251
|
Higaki K, Li L, Bahrudin U, Okuzawa S, Takamuram A, Yamamoto K, Adachi K, Paraguison RC, Takai T, Ikehata H, Tominaga L, Hisatome I, Iida M, Ogawa S, Matsuda J, Ninomiya H, Sakakibara Y, Ohno K, Suzuki Y, Nanba E. Chemical chaperone therapy: chaperone effect on mutant enzyme and cellular pathophysiology in β-galactosidase deficiency. Hum Mutat 2011; 32:843-52. [DOI: 10.1002/humu.21516] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
252
|
Kamani M, Mylvaganam M, Tian R, Rigat B, Binnington B, Lingwood C. Adamantyl glycosphingolipids provide a new approach to the selective regulation of cellular glycosphingolipid metabolism. J Biol Chem 2011; 286:21413-26. [PMID: 21518770 PMCID: PMC3122201 DOI: 10.1074/jbc.m110.207670] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 04/11/2011] [Indexed: 01/09/2023] Open
Abstract
Mammalian glycosphingolipid (GSL) precursor monohexosylceramides are either glucosyl- or galactosylceramide (GlcCer or GalCer). Most GSLs derive from GlcCer. Substitution of the GSL fatty acid with adamantane generates amphipathic mimics of increased water solubility, retaining receptor function. We have synthesized adamantyl GlcCer (adaGlcCer) and adamantyl GalCer (adaGalCer). AdaGlcCer and adaGalCer partition into cells to alter GSL metabolism. At low dose, adaGlcCer increased cellular GSLs by inhibition of glucocerebrosidase (GCC). Recombinant GCC was inhibited at pH 7 but not pH 5. In contrast, adaGalCer stimulated GCC at pH 5 but not pH 7 and, like adaGlcCer, corrected N370S mutant GCC traffic from the endoplasmic reticulum to lysosomes. AdaGalCer reduced GlcCer levels in normal and lysosomal storage disease (LSD) cells. At 40 μM adaGlcCer, lactosylceramide (LacCer) synthase inhibition depleted LacCer (and more complex GSLs), such that only GlcCer remained. In Vero cell microsomes, 40 μM adaGlcCer was converted to adaLacCer, and LacCer synthesis was inhibited. AdaGlcCer is the first cell LacCer synthase inhibitor. At 40 μM adaGalCer, cell synthesis of only Gb(3) and Gb(4) was significantly reduced, and a novel product, adamantyl digalactosylceramide (adaGb(2)), was generated, indicating substrate competition for Gb(3) synthase. AdaGalCer also inhibited cell sulfatide synthesis. Microsomal Gb(3) synthesis was inhibited by adaGalCer. Metabolic labeling of Gb(3) in Fabry LSD cells was selectively reduced by adaGalCer, and adaGb(2) was produced. AdaGb(2) in cells was 10-fold more effectively shed into the medium than the more polar Gb(3), providing an easily eliminated "safety valve" alternative to Gb(3) accumulation. Adamantyl monohexosyl ceramides thus provide new tools to selectively manipulate normal cellular GSL metabolism and reduce GSL accumulation in cells from LSD patients.
Collapse
Affiliation(s)
- Mustafa Kamani
- From the Departments of Biochemistry and
- the Divisions of Molecular Structure and Function and
| | | | - Robert Tian
- the Divisions of Molecular Structure and Function and
| | - Brigitte Rigat
- Genetics and Genome Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | - Clifford Lingwood
- From the Departments of Biochemistry and
- Laboratory Medicine and Pathobiology University of Toronto, Toronto, Ontario M5S 1A8, Canada and
- the Divisions of Molecular Structure and Function and
| |
Collapse
|
253
|
Muschol N, Pohl S, Meyer A, Gal A, Ullrich K, Braulke T. Residual activity and proteasomal degradation of p.Ser298Pro sulfamidase identified in patients with a mild clinical phenotype of Sanfilippo A syndrome. Am J Med Genet A 2011; 155A:1634-9. [DOI: 10.1002/ajmg.a.34053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/24/2011] [Indexed: 11/06/2022]
|
254
|
Valenzano KJ, Khanna R, Powe AC, Boyd R, Lee G, Flanagan JJ, Benjamin ER. Identification and characterization of pharmacological chaperones to correct enzyme deficiencies in lysosomal storage disorders. Assay Drug Dev Technol 2011; 9:213-35. [PMID: 21612550 PMCID: PMC3102255 DOI: 10.1089/adt.2011.0370] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many human diseases result from mutations in specific genes. Once translated, the resulting aberrant proteins may be functionally competent and produced at near-normal levels. However, because of the mutations, the proteins are recognized by the quality control system of the endoplasmic reticulum and are not processed or trafficked correctly, ultimately leading to cellular dysfunction and disease. Pharmacological chaperones (PCs) are small molecules designed to mitigate this problem by selectively binding and stabilizing their target protein, thus reducing premature degradation, facilitating intracellular trafficking, and increasing cellular activity. Partial or complete restoration of normal function by PCs has been shown for numerous types of mutant proteins, including secreted proteins, transcription factors, ion channels, G protein-coupled receptors, and, importantly, lysosomal enzymes. Collectively, lysosomal storage disorders (LSDs) result from genetic mutations in the genes that encode specific lysosomal enzymes, leading to a deficiency in essential enzymatic activity and cellular accumulation of the respective substrate. To date, over 50 different LSDs have been identified, several of which are treated clinically with enzyme replacement therapy or substrate reduction therapy, although insufficiently in some cases. Importantly, a wide range of in vitro assays are now available to measure mutant lysosomal enzyme interaction with and stabilization by PCs, as well as subsequent increases in cellular enzyme levels and function. The application of these assays to the identification and characterization of candidate PCs for mutant lysosomal enzymes will be discussed in this review. In addition, considerations for the successful in vivo use and development of PCs to treat LSDs will be discussed.
Collapse
|
255
|
Tsukimura T, Chiba Y, Ohno K, Saito S, Tajima Y, Sakuraba H. Molecular mechanism for stabilization of a mutant α-galactosidase A involving M51I amino acid substitution by imino sugars. Mol Genet Metab 2011; 103:26-32. [PMID: 21353612 DOI: 10.1016/j.ymgme.2011.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/27/2011] [Accepted: 01/27/2011] [Indexed: 11/19/2022]
Abstract
Small molecules including imino sugars are expected to act as chaperones for a mutant α-galactosidase A (GLA), which will be useful for pharmacological chaperone therapy for Fabry disease. However, there is little detailed information about the molecular mechanism. We paid attention to an M51I mutant GLA which had been reported to strongly react to an imino sugar. The predicted structural change caused by this amino acid substitution is very small and located on the surface of the molecule. We produced the mutant enzyme in yeast, and determined its enzymological characteristics. The enzymological parameter values are almost the same as those of the wild-type GLA, although the mutant enzyme is unstable not only under neutral pH conditions but also under acidic ones. Then, we directly examined the effect of imino sugars including 1-deoxygalactonojirimycin and galactostatin bisulfite on the purified mutant enzyme. The imino sugars apparently improved the stability of the mutant enzyme under both neutral and acidic pH conditions. The results of surface plasmon resonance biosensor assaying suggested that the imino sugars retained their binding activity as to the mutant enzyme under both neutral and acidic pH conditions. This information will facilitate improvement of pharmacological chaperone therapy for Fabry disease.
Collapse
Affiliation(s)
- Takahiro Tsukimura
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
256
|
Chen YM, Kikkawa Y, Miner JH. A missense LAMB2 mutation causes congenital nephrotic syndrome by impairing laminin secretion. J Am Soc Nephrol 2011; 22:849-58. [PMID: 21511833 DOI: 10.1681/asn.2010060632] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Laminin β2 is a component of laminin-521, which is an important constituent of the glomerular basement membrane (GBM). Null mutations in laminin β2 (LAMB2) cause Pierson syndrome, a severe congenital nephrotic syndrome with ocular and neurologic defects. In contrast, patients with LAMB2 missense mutations, such as R246Q, can have less severe extrarenal defects but still exhibit congenital nephrotic syndrome. To investigate how such missense mutations in LAMB2 cause proteinuria, we generated three transgenic lines of mice in which R246Q-mutant rat laminin β2 replaced the wild-type mouse laminin β2 in the GBM. These transgenic mice developed much less severe proteinuria than their nontransgenic Lamb2-deficient littermates; the level of proteinuria correlated inversely with R246Q-LAMB2 expression. At the onset of proteinuria, expression and localization of proteins associated with the slit diaphragm and foot processes were normal, and there were no obvious ultrastructural abnormalities. Low transgene expressors developed heavy proteinuria, foot process effacement, GBM thickening, and renal failure by 3 months, but high expressors developed only mild proteinuria by 9 months. In vitro studies demonstrated that the R246Q mutation results in impaired secretion of laminin. Taken together, these results suggest that the R246Q mutation causes nephrotic syndrome by impairing secretion of laminin-521 from podocytes into the GBM; however, increased expression of the mutant protein is able to overcome this secretion defect and improve glomerular permselectivity.
Collapse
Affiliation(s)
- Ying Maggie Chen
- Renal Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
257
|
Benito JM, García Fernández JM, Mellet CO. Pharmacological chaperone therapy for Gaucher disease: a patent review. Expert Opin Ther Pat 2011; 21:885-903. [DOI: 10.1517/13543776.2011.569162] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
258
|
Ong DST, Kelly JW. Chemical and/or biological therapeutic strategies to ameliorate protein misfolding diseases. Curr Opin Cell Biol 2011; 23:231-8. [PMID: 21146391 PMCID: PMC3078197 DOI: 10.1016/j.ceb.2010.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 11/16/2010] [Indexed: 12/22/2022]
Abstract
Inheriting a mutant misfolding-prone protein that cannot be efficiently folded in a given cell type(s) results in a spectrum of human loss-of-function misfolding diseases. The inability of the biological protein maturation pathways to adapt to a specific misfolding-prone protein also contributes to pathology. Chemical and biological therapeutic strategies are presented that restore protein homeostasis, or proteostasis, either by enhancing the biological capacity of the proteostasis network or through small molecule stabilization of a specific misfolding-prone protein. Herein, we review the recent literature on therapeutic strategies to ameliorate protein misfolding diseases that function through either of these mechanisms, or a combination thereof, and provide our perspective on the promise of alleviating protein misfolding diseases by taking advantage of proteostasis adaptation.
Collapse
Affiliation(s)
- Derrick Sek Tong Ong
- Departments of Chemistry and Molecular and Experimental Medicine and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Jeffery W. Kelly
- Departments of Chemistry and Molecular and Experimental Medicine and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
259
|
Abstract
PURPOSE OF REVIEW Histo-blood group antigens belonging to the P1PK and GLOB blood group systems are involved in bacterial infections, but a substantial body of evidence is emerging that some of these glycosphingolipids play a role in HIV infection. These recent findings have raised additional questions regarding the possible role of the P/Gb3 histo-blood group antigen in HIV-1 infection. RECENT FINDINGS Early studies implicated a number of glycosphingolipids able to interact with HIV envelope glycoprotein 120. It has been recently reported that cellular or soluble P/Gb3 histo-blood group antigen provides protection from HIV-1 infection. This resistance mechanism appears to be mediated through inhibition of fusion of the HIV-1 envelope to the cell target membrane. Protection has been shown to be provided to both HIV-1 X4 and R5 tropic strains. Indeed, an inverse correlation has been documented between the expression of P/Gb3 on the cellular membrane and susceptibility to HIV infection. Moreover, soluble P/Gb3 analogues have been shown to inhibit HIV infection. SUMMARY The P/Gb3 histo-blood group antigen is the first described cell surface expressed natural resistance factor for prevention of HIV infection. Increased expression of P/Gb3 correlates to decreased HIV infection, whereas decreased or absent P/Gb3 increases HIV susceptibility. Soluble P/Gb3 analogues can inhibit HIV by two mechanisms: direct inhibition of the free virus and inhibition of viral entry. Future development of soluble P/Gb3 analogues, pharmacologic means of increasing cell surface expression of P/Gb3 on HIV susceptible target cells or both may result in novel therapeutic modalities for the prevention and eradication of HIV/AIDS.
Collapse
|
260
|
Sampson H, Robert R, Liao J, Matthes E, Carlile G, Hanrahan J, Thomas D. Identification of a NBD1-Binding Pharmacological Chaperone that Corrects the Trafficking Defect of F508del-CFTR. ACTA ACUST UNITED AC 2011; 18:231-42. [DOI: 10.1016/j.chembiol.2010.11.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/09/2010] [Accepted: 11/29/2010] [Indexed: 11/28/2022]
|
261
|
Zhang GL, Zheng XJ, Zhang LH, Ye XS. Design and syntheses of some iminosugar derivatives as potential immunosuppressants. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00098e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
262
|
Sikriwal D, Dikshit DK. Aza variant of intramolecular nucleophile-catalyzed aldol lactonization (NCAL): formal synthesis of (3S,4R) and (3R,4S) 4-(hydroxymethyl)pyrrolidin-3-ol. Tetrahedron 2011. [DOI: 10.1016/j.tet.2010.10.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
263
|
Andreotti G, Guarracino MR, Cammisa M, Correra A, Cubellis MV. Prediction of the responsiveness to pharmacological chaperones: lysosomal human alpha-galactosidase, a case of study. Orphanet J Rare Dis 2010; 5:36. [PMID: 21138548 PMCID: PMC3016270 DOI: 10.1186/1750-1172-5-36] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 12/07/2010] [Indexed: 01/23/2023] Open
Abstract
Background The pharmacological chaperones therapy is a promising approach to cure genetic diseases. It relies on substrate competitors used at sub-inhibitory concentration which can be administered orally, reach difficult tissues and have low cost. Clinical trials are currently carried out for Fabry disease, a lysosomal storage disorder caused by inherited genetic mutations of alpha-galactosidase. Regrettably, not all genotypes respond to these drugs. Results We collected the experimental data available in literature on the enzymatic activity of ninety-six missense mutants of lysosomal alpha-galactosidase measured in the presence of pharmacological chaperones. We associated with each mutation seven features derived from the analysis of 3D-structure of the enzyme, two features associated with their thermo-dynamic stability and four features derived from sequence alone. Structural and thermodynamic analysis explains why some mutants of human lysosomal alpha-galactosidase cannot be rescued by pharmacological chaperones: approximately forty per cent of the non responsive cases examined can be correctly associated with a negative prognostic feature. They include mutations occurring in the active site pocket, mutations preventing disulphide bridge formation and severely destabilising mutations. Despite this finding, prediction of mutations responsive to pharmacological chaperones cannot be achieved with high accuracy relying on combinations of structure- and thermodynamic-derived features even with the aid of classical and state of the art statistical learning methods. We developed a procedure to predict responsive mutations with an accuracy as high as 87%: the method scores the mutations by using a suitable position-specific substitution matrix. Our approach is of general applicability since it does not require the knowledge of 3D-structure but relies only on the sequence. Conclusions Responsiveness to pharmacological chaperones depends on the structural/functional features of the disease-associated protein, whose complex interplay is best reflected on sequence conservation by evolutionary pressure. We propose a predictive method which can be applied to screen novel mutations of alpha galactosidase. The same approach can be extended on a genomic scale to find candidates for therapy with pharmacological chaperones among proteins with unknown tertiary structures.
Collapse
|
264
|
Gupta P, Dharuman S, Vankar YD. (3S,4R,5R)-3-(2-Hydroxyethyl)piperidine-3,4,5-triol as an isofagomine analogue: synthesis and glycosidase inhibition study. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.tetasy.2010.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
265
|
Muntau AC, Gersting SW. Phenylketonuria as a model for protein misfolding diseases and for the development of next generation orphan drugs for patients with inborn errors of metabolism. J Inherit Metab Dis 2010; 33:649-58. [PMID: 20824346 DOI: 10.1007/s10545-010-9185-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/22/2010] [Accepted: 07/26/2010] [Indexed: 11/28/2022]
Abstract
The lecture dedicated to Professor Horst Bickel describes the advances, successes, and opportunities concerning the understanding of the biochemical and molecular basis of phenylketonuria and the innovative treatment strategies introduced for these patients during the last 60 years. These concepts were transferred to other inborn errors of metabolism and led to significant reduction in morbidity and to an improvement in quality of life. Important milestones were the successful development of a low-phenylalanine diet for phenylketonuria patients, the recognition of tetrahydrobiopterin as an option to treat these individuals pharmacologically, and finally market approval of this drug. The work related to the discovery of a pharmacological treatment led metabolic researchers and pediatricians to new insights into the molecular processes linked to mutations in the phenylalanine hydroxylase gene at the cellular and structural level. Again, phenylketonuria became a prototype disorder for a previously underestimated but now rapidly expanding group of diseases: protein misfolding disorders with loss of function. Due to potential general biological mechanisms underlying these disorders, the door may soon open to a systematic development of a new class of pharmaceutical products. These pharmacological chaperones are likely to correct misfolding of proteins involved in numerous genetic and nongenetic diseases.
Collapse
Affiliation(s)
- Ania C Muntau
- Dr von Hauner Children's Hospital, Department of Molecular Pediatrics, Ludwig Maximilians University, Lindwurmstrasse 4, 80337 Munich, Germany.
| | | |
Collapse
|
266
|
Li L, Higaki K, Ninomiya H, Luan Z, Iida M, Ogawa S, Suzuki Y, Ohno K, Nanba E. Chemical chaperone therapy: luciferase assay for screening of β-galactosidase mutations. Mol Genet Metab 2010; 101:364-9. [PMID: 20826101 DOI: 10.1016/j.ymgme.2010.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
β-Galactosidosis is a group of disorder based on heterogeneous mutations of GLB1 gene coding for the lysosomal acid β-galactosidase (β-gal). A decrease of the β-gal enzyme activity results in progressive accumulation of substrates in somatic cells, particularly in neurons, leading to severe neuronal dysfunction. We have previously reported that N-octyl-4-epi-β-valienamine (NOEV), a chemical chaperone compound, stabilized various mutant human β-gal proteins and increased residual enzyme activities in cultured fibroblasts from human patients. These data proved a potential therapeutic benefit of chemical chaperone therapy for patients with missense β-gal. This effect is mutation specific. In this study, we have established a sensitive luciferase-based assay for measuring chaperone effect on mutant human β-gal. A dinoflagellate luciferase (Dluc) cDNA was introduced to the C-terminus of human β-gal. When COS7 cells expressing the Dluc-tagged human R201C β-gal was treated with NOEV, there happened a remarkable increase of the mutant β-gal activity. In the presence of NH(4)Cl, luciferase level in the medium increased in parallel with the enzyme activity in cell lysates. We also found that proteasome inhibitors enhance chaperone effect of NOEV. These results demonstrate that the luciferase-based assay is a reliable and convenient method for screening and evaluation of chaperone effects on human β-gal mutants, and that it will be a useful tool for finding novel chaperone compounds in the future study.
Collapse
Affiliation(s)
- Linjing Li
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Natori Y, Imahori T, Murakami K, Yoshimura Y, Nakagawa S, Kato A, Adachi I, Takahata H. The synthesis and biological evaluation of 1-C-alkyl-L-arabinoiminofuranoses, a novel class of α-glucosidase inhibitors. Bioorg Med Chem Lett 2010; 21:738-41. [PMID: 21185187 DOI: 10.1016/j.bmcl.2010.11.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 11/20/2010] [Accepted: 11/24/2010] [Indexed: 11/15/2022]
Abstract
The asymmetric synthesis of 1-C-alkyl-l-arabinoiminofuranoses 1 was achieved by asymmetric allylic alkylation (AAA), ring closing metathesis (RCM), and Negishi cross coupling as key reactions. Some of the prepared compounds showed potent inhibitory activities towards intestinal maltase, with IC(50) values comparable to those of commercial drugs such as acarbose, voglibose, and miglitol, which are used in the treatment of type 2 diabetes. Among them, the inhibitory activity (IC(50)=0.032μM) towards intestinal sucrase of 1c was quite strong compared to the above commercial drugs.
Collapse
Affiliation(s)
- Yoshihiro Natori
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Abstract
Fabry disease (FD) is a progressive, X-linked inherited disorder of glycosphingolipid metabolism due to deficient or absent lysosomal α-galactosidase A activity. FD is pan-ethnic and the reported annual incidence of 1 in 100,000 may underestimate the true prevalence of the disease. Classically affected hemizygous males, with no residual α-galactosidase A activity may display all the characteristic neurological (pain), cutaneous (angiokeratoma), renal (proteinuria, kidney failure), cardiovascular (cardiomyopathy, arrhythmia), cochleo-vestibular and cerebrovascular (transient ischemic attacks, strokes) signs of the disease while heterozygous females have symptoms ranging from very mild to severe. Deficient activity of lysosomal α-galactosidase A results in progressive accumulation of globotriaosylceramide within lysosomes, believed to trigger a cascade of cellular events. Demonstration of marked α-galactosidase A deficiency is the definitive method for the diagnosis of hemizygous males. Enzyme analysis may occasionnally help to detect heterozygotes but is often inconclusive due to random X-chromosomal inactivation so that molecular testing (genotyping) of females is mandatory. In childhood, other possible causes of pain such as rheumatoid arthritis and 'growing pains' must be ruled out. In adulthood, multiple sclerosis is sometimes considered. Prenatal diagnosis, available by determination of enzyme activity or DNA testing in chorionic villi or cultured amniotic cells is, for ethical reasons, only considered in male fetuses. Pre-implantation diagnosis is possible. The existence of atypical variants and the availability of a specific therapy singularly complicate genetic counseling. A disease-specific therapeutic option - enzyme replacement therapy using recombinant human α-galactosidase A - has been recently introduced and its long term outcome is currently still being investigated. Conventional management consists of pain relief with analgesic drugs, nephroprotection (angiotensin converting enzyme inhibitors and angiotensin receptors blockers) and antiarrhythmic agents, whereas dialysis or renal transplantation are available for patients experiencing end-stage renal failure. With age, progressive damage to vital organ systems develops and at some point, organs may start to fail in functioning. End-stage renal disease and life-threatening cardiovascular or cerebrovascular complications limit life-expectancy of untreated males and females with reductions of 20 and 10 years, respectively, as compared to the general population. While there is increasing evidence that long-term enzyme therapy can halt disease progression, the importance of adjunctive therapies should be emphasized and the possibility of developing an oral therapy drives research forward into active site specific chaperones.
Collapse
Affiliation(s)
- Dominique P Germain
- University of Versailles - St Quentin en Yvelines, Faculté de Médecine Paris - Ile de France Ouest (PIFO), 78035 Versailles, France.
| |
Collapse
|
269
|
Luan Z, Higaki K, Aguilar-Moncayo M, Li L, Ninomiya H, Nanba E, Ohno K, García-Moreno MI, Ortiz Mellet C, García Fernández JM, Suzuki Y. A Fluorescent sp2-Iminosugar With Pharmacological Chaperone Activity for Gaucher Disease: Synthesis and Intracellular Distribution Studies. Chembiochem 2010; 11:2453-64. [DOI: 10.1002/cbic.201000323] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
270
|
Luan Z, Ninomiya H, Ohno K, Ogawa S, Kubo T, Iida M, Suzuki Y. The effect of N-octyl-β-valienamine on β-glucosidase activity in tissues of normal mice. Brain Dev 2010; 32:805-9. [PMID: 20074885 DOI: 10.1016/j.braindev.2009.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/12/2009] [Accepted: 12/15/2009] [Indexed: 12/17/2022]
Abstract
Gaucher disease (GD), mainly caused by a defect of acid β-glucosidase (β-Glu), is the most common sphingolipidosis. We have previously shown that a carbohydrate mimic N-octyl-β-valienamine (NOV), an inhibitor of β-Glu, could increase the protein level and enzyme activity of various mutant β-Glu in cultured GD fibroblasts, suggesting that NOV acted as a pharmacological chaperone to accelerate transport and maturation of this mutant enzymes. In the present study, the NOV effect was evaluated for β-Glu activity, tissue distribution and adverse effects in normal mice. We measured the β-Glu activity in tissues of normal mice which received water containing increasing concentrations of NOV ad libitum for 1 week. Fluid intake and body weight were measured periodically throughout the study. Measurement of tissue NOV concentration, blood chemistry and urinalysis were performed at the end of the study. The results showed that NOV had no impact on the body weight but fluid intake in the 10mM NOV group mice decreased and there was a moderate increase in blood urea nitrogen (BUN). No other adverse effect was observed during this experiment. Tissue NOV concentration increased in all tissues examined with increasing NOV doses. No inhibitory effect of NOV on β-Glu was observed. Furthermore, NOV increased the β-Glu activity in the liver, spleen, muscle and cerebellum of the mice significantly. This study on NOV showed its oral availability and wide tissue distribution, including the brain and its lack of acute toxicity. These characteristics of NOV would make it a potential therapeutic chaperone in the treatment of GD with neurological manifestations and selected mutations.
Collapse
Affiliation(s)
- Zhuo Luan
- Division of Child Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Japan.
| | | | | | | | | | | | | |
Collapse
|
271
|
Shiozuka C, Taguchi A, Matsuda J, Noguchi Y, Kunieda T, Uchio-Yamada K, Yoshioka H, Hamanaka R, Yano S, Yokoyama S, Mannen K, Kulkarni AB, Furukawa K, Ishii S. Increased globotriaosylceramide levels in a transgenic mouse expressing human alpha1,4-galactosyltransferase and a mouse model for treating Fabry disease. J Biochem 2010; 149:161-70. [PMID: 20961863 DOI: 10.1093/jb/mvq125] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fabry disease is a lysosomal storage disorder caused by an α-galactosidase A (α-Gal A) deficiency and resulting in the accumulation of glycosphingolipids, predominantly globotriaosylceramide (Gb3). A transgenic mouse expressing the human α-Gal A R301Q mutant in an α-Gal A-knockout background (TgM/KO) should be useful for studying active-site-specific chaperone (ASSC) therapy for Fabry disease. However, the Gb3 content in the heart tissue of this mouse was too low to detect an ASSC-induced effect. To increase the Gb3 levels in mouse organs, we created transgenic mice (TgG3S) expressing human α1,4-galactosyltransferase (Gb3 synthase). High levels of Gb3 were observed in all major organs of the TgG3S mouse. A TgG3S (+/-)M(+/-)/KO mouse was prepared by cross-breeding the TgG3S and TgM/KO mice and the Gb3 content in the heart of the TgG3S(+/-)M(+/-)/KO mouse was 1.4 µg/mg protein, higher than in the TgM(+/-)/KO (<0.1 µg/mg protein). Treatment with an ASSC, 1-deoxygalactonojirimycin, caused a marked induction of α-Gal A activity and a concomitant reduction of the Gb3 content in the TgG3S(+/-) M(+/-)/KO mouse organs. These data indicated that the TgG3S(+/-) M(+/-)/KO mouse was suitable for studying ASSC therapy for Fabry disease, and that the TgG3S mouse would be useful for studying the effect of high Gb3 levels in mouse organs.
Collapse
Affiliation(s)
- Chikara Shiozuka
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Smid BE, Aerts JMFG, Boot RG, Linthorst GE, Hollak CEM. Pharmacological small molecules for the treatment of lysosomal storage disorders. Expert Opin Investig Drugs 2010; 19:1367-79. [PMID: 20942596 DOI: 10.1517/13543784.2010.524205] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IMPORTANCE OF THE FIELD Inherited lysosomal storage diseases often cause severe disability and have a devastating effect on quality of life. Enzyme replacement therapy (ERT) forms a cornerstone in the treatment of lysosomal enzyme deficiencies. Although for some lysosomal disorders ERT is lifesaving, important intrinsic restrictions of the approach are limited access of infused enzyme to less accessible body compartments such as the CNS, the burden of frequent intravenous administration, the emergence of antibodies and the high associated costs. Pharmacological small molecules may overcome these limitations. AREAS COVERED IN THIS REVIEW Several novel therapeutic approaches using small molecules are emerging: substrate reduction therapy, pharmacological chaperone therapy, premature nonsense mutation suppressors and proteostasis regulators. WHAT THE READER WILL GAIN Based on an extensive literature search up until June 2010, we here review the various therapeutic approaches with small compounds, including those currently in clinical use and those that have entered clinical trials. Compounds that are still in the preclinical phase are also briefly discussed. TAKE HOME MESSAGE pharmacological small molecules are a new class of agents that show great promise for the treatment of lysosomal storage disorders.
Collapse
Affiliation(s)
- B E Smid
- Academical Medical Center, Internal Medicine/Department of Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
273
|
Mendre C, Mouillac B. [Pharmacological chaperones: a potential therapeutic treatment for conformational diseases]. Med Sci (Paris) 2010; 26:627-35. [PMID: 20619166 DOI: 10.1051/medsci/2010266-7627] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many genetic and neurodegenerative diseases in humans result from protein misfolding and/or aggregation. These diseases are named conformational diseases. As a result, the misfolded non functional proteins are rejected and misrouted by the cellular quality control system, and cannot play their endogenous physiological roles. Specific compounds (ligands, substrates or inhibitors) known as pharmacological chaperones are able to bind and stabilize these misfolded proteins. Their interaction allows the target proteins to escape the quality control system and to be functionally rescued. These pharmacochaperones may possess different intrinsic activity: they can be antagonists (inhibitors), agonists (activators) or allosteric modulators of the target receptors, ionic channels or enzymes. Pharmacological chaperones have obviously a therapeutic potential to treat rare diseases like cystic fibrosis, retinitis pigmentosa, nephrogenic diabetes insipidus, Fabry disease, Gaucher disease, but also for cancers and more frequent and highly invalidant neurodegenerative disorders such as Alzheimer's disease or Parkinson's disease.
Collapse
Affiliation(s)
- Christiane Mendre
- Universités Montpellier 1 et 2, 141, 34094 Montpellier Cedex 05, France.
| | | |
Collapse
|
274
|
Darmoise A, Teneberg S, Bouzonville L, Brady RO, Beck M, Kaufmann SHE, Winau F. Lysosomal alpha-galactosidase controls the generation of self lipid antigens for natural killer T cells. Immunity 2010; 33:216-28. [PMID: 20727792 DOI: 10.1016/j.immuni.2010.08.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 04/01/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
Natural Killer T (NKT) cells are lipid-reactive, CD1d-restricted T lymphocytes important in infection, cancer, and autoimmunity. In addition to foreign antigens, NKT cells react with endogenous self lipids. However, in the face of stimulating self antigen, it remains unclear how overstimulation of NKT cells is avoided. We hypothesized that constantly degraded endogenous antigen only accumulates upon inhibition of alpha-galactosidase A (alpha-Gal-A) in lysosomes. Here, we show that alpha-Gal-A deficiency caused vigorous activation of NKT cells. Moreover, microbes induced inhibition of alpha-Gal-A activity in antigen-presenting cells. This temporary enzyme block depended on Toll-like receptor (TLR) signaling and ultimately triggered lysosomal lipid accumulation. Thus, we present TLR-dependent negative regulation of alpha-Gal-A as a mechanistic link between pathogen recognition and self lipid antigen induction for NKT cells.
Collapse
Affiliation(s)
- Alexandre Darmoise
- Immune Disease Institute, Program in Cellular and Molecular Medicine at Children's Hospital, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
275
|
Mahapatra T, Nanda S. Asymmetric synthesis of hydroxy-skipped bishomo-inositols as potential glycosidase inhibitors. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.tetasy.2010.07.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
276
|
Pathology and current treatment of neurodegenerative sphingolipidoses. Neuromolecular Med 2010; 12:362-82. [PMID: 20730629 DOI: 10.1007/s12017-010-8133-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 08/10/2010] [Indexed: 01/09/2023]
Abstract
Sphingolipidoses constitute a large subgroup of lysosomal storage disorders (LSDs). Many of them are associated with a progressive neurodegeneration. As is the case for LSDs in general, most sphingolipidoses are caused by deficiencies in lysosomal hydrolases. However, accumulation of sphingolipids can also result from deficiencies in proteins involved in the transport or posttranslational modification of lysosomal enzymes, transport of lipids, or lysosomal membrane proteins required for transport of lysosomal degradation end products. The accumulation of sphingolipids in the lysosome together with secondary changes in the concentration and localization of other lipids may cause trafficking defects of membrane lipids and proteins, affect calcium homeostasis, induce the unfolded protein response, activate apoptotic cascades, and affect various signal transduction pathways. To what extent, however, these changes contribute to the pathogenesis of the diseases is not fully understood. Currently, there is no cure for sphingolipidoses. Therapies like enzyme replacement, pharmacological chaperone, and substrate reduction therapy, which have been shown to be efficient in non-neuronopathic LSDs, are currently evaluated in clinical trials of neuronopathic sphingolipidoses. In the future, neural stem cell therapy and gene therapy may become an option for these disorders.
Collapse
|
277
|
Motabar O, Sidransky E, Goldin E, Zheng W. Fabry disease - current treatment and new drug development. CURRENT CHEMICAL GENOMICS 2010; 4:50-6. [PMID: 21127742 PMCID: PMC2995157 DOI: 10.2174/1875397301004010050] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 06/03/2010] [Accepted: 06/14/2010] [Indexed: 12/31/2022]
Abstract
Fabry disease is a rare inherited lysosomal storage disorder caused by a partial or complete deficiency of α-galactosidase A (GLA), resulting in the storage of excess cellular glycosphingolipids. Enzyme replacement therapy is available for the treatment of Fabry disease, but it is a costly, intravenous treatment. Alternative therapeutic approaches, including small molecule chaperone therapy, are currently being explored. High throughput screening (HTS) technologies can be utilized to discover other small molecule compounds, including non-inhibitory chaperones, enzyme activators, molecules that reduce GLA substrate, and molecules that activate GLA gene promoters. This review outlines the current therapeutic approaches, emerging treatment strategies, and the process of drug discovery and development for Fabry disease.
Collapse
Affiliation(s)
- Omid Motabar
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 35 Convent Drive, MSC 3708, Bethesda, MD 20894-3708, USA
| | | | | | | |
Collapse
|
278
|
Abstract
In the last years, much progress has been achieved in the field of lysosomal storage disorders. In the past, no specific treatment was available for the affected patients; management mainly consisted of supportive care and treatment of complications. As orphan drug regulations, however, encouraged development of drugs for these disorders by granting marketing exclusivity for 10 years and other commercial benefits, enzyme replacement therapy became available for lysosomal storage disorders, such as Gaucher disease, Fabry disease, mucopolysaccharidoses type I, II, and VI, and Pompe disease. This review will summarize the efficacy and clinical status of hematopoietic stem cell transplantation, enzyme replacement, and substrate deprivation therapy, and describe new therapeutic perspectives currently under preclinical investigations such as chaperone-mediated therapy, stop-codon read-through therapy, and gene therapy.
Collapse
Affiliation(s)
- Michael Beck
- Children's Hospital, University of Mainz, Dept. Lysosomal Storage Disorders, Langenbeckstrasse 1, 55101 Mainz, Germany.
| |
Collapse
|
279
|
Zhang GL, Chen C, Xiong Y, Zhang LH, Ye J, Ye XS. Synthesis of N-substituted iminosugar derivatives and their immunosuppressive activities. Carbohydr Res 2010; 345:780-6. [DOI: 10.1016/j.carres.2010.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 12/31/2022]
|
280
|
Walus M, Kida E, Golabek AA. Functional consequences and rescue potential of pathogenic missense mutations in tripeptidyl peptidase I. Hum Mutat 2010; 31:710-21. [DOI: 10.1002/humu.21251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
281
|
Parenti G. Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol Med 2010; 1:268-79. [PMID: 20049730 PMCID: PMC3378140 DOI: 10.1002/emmm.200900036] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of genetic disorders due to defects in any aspect of lysosomal biology. During the past two decades, different approaches have been introduced for the treatment of these conditions. Among them, enzyme replacement therapy (ERT) represented a major advance and is used successfully in the treatment of some of these disorders. However, ERT has limitations such as insufficient biodistribution of recombinant enzymes and high costs. An emerging strategy for the treatment of LSDs is pharmacological chaperone therapy (PCT), based on the use of chaperone molecules that assist the folding of mutated enzymes and improve their stability and lysosomal trafficking. After proof-of-concept studies, PCT is now being translated into clinical applications for Fabry, Gaucher and Pompe disease. This approach, however, can only be applied to patients carrying chaperone-responsive mutations. The recent demonstration of a synergistic effect of chaperones and ERT expands the applications of PCT and prompts a re-evaluation of their therapeutic use and potential. This review discusses the strengths and drawbacks of the potential therapies available for LSDs and proposes that future research should be directed towards the development of treatment protocols based on the combination of different therapies to improve the clinical outcome of LSD patients.
Collapse
|
282
|
Guce AI, Clark NE, Salgado EN, Ivanen DR, Kulminskaya AA, Brumer H, Garman SC. Catalytic mechanism of human alpha-galactosidase. J Biol Chem 2010; 285:3625-3632. [PMID: 19940122 PMCID: PMC2823503 DOI: 10.1074/jbc.m109.060145] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/06/2009] [Indexed: 11/06/2022] Open
Abstract
The enzyme alpha-galactosidase (alpha-GAL, also known as alpha-GAL A; E.C. 3.2.1.22) is responsible for the breakdown of alpha-galactosides in the lysosome. Defects in human alpha-GAL lead to the development of Fabry disease, a lysosomal storage disorder characterized by the buildup of alpha-galactosylated substrates in the tissues. alpha-GAL is an active target of clinical research: there are currently two treatment options for Fabry disease, recombinant enzyme replacement therapy (approved in the United States in 2003) and pharmacological chaperone therapy (currently in clinical trials). Previously, we have reported the structure of human alpha-GAL, which revealed the overall structure of the enzyme and established the locations of hundreds of mutations that lead to the development of Fabry disease. Here, we describe the catalytic mechanism of the enzyme derived from x-ray crystal structures of each of the four stages of the double displacement reaction mechanism. Use of a difluoro-alpha-galactopyranoside allowed trapping of a covalent intermediate. The ensemble of structures reveals distortion of the ligand into a (1)S(3) skew (or twist) boat conformation in the middle of the reaction cycle. The high resolution structures of each step in the catalytic cycle will allow for improved drug design efforts on alpha-GAL and other glycoside hydrolase family 27 enzymes by developing ligands that specifically target different states of the catalytic cycle. Additionally, the structures revealed a second ligand-binding site suitable for targeting by novel pharmacological chaperones.
Collapse
Affiliation(s)
- Abigail I Guce
- Departments of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Nathaniel E Clark
- From the Departments of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Eric N Salgado
- From the Departments of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Dina R Ivanen
- the Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute, Russian Academy of Science, Orlova Roscha, Gatchina 188300, Leningrad District, Russia, and
| | - Anna A Kulminskaya
- the Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute, Russian Academy of Science, Orlova Roscha, Gatchina 188300, Leningrad District, Russia, and
| | - Harry Brumer
- the Department of Biotechnology, Royal Insitute of Technology (KTH), 10691 Stockholm, Sweden
| | - Scott C Garman
- Departments of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003; From the Departments of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003.
| |
Collapse
|
283
|
Wennekes T, van den Berg RJBHN, Boot RG, van der Marel GA, Overkleeft HS, Aerts JMFG. Glycosphingolipids--nature, function, and pharmacological modulation. Angew Chem Int Ed Engl 2010; 48:8848-69. [PMID: 19862781 DOI: 10.1002/anie.200902620] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The discovery of the glycosphingolipids is generally attributed to Johan L. W. Thudichum, who in 1884 published on the chemical composition of the brain. In his studies he isolated several compounds from ethanolic brain extracts which he coined cerebrosides. He subjected one of these, phrenosin (now known as galactosylceramide), to acid hydrolysis, and this produced three distinct components. One he identified as a fatty acid and another proved to be an isomer of D-glucose, which is now known as D-galactose. The third component, with an "alkaloidal nature", presented "many enigmas" to Thudichum, and therefore he named it sphingosine, after the mythological riddle of the Sphinx. Today, sphingolipids and their glycosidated derivatives are the subjects of intense study aimed at elucidating their role in the structural integrity of the cell membrane, their participation in recognition and signaling events, and in particular their involvement in pathological processes that are at the basis of human disease (for example, sphingolipidoses and diabetes type 2). This Review details some of the recent findings on the biosynthesis, function, and degradation of glycosphingolipids in man, with a focus on the glycosphingolipid glucosylceramide. Special attention is paid to the clinical relevance of compounds directed at interfering with the factors responsible for glycosphingolipid metabolism.
Collapse
Affiliation(s)
- Tom Wennekes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
284
|
Gloster TM, Davies GJ. Glycosidase inhibition: assessing mimicry of the transition state. Org Biomol Chem 2010; 8:305-20. [PMID: 20066263 PMCID: PMC2822703 DOI: 10.1039/b915870g] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 09/30/2009] [Indexed: 12/15/2022]
Abstract
Glycoside hydrolases, the enzymes responsible for hydrolysis of the glycosidic bond in di-, oligo- and polysaccharides, and glycoconjugates, are ubiquitous in Nature and fundamental to existence. The extreme stability of the glycosidic bond has meant these enzymes have evolved into highly proficient catalysts, with an estimated 10(17) fold rate enhancement over the uncatalysed reaction. Such rate enhancements mean that enzymes bind the substrate at the transition state with extraordinary affinity; the dissociation constant for the transition state is predicted to be 10(-22) M. Inhibition of glycoside hydrolases has widespread application in the treatment of viral infections, such as influenza and HIV, lysosomal storage disorders, cancer and diabetes. If inhibitors are designed to mimic the transition state, it should be possible to harness some of the transition state affinity, resulting in highly potent and specific drugs. Here we examine a number of glycosidase inhibitors which have been developed over the past half century, either by Nature or synthetically by man. A number of criteria have been proposed to ascertain which of these inhibitors are true transition state mimics, but these features have only be critically investigated in a very few cases.
Collapse
Affiliation(s)
- Tracey M. Gloster
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, UK. ; ; Fax: +44 1904 328266; Tel: +44 1904 328260
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, UK. ; ; Fax: +44 1904 328266; Tel: +44 1904 328260
| |
Collapse
|
285
|
Abstract
A short and expedient synthesis of the potent glycosidase inhibitors, 1-deoxynojirimycin, miglitol, miglustat, 1-deoxymannojirimycin, and 1-deoxygalactonojirimycin is presented.
Collapse
|
286
|
Wang N, Zhang LH, Ye XS. A new synthetic access to bicyclic polyhydroxylated alkaloid analogues from pyranosides. Org Biomol Chem 2010; 8:2639-49. [DOI: 10.1039/b923180c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
287
|
Luan Z, Li L, Ninomiya H, Ohno K, Ogawa S, Kubo T, Iida M, Suzuki Y. The pharmacological chaperone effect of N-octyl-β-valienamine on human mutant acid β-glucosidases. Blood Cells Mol Dis 2010; 44:48-54. [DOI: 10.1016/j.bcmd.2009.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 09/22/2009] [Accepted: 09/28/2009] [Indexed: 01/03/2023]
|
288
|
Hirota N, Yasuda D, Hashidate T, Yamamoto T, Yamaguchi S, Nagamune T, Nagase T, Shimizu T, Nakamura M. Amino acid residues critical for endoplasmic reticulum export and trafficking of platelet-activating factor receptor. J Biol Chem 2009; 285:5931-40. [PMID: 20007715 DOI: 10.1074/jbc.m109.066282] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Several residues are conserved in the transmembrane domains (TMs) of G-protein coupled receptors. Here we demonstrate that a conserved proline, Pro(247), in TM6 of platelet-activating factor receptor (PAFR) is required for endoplasmic reticulum (ER) export and trafficking after agonist-induced internalization. Alanine-substituted mutants of the conserved residues of PAFRs, including P247A, were retained in the ER. Because a PAFR antagonist, Y-24180, acted as a pharmacological chaperone to rescue ER retention, this retention is due to misfolding of PAFR. Methylcarbamyl (mc)-PAF, a PAFR agonist, did not increase the cell surface expression of P247A, even though another ER-retained mutant, D63A, was effectively trafficked. Signaling and accumulation of the receptors in the early endosomes were observed in the mc-PAF-treated P247A-expressing cells, suggesting that P247A was trafficked to the cell surface by mc-PAF, and thereafter disappeared from the surface due to aberrant trafficking, e.g. enhanced internalization, deficiency in recycling, and/or accelerated degradation. The aberrant trafficking was confirmed with a sortase-A-mediated method for labeling cell surface proteins. These results demonstrate that the conserved proline in TM6 is crucial for intracellular trafficking of PAFR.
Collapse
Affiliation(s)
- Nobuaki Hirota
- Department of Biochemistry and Molecular Biology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Globotriaosyl ceramide receptor function - Where membrane structure and pathology intersect. FEBS Lett 2009; 584:1879-86. [DOI: 10.1016/j.febslet.2009.11.089] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/25/2009] [Accepted: 11/26/2009] [Indexed: 11/30/2022]
|
290
|
Filoni C, Caciotti A, Carraresi L, Cavicchi C, Parini R, Antuzzi D, Zampetti A, Feriozzi S, Poisetti P, Garman SC, Guerrini R, Zammarchi E, Donati MA, Morrone A. Functional studies of new GLA gene mutations leading to conformational Fabry disease. Biochim Biophys Acta Mol Basis Dis 2009; 1802:247-52. [PMID: 19941952 DOI: 10.1016/j.bbadis.2009.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 10/16/2009] [Accepted: 11/17/2009] [Indexed: 10/20/2022]
Abstract
Fabry Disease (FD) is an X-linked multisystemic lysosomal disorder caused by mutations of alpha-galactosidase (GLA) gene. Only a few of the 450 genetic lesions identified so far have been characterised by in vitro expression studies. Thus the significance of newly identified GLA nucleotide variants in FD patients which lead to alpha-galactosidase (GAL-A) amino acid substitutions or intronic changes can be uncertain. We identified three GLA mutations, c.155G>A (p.C52Y), c.548G>C (p.G183A), c.647A>G (p.Y216C) in as many individuals (two male; one female) and performed in vitro expression studies and Western blot analysis in order to clarify their functional effects. Reduced GAL-A activity and normal or partially reduced mutant proteins were present in all overexpressed mutant systems in which three-dimensional structural analysis showed that the active site was not directly involved. We hypothesize that the three new mutations affect the GAL-A protein, leading to conformational FD. When mutant proteins overexpressed in COS-1 cells and in patients' lymphocytes were tested in the presence of the 1-deoxygalactonojirimicin (DGJ) chaperone, the p.G183A and p.Y216C systems showed increased GAL-A enzyme activities and protein stabilisation while p.C52Y was not responsive. We underline that genetic, biochemical and functional studies are helpful in clarifying the consequences of the missense genetic lesions detected in FD. ERT is the elective therapy for Fabry patients, but it is not always possible to issue the enzyme's active form in all involved organs. Our study endorses the hypothesis that an active site-specific chemical chaperone, which could be administered orally, might be effective in treating GAL-A conformational defects.
Collapse
Affiliation(s)
- C Filoni
- Metabolic and Muscular Unit, Clinic of Pediatric Neurology, A.O.U Meyer, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Luan Z, Higaki K, Aguilar-Moncayo M, Ninomiya H, Ohno K, GarcÃa-Moreno MI, Ortiz Mellet C, GarcÃa Fernández JM, Suzuki Y. Chaperone Activity of Bicyclic Nojirimycin Analogues for Gaucher Mutations in Comparison withN-(n-nonyl)Deoxynojirimycin. Chembiochem 2009; 10:2780-92. [DOI: 10.1002/cbic.200900442] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
292
|
Wennekes T, van den Berg R, Boot R, van der Marel G, Overkleeft H, Aerts J. Glycosphingolipide - Natur, Funktion und pharmakologische Modulierung. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902620] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
293
|
Okuda T, Furukawa K, Nakayama KI. A novel, promoter-based, target-specific assay identifies 2-deoxy-D-glucose as an inhibitor of globotriaosylceramide biosynthesis. FEBS J 2009; 276:5191-202. [PMID: 19674101 DOI: 10.1111/j.1742-4658.2009.07215.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abnormal biosynthesis of globotriaosylceramide (Gb3) is known to be associated with Gb3-related diseases, such as Fabry disease. The Gb3 synthase gene (Gb3S) codes for alpha1,4-galactosyltransferase, which is a key enzyme involved in Gb3 biosynthesis in vivo. Transcriptional repression of Gb3S is a way to control Gb3 biosynthesis and may be a suitable target for the treatment of Gb3-related diseases. To find a transcriptional inhibitor for Gb3S, we developed a convenient cell-based chemical screening assay system by constructing a fusion gene construct of the human Gb3S promoter and a secreted luciferase as reporter. Using this assay, we identified 2-deoxy-D-glucose as a potent inhibitor for the Gb3S promoter. In cultured cells, 2-deoxy-D-glucose markedly reduced endogenous Gb3S mRNA levels, resulting in a reduction in cellular Gb3 content and a corresponding accumulation of the precursor lactosylceramide. Moreover, cytokine-induced expression of Gb3 on the cell surface of endothelial cells, which is closely related to the onset of hemolytic uremic syndrome in O157-infected patients, was also suppressed by 2-deoxy-D-glucose treatment. These results indicate that 2-deoxy-D-glucose can control Gb3 biosynthesis through the inhibition of Gb3S transcription. Furthermore, we demonstrated the general utility of our novel screening assay for the identification of new inhibitors of glycosphingolipid biosynthesis.
Collapse
Affiliation(s)
- Tetsuya Okuda
- Glycolipids Function Analysis Team, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology, Kagawa, Japan.
| | | | | |
Collapse
|
294
|
Abstract
A doença de Fabry é enfermidade de armazenamento lisossômico rara, ligada ao cromossomo-X, causada pela deficiência parcial ou completa da enzima alfagalactosidase A. O defeito resulta no acúmulo de globotriaosilceramida no endotélio vascular e tecidos viscerais, sendo a pele, o coração, os rins e o sistema nervoso central os mais afetados. As autoras realizam revisão da literatura relacionada a essa afecção e ressaltam que o reconhecimento precoce dos angioqueratomas e da hipoidrose constitui sinal-chave no diagnóstico dessa doença grave. Destacam também a necessidade de esses doentes serem avaliados por equipe multidisciplinar.
Collapse
Affiliation(s)
- Paula Boggio
- Hospital General de Agudos J.M. Ramos Mejía, Argentina
| | | | | | - Margarita Larralde
- Universidade de Buenos Aires; Hospital de Agudos J.M. Ramos Mejía, Argentina; Hospital Alemán, Argentina
| |
Collapse
|
295
|
Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 2009; 78:959-91. [PMID: 19298183 DOI: 10.1146/annurev.biochem.052308.114844] [Citation(s) in RCA: 869] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many diseases appear to be caused by the misregulation of protein maintenance. Such diseases of protein homeostasis, or "proteostasis," include loss-of-function diseases (cystic fibrosis) and gain-of-toxic-function diseases (Alzheimer's, Parkinson's, and Huntington's disease). Proteostasis is maintained by the proteostasis network, which comprises pathways that control protein synthesis, folding, trafficking, aggregation, disaggregation, and degradation. The decreased ability of the proteostasis network to cope with inherited misfolding-prone proteins, aging, and/or metabolic/environmental stress appears to trigger or exacerbate proteostasis diseases. Herein, we review recent evidence supporting the principle that proteostasis is influenced both by an adjustable proteostasis network capacity and protein folding energetics, which together determine the balance between folding efficiency, misfolding, protein degradation, and aggregation. We review how small molecules can enhance proteostasis by binding to and stabilizing specific proteins (pharmacologic chaperones) or by increasing the proteostasis network capacity (proteostasis regulators). We propose that such therapeutic strategies, including combination therapies, represent a new approach for treating a range of diverse human maladies.
Collapse
Affiliation(s)
- Evan T Powers
- Departments of Chemistry and Molecular and Experimental Medicine and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
296
|
Garman SC. Structural studies on α-GAL and α-NAGAL: The atomic basis of Fabry and Schindler diseases. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420600598194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
297
|
Rountree JSS, Butters TD, Wormald MR, Boomkamp SD, Dwek RA, Asano N, Ikeda K, Evinson EL, Nash RJ, Fleet GWJ. Design, synthesis, and biological evaluation of enantiomeric beta-N-acetylhexosaminidase inhibitors LABNAc and DABNAc as potential agents against Tay-Sachs and Sandhoff disease. ChemMedChem 2009; 4:378-92. [PMID: 19145603 DOI: 10.1002/cmdc.200800350] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
N-Acetylhexosaminidases are of considerable importance in mammals and are involved in various significant biological processes. In humans, deficiencies of these enzymes in the lysosome, resulting from inherited genetic defects, cause the glycolipid storage disorders Tay-Sachs and Sandhoff diseases. One promising therapy for these diseases involves the use of beta-N-acetylhexosaminidase inhibitors as chemical chaperones to enhance the enzyme activity above sub-critical levels. Herein we describe the synthesis and biological evaluation of a potent inhibitor, 2-acetamido-1,4-imino-1,2,4-trideoxy-L-arabinitol (LABNAc), in a high-yielding 11-step procedure from D-lyxonolactone. The N-benzyl and N-butyl analogues were also prepared and found to be potent inhibitors. The enantiomers DABNAc and NBn-DABNAc were synthesised from L-lyxonolactone, and were also evaluated. The L-iminosugar LABNAc and its derivatives were found to be potent noncompetitive inhibitors of some beta-N-acetylhexosaminidases, while the D-iminosugar DABNAc and its derivatives were found to be weaker competitive inhibitors. These results support previous work postulating that D-iminosugar mimics inhibit D-glycohydrolases competitively, and that their corresponding L-enantiomers show noncompetitive inhibition of these enzymes. Molecular modelling studies confirm that the spatial organisation in enantiomeric inhibitors leads to a different overlay with the monosaccharide substrate. Initial cell-based studies suggest that NBn-LABNAc can act as a chemical chaperone to enhance the deficient enzyme's activity to levels that may cause a positive pharmacological effect. LABNAc, NBn-LABNAc, and NBu-LABNAc are potent and selective inhibitors of beta-N-acetylhexosaminidase and may be useful as therapeutic agents for treating adult Tay-Sachs and Sandhoff diseases.
Collapse
Affiliation(s)
- J S Shane Rountree
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Lieberman RL, D'aquino JA, Ringe D, Petsko GA. Effects of pH and iminosugar pharmacological chaperones on lysosomal glycosidase structure and stability. Biochemistry 2009; 48:4816-27. [PMID: 19374450 PMCID: PMC2699628 DOI: 10.1021/bi9002265] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human lysosomal enzymes acid-beta-glucosidase (GCase) and acid-alpha-galactosidase (alpha-Gal A) hydrolyze the sphingolipids glucosyl- and globotriaosylceramide, respectively, and mutations in these enzymes lead to the lipid metabolism disorders Gaucher and Fabry disease, respectively. We have investigated the structure and stability of GCase and alpha-Gal A in a neutral-pH environment reflective of the endoplasmic reticulum and an acidic-pH environment reflective of the lysosome. These details are important for the development of pharmacological chaperone therapy for Gaucher and Fabry disease, in which small molecules bind mutant enzymes in the ER to enable the mutant enzyme to meet quality control requirements for lysosomal trafficking. We report crystal structures of apo GCase at pH 4.5, at pH 5.5, and in complex with the pharmacological chaperone isofagomine (IFG) at pH 7.5. We also present thermostability analysis of GCase at pH 7.4 and 5.2 using differential scanning calorimetry. We compare our results with analogous experiments using alpha-Gal A and the chaperone 1-deoxygalactonijirimycin (DGJ), including the first structure of alpha-Gal A with DGJ. Both GCase and alpha-Gal A are more stable at lysosomal pH with and without their respective iminosugars bound, and notably, the stability of the GCase-IFG complex is pH sensitive. We show that the conformations of the active site loops in GCase are sensitive to ligand binding but not pH, whereas analogous galactose- or DGJ-dependent conformational changes in alpha-Gal A are not seen. Thermodynamic parameters obtained from alpha-Gal A unfolding indicate two-state, van't Hoff unfolding in the absence of the iminosugar at neutral and lysosomal pH, and non-two-state unfolding in the presence of DGJ. Taken together, these results provide insight into how GCase and alpha-Gal A are thermodynamically stabilized by iminosugars and suggest strategies for the development of new pharmacological chaperones for lysosomal storage disorders.
Collapse
Affiliation(s)
- Raquel L Lieberman
- Structural Neurology Lab at the Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
299
|
Benjamin ER, Flanagan JJ, Schilling A, Chang HH, Agarwal L, Katz E, Wu X, Pine C, Wustman B, Desnick RJ, Lockhart DJ, Valenzano KJ. The pharmacological chaperone 1-deoxygalactonojirimycin increases alpha-galactosidase A levels in Fabry patient cell lines. J Inherit Metab Dis 2009; 32:424-40. [PMID: 19387866 DOI: 10.1007/s10545-009-1077-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 01/30/2009] [Accepted: 03/03/2009] [Indexed: 01/06/2023]
Abstract
Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the gene encoding alpha-galactosidase A (alpha-Gal A), with consequent accumulation of its major glycosphingolipid substrate, globotriaosylceramide (GL-3). Over 500 Fabry mutations have been reported; approximately 60% are missense. The iminosugar 1-deoxygalactonojirimycin (DGJ, migalastat hydrochloride, AT1001) is a pharmacological chaperone that selectively binds alpha-Gal A, increasing physical stability, lysosomal trafficking, and cellular activity. To identify DGJ-responsive mutant forms of alpha-Gal A, the effect of DGJ incubation on alpha-Gal A levels was assessed in cultured lymphoblasts from males with Fabry disease representing 75 different missense mutations, one insertion, and one splice-site mutation. Baseline alpha-Gal A levels ranged from 0 to 52% of normal. Increases in alpha-Gal A levels (1.5- to 28-fold) after continuous DGJ incubation for 5 days were seen for 49 different missense mutant forms with varying EC(50) values (820 nmol/L to >1 mmol/L). Amino acid substitutions in responsive forms were located throughout both structural domains of the enzyme. Half of the missense mutant forms associated with classic (early-onset) Fabry disease and a majority (90%) associated with later-onset Fabry disease were responsive. In cultured fibroblasts from males with Fabry disease, the responses to DGJ were comparable to those of lymphoblasts with the same mutation. Importantly, elevated GL-3 levels in responsive Fabry fibroblasts were reduced after DGJ incubation, indicating that increased mutant alpha-Gal A levels can reduce accumulated substrate. These data indicate that DGJ merits further evaluation as a treatment for patients with Fabry disease with various missense mutations.
Collapse
Affiliation(s)
- E R Benjamin
- Amicus Therapeutics, 6 Cedar Brook Drive, Cranbury, NJ 08512, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Porto C, Cardone M, Fontana F, Rossi B, Tuzzi MR, Tarallo A, Barone MV, Andria G, Parenti G. The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts. Mol Ther 2009; 17:964-71. [PMID: 19293774 PMCID: PMC2835191 DOI: 10.1038/mt.2009.53] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 02/20/2009] [Indexed: 02/08/2023] Open
Abstract
In spite of the progress in the treatment of lysosomal storage diseases (LSDs), in some of these disorders the available therapies show limited efficacy and a need exists to identify novel therapeutic strategies. We studied the combination of enzyme replacement and enzyme enhancement by pharmacological chaperones in Pompe disease (PD), a metabolic myopathy caused by the deficiency of the lysosomal acid alpha-glucosidase. We showed that coincubation of Pompe fibroblasts with recombinant human alpha-glucosidase and the chaperone N-butyldeoxynojirimycin (NB-DNJ) resulted in more efficient correction of enzyme activity. The chaperone improved alpha-glucosidase delivery to lysosomes, enhanced enzyme maturation, and increased enzyme stability. Improved enzyme correction was also found in vivo in a mouse model of PD treated with coadministration of single infusions of recombinant human alpha-glucosidase and oral NB-DNJ. The enhancing effect of chaperones on recombinant enzymes was also observed in fibroblasts from another lysosomal disease, Fabry disease, treated with recombinant alpha-galactosidase A and the specific chaperone 1-deoxygalactonojirimycin (DGJ). These results have important clinical implications, as they demonstrate synergy between pharmacological chaperones and enzyme replacement. A synergistic effect of these treatments may result particularly useful in patients responding poorly to therapy and in tissues in which sufficient enzyme levels are difficult to obtain.
Collapse
Affiliation(s)
- Caterina Porto
- Department of Pediatrics, Federico II University, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|