251
|
Chatellier J, Hill F, Foster NW, Goloubinoff P, Fersht AR. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL. J Mol Biol 2000; 304:897-910. [PMID: 11124035 DOI: 10.1006/jmbi.2000.4278] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The next step in our reductional analysis of GroEL was to study the activity of an isolated single seven-membered ring of the 14-mer. A known single-ring mutant, GroEL(SR1), contains four point mutations that prevent the formation of double-rings. That heptameric complex is functionally inactive because it is unable to release GroES. We found that the mutation E191G, which is responsible for the temperature sensitive (ts) Escherichia coli allele groEL44 and is located in the hinge region between the intermediate and apical domains of GroEL, appears to function by weakening the binding of GroES, without destabilizing the overall structure of GroEL44 mutant. We introduced, therefore, the mutation E191G into GroEL(SR1) in order to generate a single-ring mutant that may have weaker binding of GroES and hence be active. The new single-ring mutant, GroEL(SR44), was indeed effective in refolding both heat and dithiothreitol-denatured mitochondrial malate dehydrogenase with great efficiency. Further, unlike all smaller constructs of GroEL, the expression of GroEL(SR44) in E. coli that contained no endogenous GroEL restored biological viability, but not as efficiently as does wild-type GroEL. We envisage the notional evolution of the structure and properties of GroEL. The minichaperone core acts as a primitive chaperone by providing a binding surface for denatured states that prevents their self-aggregation. The assembly of seven minichaperones into a ring then enhances substrate binding by introducing avidity. The acquisition of binding sites for ATP then allows the modulation of substrate binding by introducing the allosteric mechanism that causes cycling between strong and weak binding sites. This is accompanied by the acquisition by the heptamer of the binding of GroES, which functions as a lid to the central cavity and competes for peptide binding sites. Finally, dimerization of the heptamer enhances its biological activity.
Collapse
Affiliation(s)
- J Chatellier
- MRC Centre, Cambridge Centre for Protein Engineering and Cambridge University Chemical Laboratory, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | | | |
Collapse
|
252
|
Chatellier J, Hill F, Fersht AR. From minichaperone to GroEL 2: importance of avidity of the multisite ring structure. J Mol Biol 2000; 304:883-96. [PMID: 11124034 DOI: 10.1006/jmbi.2000.4277] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural studies on minichaperones and GroEL imply a continuous ring of binding sites around the neck of GroEL. To investigate the importance of this ring, we constructed an artificial heptameric assembly of minichaperones to mimic their arrangement in GroEL. The heptameric Gp31 co-chaperonin from bacteriophage T4, an analogue of GroES, was used as a scaffold to display the GroEL minichaperones. A fusion protein, MC(7), was generated by replacing a part of the highly mobile loop of Gp31 (residues 23-44) with the sequence of the minichaperone (residues 191-376 of GroEL). The purified recombinant protein assembled into a heptameric ring composed of seven 30.6 kDa subunits. Although single minichaperones (residues 193-335 to 191-376 of GroEL) have certain chaperone activities in vitro and in vivo, they cannot refold heat and dithiothreitol-denatured mitochondrial malate dehydrogenase (mtMDH), a reaction that normally requires GroEL, its co-chaperonin GroES and ATP. But, MC(7) refolded MDH in vitro. The expression of MC(7) complements in vivo two temperature-sensitive Escherichia coli alleles, groEL44 and groEL673, at 43 degrees C. Although MC(7) could not compensate for the complete absence of GroEL in vivo, it enhanced the colony-forming ability of cells containing limiting amounts of wild-type GroEL at 37 degrees C. MC(7 )also reduces aggregate formation and cell death in mammalian cell models of Huntington's disease. The assembly of seven minichaperone subunits on a heptameric ring significantly improves their activity, demonstrating the importance of avidity in GroEL function.
Collapse
Affiliation(s)
- J Chatellier
- Cambridge Centre for Protein Engineering and Cambridge University Chemical Laboratory, MRC Centre, Hills Road, Cambridge, CB2 2QH, UK
| | | | | |
Collapse
|
253
|
Mendoza JA, Dulin P, Warren T. The lower hydrolysis of ATP by the stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature. Cryobiology 2000; 41:319-23. [PMID: 11222029 DOI: 10.1006/cryo.2000.2287] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chaperonins GroEL and GroES were shown to facilitate the refolding of urea-unfolded rhodanese in an ATP-dependent process at 25 or 37 degrees C. A diminished chaperonin activity was observed at 10 degrees C, however. At low temperature, GroEL retains its ability to form a complex with urea-unfolded rhodanese or with GroES. GroEL is also able to bind ATP at 10 degrees C. Interestingly, the ATPase activity of GroEL was highly decreased at low temperatures. Hydrolysis of ATP by GroEL was 60% less at 10 degrees C than at 25 degrees C. We conclude that the reduced hydrolysis of ATP by GroEL is a major but perhaps not the only factor responsible for the diminished chaperonin activity at 10 degrees C. GroEL may function primarily at higher temperatures in which the ability of GroEL to hydrolyze ATP is not compromised.
Collapse
Affiliation(s)
- J A Mendoza
- Department of Chemistry, California State University at San Marcos, San Marcos, California 92096-0001, U.S.A.
| | | | | |
Collapse
|
254
|
Ritco-Vonsovici M, Willison KR. Defining the eukaryotic cytosolic chaperonin-binding sites in human tubulins. J Mol Biol 2000; 304:81-98. [PMID: 11071812 DOI: 10.1006/jmbi.2000.4177] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actins and tubulins are the obligate substrates in vivo of the chaperonin-containing TCP-1 (CCT). The precise elements of recognition between the chaperonin and its substrates remain largely unknown. We have used a solid phase peptide binding assay to screen the human alpha, beta and gamma-tubulin sequences for CCT recognition. Multiple regions seem to be implicated in interactions between tubulins and CCT. These potential CCT-binding sites are highly dispersed throughout the primary sequences of the human tubulins. In addition, using site-directed mutagenesis we assessed the contribution of the selected residues in the C-terminal domain of beta-tubulin to CCT binding. Various hot spots have been identified even though, in each case, their replacement by alanine does not reduce dramatically the total affinity of beta-tubulin for CCT. The CCT-binding information in the tubulins is probably confined to multiple specific regions each having weak or moderate affinity for CCT apical domains. The main binding region seems to be located between residues 263 and 384, but there are no single amino acid residues in this region, which make large contributions to the binding energy, although we have detected a minor contribution by F377. These biochemical results are understandable in the context of our recent structural analysis of CCT-tubulin complexes by cryo-electron microscopy and image reconstruction, which shows that, in one stage of an in vitro binding reaction between apo-CCT and tubulin diluted from guanidinium chloride, ten major, stable contacts between tubulin and CCT are involved. Therefore, specificity is achieved through the co-operation of many specific, albeit weak, interactions.
Collapse
Affiliation(s)
- M Ritco-Vonsovici
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | | |
Collapse
|
255
|
Kusmierczyk AR, Martin J. High salt-induced conversion of Escherichia coli GroEL into a fully functional thermophilic chaperonin. J Biol Chem 2000; 275:33504-11. [PMID: 10945996 DOI: 10.1074/jbc.m006256200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GroE chaperonin system can adapt to and function at various environmental folding conditions. To examine chaperonin-assisted protein folding at high salt concentrations, we characterized Escherichia coli GroE chaperonin activity in 1.2 m ammonium sulfate. Our data are consistent with GroEL undergoing a conformational change at this salt concentration, characterized by elevated ATPase activity and increased exposure of hydrophobic surface, as indicated by increased binding of the fluorophore bis-(5, 5')-8-anilino-1-naphthalene sulfonic acid to the chaperonin. The presence of the salt results in increased substrate stringency and dependence on the full GroE system for release and productive folding of substrate proteins. Surprisingly, GroEL is fully functional as a thermophilic chaperonin in high concentrations of ammonium sulfate and is stable at temperatures up to 75 degrees C. At these extreme conditions, GroEL can suppress aggregation and mediate refolding of non-native proteins.
Collapse
Affiliation(s)
- A R Kusmierczyk
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
256
|
Rohman M, Harrison-Lavoie KJ. Separation of copurifying GroEL from glutathione-S-transferase fusion proteins. Protein Expr Purif 2000; 20:45-7. [PMID: 11035949 DOI: 10.1006/prep.2000.1271] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purification of overexpressed fusion proteins using bacterial expression systems is a useful tool for the study of many proteins. One problem that can occur is the formation of stable interactions between the expressed fusion protein and certain endogenous bacterial proteins, such as the molecular chaperone GroEL. Such interactions may result in the copurification of contaminating bacterial proteins. Here we describe an efficient and inexpensive method for the removal of contaminating GroEL from a bacterially expressed GST fusion protein. In this method, denatured bacterial proteins are added to the bacterial lysates prior to the addition of glutathione Sepharose resin. The denatured proteins compete for GroEL binding, thereby releasing the GroEL contaminants from the expressed fusion protein.
Collapse
Affiliation(s)
- M Rohman
- Institute of Cancer Research, Chester Beatty Laboratories, CRC Centre for Cell and Molecular Biology, 237 Fulham Road, London, SW3 6JB, United Kingdom.
| | | |
Collapse
|
257
|
Abstract
GroEL-assisted protein folding is regulated by a cycle of large coordinated domain movements in the 14-subunit double-ring assembly. The transition path between the closed (unliganded) and the open (liganded) states, calculated with a targeted molecular dynamics simulation, shows the highly complex subunit displacements required for the allosteric transition. The early downward motion of the small intermediate domain induced by nucleotide binding emerges as the trigger for the larger movements of the apical and equatorial domains. The combined twisting and upward displacement of the apical domain determined for a single subunit is accommodated easily in the heptamer ring only if its opening is concerted. This is a major source of cooperative ligand binding within a ring. It suggests also that GroEL has evolved so that the motion required for heptamer cooperativity is encoded in the individual subunits. A calculated model for a di-cis 14-subunit assembly is found to be destabilized by strong steric repulsion between the equatorial domains of the two rings, the source of negative cooperativity. The simulation results, which indicate that transient interactions along the transition path are essential for GroEL function, provide a detailed structural description of the motions that are involved in the GroEL allosteric cycle.
Collapse
Affiliation(s)
- J Ma
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | | | | | | |
Collapse
|
258
|
Mizobata T, Kawagoe M, Hongo K, Nagai J, Kawata Y. Refolding of target proteins from a "rigid" mutant chaperonin demonstrates a minimal mechanism of chaperonin binding and release. J Biol Chem 2000; 275:25600-7. [PMID: 10837467 DOI: 10.1074/jbc.m000795200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the most interesting facets of GroEL-facilitated protein folding lies in the fact that the requirement for a successful folding reaction of a given protein target depends upon the refolding conditions used. In this report, we utilize a mutant of GroEL (GroEL T89W) whose domain movements have been drastically restricted, producing a chaperonin that is incapable of utilizing the conventional cyclic mechanism of chaperonin action. This mutant was, however, still capable of improving the refolding yield of lactate dehydrogenase in the absence of both GroES and ATP hydrolysis. A very rapid interconversion of conformations was detected in the mutant immediately after ATP binding, and this interconversion was inferred to form part of the target release mechanism in this mutant. The possibility exists that some target proteins, although dependent on GroEL for improved refolding yields, are capable of refolding successfully by utilizing only portions of the entire mechanism provided by the chaperonins.
Collapse
Affiliation(s)
- T Mizobata
- Department of Biotechnology, Faculty of Engineering, Tottori University, Japan
| | | | | | | | | |
Collapse
|
259
|
Schoehn G, Hayes M, Cliff M, Clarke AR, Saibil HR. Domain rotations between open, closed and bullet-shaped forms of the thermosome, an archaeal chaperonin. J Mol Biol 2000; 301:323-32. [PMID: 10926512 DOI: 10.1006/jmbi.2000.3952] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three conformations of the thermosome, an archaeal group II chaperonin, have been determined by cryo-electron microscopy (EM). We describe an open form of the double-ring oligomer, a closed form and a bullet-shaped form with one ring open and the other closed. Domain movements have been deduced by docking atomic coordinates into the EM maps. The subunit apical domains, bearing the putative substrate binding sites, rotate about 30 degrees upwards and twist in the plane of the ring from the closed to the open conformation. The closed rings have their nucleotide binding pockets closed by the intermediate domains, but in the open rings, the pocket is accessible.
Collapse
Affiliation(s)
- G Schoehn
- Crystallography Department, Birkbeck College, Malet St, London, WC1E 7HX, UK
| | | | | | | | | |
Collapse
|
260
|
Ikuma M, Welsh MJ. Regulation of CFTR Cl- channel gating by ATP binding and hydrolysis. Proc Natl Acad Sci U S A 2000; 97:8675-80. [PMID: 10880569 PMCID: PMC27007 DOI: 10.1073/pnas.140220597] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2000] [Accepted: 05/15/2000] [Indexed: 11/18/2022] Open
Abstract
Opening and closing of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is regulated by the interaction of ATP with its two cytoplasmic nucleotide-binding domains (NBD). Although ATP hydrolysis by the NBDs is required for normal gating, the influence of ATP binding versus hydrolysis on specific steps in the gating cycle remains uncertain. Earlier work showed that the absence of Mg(2+) prevents hydrolysis. We found that even in the absence of Mg(2+), ATP could support channel activity, albeit at a reduced level compared with the presence of Mg(2+). Application of ATP with a divalent cation, including the poorly hydrolyzed CaATP complex, increased the rate of opening. Moreover, in CFTR variants with mutations that disrupt hydrolysis, ATP alone opened the channel and Mg(2+) further enhanced ATP-dependent opening. These data suggest that ATP alone can open the channel and that divalent cations increase ATP binding. Consistent with this conclusion, when we mutated an aspartate thought to bind Mg(2+), divalent cations failed to increase activity compared with ATP alone. Two observations suggested that divalent cations also stabilize the open state. In wild-type CFTR, CaATP generated a long duration open state, whereas ATP alone did not. With a CFTR variant in which hydrolysis was disrupted, MgATP, but not ATP alone, produced long openings. These results suggest a gating cycle for CFTR in which ATP binding opens the channel and either hydrolysis or dissociation leads to channel closure. In addition, the data suggest that ATP binding and hydrolysis by either NBD can gate the channel.
Collapse
Affiliation(s)
- M Ikuma
- Howard Hughes Medical Institute, Departments of Internal Medicine and Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|
261
|
Abstract
The GroE chaperones of Escherichia coli promote the folding of other proteins under conditions where no spontaneous folding occurs. One requirement for this reaction is the trapping of the nonnative protein inside the chaperone complex. Encapsulation may be important to prevent unfavorable intermolecular interactions during folding. We show here that, especially for oligomeric proteins, the timing of encapsulation and release is of critical importance. If this cycle is decelerated, misfolding is observed inside functional chaperone complexes.
Collapse
Affiliation(s)
- H Grallert
- Institut für Organische Chemie and Biochemie, Technische Universität München, 85747 Garching, Germany
| | | | | |
Collapse
|
262
|
Abstract
Recent structural data imply differences in allosteric behavior of the group I chaperonins, typified by GroEL from Escherichia coli, and the group II chaperonins, which comprise archaeal thermosome and eukaryotic TRiC/CCT. Therefore, this study addresses the mechanism of interaction of adenine nucleotides with recombinant alpha-only and native alphabeta-thermosomes from Thermoplasma acidophilum, which also enables us to analyze the role of the heterooligomeric composition of the natural thermosome. Although all subunits of the alpha-only thermosome seem to bind nucleotides tightly and independently, the native chaperonin has two different classes of ATP-binding sites. Furthermore, for the alpha-only thermosome, the steady-state ATPase rate is determined by the cleavage reaction itself, whereas, for the alphabeta-thermosome, the rate-limiting step is associated with a post-hydrolysis isomerisation into a non-covalent ADP*P(i) species prior to the release of the gamma-phosphate group. After half-saturation with ATP, a negative cooperativity in hydrolysis is observed for both thermosomes. The effect of Mg(2+) and K(+) nucleotide cycling is documented. We conclude that archaeal chaperonins have unique allosteric properties and discuss them in the light of the mechanism established for the group I chaperonins.
Collapse
Affiliation(s)
- I Gutsche
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18a, Martinsried, D-82152, Germany.
| | | | | |
Collapse
|
263
|
Jaenicke R, Lilie H. Folding and association of oligomeric and multimeric proteins. ADVANCES IN PROTEIN CHEMISTRY 2000; 53:329-401. [PMID: 10751948 DOI: 10.1016/s0065-3233(00)53007-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | |
Collapse
|
264
|
Krebs WG, Gerstein M. The morph server: a standardized system for analyzing and visualizing macromolecular motions in a database framework. Nucleic Acids Res 2000; 28:1665-75. [PMID: 10734184 PMCID: PMC102811 DOI: 10.1093/nar/28.8.1665] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The number of solved structures of macromolecules that have the same fold and thus exhibit some degree of conformational variability is rapidly increasing. It is consequently advantageous to develop a standardized terminology for describing this variability and automated systems for processing protein structures in different conformations. We have developed such a system as a 'front-end' server to our database of macromolecular motions. Our system attempts to describe a protein motion as a rigid-body rotation of a small 'core' relative to a larger one, using a set of hinges. The motion is placed in a standardized coordinate system so that all statistics between any two motions are directly comparable. We find that while this model can accommodate most protein motions, it cannot accommodate all; the degree to which a motion can be accommodated provides an aid in classifying it. Furthermore, we perform an adiabatic mapping (a restrained interpolation) between every two conformations. This gives some indication of the extent of the energetic barriers that need to be surmounted in the motion, and as a by-product results in a 'morph movie'. We make these movies available over the Web to aid in visualization. Many instances of conformational variability occur between proteins with somewhat different sequences. We can accommodate these differences in a rough fashion, generating an 'evolutionary morph'. Users have already submitted hundreds of examples of protein motions to our server, producing a comprehensive set of statistics. So far the statistics show that the median submitted motion has a rotation of approximately 10 degrees and a maximum Calpha displacement of 17 A. Almost all involve at least one large torsion angle change of >140 degrees. The server is accessible at http://bioinfo.mbb.yale. edu/MolMovDB
Collapse
Affiliation(s)
- W G Krebs
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208114, New Haven, CT 06520, USA
| | | |
Collapse
|
265
|
Farr GW, Furtak K, Rowland MB, Ranson NA, Saibil HR, Kirchhausen T, Horwich AL. Multivalent binding of nonnative substrate proteins by the chaperonin GroEL. Cell 2000; 100:561-73. [PMID: 10721993 DOI: 10.1016/s0092-8674(00)80692-3] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chaperonin GroEL binds nonnative substrate protein in the central cavity of an open ring through exposed hydrophobic residues at the inside aspect of the apical domains and then mediates productive folding upon binding ATP and the cochaperonin GroES. Whether nonnative proteins bind to more than one of the seven apical domains of a GroEL ring is unknown. We have addressed this using rings with various combinations of wild-type and binding-defective mutant apical domains, enabled by their production as single polypeptides. A wild-type extent of binary complex formation with two stringent substrate proteins, malate dehydrogenase or Rubisco, required a minimum of three consecutive binding-proficient apical domains. Rhodanese, a less-stringent substrate, required only two wild-type domains and was insensitive to their arrangement. As a physical correlate, multivalent binding of Rubisco was directly observed in an oxidative cross-linking experiment.
Collapse
Affiliation(s)
- G W Farr
- Howard Hughes Medical Institute and Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | |
Collapse
|
266
|
Motojima F, Makio T, Aoki K, Makino Y, Kuwajima K, Yoshida M. Hydrophilic residues at the apical domain of GroEL contribute to GroES binding but attenuate polypeptide binding. Biochem Biophys Res Commun 2000; 267:842-9. [PMID: 10673379 DOI: 10.1006/bbrc.1999.2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The GroES binding site at the apical domain of GroEL, mostly consisting of hydrophobic residues, overlaps largely with the substrate polypeptide binding site. Essential contribution of hydrophobic interaction to the binding of both GroES and polypeptide was exemplified by the mutant GroEL(L237Q) which lost the ability to bind either of them. The binding site, however, contains three hydrophilic residues, E238, T261, and N265. For GroES binding, N265 is essential since GroEL(N265A) is unable to bind GroES. E238 contributes to rapid GroES binding to GroEL because GroEL(E238A) is extremely sluggish in GroES binding. Polypeptide binding was not impaired by any mutations of E238A, T261A, and N265A. Rather, these mutants, especially GroEL(N265A), showed stronger polypeptide binding affinity than wild-type GroEL. Thus, these hydrophilic residues have a dual role; they help GroES binding on one hand but attenuate polypeptide binding on the other hand.
Collapse
Affiliation(s)
- F Motojima
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama, 226-8503, Japan
| | | | | | | | | | | |
Collapse
|
267
|
Preuss M, Miller AD. The affinity of the GroEL/GroES complex for peptides under conditions of protein folding. FEBS Lett 2000; 466:75-9. [PMID: 10648816 DOI: 10.1016/s0014-5793(99)01748-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The affinity of four short peptides for the Escherichia coli molecular chaperone GroEL was studied in the presence of the co-chaperone GroES and nucleotides. Our data show that binding of GroES to one ring enhances the interaction of the peptides with the opposite GroEL ring, a finding that was related to the structural readjustments in GroEL following GroES binding. We further report that the GroEL/GroES complex has a high affinity for peptides during ATP hydrolysis when protein substrates would undergo repeated cycles of assisted folding. Although we could not determine at which step(s) during the cycle our peptides interacted with GroEL, we propose that successive state changes in GroEL during ATP hydrolysis may create high affinity complexes and ensure maximum efficiency of the chaperone machinery under conditions of protein folding.
Collapse
Affiliation(s)
- M Preuss
- Imperial College Genetic Therapies Centre, Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, UK
| | | |
Collapse
|
268
|
|
269
|
Kandror O, Sherman M, Goldberg A. Rapid degradation of an abnormal protein in Escherichia coli proceeds through repeated cycles of association with GroEL. J Biol Chem 1999; 274:37743-9. [PMID: 10608834 DOI: 10.1074/jbc.274.53.37743] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular chaperones are necessary for the breakdown of many abnormal proteins, but their functions in this process have remained obscure. The rapid degradation of the abnormal fusion protein CRAG in Escherichia coli requires the molecular chaperones GroEL, GroES, and trigger factor and proceeds through the formation of a CRAG-GroEL-trigger factor complex. Also associated with GroEL are smaller discrete fragments of CRAG. Pulse-chase experiments showed that these fragments were short-lived intermediates in CRAG degradation formed by C-terminal cleavages. Thus, CRAG degradation is not highly processive. In cells lacking the ClpP protease, the generation of these fragments and their subsequent degradation were much slower than in the wild type. Dissociation of CRAG from GroEL was necessary for its digestion by the ClpP protease, because in a groES temperature-sensitive mutant, CRAG was stable and accumulated on GroEL. Furthermore, the expression of a dominant GroEL mutant defective in substrate dissociation slowed degradation of both CRAG and the fragments. Therefore, we suggest that CRAG degradation proceeds through multiple rounds of substrate binding to GroEL, followed by their GroES-dependent dissociation, which allows further digestion by the protease. In this multistep process, GroEL and GroES function repeatedly, apparently to allow further degradation of CRAG and its fragments by the protease.
Collapse
Affiliation(s)
- O Kandror
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
270
|
Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU. Identification of in vivo substrates of the chaperonin GroEL. Nature 1999; 402:147-54. [PMID: 10647006 DOI: 10.1038/45977] [Citation(s) in RCA: 377] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The chaperonin GroEL has an essential role in mediating protein folding in the cytosol of Escherichia coli. Here we show that GroEL interacts strongly with a well-defined set of approximately 300 newly translated polypeptides, including essential components of the transcription/translation machinery and metabolic enzymes. About one third of these proteins are structurally unstable and repeatedly return to GroEL for conformational maintenance. GroEL substrates consist preferentially of two or more domains with alphabeta-folds, which contain alpha-helices and buried beta-sheets with extensive hydrophobic surfaces. These proteins are expected to fold slowly and be prone to aggregation. The hydrophobic binding regions of GroEL may be well adapted to interact with the non-native states of alphabeta-domain proteins.
Collapse
Affiliation(s)
- W A Houry
- Department of Cellular Biochemistry, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
271
|
Abstract
Although we have a rather elaborate "working-cycle" for the 60 kDa molecular chaperones, which possess a cavity, and are called Anfinsen-cage-type chaperones to emphasize that they provide a closed, protected environment to help the folding of their substrates, our understanding of the molecular mechanism of how these chaperones help protein folding is still incomplete. The present study adds two novel elements to the mechanism of how Anfinsen-cage-type chaperones (members of the 60 kDa chaperone family) aid protein folding. It is proposed that (1) these chaperones do not generally unfold their targets, but by a multidirectional expansion preferentially loosen the tight, inner structure of the collapsed target protein; and (2) during the expansion water molecules enter the hydrophobic core of the target, this percolation being a key step in chaperone action. This study compares this chaperone-percolator model with existing explanations and suggests further experiments to test it. BioEssays 1999;21:959-965.
Collapse
Affiliation(s)
- P Csermely
- Department of Medical Chemistry, Semmelweis University, H-1444 Budapest, P.O. Box 260, Hungary.
| |
Collapse
|
272
|
Cliff MJ, Kad NM, Hay N, Lund PA, Webb MR, Burston SG, Clarke AR. A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL. J Mol Biol 1999; 293:667-84. [PMID: 10543958 DOI: 10.1006/jmbi.1999.3138] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single-point mutants of GroEL were constructed with tryptophan replacing a tyrosine residue in order to examine nucleotide-induced structural transitions spectrofluorometrically. The tyrosine residues at positions 203, 360, 476 and 485 were mutated. Of these, the probe at residue 485 gave the clearest fluorescence signals upon nucleotide binding. The probe at 360 reported similar signals. In response to the binding of ATP, the indole fluorescence reports four distinct structural transitions occurring on well-separated timescales, all of which precede hydrolysis of the nucleotide. All four of these rearrangements were analysed, two in detail. The fastest is an order of magnitude more rapid than previously identified rearrangements and is proposed to be a T-to-R transition. The next kinetic phase is a rearrangement to the open state identified by electron cryo-microscopy and this we designate an R to R* transition. Both of these rearrangements can occur when only a single ring of GroEL is loaded with ATP, and the results are consistent with the occupied ring behaving in a concerted, cooperative manner. At higher ATP concentrations both rings can be loaded with the nucleotide and the R to R* transition is accelerated. The resultant GroEL:ATP14 species can then undergo two final rearrangements, RR*-->[RR](+)-->[RR](#). These final slow steps are completely blocked when ADP occupies the second ring, i.e. it does not occur in the GroEL:ATP7:ADP7 or the GroEL:ATP7 species. All equilibrium and kinetic data conform to a minimal model in which the GroEL ring can exist in five distinct states which then give rise to seven types of oligomeric conformer: TT, TR, TR*, RR, RR*, [RR](+) and [RR](#), with concerted transitions between each. The other eight possible conformers are presumably disallowed by constraints imposed by inter-ring contacts. This kinetic behaviour is consistent with the GroEL ring passing through distinct functional states in a binding-encapsulation-folding process, with the T-form having high substrate affinity (binding), the R-form being able to bind GroES but retaining substrate affinity (encapsulation), and the R*-form retaining high GroES affinity but allowing the substrate to dissociate into the enclosed cavity (folding). ADP induces only one detectable rearrangement (designated T to T*) which has no properties in common with those elicited by ATP. However, asymmetric ADP binding prevents ATP occupying both rings and, hence, restricts the system to the T*T, T*R and T*R* complexes.
Collapse
Affiliation(s)
- M J Cliff
- Department of Biochemistry School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| | | | | | | | | | | | | |
Collapse
|
273
|
Makio T, Arai M, Kuwajima K. Chaperonin-affected refolding of alpha-lactalbumin: effects of nucleotides and the co-chaperonin GroES. J Mol Biol 1999; 293:125-37. [PMID: 10512721 DOI: 10.1006/jmbi.1999.3142] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied how nucleotides (ADP, AMP-PNP, and ATP) and the co-chaperonin GroES influence the GroEL-affected refolding of apo-alpha-lactalbumin. The refolding reactions induced by stopped-flow pH jumps were monitored by alpha-lactalbumin tryptophan fluorescence. The simple single-exponential character of the free-refolding kinetics of the protein allowed us to quantitatively analyze the kinetic traces of the GroEL-affected refolding with the aid of computer simulations, and to obtain the best-fit parameters for binding between GroEL and the refolding intermediate of alpha-lactalbumin by the non-linear least-squares method. When GroES was absent, the interaction between GroEL and alpha-lactalbumin could be well represented by a "cooperative-binding" model in which GroEL has two binding sites for alpha-lactalbumin with the affinity of the second site being tenfold weaker than that of the first, so that there is negative cooperativity between the two sites. The affinity between GroEL and alpha-lactalbumin was significantly reduced when ATP was present, while ADP and AMP-PNP did not alter the affinity. A comparison of this result with those reported previously for other target proteins suggests a remarkable adjustability of the GroEL 14-mer with respect to the nucleotide-induced reduction of affinity. When GroES was present, ATP as well as ADP and AMP-PNP were effective in reducing the affinity between GroEL and the refolding intermediate of alpha-lactalbumin. The affinity at a saturating concentration of ADP or AMP-PNP was about ten times lower than with GroEL alone. The ADP concentration at which the acceleration of the GroEL/ES-affected refolding of alphaLA was observed, was higher than the concentration at which the nucleotide-induced formation of the GroEL/ES complex took place. These results indicate that GroEL/ES complex formation itself is not enough to reduce the affinity for alpha-lactalbumin, and that further binding of the nucleotide to the GroEL/ES complex is required to reduce the affinity.
Collapse
Affiliation(s)
- T Makio
- Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | |
Collapse
|
274
|
Clark AC, Karon BS, Frieden C. Cooperative effects of potassium, magnesium, and magnesium-ADP on the release of Escherichia coli dihydrofolate reductase from the chaperonin GroEL. Protein Sci 1999; 8:2166-76. [PMID: 10548063 PMCID: PMC2144136 DOI: 10.1110/ps.8.10.2166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Previous investigation has shown that at 22 degrees C and in the presence of the chaperonin GroEL, the slowest step in the refolding of Escherichia coli dihydrofolate reductase (EcDHFR) reflects release of a late folding intermediate from the cavity of GroEL (Clark AC, Frieden C, 1997, J Mol Biol 268:512-525). In this paper, we investigate the effects of potassium, magnesium, and MgADP on the release of the EcDHFR late folding intermediate from GroEL. The data demonstrate that GroEL consists of at least two conformational states, with apparent rate constants for EcDHFR release that differ by four- to fivefold. In the absence of potassium, magnesium, and ADP, approximately 80-90% of GroEL resides in the form with the faster rate of release. Magnesium and potassium both shift the distribution of GroEL forms toward the form with the slower release rate, though cooperativity for the magnesium-induced transition is observed only in the presence of potassium. MgADP at low concentrations (0-50 microM) shifts the distribution of GroEL forms toward the form with the faster release rate, and this effect is also potassium dependent. Nearly identical results were obtained with a GroEL mutant that forms only a single ring, demonstrating that these effects occur within a single toroid of GroEL. In the presence of saturating magnesium, potassium, and MgADP, the apparent rate constant for the release of EcDHFR from wild-type GroEL at 22 degrees C reaches a limiting value of 0.014 s(-1). For the single ring mutant of GroEL, the rate of EcDHFR release under the same conditions reaches a limiting value of 0.024 s(-1), suggesting that inter-ring negative cooperativity exists for MgADP-induced substrate release. The data suggest that MgADP preferentially binds to one conformation of GroEL, that with the faster apparent rate constant for EcDHFR release, and induces a conformational change leading to more rapid release of substrate protein.
Collapse
Affiliation(s)
- A C Clark
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
275
|
Horwich AL, Weber-Ban EU, Finley D. Chaperone rings in protein folding and degradation. Proc Natl Acad Sci U S A 1999; 96:11033-40. [PMID: 10500119 PMCID: PMC34237 DOI: 10.1073/pnas.96.20.11033] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chaperone rings play a vital role in the opposing ATP-mediated processes of folding and degradation of many cellular proteins, but the mechanisms by which they assist these life and death actions are only beginning to be understood. Ring structures present an advantage to both processes, providing for compartmentalization of the substrate protein inside a central cavity in which multivalent, potentially cooperative interactions can take place between the substrate and a high local concentration of binding sites, while access of other proteins to the cavity is restricted sterically. Such restriction prevents outside interference that could lead to nonproductive fates of the substrate protein while it is present in non-native form, such as aggregation. At the step of recognition, chaperone rings recognize different motifs in their substrates, exposed hydrophobicity in the case of protein-folding chaperonins, and specific "tag" sequences in at least some cases of the proteolytic chaperones. For both folding and proteolytic complexes, ATP directs conformational changes in the chaperone rings that govern release of the bound polypeptide. In the case of chaperonins, ATP enables a released protein to pursue the native state in a sequestered hydrophilic folding chamber, and, in the case of the proteases, the released polypeptide is translocated into a degradation chamber. These divergent fates are at least partly governed by very different cooperating components that associate with the chaperone rings: that is, cochaperonin rings on one hand and proteolytic ring assemblies on the other. Here we review the structures and mechanisms of the two types of chaperone ring system.
Collapse
Affiliation(s)
- A L Horwich
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA.
| | | | | |
Collapse
|
276
|
Nielsen KL, McLennan N, Masters M, Cowan NJ. A single-ring mitochondrial chaperonin (Hsp60-Hsp10) can substitute for GroEL-GroES in vivo. J Bacteriol 1999; 181:5871-5. [PMID: 10482535 PMCID: PMC94114 DOI: 10.1128/jb.181.18.5871-5875.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chaperonins participate in the facilitated folding of a variety of proteins in vivo. To see whether the same spectrum of target proteins can be productively folded by the double-ring prokaryotic chaperonin GroEL-GroES and its single-ring human mitochondrial homolog, Hsp60-Hsp10, we expressed the latter in an Escherichia coli strain engineered so that the groE operon is under strict regulatory control. We found that expression of Hsp60-Hsp10 restores viability to cells that no longer express GroEL-GroES, formally demonstrating that Hsp60-Hsp10 can carry out all essential in vivo functions of GroEL-GroES.
Collapse
Affiliation(s)
- K L Nielsen
- Department of Biochemistry, New York University Medical Center, New York, New York 10016, USA
| | | | | | | |
Collapse
|
277
|
Higurashi T, Nosaka K, Mizobata T, Nagai J, Kawata Y. Unfolding and refolding of Escherichia coli chaperonin GroES is expressed by a three-state model. J Mol Biol 1999; 291:703-13. [PMID: 10448048 DOI: 10.1006/jmbi.1999.2994] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The guanidine-hydrochloride (Gdn-HCl) induced unfolding and refolding characteristics of the co-chaperonin GroES from Escherichia coli, a homoheptamer of subunit molecular mass 10,000 Da, were studied by using intrinsic fluorescence, 1-anilino-8-naphthalene sulfonate (ANS) binding, and size-exclusion HPLC. When monitored by tyrosine fluorescence, the unfolding reaction of GroES consisted of a single transition, with a transition midpoint at around 1.0 M Gdn-HCl. Interestingly, however, ANS binding and size-exclusion HPLC experiments strongly suggested the existence of an intermediate state in the transition. In order to confirm the existence of an intermediate state between the native heptameric and unfolded monomeric states, a tryptophan residue was introduced into the interface of GroES subunits as a fluorescent probe. The unfolding reaction of GroES I48W as monitored by tryptophyl fluorescence showed a single transition curve with a transition midpoint at 0.5 M Gdn-HCl. This unfolding transition curve as well as the refolding kinetics were dependent on the concentration of GroES protein. CD spectrum and size-exclusion HPLC experiments demonstrated that the intermediates assumed a partially folded conformation at around 0.5 M Gdn-HCl. The refolding of GroES protein from 3 M Gdn-HCl was probed functionally by measuring the extent of inhibition of GroEL ATPase activity and the enhancement of lactate dehydrogenase refolding yields in the presence of GroEL and ADP. These results clearly demonstrated that the GroES heptamer first dissociated to monomers and then unfolded completely upon increasing the concentration of Gdn-HCl, and that both transitions were reversible. From the thermodynamic analysis of the dissociation reaction, it was found that the partially folded monomer was only marginally stable and that the stability of GroES protein is governed mostly by the association of the subunits.
Collapse
Affiliation(s)
- T Higurashi
- Department of Biotechnology Faculty of Engineering, Tottori University, Tottori, 680-0945, Japan
| | | | | | | | | |
Collapse
|
278
|
Sakikawa C, Taguchi H, Makino Y, Yoshida M. On the maximum size of proteins to stay and fold in the cavity of GroEL underneath GroES. J Biol Chem 1999; 274:21251-6. [PMID: 10409682 DOI: 10.1074/jbc.274.30.21251] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GroEL encapsulates non-native protein in a folding cage underneath GroES (cis-cavity). Here we report the maximum size of the non-native protein to stay and fold in the cis-cavity. Using total soluble proteins of Escherichia coli in denatured state as binding substrates and protease resistance as the measure of polypeptide held in the cis-cavity, it was estimated that the cis-cavity can accommodate up to approximately 57-kDa non-native proteins. To know if a protein with nearly the maximum size can complete folding in the cis-cavity, we made a 54-kDa protein in which green fluorescent protein (GFP) and its blue fluorescent variant were fused tandem. This fusion protein was captured in the cis-cavity, and folding occurred there. Fluorescence resonance energy transfer proved that both GFP and blue fluorescent protein moieties of the same fused protein were able to fold into native structures in the cis-cavity. Consistently, simulated packing of crystal structures shows that two native GFPs just fit in the cis-cavity. A fusion protein of three GFPs (82 kDa) was also attempted, but, as expected, it was not captured in the cis-cavity.
Collapse
Affiliation(s)
- C Sakikawa
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | | | | | | |
Collapse
|
279
|
Abstract
The molecular chaperones GroEL and GroES facilitate protein folding in an ATP-dependent manner under conditions where no spontaneous folding occurs. It has remained unknown whether GroE achieves this by a passive sequestration of protein inside the GroE cavity or by changing the folding pathway of a protein. Here we used citrate synthase, a well studied model substrate, to discriminate between these possibilities. We demonstrate that GroE maintains unfolding intermediates in a state that allows productive folding under nonpermissive conditions. During encapsulation of non-native protein inside GroEL.GroES complexes, a folding reaction takes place, generating association-competent monomeric intermediates that are no longer recognized by GroEL. Thus, GroE shifts folding intermediates to a productive folding pathway under heat shock conditions where even the native protein unfolds in the absence of GroE.
Collapse
Affiliation(s)
- H Grallert
- Institut für Organische Chemie and Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | |
Collapse
|
280
|
Erbse A, Yifrach O, Jones S, Lund PA. Chaperone activity of a chimeric GroEL protein that can exist in a single or double ring form. J Biol Chem 1999; 274:20351-7. [PMID: 10400658 DOI: 10.1074/jbc.274.29.20351] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular chaperone GroEL is a protein complex consisting of two rings each of seven identical subunits. It is thought to act by providing a cavity in which a protein substrate can fold into a form that has no propensity to aggregate. Substrate proteins are sequestered in the cavity while they fold, and prevented from diffusion out of the cavity by the action of the GroES complex, that caps the open end of the cavity. A key step in the mechanism of action of GroEL is the transmission of a conformational change between the two rings, induced by the binding of nucleotides to the GroEL ring opposite to the one containing the polypeptide substrate. This conformational change then leads to the discharge of GroES from GroEL, enabling polypeptide release. Single ring forms of GroEL are thus predicted to be unable to chaperone the folding of GroES-dependent substrates efficiently, since they are unable to discharge the bound GroES and unable to release folded protein. We describe here a detailed functional analysis of a chimeric GroEL protein, which we show to exist in solution in equilibrium between single and double ring forms. We demonstrate that whereas the double ring form of the GroEL chimera functions effectively in refolding of a GroES-dependent substrate, the single ring form does not. The single ring form of the chimera, however, is able to chaperone the folding of a substrate that does not require GroES for its efficient folding. We further demonstrate that the double ring structure of GroEL is likely to be required for its activity in vivo.
Collapse
Affiliation(s)
- A Erbse
- School of Biological Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
281
|
Beissinger M, Rutkat K, Buchner J. Catalysis, commitment and encapsulation during GroE-mediated folding. J Mol Biol 1999; 289:1075-92. [PMID: 10369783 DOI: 10.1006/jmbi.1999.2780] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Escherichia coli GroE chaperones assist protein folding under conditions where no spontaneous folding occurs. To achieve this, the cooperation of GroEL and GroES, the two protein components of the chaperone system, is an essential requirement. While in many cases GroE simply suppresses unspecific aggregation of non-native proteins by encapsulation, there are examples where folding is accelerated by GroE. Using maltose-binding protein (MBP) as a substrate for GroE, it had been possible to define basic requirements for catalysis of folding. Here, we have analyzed key steps in the interaction of GroE and the MBP mutant Y283D during catalyzed folding. In addition to high temperature, high ionic strength was shown to be a restrictive condition for MBP Y283D folding. In both cases, the complete GroE system (GroEL, GroES and ATP) compensates the deceleration of MBP Y283D folding. Combining kinetic folding experiments and electron microscopy of GroE particles, we demonstrate that at elevated temperatures, symmetrical GroE particles with GroES bound to both ends of the GroEL cylinder play an important role in the efficient catalysis of MBP Y283D refolding. In principle, MBP Y283D folding can be catalyzed during one encapsulation cycle. However, because the commitment to reach the native state is low after only one cycle of ATP hydrolysis, several interaction cycles are required for catalyzed folding.
Collapse
Affiliation(s)
- M Beissinger
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Regensburg, 93040, Germany
| | | | | |
Collapse
|
282
|
Hayer-Hartl MK, Ewalt KL, Hartl FU. On the role of symmetrical and asymmetrical chaperonin complexes in assisted protein folding. Biol Chem 1999; 380:531-40. [PMID: 10384959 DOI: 10.1515/bc.1999.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cylindrical chaperonin GroEL of E. coli and its ring-shaped cofactor GroES cooperate in mediating the ATP-dependent folding of a wide range of polypeptides in vivo and in vitro. By binding to the ends of the GroEL cylinder, GroES displaces GroEL-bound polypeptide into an enclosed folding cage, thereby preventing protein aggregation during folding. The dynamic interaction of GroEL and GroES is regulated by the GroEL ATPase and involves the formation of asymmetrical GroEL:GroES1 and symmetrical GroEL: GroES2 complexes. The proposed role of the symmetrical complex as a catalytic intermediate of the chaperonin mechanism has been controversial. It has also been suggested that the formation of GroEL:GroES2 complexes allows the folding of two polypeptide molecules per GroEL reaction cycle, one in each ring of GroEL. By making use of a procedure to stabilize chaperonin complexes by rapid crosslinking for subsequent analysis by native PAGE, we have quantified the occurrence of GroEL:GroES1 and GroEL:GroES2 complexes in active refolding reactions under a variety of conditions using mitochondrial malate dehydrogenase (mMDH) as a substrate. Our results show that the symmetrical complexes are neither required for chaperonin function nor does their presence significantly increase the rate of mMDH refolding. In contrast, chaperonin-assisted folding is strictly dependent on the formation of asymmetrical GroEL:GroES1 complexes. These findings support the view that GroEL:GroES2 complexes have no essential role in the chaperonin mechanism.
Collapse
Affiliation(s)
- M K Hayer-Hartl
- Max-Planck-Institut für Biochemie, Department of Cellular Biochemistry, Martinsried, Germany
| | | | | |
Collapse
|
283
|
Abstract
The ability of the GroEL chaperonin to unfold a protein trapped in a misfolded condition was detected and studied by hydrogen exchange. The GroEL-induced unfolding of its substrate protein is only partial, requires the complete chaperonin system, and is accomplished within the 13 seconds required for a single system turnover. The binding of nucleoside triphosphate provides the energy for a single unfolding event; multiple turnovers require adenosine triphosphate hydrolysis. The substrate protein is released on each turnover even if it has not yet refolded to the native state. These results suggest that GroEL helps partly folded but blocked proteins to fold by causing them first to partially unfold. The structure of GroEL seems well suited to generate the nonspecific mechanical stretching force required for forceful protein unfolding.
Collapse
Affiliation(s)
- Mark Shtilerman
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - George H. Lorimer
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - S. Walter Englander
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
284
|
Rye HS, Roseman AM, Chen S, Furtak K, Fenton WA, Saibil HR, Horwich AL. GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 1999; 97:325-38. [PMID: 10319813 DOI: 10.1016/s0092-8674(00)80742-4] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The double-ring chaperonin GroEL mediates protein folding in the central cavity of a ring bound by ATP and GroES, but it is unclear how GroEL cycles from one folding-active complex to the next. We observe that hydrolysis of ATP within the cis ring must occur before either nonnative polypeptide or GroES can bind to the trans ring, and this is associated with reorientation of the trans ring apical domains. Subsequently, formation of a new cis-ternary complex proceeds on the open trans ring with polypeptide binding first, which stimulates the ATP-dependent dissociation of the cis complex (by 20- to 50-fold), followed by GroES binding. These results indicate that, in the presence of nonnative protein, GroEL alternates its rings as folding-active cis complexes, expending only one round of seven ATPs per folding cycle.
Collapse
Affiliation(s)
- H S Rye
- Howard Hughes Medical Institute, and Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | |
Collapse
|
285
|
Betancourt MR, Thirumalai D. Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity. J Mol Biol 1999; 287:627-44. [PMID: 10092464 DOI: 10.1006/jmbi.1999.2591] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chaperonin system, GroEL and GroES of Escherichia coli enable certain proteins to fold under conditions when spontaneous folding is prohibitively slow as to compete with other non-productive channels such as aggregation. We investigated the plausible mechanisms of GroEL-mediated folding using simple lattice models. In particular, we have investigated protein folding in a confined environment, such as those offered by the GroEL, to decipher whether rate and yield enhancement can occur when the substrate protein is allowed to fold within the cavity of the chaperonins. The GroEL cavity is modeled as a cubic box and a simple bead model is used to represent the substrate chain. We consider three distinct characteristic of the confining environment. First, the cavity is taken to be a passive Anfinsen cage in which the walls merely reduce the available conformation space. We find that at temperatures when the native conformation is stable, the folding rate is retarded in the Anfinsen cage. We then assumed that the interior of the wall is hydrophobic. In this case the folding times exhibit a complex behavior. When the strength of the interaction between the polypeptide chain and the cavity is too strong or too weak we find that the rates of folding are retarded compared to spontaneous folding. There is an optimum range of the interaction strength that enhances the rates. Thus, above this value there is an inverse correlation between the folding rates and the strength of the substrate-cavity interactions. The optimal hydrophobic walls essentially pull the kinetically trapped states which leads to a smoother the energy landscape. It is known that upon addition of ATP and GroES the interior cavity of GroEL offers a hydrophilic-like environment to the substrate protein. In order to mimic this within the context of the dynamic Anfinsen cage model, we allow for changes in the hydrophobicity of the walls of the cavity. The duration for which the walls remain hydrophobic during one cycle of ATP hydrolysis is allowed to vary. These calculations show that frequent cycling of the wall hydrophobicity can dramatically reduce the folding times and increase the yield as well under non-permissive conditions. Examination of the structures of the substrate proteins before and after the change in hydrophobicity indicates that there is global unfolding involved. In addition, it is found that a fraction of the molecules kinetically partition to the native state in accordabce with the iterative annealing mechanism. Thus, frequent "unfoldase" activity of chaperonins leading to global unfolding of the polypeptide chain results in enhancement of the folding rates and yield of the folded protein. We suggest that chaperonin efficiency can be greatly enhanced if the cycling time is reduced. The calculations are used to interpret a few experiments on chaperonin-mediated protein folding.
Collapse
Affiliation(s)
- M R Betancourt
- University of Maryland at College Park, College Park, MD 20742, USA
| | | |
Collapse
|
286
|
Abstract
The folding of most newly synthesized proteins in the cell requires the interaction of a variety of protein cofactors known as molecular chaperones. These molecules recognize and bind to nascent polypeptide chains and partially folded intermediates of proteins, preventing their aggregation and misfolding. There are several families of chaperones; those most involved in protein folding are the 40-kDa heat shock protein (HSP40; DnaJ), 60-kDa heat shock protein (HSP60; GroEL), and 70-kDa heat shock protein (HSP70; DnaK) families. The availability of high-resolution structures has facilitated a more detailed understanding of the complex chaperone machinery and mechanisms, including the ATP-dependent reaction cycles of the GroEL and HSP70 chaperones. For both of these chaperones, the binding of ATP triggers a critical conformational change leading to release of the bound substrate protein. Whereas the main role of the HSP70/HSP40 chaperone system is to minimize aggregation of newly synthesized proteins, the HSP60 chaperones also facilitate the actual folding process by providing a secluded environment for individual folding molecules and may also promote the unfolding and refolding of misfolded intermediates.
Collapse
Affiliation(s)
- A L Fink
- Department of Chemistry and Biochemistry, The University of California, Santa Cruz, California, USA
| |
Collapse
|
287
|
Horowitz PM, Lorimer GH, Ybarra J. GroES in the asymmetric GroEL14-GroES7 complex exchanges via an associative mechanism. Proc Natl Acad Sci U S A 1999; 96:2682-6. [PMID: 10077571 PMCID: PMC15829 DOI: 10.1073/pnas.96.6.2682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The interaction of the chaperonin GroEL14 with its cochaperonin GroES7 is dynamic, involving stable, asymmetric 1:1 complexes (GroES7.GroEL7-GroEL7) and transient, metastable symmetric 2:1 complexes [GroES7.GroEL7-GroEL7.GroES7]. The transient formation of a 2:1 complex permits exchange of free GroES7 for GroES7 bound in the stable 1:1 complex. Electrophoresis in the presence of ADP was used to resolve free GroEL14 from the GroES7-GroEL14 complex. Titration of GroEL14 with radiolabeled GroES7 to molar ratios of 32:1 demonstrated a 1:1 limiting stoichiometry in a stable complex. No stable 2:1 complex was detected. Preincubation of the asymmetric GroES7.GroEL7-GroEL7 complex with excess unlabeled GroES7 in the presence of ADP demonstrated GroES7 exchange. The rates of GroES7 exchange were proportional to the concentration of unlabeled free GroES7. This concentration dependence points to an associative mechanism in which exchange of GroES7 occurs by way of a transient 2:1 complex and excludes a dissociative mechanism in which exchange occurs by way of free GroEL14. Exchange of radiolabeled ADP from 1:1 complexes was much slower than the exchange of GroES7. In agreement with recent structural studies, this indicates that conformational changes in GroEL14 following the dissociation of GroES7 must precede ADP release. These results explain how the GroEL14 cavity can become reversibly accessible to proteins under in vivo conditions that favor 2:1 complexes.
Collapse
Affiliation(s)
- P M Horowitz
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78284, USA
| | | | | |
Collapse
|
288
|
von Germar F, Galán A, Llorca O, Carrascosa JL, Valpuesta JM, Mäntele W, Muga A. Conformational changes generated in GroEL during ATP hydrolysis as seen by time-resolved infrared spectroscopy. J Biol Chem 1999; 274:5508-13. [PMID: 10026164 DOI: 10.1074/jbc.274.9.5508] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in the vibrational spectrum of the chaperonin GroEL in the presence of ADP and ATP have been followed as a function of time using rapid scan Fourier transform infrared spectroscopy. The interaction of nucleotides with GroEL was triggered by the photochemical release of the ligands from their corresponding biologically inactive precursors (caged nucleotides; P3-1-(2-nitro)phenylethyl nucleotide). Binding of either ADP or ATP induced the appearance of small differential signals in the amide I band of the protein, sensitive to protein secondary structure, suggesting a subtle and localized change in protein conformation. Moreover, conformational changes associated with ATP hydrolysis were detected that differed markedly from those observed upon nucleotide binding. Both, high-amplitude absorbance changes and difference bands attributable to modifications in the interaction between oppositely charged residues were observed during ATP hydrolysis. Once this process had occurred, the protein relaxed to an ADP-like conformation. Our results suggest that the secondary structure as well as salt bridges of GroEL are modified during ATP hydrolysis, as compared with the ATP and ADP bound protein states.
Collapse
Affiliation(s)
- F von Germar
- Institut für Physikalische und Theoretische Chemie der Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
289
|
Abstract
The ability of newly synthesised protein chains to fold into their functional conformations has evolved within the complex intracellular environment. Until recently, however, this ability has been studied largely as the refolding of denatured mature proteins in dilute simple solutions. Recent work aimed at understanding how proteins fold in vivo has allowed some general statements to be postulated.
Collapse
Affiliation(s)
- R J Ellis
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
290
|
Richardson A, van der Vies SM, Keppel F, Taher A, Landry SJ, Georgopoulos C. Compensatory changes in GroEL/Gp31 affinity as a mechanism for allele-specific genetic interaction. J Biol Chem 1999; 274:52-8. [PMID: 9867810 DOI: 10.1074/jbc.274.1.52] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Previous work has shown that the GroEL-GroES interaction is primarily mediated by the GroES mobile loop. In bacteriophage T4 infection, GroES is substituted by the gene 31-encoded cochaperonin, Gp31. Using a genetic selection scheme, we have identified a new set of mutations in gene 31 that affect interaction with GroEL; all mutations result in changes in the mobile loop of Gp31. Biochemical analyses reveal that the mobile loop mutations alter the affinity between Gp31 and GroEL, most likely by modulating the stability of the GroEL-bound hairpin conformation of the mobile loop. Surprisingly, mutations in groEL that display allele-specific interactions with mutations in gene 31 alter residues in the GroEL intermediate domain, distantly located from the mobile loop binding site. The observed patterns of genetic and biochemical interaction between GroES or Gp31 and GroEL point to a mechanism of genetic allele specificity based on compensatory changes in affinity of the protein-protein interaction. Mutations studied in this work indirectly alter affinity by modulating a folding transition in the Gp31 mobile loop or by modulating a hinged conformational change in GroEL.
Collapse
Affiliation(s)
- A Richardson
- Département de Biochimie Médicale, University of Geneva, 1 rue Michel-Servet, 1211 Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
291
|
Galán A, Llorca O, Valpuesta JM, Pérez-Pérez J, Carrascosa JL, Menéndez M, Bañuelos S, Muga A. ATP hydrolysis induces an intermediate conformational state in GroEL. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:347-55. [PMID: 9914513 DOI: 10.1046/j.1432-1327.1999.00045.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The conformational properties of the molecular chaperone GroEL in the presence of ATP, its non-hydrolyzable analog 5'-adenylimidodiphosphate (AMP-PNP), and ADP have been analyzed by differential scanning calorimetry (DSC), Fourier-transform infra-red (FT-IR) and fluorescence spectroscopy. Nucleotide binding to one ring promotes a decrease in the Tm value of the GroEL thermal transition that is reversed when both rings are filled with nucleotide, indicating that the sequential occupation of the two protein rings by these nucleotides has different effects on the GroEL thermal denaturation process. In addition, ATP induces a conformational change in GroEL characterized by (a) the appearance of a reversible low temperature endotherm in the DSC profiles of the protein, and (b) an enhanced binding of the hydrophobic probe 8-anilino-naphthalene-1-sulfonate (ANS), which strictly depends on ATP hydrolysis. The similar sensitivity to K+ of the temperature range where activation of the GroEL ATPase activity, the low temperature endotherm, and the increase of the ANS fluorescence are abserved strongly indicates the existence of a conformational state of GroEL during ATP hydrolysis, different from that generated on ADP or AMP-PNP binding. To achieve this intermediate conformation, GroEL mainly modifies its tertiary and quaternary structures, leading to an increased exposure of hydrophobic surfaces, with minor rearrangements of its secondary structure.
Collapse
Affiliation(s)
- A Galán
- Department de Bioquímica y Biología Molecular, Unidad asociada al CSIC, Universidad del París Vaco, Bilbao, Spain
| | | | | | | | | | | | | | | |
Collapse
|
292
|
Ben-Zvi AP, Chatellier J, Fersht AR, Goloubinoff P. Minimal and optimal mechanisms for GroE-mediated protein folding. Proc Natl Acad Sci U S A 1998; 95:15275-80. [PMID: 9860959 PMCID: PMC28033 DOI: 10.1073/pnas.95.26.15275] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/1998] [Indexed: 11/18/2022] Open
Abstract
We have analyzed the effects of different components of the GroE chaperonin system on protein folding by using a nonpermissive substrate (i.e., one that has very low spontaneous refolding yield) for which rate data can be acquired. In the absence of GroES and nucleotides, the rate of GroEL-mediated refolding of heat- and DTT-denatured mitochondrial malate dehydrogenase was extremely low, but some three times higher than the spontaneous rate. This GroEL-mediated rate was increased 17-fold by saturating concentrations of ATP, 11-fold by ADP and GroES, and 465-fold by ATP and GroES. Optimal refolding activity was observed when the dissociation of GroES from the chaperonin complex was dramatically reduced. Although GroEL minichaperones were able to bind denatured mitochondrial malate dehydrogenase, they were ineffective in enhancing the refolding rate. The spectrum of mechanisms for GroE-mediated protein folding depends on the nature of the substrate. The minimal mechanism for permissive substrates (i.e., having significant yields of spontaneous refolding), requires only binding to the apical domain of GroEL. Slow folding rates of nonpermissive substrates are limited by the transitions between high- and low-affinity states of GroEL alone. The optimal mechanism, which requires holoGroEL, physiological amounts of GroES, and ATP hydrolysis, is necessary for the chaperonin-mediated folding of nonpermissive substrates at physiologically relevant rates under conditions in which retention of bound GroES prevents the premature release of aggregation-prone folding intermediates from the chaperonin complex. The different mechanisms are described in terms of the structural features of mini- and holo-chaperones.
Collapse
Affiliation(s)
- A P Ben-Zvi
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | |
Collapse
|
293
|
Abstract
Recent structural and functional studies have greatly advanced our understanding of the mechanism by which chaperonins (Cpn60) mediate protein folding, the final step in the accurate expression of genetic information. Escherichia coli GroEL has a symmetric double-toroid architecture, which binds nonnative polypeptide substrates on the hydrophobic walls of its central cavity. The asymmetric binding of ATP and cochaperonin GroES to GroEL triggers a major conformational change in the cis ring, creating an enlarged chamber into which the bound nonnative polypeptide is released. The structural changes that create the cis assembly also change the lining of the cavity wall from hydrophobic to hydrophilic, conducive to folding into the native state. ATP hydrolysis in the cis ring weakens it and primes the release of products. When ATP and GroES bind to the trans ring, it forms a stronger assembly, which disassembles the cis complex through negative cooperativity between rings. The opposing function of the two rings operates as if the system had two cylinders, one expelling the products of the reaction as the other loads up the reactants. One cycle of the reaction gives the polypeptide about 15 s to fold at the cost of seven ATP molecules. For some proteins, several cycles of GroEL assistance may be needed in order to achieve their native states.
Collapse
Affiliation(s)
- Z Xu
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue, New Haven, Connecticut, 06520-8114, USA
| | | |
Collapse
|
294
|
Llorca O, Galán A, Carrascosa JL, Muga A, Valpuesta JM. GroEL under heat-shock. Switching from a folding to a storing function. J Biol Chem 1998; 273:32587-94. [PMID: 9829996 DOI: 10.1074/jbc.273.49.32587] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chaperonin GroEL from Escherichia coli, together with its cochaperonin GroES, are proteins involved in assisting the folding of polypeptides. GroEL is a tetradecamer composed of two heptameric rings, which enclose a cavity where folding takes place through multiple cycles of substrate and GroES binding and release. GroEL and GroES are also heat-shock proteins, their synthesis being increased during heat-shock conditions to help the cell coping with the thermal stress. Our results suggest that, as the temperature increases, GroEL decreases its protein folding activity and starts acting as a "protein store." The molecular basis of this behavior is the loss of inter-ring signaling, which slows down GroES liberation from GroEL and therefore the release of the unfolded protein from the GroEL cavity. This behavior is reversible, and after heat-shock, GroEL reverts to its normal function. This might have a physiological meaning, since under thermal stress conditions, it may be inefficient for the cell to fold thermounstable proteins that are prone to denaturation.
Collapse
Affiliation(s)
- O Llorca
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
295
|
Weber F, Keppel F, Georgopoulos C, Hayer-Hartl MK, Hartl FU. The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding. NATURE STRUCTURAL BIOLOGY 1998; 5:977-85. [PMID: 9808043 DOI: 10.1038/2952] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two models are being considered for the mechanism of chaperonin-assisted protein folding in E. coli: (i) GroEL/GroES act primarily by enclosing substrate polypeptide in a folding cage in which aggregation is prevented during folding. (ii) GroEL mediates the repetitive unfolding of misfolded polypeptides, returning them onto a productive folding track. Both models are not mutually exclusive, but studies with the polypeptide-binding domain of GroEL have suggested that unfolding is the primary mechanism, enclosure being unnecessary. Here we investigate the capacity of the isolated apical polypeptide-binding domain to functionally replace the complete GroEL/GroES system. We show that the apical domain binds aggregation-sensitive polypeptides but cannot significantly assist their refolding in vitro and fails to replace the groEL gene or to complement defects of groEL mutants in vivo. A single-ring version of GroEL cannot substitute for GroEL. These results strongly support the view that sequestration of aggregation-prone intermediates in a folding cage is an important element of the chaperonin mechanism.
Collapse
Affiliation(s)
- F Weber
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
296
|
Wang JD, Michelitsch MD, Weissman JS. GroEL-GroES-mediated protein folding requires an intact central cavity. Proc Natl Acad Sci U S A 1998; 95:12163-8. [PMID: 9770457 PMCID: PMC22802 DOI: 10.1073/pnas.95.21.12163] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chaperonin GroEL is an oligomeric double ring structure that, together with the cochaperonin GroES, assists protein folding. Biochemical analyses indicate that folding occurs in a cis ternary complex in which substrate is sequestered within the GroEL central cavity underneath GroES. Recently, however, studies of GroEL "minichaperones" containing only the apical substrate binding subdomain have questioned the functional importance of substrate encapsulation within GroEL-GroES complexes. Minichaperones were reported to assist folding despite the fact that they are monomeric and therefore cannot form a central cavity. Here we compare directly the folding activity of minichaperones with that of the full GroEL-GroES system. In agreement with earlier studies, minichaperones assist folding of some proteins. However, this effect is observed only under conditions where substantial spontaneous folding is also observed and is indistinguishable from that resulting from addition of the nonchaperone protein alpha-casein. By contrast, the full GroE system efficiently promotes folding of several substrates under conditions where essentially no spontaneous folding is observed. These data argue that the full GroEL folding activity requires the intact GroEL-GroES complex, and in light of previous studies, underscore the importance of substrate encapsulation for providing a folding environment distinct from the bulk solution.
Collapse
Affiliation(s)
- J D Wang
- Department of Pharmacology, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0450, USA
| | | | | |
Collapse
|
297
|
Sigler PB, Xu Z, Rye HS, Burston SG, Fenton WA, Horwich AL. Structure and function in GroEL-mediated protein folding. Annu Rev Biochem 1998; 67:581-608. [PMID: 9759498 DOI: 10.1146/annurev.biochem.67.1.581] [Citation(s) in RCA: 421] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent structural and biochemical investigations have come together to allow a better understanding of the mechanism of chaperonin (GroEL, Hsp60)-mediated protein folding, the final step in the accurate expression of genetic information. Major, asymmetric conformational changes in the GroEL double toroid accompany binding of ATP and the cochaperonin GroES. When a nonnative polypeptide, bound to one of the GroEL rings, is encapsulated by GroES to form a cis ternary complex, these changes drive the polypeptide into the sequestered cavity and initiate its folding. ATP hydrolysis in the cis ring primes release of the products, and ATP binding in the trans ring then disrupts the cis complex. This process allows the polypeptide to achieve its final native state, if folding was completed, or to recycle to another chaperonin molecule, if the folding process did not result in a form committed to the native state.
Collapse
Affiliation(s)
- P B Sigler
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut 06510, USA.
| | | | | | | | | | | |
Collapse
|
298
|
Jones S, Wallington EJ, George R, Lund PA. An arginine residue (Arg101), which is conserved in many GroEL homologues, is required for interactions between the two heptameric rings. J Mol Biol 1998; 282:789-800. [PMID: 9743627 DOI: 10.1006/jmbi.1998.2039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Homologous recombination was used to construct a series of hybrid chaperonin genes, containing various lengths of Escherichia coli groEL replaced by the equivalent region from the homologous cpn60-1 gene of Rhizobium leguminosarum. Analysis of proteins produced by these hybrids showed that many of them formed structures with properties consistent with their being single heptameric rings under some conditions, as opposed to the double ring form in which both the GroEL and the Cpn60-1 proteins are found. By determining precise cross-over points, two regions in Cpn60-1 were defined which appeared to be critical for ring-ring interactions. Within one of these regions is a highly conserved arginine residue (Arg101), which we hypothesised to interact with a residue or residues toward the C terminus of the protein, this contact being required for double rings to form. To test this hypothesis, we mutagenised this residue from arginine to threonine in chaperonin genes from two different species of Rhizobium. In both cases, proteins which ran on non-denaturing gels as single rings were produced. Conversion of Arg101 to serine also had the same effect, whereas conversion of Arg101 to lysine did not. Two different single rings created by homologous recombination could be converted back to double rings by changing the threonine, which naturally occurs at this position in E. coli GroEL, back to arginine. The in vivo properties of the proteins were investigated by complementation following deletion of the chromosomal copy of the groEL gene, and by monitoring the ability of cells expressing the hybrid proteins to plate bacteriophage. Most of the hybrid and mutant proteins were functional in these assays, despite their altered properties compared to wild-type GroEL.
Collapse
Affiliation(s)
- S Jones
- School of Biological Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
299
|
Forreiter C, Nover L. Heat induced stress proteins and the concept of molecular chaperones. J Biosci 1998. [DOI: 10.1007/bf02936122] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
300
|
Ma J, Karplus M. The allosteric mechanism of the chaperonin GroEL: a dynamic analysis. Proc Natl Acad Sci U S A 1998; 95:8502-7. [PMID: 9671707 PMCID: PMC21105 DOI: 10.1073/pnas.95.15.8502] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/1998] [Indexed: 02/08/2023] Open
Abstract
Normal mode calculations on individual subunits and a multisubunit construct are used to analyze the structural transitions that occur during the GroEL cycle. The normal modes demonstrate that the specific displacements of the domains (hinge bending, twisting) observed in the structural studies arise from the intrinsic flexibility of the subunits. The allosteric mechanism (positive cooperativity within a ring, negative cooperativity between rings) is shown to be based on coupled tertiary structural changes, rather than the quaternary transition found in classic allosteric proteins. The results unify static structural data from x-ray crystallography and cryoelectron microscopy with functional measurements of binding and cooperativity.
Collapse
Affiliation(s)
- J Ma
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|