both pore size and wall thickness can be readily controlled in the FIB milling process by adjusting milling parameters and milling at different locations along the pipette walls. FIB-milled quartz nanopores combine the advantages of the pipette pores and silicon chip-based membrane pores into one device while avoiding many of the challenges of two popular nanopore devices. First, they can be used as a handheld probe device like a quartz pipette. Second, the use of an ultrathin quartz membrane gives them superior electric property enabling low noise recording at a higher bandwidth and a highly focused sensing zone located at a farther distance away from the highly restricted tip region. The inner and outer diameters of the resulting pore can be precisely measured using scanning electron microscopy (SEM). As an application, FIB-milled side nanopores are used to study translocation of polystyrene nanoparticles. In addition to studying the dependence of translocation time on the pore length, we demonstrate detection of nanoparticles in parallel nanopores of different lengths and use finite-element simulation to confirm the identity of the two resulting populations. Our results show that FIB-milled side nanopores are a useful platform for future analytical applications like studying nanoparticle translocation dynamics.
Collapse
Affiliation(s)
| | - Samuel T Barlow
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
256
|
Detecting topological variations of DNA at single-molecule level. Nat Commun 2019; 10:3. [PMID: 30602774 PMCID: PMC6315031 DOI: 10.1038/s41467-018-07924-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/05/2018] [Indexed: 11/08/2022] Open
Abstract
In addition to their use in DNA sequencing, ultrathin nanopore membranes have potential applications in detecting topological variations in deoxyribonucleic acid (DNA). This is due to the fact that when topologically edited DNA molecules, driven by electrophoretic forces, translocate through a narrow orifice, transient residings of edited segments inside the orifice modulate the ionic flow. Here we utilize two programmable barcoding methods based on base-pairing, namely forming a gap in dsDNA and creating protrusion sites in ssDNA for generating a hybrid DNA complex. We integrate a discriminative noise analysis for ds and ss DNA topologies into the threshold detection, resulting in improved multi-level signal detection and consequent extraction of reliable information about topological variations. Moreover, the positional information of the barcode along the template sequence can be determined unambiguously. All methods may be further modified to detect nicks in DNA, and thereby detect DNA damage and repair sites.
Collapse
|
257
|
Sahu S, Zwolak M. Colloquium: Ionic phenomena in nanoscale pores through 2D materials. REVIEWS OF MODERN PHYSICS 2019; 91:10.1103/RevModPhys.91.021004. [PMID: 31579274 PMCID: PMC6774369 DOI: 10.1103/revmodphys.91.021004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ion transport through nanopores permeates through many areas of science and technology, from cell behavior to sensing and separation to catalysis and batteries. Two-dimensional materials, such as graphene, molybdenum disulfide (MoS2), and hexagonal boron nitride (hBN), are recent additions to these fields. Low-dimensional materials present new opportunities to develop filtration, sensing, and power technologies, encompassing ion exclusion membranes, DNA sequencing, single molecule detection, osmotic power generation, and beyond. Moreover, the physics of ionic transport through pores and constrictions within these materials is a distinct realm of competing many-particle interactions (e.g., solvation/dehydration, electrostatic blockade, hydrogen bond dynamics) and confinement. This opens up alternative routes to creating biomimetic pores and may even give analogues of quantum phenomena, such as quantized conductance, in the classical domain. These prospects make membranes of 2D materials - i.e., 2D membranes - fascinating. We will discuss the physics and applications of ionic transport through nanopores in 2D membranes.
Collapse
Affiliation(s)
- Subin Sahu
- Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, USA
| | - Michael Zwolak
- Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
258
|
Sarap CS, Partovi-Azar P, Fyta M. Enhancing the optical detection of mutants from healthy DNA with diamondoids. J Mater Chem B 2019. [DOI: 10.1039/c9tb00122k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A polarized laser pulse can distinguish between healthy and mutated DNA nucleotides hydrogen bonded to small diamond cages.
Collapse
Affiliation(s)
| | - Pouya Partovi-Azar
- Institute of Chemistry
- Martin Luther University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - Maria Fyta
- Institute for Computational Physics
- Universität Stuttgart
- 70569 Stuttgart
- Germany
| |
Collapse
|
259
|
Taniguchi M, Ohshiro T. Nanopore Device for Single-Molecule Sensing Method and Its Application. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
260
|
Choi J, Lee CC, Park S. Scalable fabrication of sub-10 nm polymer nanopores for DNA analysis. MICROSYSTEMS & NANOENGINEERING 2019; 5:12. [PMID: 31057939 PMCID: PMC6453903 DOI: 10.1038/s41378-019-0050-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/26/2018] [Accepted: 12/26/2018] [Indexed: 05/16/2023]
Abstract
We present the first fabrication of sub-10 nm nanopores in freestanding polymer membranes via a simple, cost-effective, high-throughput but deterministic fabrication method. Nanopores in the range of 10 nm were initially produced via a single-step nanoimprinting process, which was further reduced to sub-10 nm pores via a post-NIL polymer reflow process. The low shrinkage rate of 2.7 nm/min obtained under the conditions used for the reflow process was the key to achieving sub-10 nm pores with a controllable pore size. The fabricated SU-8 nanopore membranes were successfully employed for transient current measurements during the translocation of DNA molecules through the nanopores.
Collapse
Affiliation(s)
- Junseo Choi
- Department of Mechanical & Industrial Engineering and Center for BioModular Multiscale Systems for Precision Medicine, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Charles C. Lee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Sunggook Park
- Department of Mechanical & Industrial Engineering and Center for BioModular Multiscale Systems for Precision Medicine, Louisiana State University, Baton Rouge, LA 70803 USA
| |
Collapse
|
261
|
Tsutsui M, Yokota K, Nakada T, Arima A, Tonomura W, Taniguchi M, Washio T, Kawai T. Particle Capture in Solid-State Multipores. ACS Sens 2018; 3:2693-2701. [PMID: 30421923 DOI: 10.1021/acssensors.8b01214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Utilization of multiple-channel structure is a promising way of accomplishing high-throughput detections of analytes in solid-state pore sensors. Here we report on systematic investigation of particle capture efficiency in Si3N4 multipore systems of various array configurations. We demonstrated enhanced detection throughput with increasing numbers of pore channels in a membrane. Meanwhile, we also observed significant contributions of the interchannel crosstalk in closely integrated multipores that tended to deteriorate throughput performance by causing shrinkage of the absorption zone via the interference-derived weakening of the electric field around the pore orifice. At the same time, the interference-derived electric field distributions were also found to diminish the electroosmotic contributions to the particle capture efficiency. The present findings can be useful in designing pore arrays with optimal throughput performance.
Collapse
Affiliation(s)
- Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Kazumichi Yokota
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Tomoko Nakada
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Akihide Arima
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Wataru Tonomura
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Takashi Washio
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Tomoji Kawai
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
262
|
Yamazaki H, Hu R, Zhao Q, Wanunu M. Photothermally Assisted Thinning of Silicon Nitride Membranes for Ultrathin Asymmetric Nanopores. ACS NANO 2018; 12:12472-12481. [PMID: 30457833 DOI: 10.1021/acsnano.8b06805] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sculpting solid-state materials at the nanoscale is an important step in the manufacturing of numerous types of sensor devices, in particular solid-state nanopore sensors. Here we present mechanistic insight into laser-induced thinning of low-stress silicon nitride (SiN x) membranes and films. In a recent study, we observed that focusing a visible wavelength laser beam on a SiN x membrane results in efficient localized heating, and we used this effect to control temperature at a solid-state nanopore sensor. A side-effect of the observed heating was that the pores expand/degrade under prolonged high-power illumination, prompting us to study the mechanism of this etching process. We find that SiN x can be etched under exposure to light of ∼107 W/cm2 average intensity, with etch rates that are influenced by the supporting electrolyte. Combining this controlled etching with dielectric breakdown, an electrokinetic process for making pores, nanopores of arbitrary dimensions as small as 1-2 nm in diameter and thickness can easily be fabricated. Evidence gathered from biomolecule-pore interactions suggests that the pore geometries obtained using this method are more funnel-like, rather than hourglass-shaped. Refined control over pore dimensions can expand the range of applications of solid-state nanopores, for example, biopolymer sequencing and detection of specific biomarkers.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Department of Physics , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Rui Hu
- State Key Laboratory for Mesoscopic Physics, School of Physics , Peking University , Beijing 100871 , People's Republic of China
| | - Qing Zhao
- State Key Laboratory for Mesoscopic Physics, School of Physics , Peking University , Beijing 100871 , People's Republic of China
| | - Meni Wanunu
- Department of Physics , Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
263
|
Varongchayakul N, Hersey J, Squires A, Meller A, Grinstaff M. A Solid-State Hard Microfluidic-Nanopore Biosensor with Multilayer Fluidics and On-Chip Bioassay/Purification Chamber. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1804182. [PMID: 31632230 PMCID: PMC6800661 DOI: 10.1002/adfm.201804182] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 05/21/2023]
Abstract
Solid-state nanopores are an emerging biosensor for nucleic acid and protein characterization. For use in a clinical setting, solid-state nanopore sensing requires sample preparation and purification, fluid handling, a heating element, electrical noise insulators, and an electrical readout detector, all of which hamper its translation to a point-of-care diagnostic device. A stand-alone microfluidic-based nanopore device is described that combines a bioassay reaction/purification chamber with a solid-state nanopore sensor. The microfluidic device is composed of the high-temperature/solvent resistance Zeonex plastic, formed via micro-machining and heat bonding, enabling the use of both a heat regulator and a magnetic controller. Fluid control through the microfluidic channels and chambers is controlled via fluid port selector valves and allows up-to eight different solutions. Electrical noise measurements and DNA translocation experiments demonstrate the integrity of the device, with performance comparable to a conventional stand-alone nanopore setup. However, the microfluidic-nanopore setup is superior in terms of ease of use. To showcase the utility of the device, single molecule detection of a DNA PCR product, after magnetic bead DNA separation, is accomplished on chip.
Collapse
Affiliation(s)
- Nitinun Varongchayakul
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston MA, 02215, USA
| | - Joseph Hersey
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston MA, 02215, USA
| | - Allison Squires
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Amit Meller
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston MA, 02215, USA
| | - Mark Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston MA, 02215, USA
| |
Collapse
|
264
|
Varongchayakul N, Song J, Meller A, Grinstaff MW. Single-molecule protein sensing in a nanopore: a tutorial. Chem Soc Rev 2018; 47:8512-8524. [PMID: 30328860 DOI: 10.1039/c8cs00106e] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proteins are the structural elements and machinery of cells responsible for a functioning biological architecture and homeostasis. Advances in nanotechnology are catalyzing key breakthroughs in many areas, including the analysis and study of proteins at the single-molecule level. Nanopore sensing is at the forefront of this revolution. This tutorial review provides readers a guidebook and reference for detecting and characterizing proteins at the single-molecule level using nanopores. Specifically, the review describes the key materials, nanoscale features, and design requirements of nanopores. It also discusses general design requirements as well as details on the analysis of protein translocation. Finally, the article provides the background necessary to understand current research trends and to encourage the identification of new biomedical applications for protein sensing using nanopores.
Collapse
|
265
|
Jia Z, Choi J, Park S. Surface Charge Density-Dependent DNA Capture through Polymer Planar Nanopores. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40927-40937. [PMID: 30371050 DOI: 10.1021/acsami.8b14423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Surface charge density of nanopore walls plays a critical role in DNA capture in nanopore-based sensing platforms. This paper studied the effect of surface charge density on the capture of double-stranded (ds) DNA molecules into a polymer planar nanopore numerically and experimentally. First, we simulated the effective driving force ( Feff) for the translocation of a dsDNA through a planar nanopore with different sizes and surface charge densities. Focus was given on the capture stage from the nanopore mouth into the nanopore by placing a rodlike DNA at the nanopore mouth rather than inside the nanopore. For negatively charged DNA and nanopore walls, electrophoretic driving force ( FEP) under an electric field is opposed by the viscous drag force by electroosmotic flow ( FEOF). As the surface charge density of the nanopore wall becomes more negative, FEOF exceeds FEP beyond a threshold surface charge density, σthreshold, where DNA molecules cannot be driven through the nanopore via electrophoretic motion. For a 10 nm diameter nanopore filled with 1× TE buffer, σthreshold was determined to be -50 mC/m2. The simulation results were verified by performing dsDNA translocation experiments using a planar nanopore with 10 nm equivalent diameter imprinted on three polymer substrates with different surface charge densities. Both fluorescence observation and ionic current measurement confirmed that only nanopore devices with the surface charge density less negative than σthreshold allowed DNA translocation, indicating that the simulated σthreshold value can be used as a parameter to estimate the translocation of biopolymers in the design of nanopore devices.
Collapse
Affiliation(s)
- Zheng Jia
- Mechanical & Industrial Engineering Department and Center for BioModular Multiscale Systems for Precision Medicine , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Junseo Choi
- Mechanical & Industrial Engineering Department and Center for BioModular Multiscale Systems for Precision Medicine , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Sunggook Park
- Mechanical & Industrial Engineering Department and Center for BioModular Multiscale Systems for Precision Medicine , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
266
|
Ying C, Houghtaling J, Eggenberger OM, Guha A, Nirmalraj P, Awasthi S, Tian J, Mayer M. Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown. ACS NANO 2018; 12:11458-11470. [PMID: 30335956 DOI: 10.1021/acsnano.8b06489] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanopores with diameters from 20 to 50 nm in silicon nitride (SiN x) windows are useful for single-molecule studies of globular macromolecules. While controlled breakdown (CBD) is gaining popularity as a method for fabricating nanopores with reproducible size control and broad accessibility, attempts to fabricate large nanopores with diameters exceeding ∼20 nm via breakdown often result in undesirable formation of multiple nanopores in SiN x membranes. To reduce the probability of producing multiple pores, we combined two strategies: laser-assisted breakdown and controlled pore enlargement by limiting the applied voltage. Based on laser power-dependent increases in nanopore conductance upon illumination and on the absence of an effect of ionic strength on the ratio between the nanopore conductance before and after laser illumination, we suggest that the increased rate of controlled breakdown results from laser-induced heating. Moreover, we demonstrate that conductance values before and after coating the nanopores with a fluid lipid bilayer can indicate fabrication of a single nanopore versus multiple nanopores. Complementary flux measurements of Ca2+ through the nanopore typically confirmed assessments of single or multiple nanopores that we obtained using the coating method. Finally, we show that thermal annealing of CBD pores significantly increased the success rate of coating and reduced the current noise before and after lipid coating. We characterize the geometry of these nanopores by analyzing individual resistive pulses produced by translocations of spherical proteins and demonstrate the usefulness of these nanopores for estimating the approximate molecular shape of IgG proteins.
Collapse
Affiliation(s)
- Cuifeng Ying
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Jared Houghtaling
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
- Department of Biomedical Engineering , University of Michigan , 2200 Bonisteel Boulevard , Ann Arbor , Michigan 48109 , United States
| | - Olivia M Eggenberger
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Anirvan Guha
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Peter Nirmalraj
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Saurabh Awasthi
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Jianguo Tian
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics , Nankai University , Tianjin 300071 , China
| | - Michael Mayer
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| |
Collapse
|
267
|
Wen C, Zeng S, Zhang Z, Zhang SL. Group Behavior of Nanoparticles Translocating Multiple Nanopores. Anal Chem 2018; 90:13483-13490. [PMID: 30372031 DOI: 10.1021/acs.analchem.8b03408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanopores have been implemented as nanosensors for DNA sequencing, biomolecule inspection, chemical analysis, nanoparticle detection, etc. For high-throughput and parallelized measurement using nanopore arrays, individual addressability has been a crucial technological solution in order to enable scrutiny of signals generated at each and every nanopore. Here, an alternative pathway of employing arrayed nanopores to perform sensor functions is investigated by examining the group behavior of nanoparticles translocating multiple nanopores. As no individual addressability is required, fabrication of nanopore devices along with microfluidic cells and readout circuits can be greatly simplified. Experimentally, arrays of less than 10 pores are shown to be capable of analyzing translocating nanoparticles with a good signal-to-noise margin. According to theoretical predictions, more pores (than 10) per array can perform high-fidelity analysis if the noise level of the measurement system can be better controlled. More pores per array would also allow for faster measurement at lower concentration because of larger capture cross sections for target nanoparticles. By experimentally varying the number of pores, the concentration of nanoparticles, or the applied bias voltage across the nanopores, we have identified the basic characteristics of this multievent process. By characterizing average pore current and associated standard deviation during translocation and by performing physical modeling and extensive numerical simulations, we have shown the possibility of determining the size and concentration of two kinds of translocating nanoparticles over 4 orders of magnitude in concentration. Hence, we have demonstrated the potential and versatility of the multiple-nanopore approach for high-throughput nanoparticle detection.
Collapse
Affiliation(s)
- Chenyu Wen
- Division of Solid-State Electronics, The Ångström Laboratory , Uppsala University , SE-751 21 Uppsala , Sweden
| | - Shuangshuang Zeng
- Division of Solid-State Electronics, The Ångström Laboratory , Uppsala University , SE-751 21 Uppsala , Sweden
| | - Zhen Zhang
- Division of Solid-State Electronics, The Ångström Laboratory , Uppsala University , SE-751 21 Uppsala , Sweden
| | - Shi-Li Zhang
- Division of Solid-State Electronics, The Ångström Laboratory , Uppsala University , SE-751 21 Uppsala , Sweden
| |
Collapse
|
268
|
Sha J, Si W, Xu B, Zhang S, Li K, Lin K, Shi H, Chen Y. Identification of Spherical and Nonspherical Proteins by a Solid-State Nanopore. Anal Chem 2018; 90:13826-13831. [DOI: 10.1021/acs.analchem.8b04136] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jingjie Sha
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Wei Si
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Bing Xu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Shuai Zhang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Kun Li
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Kabin Lin
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Hongjiao Shi
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Yunfei Chen
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
269
|
Arima A, Tsutsui M, Harlisa IH, Yoshida T, Tanaka M, Yokota K, Tonomura W, Taniguchi M, Okochi M, Washio T, Kawai T. Selective detections of single-viruses using solid-state nanopores. Sci Rep 2018; 8:16305. [PMID: 30390013 PMCID: PMC6214978 DOI: 10.1038/s41598-018-34665-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/23/2018] [Indexed: 01/31/2023] Open
Abstract
Rapid diagnosis of flu before symptom onsets can revolutionize our health through diminishing a risk for serious complication as well as preventing infectious disease outbreak. Sensor sensitivity and selectivity are key to accomplish this goal as the number of virus is quite small at the early stage of infection. Here we report on label-free electrical diagnostics of influenza based on nanopore analytics that distinguishes individual virions by their distinct physical features. We accomplish selective resistive-pulse sensing of single flu virus having negative surface charges in a physiological media by exploiting electroosmotic flow to filter contaminants at the Si3N4 pore orifice. We demonstrate identifications of allotypes with 68% accuracy at the single-virus level via pattern classifications of the ionic current signatures. We also show that this discriminability becomes >95% under a binomial distribution theorem by ensembling the pulse data of >20 virions. This simple mechanism is versatile for point-of-care tests of a wide range of flu types.
Collapse
Affiliation(s)
- Akihide Arima
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| | - Ilva Hanun Harlisa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Takeshi Yoshida
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Kazumichi Yokota
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Wataru Tonomura
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Takashi Washio
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| | - Tomoji Kawai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
270
|
Hulings ZK, Melnikov DV, Gracheva ME. Brownian dynamics simulations of the ionic current traces for a neutral nanoparticle translocating through a nanopore. NANOTECHNOLOGY 2018; 29:445204. [PMID: 30109992 DOI: 10.1088/1361-6528/aada64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, the ionic current blockades due to the translocation of a neutral spherical nanoparticle through a nanopore in a solid state membrane are computed. We use a Brownian dynamics approach, in conjunction with a full three-dimensional self-consistent solution of the Poisson-Nernst-Planck and Navier-Stockes system of equations to describe realistic ionic current response arising due to the random motion of a nanoparticle through a nanopore. We find that in addition to the usual geometric blockade, the variations of the current along the axis of the pore are largely caused by a concentration polarization induced by the presence of the translocating nanoparticle in the nanopore while the current changes in the radial (perpendicular to the axis) direction occur because of the local build up of the ionic charge between the particle and the nanopore surface. By performing statistical analysis of the current traces, we also observe that, in general, smaller current blockade values correspond to faster translocation times, while increased dwell times result in a larger current decrease.
Collapse
Affiliation(s)
- Zachery K Hulings
- Department of Physics, Clarkson University, Potsdam, NY 13699, United States of America
| | | | | |
Collapse
|
271
|
Gao P, Ma Q, Ding D, Wang D, Lou X, Zhai T, Xia F. Distinct functional elements for outer-surface anti-interference and inner-wall ion gating of nanochannels. Nat Commun 2018; 9:4557. [PMID: 30385758 PMCID: PMC6212446 DOI: 10.1038/s41467-018-06873-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022] Open
Abstract
Over the decades, widespread advances have been achieved on nanochannels, including nanochannel-based DNA sequencing, single-molecule detection, smart sensors, and energy transfer and storage. However, most interest has been focused on the contribution from the functional elements (FEs) at the inner wall (IW) of nanochannels, whereas little attention has been paid to the contribution from the FEs at the nanochannels' outer surface (OS). Herein, we achieve explicit partition of FEOS and FEIW based on accurate regional-modification of OS and IW. The FEIW are served for ionic gating, and the chosen FEOS (hydrophobic or charged) are served for blocking interference molecules into the nanochannels, decreasing the false signals for the ionic gating in complex environments. Furthermore, we define a composite factor, areas of a radar map, to evaluate the FEOS performance for blocking interference molecules.
Collapse
Affiliation(s)
- Pengcheng Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 lumo Road, 430074, Wuhan, China
| | - Qun Ma
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 lumo Road, 430074, Wuhan, China
| | - Defang Ding
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 lumo Road, 430074, Wuhan, China
| | - Dagui Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 lumo Road, 430074, Wuhan, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 lumo Road, 430074, Wuhan, China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Sciences and Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 lumo Road, 430074, Wuhan, China.
| |
Collapse
|
272
|
Wasfi A, Awwad F, Ayesh AI. Graphene-based nanopore approaches for DNA sequencing: A literature review. Biosens Bioelectron 2018; 119:191-203. [DOI: 10.1016/j.bios.2018.07.072] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
|
273
|
Houghtaling J, List J, Mayer M. Nanopore-Based, Rapid Characterization of Individual Amyloid Particles in Solution: Concepts, Challenges, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802412. [PMID: 30225962 DOI: 10.1002/smll.201802412] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Aggregates of misfolded proteins are associated with several devastating neurodegenerative diseases. These so-called amyloids are therefore explored as biomarkers for the diagnosis of dementia and other disorders, as well as for monitoring disease progression and assessment of the efficacy of therapeutic interventions. Quantification and characterization of amyloids as biomarkers is particularly demanding because the same amyloid-forming protein can exist in different states of assembly, ranging from nanometer-sized monomers to micrometer-long fibrils that interchange dynamically both in vivo and in samples from body fluids ex vivo. Soluble oligomeric amyloid aggregates, in particular, are associated with neurotoxic effects, and their molecular organization, size, and shape appear to determine their toxicity. This concept article proposes that the emerging field of nanopore-based analytics on a single molecule and single aggregate level holds the potential to account for the heterogeneity of amyloid samples and to characterize these particles-rapidly, label-free, and in aqueous solution-with regard to their size, shape, and abundance. The article describes the concept of nanopore-based resistive pulse sensing, reviews previous work in amyloid analysis, and discusses limitations and challenges that will need to be overcome to realize the full potential of amyloid characterization on a single-particle level.
Collapse
Affiliation(s)
- Jared Houghtaling
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Jonathan List
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| |
Collapse
|
274
|
Raza MU, Peri SSS, Ma LC, Iqbal SM, Alexandrakis G. Self-induced back action actuated nanopore electrophoresis (SANE). NANOTECHNOLOGY 2018; 29:435501. [PMID: 30073973 DOI: 10.1088/1361-6528/aad7d1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We present a novel method to trap nanoparticles in double nanohole (DNH) nanoapertures integrated on top of solid-state nanopores (ssNP). The nanoparticles were propelled by an electrophoretic force from the cis towards the trans side of the nanopore but were trapped in the process when they reached the vicinity of the DNH-ssNP interface. The self-induced back action (SIBA) plasmonic force existing between the tips of the DNH opposed the electrophoretic force and enabled simultaneous optical and electrical sensing of a single nanoparticle for seconds. The novel SIBA actuated nanopore electrophoresis (SANE) sensor was fabricated using two-beam GFIS FIB. Firstly, Ne FIB milling was used to create the DNH features and was combined with end pointing to stop milling at the metal-dielectric interface. Subsequently, He FIB was used to drill a 25 nm nanopore through the center of the DNH. Proof of principle experiments to demonstrate the potential utility of the SANE sensor were performed with 20 nm silica and Au nanoparticles. The addition of optical trapping to electrical sensing extended translocation times by four orders of magnitude. The extended electrical measurement times revealed newly observed high frequency charge transients that were attributed to bobbing of the nanoparticle driven by the competing optical and electrical forces. Frequency analysis of this bobbing behavior hinted at the possibility of distinguishing single from multi-particle trapping events. We also discuss how SANE sensor measurement characteristics differ between silica and Au nanoparticles due to differences in their physical properties and how to estimate the charge around a nanoparticle. These measurements show promise for the SANE sensor as an enabling tool for selective detection of biomolecules and quantification of their interactions.
Collapse
Affiliation(s)
- Muhammad Usman Raza
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | | | | | | | | |
Collapse
|
275
|
Neves MMPDS, Martín-Yerga D. Advanced Nanoscale Approaches to Single-(Bio)entity Sensing and Imaging. BIOSENSORS 2018; 8:E100. [PMID: 30373209 PMCID: PMC6316691 DOI: 10.3390/bios8040100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
Abstract
Individual (bio)chemical entities could show a very heterogeneous behaviour under the same conditions that could be relevant in many biological processes of significance in the life sciences. Conventional detection approaches are only able to detect the average response of an ensemble of entities and assume that all entities are identical. From this perspective, important information about the heterogeneities or rare (stochastic) events happening in individual entities would remain unseen. Some nanoscale tools present interesting physicochemical properties that enable the possibility to detect systems at the single-entity level, acquiring richer information than conventional methods. In this review, we introduce the foundations and the latest advances of several nanoscale approaches to sensing and imaging individual (bio)entities using nanoprobes, nanopores, nanoimpacts, nanoplasmonics and nanomachines. Several (bio)entities such as cells, proteins, nucleic acids, vesicles and viruses are specifically considered. These nanoscale approaches provide a wide and complete toolbox for the study of many biological systems at the single-entity level.
Collapse
Affiliation(s)
| | - Daniel Martín-Yerga
- Department of Chemical Engineering, KTH Royal Institute of Technology, 100-44 Stockholm, Sweden.
| |
Collapse
|
276
|
Roman J, Français O, Jarroux N, Patriarche G, Pelta J, Bacri L, Le Pioufle B. Solid-State Nanopore Easy Chip Integration in a Cheap and Reusable Microfluidic Device for Ion Transport and Polymer Conformation Sensing. ACS Sens 2018; 3:2129-2137. [PMID: 30284814 DOI: 10.1021/acssensors.8b00700] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Solid-state nanopores have a huge potential in upcoming societal challenging applications in biotechnologies, environment, health, and energy. Nowadays, these sensors are often used within bulky fluidic devices that can cause cross-contaminations and risky nanopore chips manipulations, leading to a short experimental lifetime. We describe the easy, fast, and cheap innovative 3D-printer-helped protocol to manufacture a microfluidic device permitting the reversible integration of a silicon based chip containing a single nanopore. We show the relevance of the shape of the obtained channels thanks to finite elements simulations. We use this device to thoroughly investigate the ionic transport through the solid-state nanopore as a function of applied voltage, salt nature, and concentration. Furthermore, its reliability is proved through the characterization of a polymer-based model of protein-urea interactions on the nanometric scale thanks to a hairy nanopore.
Collapse
Affiliation(s)
- Jean Roman
- ENS Paris-Saclay, CNRS, Institut d’Alembert, SATIE, Université Paris-Saclay, Cachan F-94230, France
- LAMBE, Université Evry, CNRS, CEA, Université Paris-Saclay, Evry F-91025, France
| | - Olivier Français
- ESIEE-Paris, ESYCOM, Université Paris Est, Noisy-Le-Grand F-93160, France
| | - Nathalie Jarroux
- LAMBE, Université Evry, CNRS, CEA, Université Paris-Saclay, Evry F-91025, France
| | - Gilles Patriarche
- C2N, CNRS, Université Paris-Sud, Université Paris-Saclay, C2N-Marcoussis, Marcoussis F-91460, France
| | - Juan Pelta
- LAMBE, Université Evry, CNRS, CEA, Université Paris-Saclay, Evry F-91025, France
| | - Laurent Bacri
- LAMBE, Université Evry, CNRS, CEA, Université Paris-Saclay, Evry F-91025, France
| | - Bruno Le Pioufle
- ENS Paris-Saclay, CNRS, Institut d’Alembert, SATIE, Université Paris-Saclay, Cachan F-94230, France
| |
Collapse
|
277
|
Chen X, Wang L, Roozbahani GM, Zhang Y, Xiang J, Guan X. Nanopore label-free detection of single-nucleotide deletion in Baxα/BaxΔ2. Electrophoresis 2018; 39:2410-2416. [PMID: 29998460 PMCID: PMC6168411 DOI: 10.1002/elps.201800193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/14/2018] [Accepted: 07/01/2018] [Indexed: 12/13/2022]
Abstract
Baxα, a key tumor suppressor gene, will not be expressed correctly as a result of single nucleotide mutation in its microsatellite region; Instead, BaxΔ2, an isoform of Baxα, is often produced. In addition, lack of the exon 2 due to an alternative splicing, BaxΔ2 has the same sequence as Baxα except single base deletion from eight continuous guanines (G8) to G7. Most of the currently available methods for Bax∆2 detection are inefficient and time-consuming, and/or require the use of labels or dyes. In this work, we reported a label-free nanopore sensing strategy to differentiate between Baxα and BaxΔ2 with a DNA polymer as a molecular probe based on alternative spliced sequences. Two DNA molecules were designed to selectively detect Baxα and BaxΔ2, respectively. The method was rapid, accurate, and highly sensitive: picomolar concentrations of target nucleic acids could be detected in minutes. Our developed simple and fast nanopore-based detection strategy is not only useful for distinguishing between Baxα and Bax∆2, but also provides a useful tool for detection of other single-base mutations in genetic diagnosis.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Golbarg M Roozbahani
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jialing Xiang
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
278
|
Lee K, Park KB, Kim HJ, Yu JS, Chae H, Kim HM, Kim KB. Recent Progress in Solid-State Nanopores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704680. [PMID: 30260506 DOI: 10.1002/adma.201704680] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 06/08/2018] [Indexed: 05/28/2023]
Abstract
The solid-state nanopore has attracted much attention as a next-generation DNA sequencing tool or a single-molecule biosensor platform with its high sensitivity of biomolecule detection. The platform has advantages of processability, robustness of the device, and flexibility in the nanopore dimensions as compared with the protein nanopore, but with the limitation of insufficient spatial and temporal resolution to be utilized in DNA sequencing. Here, the fundamental principles of the solid-state nanopore are summarized to illustrate the novelty of the device, and improvements in the performance of the platform in terms of device fabrication are explained. The efforts to reduce the electrical noise of solid-state nanopore devices, and thus to enhance the sensitivity of detection, are presented along with detailed descriptions of the noise properties of the solid-state nanopore. Applications of 2D materials including graphene, h-BN, and MoS2 as a nanopore membrane to enhance the spatial resolution of nanopore detection, and organic coatings on the nanopore membranes for the addition of chemical functionality to the nanopore are summarized. Finally, the recently reported applications of the solid-state nanopore are categorized and described according to the target biomolecules: DNA-bound proteins, modified DNA structures, proteins, and protein oligomers.
Collapse
Affiliation(s)
- Kidan Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyeong-Beom Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung-Jun Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Seok Yu
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongsik Chae
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Mi Kim
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki-Bum Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
279
|
Fraccari RL, Carminati M, Piantanida G, Leontidou T, Ferrari G, Albrecht T. High-bandwidth detection of short DNA in nanopipettes. Faraday Discuss 2018; 193:459-470. [PMID: 27711887 DOI: 10.1039/c6fd00109b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glass or quartz nanopipettes have found increasing use as tools for studying the biophysical properties of DNA and proteins, and as sensor devices. The ease of fabrication, favourable wetting properties and low capacitance are some of the inherent advantages, for example compared to more conventional, silicon-based nanopore chips. Recently, we have demonstrated high-bandwidth detection of double-stranded (ds) DNA with microsecond time resolution in nanopipettes, using custom-designed electronics. The electronics design has now been refined to include more sophisticated control features, such as integrated bias reversal and other features. Here, we exploit these capabilities and probe the translocation of short dsDNA in the 100 bp range, in different electrolytes. Single-stranded (ss) DNA of similar length are in use as capture probes, so label-free detection of their ds counterparts could therefore be of relevance in disease diagnostics.
Collapse
Affiliation(s)
- Raquel L Fraccari
- Imperial College London, Department of Chemistry, Exhibition, Road, London SW7 2AZ, UK.
| | - Marco Carminati
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, P.za, Leonardo da Vinci 32, Milano, Italy
| | - Giacomo Piantanida
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, P.za, Leonardo da Vinci 32, Milano, Italy
| | - Tina Leontidou
- Imperial College London, Department of Chemistry, Exhibition, Road, London SW7 2AZ, UK.
| | - Giorgio Ferrari
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, P.za, Leonardo da Vinci 32, Milano, Italy
| | - Tim Albrecht
- Imperial College London, Department of Chemistry, Exhibition, Road, London SW7 2AZ, UK.
| |
Collapse
|
280
|
Noise Analysis of Monolayer Graphene Nanopores. Int J Mol Sci 2018; 19:ijms19092639. [PMID: 30200591 PMCID: PMC6164171 DOI: 10.3390/ijms19092639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/21/2018] [Accepted: 09/03/2018] [Indexed: 12/02/2022] Open
Abstract
Graphene-based nanopore devices have shown tantalizing potential in single molecule detection for their monoatomic membrane thickness which is roughly equal to the gap between nucleobases. However, high noise level hampers applications of graphene nanopore sensors, especially at low frequencies. In this article, we report on a study of the contribution of suspended graphene area to noise level in full frequency band. Monolayer graphene films are transferred onto SiNx substrates preset with holes in varied diameters and formed self-supported films. After that, the films are perforated with smaller, nanoscale holes. Experimental studies indicate a dependency of low-frequency 1/f noise on the underlying SiNx geometry. The contribution of the suspended graphene area to capacitance which affects the noise level in the high frequency range reveals that the graphene free-standing film area influences noise level over a wide frequency region. In addition, the low-frequency noise demonstrates a weak dependency on salt concentration, in deviation from Hooge’s relation. These findings and attendant analysis provide a systematic understanding of the noise characteristics and can serve as a guide to designing free-standing monolayer graphene nanopore devices.
Collapse
|
281
|
JIANG XJ, LIANG RN, QIN W. Research Advances in Ion Channel-based Electrochemical Sensing Techniques. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61108-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
282
|
Hanif I, Camara O, Tunes MA, Harrison RW, Greaves G, Donnelly SE, Hinks JA. Ion-beam-induced bending of semiconductor nanowires. NANOTECHNOLOGY 2018; 29:335701. [PMID: 29781443 DOI: 10.1088/1361-6528/aac659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The miniaturisation of technology increasingly requires the development of both new structures as well as novel techniques for their manufacture and modification. Semiconductor nanowires (NWs) are a prime example of this and as such have been the subject of intense scientific research for applications ranging from microelectronics to nano-electromechanical devices. Ion irradiation has long been a key processing step for semiconductors and the natural extension of this technique to the modification of semiconductor NWs has led to the discovery of ion beam-induced deformation effects. In this work, transmission electron microscopy with in situ ion bombardment has been used to directly observe the evolution of individual silicon and germanium NWs under irradiation. Silicon NWs were irradiated with either 6 keV neon ions or xenon ions at 5, 7 or 9.5 keV with a flux of 3 × 1013 ions cm-2 s-1. Germanium NWs were irradiated with 30 or 70 keV xenon ions with a flux of 1013 ions cm-2 s-1. These new results are combined with those reported in the literature in a systematic analysis using a custom implementation of the transport of ions in matter Monte Carlo computer code to facilitate a direct comparison with experimental results taking into account the wide range of experimental conditions. Across the various studies this has revealed underlying trends and forms the basis of a critical review of the various mechanisms which have been proposed to explain the deformation of semiconductor NWs under ion irradiation.
Collapse
Affiliation(s)
- Imran Hanif
- School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
283
|
Ren YA, Gao H, Ouyang X. Advances in DNA Origami Nanopores: Fabrication, Characterization and Applications. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yong-An Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Material Science; Northwest University; Xi'an Shaanxi 710127 China
| | - Han Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Material Science; Northwest University; Xi'an Shaanxi 710127 China
| | - Xiangyuan Ouyang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Material Science; Northwest University; Xi'an Shaanxi 710127 China
| |
Collapse
|
284
|
Choi W, Jeon ES, Chun KY, Kim YR, Park KB, Kim KB, Han CS. A low-noise silicon nitride nanopore device on a polymer substrate. PLoS One 2018; 13:e0200831. [PMID: 30028848 PMCID: PMC6054398 DOI: 10.1371/journal.pone.0200831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/14/2018] [Indexed: 11/19/2022] Open
Abstract
We report a novel low-noise nanopore device employing a polymer substrate. The Si substrate of a fabricated Si-substrate-based silicon nitride (Si3N4) membrane was replaced with a polymer substrate. As such, laser machining was used to make a micro-size hole through the polyimide (PI) substrate, and a thin Si3N4 membrane was then transferred onto the PI substrate. Finally, a nanopore was formed in the membrane using a transmission electron microscope for detection of biomolecules. Compared to the Si-substrate-based device, the dielectric noise was greatly reduced and the root-mean-square noise level was decreased from 146.7 to 5.4 pA. Using this device, the translocation of double-strand deoxyribonucleic acid (DNA) was detected with a high signal/noise (S/N) ratio. This type of device is anticipated to be available for future versatile sequencing technologies.
Collapse
Affiliation(s)
- Wook Choi
- School of Mechanical Engineering, College of Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, Korea
| | - Eun-Seok Jeon
- School of Mechanical Engineering, College of Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, Korea
| | - Kyoung-Yong Chun
- School of Mechanical Engineering, College of Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, Korea
| | - Young-Rok Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea
| | - Kyeong-Beom Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, Korea
| | - Ki-Bum Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, Korea
| | - Chang-Soo Han
- School of Mechanical Engineering, College of Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, Korea
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea
| |
Collapse
|
285
|
Complex silica composite nanomaterials templated with DNA origami. Nature 2018; 559:593-598. [DOI: 10.1038/s41586-018-0332-7] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/14/2018] [Indexed: 11/09/2022]
|
286
|
Yanagi I, Hamamura H, Akahori R, Takeda KI. Two-step breakdown of a SiN membrane for nanopore fabrication: Formation of thin portion and penetration. Sci Rep 2018; 8:10129. [PMID: 29973672 PMCID: PMC6031669 DOI: 10.1038/s41598-018-28524-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/22/2018] [Indexed: 11/09/2022] Open
Abstract
For the nanopore sensing of various large molecules, such as probe-labelled DNA and antigen-antibody complexes, the nanopore size has to be customized for each target molecule. The recently developed nanopore fabrication method utilizing dielectric breakdown of a membrane is simple and quite inexpensive, but it is somewhat unsuitable for the stable fabrication of a single large nanopore due to the risk of generating multiple nanopores. To overcome this bottleneck, we propose a new technique called “two-step breakdown” (TSB). In the first step of TSB, a local conductive thin portion (not a nanopore) is formed in the membrane by dielectric breakdown. In the second step, the created thin portion is penetrated by voltage pulses whose polarity is opposite to the polarity of the voltage used in the first step. By applying TSB to a 20-nm-thick SiN membrane, a single nanopore with a diameter of 21–26 nm could be fabricated with a high yield of 83%.
Collapse
Affiliation(s)
- Itaru Yanagi
- Hitachi Ltd., Research & Development Group, Center for Technology Innovation - Healthcare, 1-280, Higashi-koigakubo, Kokubunji, Tokyo, 185-8603, Japan.
| | - Hirotaka Hamamura
- Hitachi Ltd., Research & Development Group, Center for Technology Innovation - Healthcare, 1-280, Higashi-koigakubo, Kokubunji, Tokyo, 185-8603, Japan
| | - Rena Akahori
- Hitachi Ltd., Research & Development Group, Center for Technology Innovation - Healthcare, 1-280, Higashi-koigakubo, Kokubunji, Tokyo, 185-8603, Japan
| | - Ken-Ichi Takeda
- Hitachi Ltd., Research & Development Group, Center for Technology Innovation - Healthcare, 1-280, Higashi-koigakubo, Kokubunji, Tokyo, 185-8603, Japan
| |
Collapse
|
287
|
Lin Y, Ying YL, Gao R, Long YT. Single-Molecule Sensing with Nanopore Confinement: From Chemical Reactions to Biological Interactions. Chemistry 2018; 24:13064-13071. [DOI: 10.1002/chem.201800669] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Yao Lin
- Key Laboratory for Advanced Materials & School of, Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Yi-Lun Ying
- Key Laboratory for Advanced Materials & School of, Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Rui Gao
- Key Laboratory for Advanced Materials & School of, Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & School of, Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai 200237 P.R. China
| |
Collapse
|
288
|
Optically-Monitored Nanopore Fabrication Using a Focused Laser Beam. Sci Rep 2018; 8:9765. [PMID: 29950607 PMCID: PMC6021433 DOI: 10.1038/s41598-018-28136-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/18/2018] [Indexed: 12/25/2022] Open
Abstract
Solid-state nanopores (ssNPs) are extremely versatile single-molecule sensors and their potential have been established in numerous biomedical applications. However, the fabrication of ssNPs remains the main bottleneck to their widespread use. Herein, we introduce a rapid and localizable ssNPs fabrication method based on feedback-controlled optical etching. We show that a focused blue laser beam irreversibly etches silicon nitride (SiNx) membranes in solution. Furthermore, photoluminescence (PL) emitted from the SiNx is used to monitor the etching process in real-time, hence permitting rate adjustment. Transmission electron microscopy (TEM) images of the etched area reveal an inverted Gaussian thickness profile, corresponding to the intensity point spread function of the laser beam. Continued laser exposure leads to the opening of a nanopore, which can be controlled to reproducibly fabricate nanopores of different sizes. The optically-formed ssNPs exhibit electrical noise on par with TEM-drilled pores, and translocate DNA and proteins readily. Notably, due to the localized thinning, the laser-drilled ssNPs exhibit highly suppressed background PL and improved spatial resolution. Given the total control over the nanopore position, this easily implemented method is ideally suited for electro-optical sensing and opens up the possibility of fabricating large nanopore arrays in situ.
Collapse
|
289
|
Zhou J, Kondylis P, Haywood DG, Harms ZD, Lee LS, Zlotnick A, Jacobson SC. Characterization of Virus Capsids and Their Assembly Intermediates by Multicycle Resistive-Pulse Sensing with Four Pores in Series. Anal Chem 2018; 90:7267-7274. [PMID: 29708733 PMCID: PMC6039186 DOI: 10.1021/acs.analchem.8b00452] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Virus self-assembly is a critical step in the virus lifecycle. Understanding how viruses assemble and disassemble provides needed insight into developing antiviral pharmaceuticals. Few tools offer sufficient resolution to study assembly intermediates that differ in size by a few dimers. Our goal is to improve resistive-pulse sensing on nanofluidic devices to offer better particle-size and temporal resolution to study intermediates and capsids generated along the assembly pathway. To increase the particle-size resolution of the resistive-pulse technique, we measured the same, single virus particles up to a thousand times, cycling them back and forth across a series of nanopores by switching the polarity of the applied potential, i.e., virus ping-pong. Multiple pores in series provide a unique multipulse signature during each cycle that improves particle tracking and, therefore, identification of a single particle and reduces the number of cycles needed to make the requisite number of measurements. With T = 3 and T = 4 hepatitis B virus (HBV) capsids, we showed the standard deviation of the particle-size distribution decreased with the square root of the number of measurements and approached discriminating particles differing in size by single dimers. We then studied in vitro assembly of HBV capsids and observed that the ensemble of intermediates shift to larger sizes over 2 days of annealing. On the contrary, assembly reactions diluted to lower dimer concentrations an hour after initiation had fewer intermediates that persisted after the 2 day incubation and had a higher ratio of T = 4 to T = 3 capsids. These reactions indicate that labile T = 4 intermediates are formed rapidly, and dependent on conditions, intermediates may be trapped as metastable species or progress to yield complete capsids.
Collapse
Affiliation(s)
- Jinsheng Zhou
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | | | | | - Zachary D. Harms
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Lye Siang Lee
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | | |
Collapse
|
290
|
Athreya NBM, Sarathy A, Leburton JP. Large Scale Parallel DNA Detection by Two-Dimensional Solid-State Multipore Systems. ACS Sens 2018; 3:1032-1039. [PMID: 29663800 DOI: 10.1021/acssensors.8b00192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe a scalable device design of a dense array of multiple nanopores made from nanoscale semiconductor materials to detect and identify translocations of many biomolecules in a massively parallel detection scheme. We use molecular dynamics coupled to nanoscale device simulations to illustrate the ability of this device setup to uniquely identify DNA parallel translocations. We show that the transverse sheet currents along membranes are immune to the crosstalk effects arising from simultaneous translocations of biomolecules through multiple pores, due to their ability to sense only the local potential changes. We also show that electronic sensing across the nanopore membrane offers a higher detection resolution compared to ionic current blocking technique in a multipore setup, irrespective of the irregularities that occur while fabricating the nanopores in a two-dimensional membrane.
Collapse
|
291
|
Coglitore D, Merenda A, Giamblanco N, Dumée LF, Janot JM, Balme S. Metal alloy solid-state nanopores for single nanoparticle detection. Phys Chem Chem Phys 2018; 20:12799-12807. [PMID: 29697724 DOI: 10.1039/c8cp01787e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Solid-state nanopore technology for nanoparticle sensing is considered for the development of analytical tools to characterise their size, shape or zeta potential. In this field, it is crucial to understand how the nanopore inner surface influences the dynamic of nanoparticle translocation. Here, three single nanopores directly drilled in metal alloys (titanium nitride, titanium-tantalum and tantalum) are considered. The translocation of polystyrene nanoparticles coated with ssDNA is investigated by the resistive pulse method at different concentrations and voltages. The results show that the nanoparticle energy barrier for entrance into the pore decreases for nanopores that exhibits a higher surface energy and hydrophilicity, while the dwell time is found to depend on the nanopore surface state. Overall, this study demonstrates that the control of nanopore surface state must be taken into account for the resistive pulse experiments for nanoparticle detection.
Collapse
Affiliation(s)
- Diego Coglitore
- Institut Européen des Membranes, UMR5635, Université de Montpellier CNRS ENSCM, Place Eugène Bataillon, 34090 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
292
|
Ding H, Zhang Q, Gu Z, Gu M. 3D computer-aided nanoprinting for solid-state nanopores. NANOSCALE HORIZONS 2018; 3:312-316. [PMID: 32254079 DOI: 10.1039/c8nh00006a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here we report on the generation of solid-state nanopores with controllable sizes and shapes based on direct laser writing with a computer-aided two-photon polymerization process. Through a theoretical and experimental study of the accumulation effect during the two-photon polymerization, we have achieved nanopores with an inner diameter of down to ∼λ/10 (76.9 nm) for the first time, which is far beyond Abbe's diffraction limit. The generated nanopores can be stacked to form a channel with desired asymmetric shapes. This work provides the potential to integrate the solid-state nanopores into functional devices and opens up a new avenue for optimizing the gating properties of artificial membranes.
Collapse
Affiliation(s)
- Haibo Ding
- Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, VIC 3001, Australia.
| | | | | | | |
Collapse
|
293
|
Ananth A, Genua M, Aissaoui N, Díaz L, Eisele NB, Frey S, Dekker C, Richter RP, Görlich D. Reversible Immobilization of Proteins in Sensors and Solid-State Nanopores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703357. [PMID: 29611258 DOI: 10.1002/smll.201703357] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/13/2018] [Indexed: 06/08/2023]
Abstract
The controlled functionalization of surfaces with proteins is crucial for many analytical methods in life science research and biomedical applications. Here, a coating for silica-based surfaces is established which enables stable and selective immobilization of proteins with controlled orientation and tunable surface density. The coating is reusable, retains functionality upon long-term storage in air, and is applicable to surfaces of complex geometry. The protein anchoring method is validated on planar surfaces, and then a method is developed to measure the anchoring process in real time using silicon nitride solid-state nanopores. For surface attachment, polyhistidine tags that are site specifically introduced into recombinant proteins are exploited, and the yeast nucleoporin Nsp1 is used as model protein. Contrary to the commonly used covalent thiol chemistry, the anchoring of proteins via polyhistidine tag is reversible, permitting to take proteins off and replace them by other ones. Such switching in real time in experiments on individual nanopores is monitored using ion conductivity. Finally, it is demonstrated that silica and gold surfaces can be orthogonally functionalized to accommodate polyhistidine-tagged proteins on silica but prevent protein binding to gold, which extends the applicability of this surface functionalization method to even more complex sensor devices.
Collapse
Affiliation(s)
- Adithya Ananth
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - María Genua
- CIC biomaGUNE, Biosurfaces Lab, Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Nesrine Aissaoui
- CIC biomaGUNE, Biosurfaces Lab, Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Leire Díaz
- CIC biomaGUNE, Biosurfaces Lab, Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Nico B Eisele
- CIC biomaGUNE, Biosurfaces Lab, Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Steffen Frey
- Department for Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Ralf P Richter
- CIC biomaGUNE, Biosurfaces Lab, Paseo Miramon 182, 20014, San Sebastian, Spain
- Faculty of Biological Sciences, School of Biomedical Sciences, Faculty of Mathematics and Physical Sciences, School of Physics and Astronomy, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Dirk Görlich
- Department for Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
294
|
Le-The H, Tibbe M, Loessberg-Zahl J, Palma do Carmo M, van der Helm M, Bomer J, van den Berg A, Leferink A, Segerink L, Eijkel J. Large-scale fabrication of free-standing and sub-μm PDMS through-hole membranes. NANOSCALE 2018; 10:7711-7718. [PMID: 29658030 PMCID: PMC5944386 DOI: 10.1039/c7nr09658e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/14/2018] [Indexed: 05/24/2023]
Abstract
Free-standing polydimethylsiloxane (PDMS) through-hole membranes have been studied extensively in recent years for chemical and biomedical applications. However, robust fabrication of such membranes with sub-μm through-holes, and at a sub-μm thickness over large areas is challenging. In this paper, we report a robust and simple method for large-scale fabrication of free-standing and sub-μm PDMS through-hole membranes, combining soft-lithography with reactive plasma etching techniques. First, arrays of sub-μm photoresist (PR) columns were patterned on another spin-coated sacrificial PR layer, using conventional photolithography processes. Subsequently, a solution of PDMS : hexane at a 1 : 10 ratio was spin-coated over these fabricated arrays. The cured PDMS membrane was etched in a plasma mixture of sulfur hexafluoride (SF6) and oxygen (O2) to open the through-holes. This PDMS membrane can be smoothly released with a supporting ring by completely dissolving the sacrificial PR structures in acetone. Using this fabrication method, we demonstrated the fabrication of free-standing PDMS membranes at various sub-μm thicknesses down to 600 ± 20 nm, and nanometer-sized through-hole (810 ± 20 nm diameter) densities, over areas as large as 3 cm in diameter. Furthermore, we demonstrated the potential of the as-prepared membranes as cell-culture substrates for biomedical applications by culturing endothelial cells on these membranes in a Transwell-like set-up.
Collapse
Affiliation(s)
- Hai Le-The
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Martijn Tibbe
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Joshua Loessberg-Zahl
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Marciano Palma do Carmo
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Marinke van der Helm
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Johan Bomer
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Albert van den Berg
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Anne Leferink
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Loes Segerink
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Jan Eijkel
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| |
Collapse
|
295
|
Luan B, Zhou R. Spontaneous Transport of Single-Stranded DNA through Graphene-MoS 2 Heterostructure Nanopores. ACS NANO 2018; 12:3886-3891. [PMID: 29648440 DOI: 10.1021/acsnano.8b01297] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effective transport of a single-stranded DNA (ssDNA) molecule through a solid-state nanopore is essential to the future success of high-throughput and low-cost DNA sequencing. Compatible with current electric sensing technologies, here, we propose and demonstrate by molecular dynamics simulations the ssDNA transport through a quasi-two-dimensional nanopore in a heterostructure stacked together with different 2D materials, such as graphene and molybdenum disulfide (MoS2). Due to different chemical potentials, U, of DNA bases on different 2D materials, it is energetically favorable for a ssDNA molecule to move from the low- U MoS2 surface to the high- U graphene surface through a nanopore. With the proper attraction between the negatively charged phosphate group in each nucleotide and the positively charged Mo atoms exposed on the pore surface, the ssDNA molecule can be temporarily seized and released thereafter through a thermal activation, that is, a slow and possible nucleotide-by-nucleotide transport. A theoretical formulation is then developed for the free energy of the ssDNA transiting a heterostructure nanopore to properly characterize the non-equilibrium stick-slip-like motion of a ssDNA molecule.
Collapse
Affiliation(s)
- Binquan Luan
- Computational Biological Center , IBM Thomas J. Watson Research , Yorktown Heights , New York 10598 , United States
| | - Ruhong Zhou
- Computational Biological Center , IBM Thomas J. Watson Research , Yorktown Heights , New York 10598 , United States
| |
Collapse
|
296
|
Electrochemically-Driven Insertion of Biological Nanodiscs into Solid State Membrane Pores as a Basis for "Pore-In-Pore" Membranes. NANOMATERIALS 2018; 8:nano8040237. [PMID: 29652841 PMCID: PMC5923567 DOI: 10.3390/nano8040237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 11/17/2022]
Abstract
Nanoporous membranes are of increasing interest for many applications, such as molecular filters, biosensors, nanofluidic logic and energy conversion devices. To meet high-quality standards, e.g., in molecular separation processes, membranes with well-defined pores in terms of pore diameter and chemical properties are required. However, the preparation of membranes with narrow pore diameter distributions is still challenging. In the work presented here, we demonstrate a strategy, a "pore-in-pore" approach, where the conical pores of a solid state membrane produced by a multi-step top-down lithography procedure are used as a template to insert precisely-formed biomolecular nanodiscs with exactly defined inner and outer diameters. These nanodiscs, which are the building blocks of tobacco mosaic virus-deduced particles, consist of coat proteins, which self-assemble under defined experimental conditions with a stabilizing short RNA. We demonstrate that the insertion of the nanodiscs can be driven either by diffusion due to a concentration gradient or by applying an electric field along the cross-section of the solid state membrane. It is found that the electrophoresis-driven insertion is significantly more effective than the insertion via the concentration gradient.
Collapse
|
297
|
Cadinu P, Campolo G, Pud S, Yang W, Edel JB, Dekker C, Ivanov AP. Double Barrel Nanopores as a New Tool for Controlling Single-Molecule Transport. NANO LETTERS 2018; 18:2738-2745. [PMID: 29569930 PMCID: PMC5969804 DOI: 10.1021/acs.nanolett.8b00860] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ability to control the motion of single biomolecules is key to improving a wide range of biophysical and diagnostic applications. Solid-state nanopores are a promising tool capable of solving this task. However, molecular control and the possibility of slow readouts of long polymer molecules are still limited due to fast analyte transport and low signal-to-noise ratios. Here, we report on a novel approach of actively controlling analyte transport by using a double-nanopore architecture where two nanopores are separated by only a ∼ 20 nm gap. The nanopores can be addressed individually, allowing for two unique modes of operation: (i) pore-to-pore transfer, which can be controlled at near 100% efficiency, and (ii) DNA molecules bridging between the two nanopores, which enables detection with an enhanced temporal resolution (e.g., an increase of more than 2 orders of magnitude in the dwell time) without compromising the signal quality. The simplicity of fabrication and operation of the double-barrel architecture opens a wide range of applications for high-resolution readout of biological molecules.
Collapse
Affiliation(s)
- Paolo Cadinu
- Department
of Chemistry, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Giulia Campolo
- Department
of Chemistry, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Sergii Pud
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wayne Yang
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Joshua B. Edel
- Department
of Chemistry, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
- E-mail: . Phone: +44 2075940754
| | - Cees Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail: . Phone: +31 152789352
| | - Aleksandar P. Ivanov
- Department
of Chemistry, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
- E-mail: . Phone: +44 2075943156
| |
Collapse
|
298
|
Chen X, Roozbahani GM, Ye Z, Zhang Y, Ma R, Xiang J, Guan X. Label-Free Detection of DNA Mutations by Nanopore Analysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11519-11528. [PMID: 29537824 PMCID: PMC6760912 DOI: 10.1021/acsami.7b19774] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cancers are caused by mutations to genes that regulate cell normal functions. The capability to rapid and reliable detection of specific target gene variations can facilitate early disease detection and diagnosis and also enables personalized treatment of cancer. Most of the currently available methods for DNA mutation detection are time-consuming and/or require the use of labels or sophisticated instruments. In this work, we reported a label-free enzymatic reaction-based nanopore sensing strategy to detect DNA mutations, including base substitution, deletion, and insertion. The method was rapid and highly sensitive with a detection limit of 4.8 nM in a 10 min electrical recording. Furthermore, the nanopore assay could differentiate among perfect match, one mismatch, and two mismatches. In addition, simulated serum samples were successfully analyzed. Our developed nanopore-based DNA mutation detection strategy should find useful application in genetic diagnosis.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA
| | - Golbarg M Roozbahani
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA
| | - Zijing Ye
- Department of Biology, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA
| | - Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA
| | - Rui Ma
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA
| | - Jialing Xiang
- Department of Biology, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA
- Corresponding author: Tel: 312-567-8922. Fax: 312-567-3494.
| |
Collapse
|
299
|
Zorkot M, Golestanian R. Current fluctuations across a nano-pore. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:134001. [PMID: 29451498 DOI: 10.1088/1361-648x/aab016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The frequency-dependent spectrum of current fluctuations through nano-scale channels is studied using analytical and computational techniques. Using a stochastic Nernst-Planck description and neglecting the interactions between the ions inside the channel, an expression is derived for the current fluctuations, assuming that the geometry of the channel can be incorporated through the lower limits for various wave-vector modes. Since the resulting expression turns out to be quite complex, a number of further approximations are discussed such that relatively simple expressions can be used for practical purposes. The analytical results are validated using Langevin dynamics simulations.
Collapse
Affiliation(s)
- Mira Zorkot
- Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford, OX1 3NP, United Kingdom
| | | |
Collapse
|
300
|
Heerema S, Vicarelli L, Pud S, Schouten RN, Zandbergen HW, Dekker C. Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore. ACS NANO 2018; 12:2623-2633. [PMID: 29474060 PMCID: PMC5876620 DOI: 10.1021/acsnano.7b08635] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/23/2018] [Indexed: 05/24/2023]
Abstract
Many theoretical studies predict that DNA sequencing should be feasible by monitoring the transverse current through a graphene nanoribbon while a DNA molecule translocates through a nanopore in that ribbon. Such a readout would benefit from the special transport properties of graphene, provide ultimate spatial resolution because of the single-atom layer thickness of graphene, and facilitate high-bandwidth measurements. Previous experimental attempts to measure such transverse inplane signals were however dominated by a trivial capacitive response. Here, we explore the feasibility of the approach using a custom-made differential current amplifier that discriminates between the capacitive current signal and the resistive response in the graphene. We fabricate well-defined short and narrow (30 nm × 30 nm) nanoribbons with a 5 nm nanopore in graphene with a high-temperature scanning transmission electron microscope to retain the crystallinity and sensitivity of the graphene. We show that, indeed, resistive modulations can be observed in the graphene current due to DNA translocation through the nanopore, thus demonstrating that DNA sensing with inplane currents in graphene nanostructures is possible. The approach is however exceedingly challenging due to low yields in device fabrication connected to the complex multistep device layout.
Collapse
|