251
|
Abstract
Abstract The ParaHox genes comprise three Hox-related homeobox gene families, found throughout the animals. They were first discovered in the invertebrate chordate amphioxus, where they are tightly clustered. In this paper we carry out a comparative review of ParaHox gene cluster organization among the deuterostomes, and discuss how the recently published hagfish ParaHox clusters fit into current theories about the evolution of this group of genes.
Collapse
Affiliation(s)
- Rebecca F Furlong
- Department of Zoology, Oxford University, South Parks Road, Oxford OX13PS, UK.
| | | |
Collapse
|
252
|
Waterman RJ, Pauw A, Barraclough TG, Savolainen V. Pollinators underestimated: A molecular phylogeny reveals widespread floral convergence in oil-secreting orchids (sub-tribe Coryciinae) of the Cape of South Africa. Mol Phylogenet Evol 2009; 51:100-10. [DOI: 10.1016/j.ympev.2008.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 05/02/2008] [Accepted: 05/13/2008] [Indexed: 10/22/2022]
|
253
|
Satou Y, Satoh N, Imai KS. Gene regulatory networks in the early ascidian embryo. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:268-73. [DOI: 10.1016/j.bbagrm.2008.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/06/2008] [Accepted: 03/18/2008] [Indexed: 12/19/2022]
|
254
|
Zhong J, Zhang J, Mukwaya E, Wang Y. Revaluation of deuterostome phylogeny and evolutionary relationships among chordate subphyla using mitogenome data. J Genet Genomics 2009; 36:151-60. [DOI: 10.1016/s1673-8527(08)60102-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 12/23/2008] [Accepted: 12/26/2008] [Indexed: 11/15/2022]
|
255
|
Pérez-Portela R, Bishop J, Davis A, Turon X. Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) inferred from mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 2009; 50:560-70. [DOI: 10.1016/j.ympev.2008.11.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 11/10/2008] [Accepted: 11/15/2008] [Indexed: 11/29/2022]
|
256
|
Dahlberg C, Auger H, Dupont S, Sasakura Y, Thorndyke M, Joly JS. Refining the Ciona intestinalis model of central nervous system regeneration. PLoS One 2009; 4:e4458. [PMID: 19212465 PMCID: PMC2639796 DOI: 10.1371/journal.pone.0004458] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 11/28/2008] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND New, practical models of central nervous system regeneration are required and should provide molecular tools and resources. We focus here on the tunicate Ciona intestinalis, which has the capacity to regenerate nerves and a complete adult central nervous system, a capacity unusual in the chordate phylum. We investigated the timing and sequence of events during nervous system regeneration in this organism. METHODOLOGY/PRINCIPAL FINDINGS We developed techniques for reproducible ablations and for imaging live cellular events in tissue explants. Based on live observations of more than 100 regenerating animals, we subdivided the regeneration process into four stages. Regeneration was functional, as shown by the sequential recovery of reflexes that established new criteria for defining regeneration rates. We used transgenic animals and labeled nucleotide analogs to describe in detail the early cellular events at the tip of the regenerating nerves and the first appearance of the new adult ganglion anlage. CONCLUSIONS/SIGNIFICANCE The rate of regeneration was found to be negatively correlated with adult size. New neural structures were derived from the anterior and posterior nerve endings. A blastemal structure was implicated in the formation of new neural cells. This work demonstrates that Ciona intestinalis is as a useful system for studies on regeneration of the brain, brain-associated organs and nerves.
Collapse
Affiliation(s)
- Carl Dahlberg
- Department of Marine Ecology, Göteborg University, Fiskebäckskil, Sweden
| | - Hélène Auger
- U1126/INRA 〈〈Morphogenèse du système nerveux des chordés〉〉 group, DEPSN, UPR2197, Institut Fessard, CNRS, Gif sur Yvette, France
| | - Sam Dupont
- Department of Marine Ecology, Göteborg University, Fiskebäckskil, Sweden
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Mike Thorndyke
- Department of Marine Ecology, Göteborg University, Fiskebäckskil, Sweden
| | - Jean-Stéphane Joly
- U1126/INRA 〈〈Morphogenèse du système nerveux des chordés〉〉 group, DEPSN, UPR2197, Institut Fessard, CNRS, Gif sur Yvette, France
| |
Collapse
|
257
|
|
258
|
|
259
|
Abstract
Chordates originated from a common ancestor(s) shared with two other deuterostome groups, echinoderms and hemichordates, by creating a novel type of tadpole-like larva, which was characterized by a dorsal hollow neural tube and notochord. Recent molecular phylogeny supports the notion that echinoderms and hemichordates form a clade named the Ambulacraria and that, among the chordates, cephalochordates are more basal than urochordates and vertebrates. An aboral-dorsalization hypothesis is proposed to explain how the tadpole-type larva evolved. Embryological comparison of cephalochordates with nonchordate deuterostomes suggests that, because of limited space on the oral side of the ancestral embryo, morphogenesis to form the neural tube and notochord occurred on the aboral side of the embryo. Namely, the dorsalization of the aboral side of the ancestral embryo may have been a key developmental event that led to the formation of the basic chordate body plan.
Collapse
Affiliation(s)
- Nori Satoh
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto, Japan.
| |
Collapse
|
260
|
Obbard DJ, Gordon KHJ, Buck AH, Jiggins FM. The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci 2009; 364:99-115. [PMID: 18926973 PMCID: PMC2592633 DOI: 10.1098/rstb.2008.0168] [Citation(s) in RCA: 351] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RNA interference (RNAi) is an important defence against viruses and transposable elements (TEs). RNAi not only protects against viruses by degrading viral RNA, but hosts and viruses can also use RNAi to manipulate each other's gene expression, and hosts can encode microRNAs that target viral sequences. In response, viruses have evolved a myriad of adaptations to suppress and evade RNAi. RNAi can also protect cells against TEs, both by degrading TE transcripts and by preventing TE expression through heterochromatin formation. The aim of our review is to summarize and evaluate the current data on the evolution of these RNAi defence mechanisms. To this end, we also extend a previous analysis of the evolution of genes of the RNAi pathways. Strikingly, we find that antiviral RNAi genes, anti-TE RNAi genes and viral suppressors of RNAi all evolve rapidly, suggestive of an evolutionary arms race between hosts and parasites. Over longer time scales, key RNAi genes are repeatedly duplicated or lost across the metazoan phylogeny, with important implications for RNAi as an immune defence.
Collapse
Affiliation(s)
- Darren J Obbard
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh EH9 3JT, UK.
| | | | | | | |
Collapse
|
261
|
Yamada S, Hotta K, Yamamoto TS, Ueno N, Satoh N, Takahashi H. Interaction of notochord-derived fibrinogen-like protein with Notch regulates the patterning of the central nervous system of Ciona intestinalis embryos. Dev Biol 2009; 328:1-12. [PMID: 19171129 DOI: 10.1016/j.ydbio.2008.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 12/04/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
The midline organ the notochord and its overlying dorsal neural tube are the most prominent features of the chordate body plan. Although the molecular mechanisms involved in the formation of the central nervous system (CNS) have been studied extensively in vertebrate embryos, none of the genes that are expressed exclusively in notochord cells has been shown to function in this process. Here, we report a gene in the urochordate Ciona intestinalis encoding a fibrinogen-like protein that plays a pivotal role in the notochord-dependent positioning of neuronal cells. While this gene (Ci-fibrn) is expressed exclusively in notochord cells, its protein product is not confined to these cells but is distributed underneath the CNS as fibril-like protrusions. We demonstrated that Ci-fibrn interacts physically and functionally with Ci-Notch that is expressed in the central nervous system, and that the correct distribution of Ci-fibrn protein is dependent on Notch signaling. Disturbance of the Ci-fibrn distribution caused an abnormal positioning of neuronal cells and an abnormal track of axon extension. Therefore, it is highly likely that the interaction between the notochord-based fibrinogen-like protein and the neural tube-based Notch signaling plays an essential role in the proper patterning of CNS.
Collapse
Affiliation(s)
- Shigehiro Yamada
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
262
|
Kučera T, Strilić B, Regener K, Schubert M, Laudet V, Lammert E. Ancestral vascular lumen formation via basal cell surfaces. PLoS One 2009; 4:e4132. [PMID: 19125185 PMCID: PMC2607016 DOI: 10.1371/journal.pone.0004132] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 11/25/2008] [Indexed: 11/18/2022] Open
Abstract
The cardiovascular system of bilaterians developed from a common ancestor. However, no endothelial cells exist in invertebrates demonstrating that primitive cardiovascular tubes do not require this vertebrate-specific cell type in order to form. This raises the question of how cardiovascular tubes form in invertebrates? Here we discovered that in the invertebrate cephalochordate amphioxus, the basement membranes of endoderm and mesoderm line the lumen of the major vessels, namely aorta and heart. During amphioxus development a laminin-containing extracellular matrix (ECM) was found to fill the space between the basal cell surfaces of endoderm and mesoderm along their anterior-posterior (A-P) axes. Blood cells appear in this ECM-filled tubular space, coincident with the development of a vascular lumen. To get insight into the underlying cellular mechanism, we induced vessels in vitro with a cell polarity similar to the vessels of amphioxus. We show that basal cell surfaces can form a vascular lumen filled with ECM, and that phagocytotic blood cells can clear this luminal ECM to generate a patent vascular lumen. Therefore, our experiments suggest a mechanism of blood vessel formation via basal cell surfaces in amphioxus and possibly in other invertebrates that do not have any endothelial cells. In addition, a comparison between amphioxus and mouse shows that endothelial cells physically separate the basement membranes from the vascular lumen, suggesting that endothelial cells create cardiovascular tubes with a cell polarity of epithelial tubes in vertebrates and mammals.
Collapse
Affiliation(s)
- Tomáš Kučera
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
- Charles University in Prague, The First Faculty of Medicine, Institute of Histology and Embryology, Prague, Czech Republic
| | - Boris Strilić
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Kathrin Regener
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Michael Schubert
- Université de Lyon, Institut de Génomique Fonctionnelle de Lyon, Molecular Zoology team, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, INRA, Institut Fédératif 128 Biosciences Gerland Lyon Sud, Lyon, France
| | - Vincent Laudet
- Université de Lyon, Institut de Génomique Fonctionnelle de Lyon, Molecular Zoology team, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, INRA, Institut Fédératif 128 Biosciences Gerland Lyon Sud, Lyon, France
| | - Eckhard Lammert
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
- Heinrich-Heine-University, Institute of Animal Physiology, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
263
|
Takatori N, Butts T, Candiani S, Pestarino M, Ferrier DEK, Saiga H, Holland PWH. Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae. Dev Genes Evol 2008; 218:579-90. [PMID: 18797923 DOI: 10.1007/s00427-008-0245-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 08/11/2008] [Indexed: 01/01/2023]
Abstract
The homeobox genes comprise a large and diverse gene superfamily, many of which encode transcription factors with pivotal roles in the embryonic development of animals. We searched the assembled draft genome sequence of an amphioxus, Branchiostoma floridae, for genes possessing homeobox sequences. Phylogenetic analysis was used to divide these into gene families and classes. The 133 amphioxus homeobox genes comprise 60 ANTP class genes, 29 PRD genes (excluding Pon and Pax1/9), nine TALE genes, seven POU genes, seven LIM genes, five ZF genes, four CUT genes, four HNF genes, three SINE genes, one CERS gene, one PROS gene, and three unclassified genes. Ten of the 11 homeobox gene classes are less diverse in amphioxus than humans, as a result of gene duplication on the vertebrate lineage. Amphioxus possesses at least one member for all of the 96 homeobox gene families inferred to be present in the common ancestor of chordates, including representatives of the Msxlx, Bari, Abox, Nk7, Ro, and Repo gene families that have been lost from tunicates and vertebrates. We find duplication of several homeobox genes in the cephalochordate lineage (Mnx, Evx, Emx, Vent, Nk1, Nedx, Uncx, Lhx2/9, Hmbox, Pou3, and Irx) and several divergent genes that probably originated by extensive sequence divergence (Hx, Ankx, Lcx, Acut, Atale, Azfh, Ahbx, Muxa, Muxb, Aprd1-6, and Ahnf). The analysis reveals not only the repertoire of amphioxus homeobox genes but also gives insight into the evolution of chordate homeobox genes.
Collapse
Affiliation(s)
- Naohito Takatori
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachiohji, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
264
|
Yu JK, Wang MC, Shin-I T, Kohara Y, Holland LZ, Satoh N, Satou Y. A cDNA resource for the cephalochordate amphioxus Branchiostoma floridae. Dev Genes Evol 2008; 218:723-7. [PMID: 18773220 DOI: 10.1007/s00427-008-0228-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 05/21/2008] [Indexed: 10/21/2022]
Abstract
Cephalochordates are the basal invertebrate chordates within the phylum Chordata. They are widely used as a model system for research in evolutionary developmental biology (EvoDevo) to understand the basic patterning mechanisms for the chordate body plan and the origin of vertebrates. Recently, the genome of the cephalochordate Branchiostoma floridae was sequenced, which further brings this organism to the front for comparative genomic studies. In this paper, we report the generation of large-scale 5'- and 3'-expressed sequence tags (ESTs) from B. floridae and the complementary deoxyribonucleic acid (cDNA) resource for this species. Both 5'- and 3'-ESTs were sequenced for approximately 140,000 cDNA clones derived from five developmental stages, and the cDNA clones were subsequently grouped into independent clusters using 3'-EST sequences. We identified 21,229 cDNA clusters, and each corresponds to a unique transcript species from B. floridae. We then chose 24,020 cDNA clones representing all of these 21,229 clusters to generate the "Branchiostoma floridae Gene Collection Release 1." We also constructed a database with a searchable interface for this EST dataset and the related information on "Branchiostoma floridae Gene Collection Release 1." This set of cDNA clones along with our cDNA database will serve as an important resource for future research in this basal chordate. This Gene Collection and the original 140,000 individual cDNA clones are available to the research community upon request.
Collapse
Affiliation(s)
- Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
265
|
Horton AC, Mahadevan NR, Minguillon C, Osoegawa K, Rokhsar DS, Ruvinsky I, de Jong PJ, Logan MP, Gibson-Brown JJ. Conservation of linkage and evolution of developmental function within the Tbx2/3/4/5 subfamily of T-box genes: implications for the origin of vertebrate limbs. Dev Genes Evol 2008; 218:613-28. [PMID: 18815807 DOI: 10.1007/s00427-008-0249-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 09/05/2008] [Indexed: 11/26/2022]
Abstract
T-box genes encode a family of DNA-binding transcription factors implicated in numerous developmental processes in all metazoans. The Tbx2/3/4/5 subfamily genes are especially interesting because of their key roles in the evolution of vertebrate appendages, eyes, and the heart, and, like the Hox genes, the longevity of their chromosomal linkage. A BAC library derived from the single male amphioxus (Branchiostoma floridae) used to sequence the amphioxus genome was screened for AmphiTbx2/3 and AmphiTbx4/5, yielding two independent clones containing both genes. Using comparative expression, genomic linkage, and phylogenetic analyses, we have reconstructed the evolutionary histories of these members of the T-box gene family. We find that the Tbx2-Tbx4 and Tbx3-Tbx5 gene pairs have maintained tight linkage in most animal lineages since their birth by tandem duplication, long before the divergence of protostomes and deuterostomes (e.g., arthropods and vertebrates) at least 600 million years ago, and possibly before the divergence of poriferans and cnidarians (e.g., sponges and jellyfish). Interestingly, we find that the gene linkage detected in all vertebrate genomes has been maintained in the primitively appendage-lacking, basal chordate, amphioxus. Although all four genes have been involved in the evolution of developmental programs regulating paired fin and (later) limb outgrowth and patterning, and most are also implicated in eye and heart development, linkage maintenance--often considered due to regulatory constraints imposed by limb, eye, and/or heart associated gene expression--is undoubtedly a consequence of other, much more ancient functional constraints.
Collapse
Affiliation(s)
- Amy C Horton
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Blum M, Weber T, Beyer T, Vick P. Evolution of leftward flow. Semin Cell Dev Biol 2008; 20:464-71. [PMID: 19056505 DOI: 10.1016/j.semcdb.2008.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 11/24/2022]
Abstract
The asymmetric Nodal signaling cascade as a prerequisite for asymmetric body plan specification is conserved among deuterostomes. In this review we argue that symmetry breakage by cilia-driven leftward flow presents an ancestral character of vertebrates, likely the chordate phylum and maybe all deuterostomes. In vertebrates, leftward flow occurs in a transient structure, a monociliated epithelium, which is derived from superficial mesoderm and localizes to the archenteron roof during gastrulation. The chick as an example for the highly derived birds lacks superficial mesoderm and flow. This loss should be secondary, as flow is present from fish and amphibians to mammals.
Collapse
Affiliation(s)
- Martin Blum
- University of Hohenheim, Institute of Zoology, Stuttgart, Germany.
| | | | | | | |
Collapse
|
267
|
Grus WE, Zhang J. Origin of the genetic components of the vomeronasal system in the common ancestor of all extant vertebrates. Mol Biol Evol 2008; 26:407-19. [PMID: 19008528 DOI: 10.1093/molbev/msn262] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Comparative genomics provides a valuable tool for inferring the evolutionary history of physiological systems, particularly when this information is difficult to ascertain by morphological traits. One such example is the vomeronasal system (VNS), a vertebrate nasal chemosensory system that is responsible for detecting intraspecific pheromonal cues as well as environmental odorants. The morphological components of the VNS are found only in tetrapods, but the genetic components of the system have been found in teleost fish, in addition to tetrapods. To determine when the genetic components of the VNS originated, we searched for the VNS-specific genes in the genomes of two early diverging vertebrate lineages: the sea lamprey from jawless fishes and the elephant shark from cartilaginous fishes. Genes encoding vomeronasal type 1 receptors (V1Rs) and Trpc2, two components of the vomeronasal signaling pathway, are present in the sea lamprey genome, and both are expressed in the olfactory organ, revealing that the genetic components of the present-day VNS existed in the common ancestor of all extant vertebrates. Additionally, all three VNS genes, Trpc2, V1Rs, and vomeronasal type 2 receptors (V2Rs), are found in the elephant shark genome. Because V1Rs and V2Rs are related to two families of taste receptors, we also searched the early diverging vertebrate genomes for taste system genes and found them in the shark genome but not in the lamprey. Coupled with known distributions of the genetic components of the vertebrate main olfactory system, our results suggest staggered origins of vertebrate sensory systems. These findings are important for understanding the evolution of vertebrate sensory systems and illustrate the utility of the genome sequences of early diverging vertebrates for uncovering the evolution of vertebrate-specific traits.
Collapse
Affiliation(s)
- Wendy E Grus
- Department of Ecology and Evolutionary Biology, University of Michigan, USA
| | | |
Collapse
|
268
|
Delsuc F, Tsagkogeorga G, Lartillot N, Philippe H. Additional molecular support for the new chordate phylogeny. Genesis 2008; 46:592-604. [DOI: 10.1002/dvg.20450] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
269
|
Capellini TD, Dunn MP, Passamaneck YJ, Selleri L, Di Gregorio A. Conservation of notochord gene expression across chordates: insights from the Leprecan gene family. Genesis 2008; 46:683-96. [PMID: 18798549 PMCID: PMC3065379 DOI: 10.1002/dvg.20406] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The notochord is a defining character of the chordates, and the T-box transcription factor Brachyury has been shown to be required for notochord development in all chordates examined. In the ascidian Ciona intestinalis, at least 44 notochord genes have been identified as bona fide transcriptional targets of Brachyury. We examined the embryonic expression of a subset of murine orthologs of Ciona Brachyury target genes in the notochord to assess its conservation throughout chordate evolution. We focused on analyzing the Leprecan gene family, which in mouse is composed of three genes, as opposed to the single-copy Ciona gene. We found that all three mouse Leprecan genes are expressed in the notochord. Additionally, while Leprecan expression in C. intestinalis is confined to the notochord, expression of its mouse orthologs includes dorsal root ganglia, limb buds, branchial arches, and developing kidneys. These results have interesting implications for the evolution and development of chordates.
Collapse
Affiliation(s)
- Terence D. Capellini
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York
| | - Matthew P. Dunn
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York
| | - Yale J. Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York
| | - Anna Di Gregorio
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
270
|
|
271
|
Campo-Paysaa F, Marlétaz F, Laudet V, Schubert M. Retinoic acid signaling in development: Tissue-specific functions and evolutionary origins. Genesis 2008; 46:640-56. [PMID: 19003929 DOI: 10.1002/dvg.20444] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Florent Campo-Paysaa
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242-INRA 1288-ENS-UCBL, IFR128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | |
Collapse
|
272
|
|
273
|
Abstract
Since the discovery of the marine worm Xenoturbella bocki in 1915 by Sixten Bock and its first published description by Einar Westblad (Westblad,1949, Arkiv Zoologi 1:3-29), Xenoturbella was generally allied to the turbellarian flatworms, perhaps most closely to acoelomorphs. In 1997, however, analyses of ribosomal DNA (Norén and Jondelius, 1997, Nature 390:31-32) and developing oocytes (Israelsson, 1997, Nature 390:32) [and, subsequently, embryos (Israelsson, 1999, Proc R Soc Lond B 266:835-841)] recovered from Xenoturbella specimens led to the surprising conclusion that it was in fact a highly degenerate bivalve mollusc. Bourlat et al. showed in 2003 that this result was due to contamination from bivalves in its diet (Bourlat et al.,2003, Nature 424:925-928). Our analyses showed Xenoturbella is a deuterostome, related to the Ambulacraria (echinoderms and hemichordates). Subsequent work has shown that Xenoturbellida is a separate lineage from the Ambulacraria and therefore constitutes the fourth deuterostome phylum (Bourlat et al.,2006, Nature 444:85-88). I consider this phylogenetic position in the light of what is known of its genetics, morphology, and ontogeny. I examine what this phylogenetic position for Xenoturbella can tell us about its own evolution and what light this might shine on the common ancestor of the deuterostomes and hence on the origins of the chordates.
Collapse
Affiliation(s)
- Maximilian J Telford
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
274
|
Hall BK. Evolutionary Origins of the Neural Crest and Neural Crest Cells. Evol Biol 2008. [DOI: 10.1007/s11692-008-9033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
275
|
Zupanc GKH. Chordate evolution: not just a molecular phylogenetics problem. J Zool (1987) 2008. [DOI: 10.1111/j.1469-7998.2008.00513.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
276
|
|
277
|
Domazet-Loso T, Tautz D. An ancient evolutionary origin of genes associated with human genetic diseases. Mol Biol Evol 2008; 25:2699-707. [PMID: 18820252 PMCID: PMC2582983 DOI: 10.1093/molbev/msn214] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Several thousand genes in the human genome have been linked to a heritable genetic disease. The majority of these appear to be nonessential genes (i.e., are not embryonically lethal when inactivated), and one could therefore speculate that they are late additions in the evolutionary lineage toward humans. Contrary to this expectation, we find that they are in fact significantly overrepresented among the genes that have emerged during the early evolution of the metazoa. Using a phylostratigraphic approach, we have studied the evolutionary emergence of such genes at 19 phylogenetic levels. The majority of disease genes was already present in the eukaryotic ancestor, and the second largest number has arisen around the time of evolution of multicellularity. Conversely, genes specific to the mammalian lineage are highly underrepresented. Hence, genes involved in genetic diseases are not simply a random subset of all genes in the genome but are biased toward ancient genes.
Collapse
Affiliation(s)
- Tomislav Domazet-Loso
- Max-Planck Institut für Evolutionsbiologie, August-Thienemannstrasse 2, Plön, Germany
| | | |
Collapse
|
278
|
Marlétaz F, Le Parco Y. Careful with understudied phyla: the case of chaetognath. BMC Evol Biol 2008; 8:251. [PMID: 18798978 PMCID: PMC2566580 DOI: 10.1186/1471-2148-8-251] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 09/17/2008] [Indexed: 11/10/2022] Open
Abstract
Background A recent study by Barthélémy et al. described a set of ribosomal protein (RP) genes extracted from a collection of expressed sequence tags (ESTs) of the chaetognath (arrow worm) Spadella cephaloptera. Three main conclusions were drawn in this paper. First, the authors stated that RP genes present paralogous copies, which have arisen through allopolyploidization. Second, they reported two alternate nucleotide stretches conserved within the 5' untranslated regions (UTR) of multiple ribosomal cDNAs and they suggested that these motifs are involved in the differential transcriptional regulation of paralogous RP genes. Third, they claimed that the phylogenetic position of chaetognaths could not be accurately inferred from a RP dataset because of the persistence of two problems: a long branch attraction (LBA) artefact and a compositional bias. Results We reconsider here the results described in Barthélémy et al. and question the evidence on which they are based. We find that their evidence for paralogous copies relies on faulty PCR experiments since they attempted to amplify DNA fragments absent from the genomic template. Our PCR experiments proved that the conserved motifs in 5'UTRs that they targeted in their amplifications are added post-transcriptionally by a trans-splicing mechanism. Then, we showed that the lack of phylogenetic resolution observed by these authors is due to limited taxon sampling and not to LBA or to compositional bias. A ribosomal protein dataset thus fully supports the position of chaetognaths as sister group of all other protostomes. This reinterpretation demonstrates that the statements of Barthélémy et al. should be taken with caution because they rely on inaccurate evidence. Conclusion The genomic study of an unconventional model organism is a meaningful approach to understand the evolution of animals. However, the previous study came to incorrect conclusions on the basis of experiments that omitted validation procedures.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Station Marine d'Endoume, CNRS UMR 6540 DIMAR, Centre d'Océanologie de Marseille, Université de Méditerranée, Marseille, France.
| | | |
Collapse
|
279
|
Bridgham JT, Brown JE, Rodríguez-Marí A, Catchen JM, Thornton JW. Evolution of a new function by degenerative mutation in cephalochordate steroid receptors. PLoS Genet 2008; 4:e1000191. [PMID: 18787702 PMCID: PMC2527136 DOI: 10.1371/journal.pgen.1000191] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/05/2008] [Indexed: 11/18/2022] Open
Abstract
Gene duplication is the predominant mechanism for the evolution of new genes. Major existing models of this process assume that duplicate genes are redundant; degenerative mutations in one copy can therefore accumulate close to neutrally, usually leading to loss from the genome. When gene products dimerize or interact with other molecules for their functions, however, degenerative mutations in one copy may produce repressor alleles that inhibit the function of the other and are therefore exposed to selection. Here, we describe the evolution of a duplicate repressor by simple degenerative mutations in the steroid hormone receptors (SRs), a biologically crucial vertebrate gene family. We isolated and characterized the SRs of the cephalochordate Branchiostoma floridae, which diverged from other chordates just after duplication of the ancestral SR. The B. floridae genome contains two SRs: BfER, an ortholog of the vertebrate estrogen receptors, and BfSR, an ortholog of the vertebrate receptors for androgens, progestins, and corticosteroids. BfSR is specifically activated by estrogens and recognizes estrogen response elements (EREs) in DNA; BfER does not activate transcription in response to steroid hormones but binds EREs, where it competitively represses BfSR. The two genes are partially coexpressed, particularly in ovary and testis, suggesting an ancient role in germ cell development. These results corroborate previous findings that the ancestral steroid receptor was estrogen-sensitive and indicate that, after duplication, BfSR retained the ancestral function, while BfER evolved the capacity to negatively regulate BfSR. Either of two historical mutations that occurred during BfER evolution is sufficient to generate a competitive repressor. Our findings suggest that after duplication of genes whose functions depend on specific molecular interactions, high-probability degenerative mutations can yield novel functions, which are then exposed to positive or negative selection; in either case, the probability of neofunctionalization relative to gene loss is increased compared to existing models.
Collapse
Affiliation(s)
- Jamie T. Bridgham
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Justine E. Brown
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Adriana Rodríguez-Marí
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Julian M. Catchen
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- Department of Computer and Information Science, University of Oregon, Eugene, Oregon, United States of America
| | - Joseph W. Thornton
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
280
|
Jeffery WR, Chiba T, Krajka FR, Deyts C, Satoh N, Joly JS. Trunk lateral cells are neural crest-like cells in the ascidian Ciona intestinalis: insights into the ancestry and evolution of the neural crest. Dev Biol 2008; 324:152-60. [PMID: 18801357 DOI: 10.1016/j.ydbio.2008.08.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/10/2008] [Accepted: 08/15/2008] [Indexed: 11/16/2022]
Abstract
Neural crest-like cells (NCLC) that express the HNK-1 antigen and form body pigment cells were previously identified in diverse ascidian species. Here we investigate the embryonic origin, migratory activity, and neural crest related gene expression patterns of NCLC in the ascidian Ciona intestinalis. HNK-1 expression first appeared at about the time of larval hatching in dorsal cells of the posterior trunk. In swimming tadpoles, HNK-1 positive cells began to migrate, and after metamorphosis they were localized in the oral and atrial siphons, branchial gill slits, endostyle, and gut. Cleavage arrest experiments showed that NCLC are derived from the A7.6 cells, the precursors of trunk lateral cells (TLC), one of the three types of migratory mesenchymal cells in ascidian embryos. In cleavage arrested embryos, HNK-1 positive TLC were present on the lateral margins of the neural plate and later became localized adjacent to the posterior sensory vesicle, a staging zone for their migration after larval hatching. The Ciona orthologues of seven of sixteen genes that function in the vertebrate neural crest gene regulatory network are expressed in the A7.6/TLC lineage. The vertebrate counterparts of these genes function downstream of neural plate border specification in the regulatory network leading to neural crest development. The results suggest that NCLC and neural crest cells may be homologous cell types originating in the common ancestor of tunicates and vertebrates and support the possibility that a putative regulatory network governing NCLC development was co-opted to produce neural crest cells during vertebrate evolution.
Collapse
Affiliation(s)
- William R Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | | | |
Collapse
|
281
|
Rentzsch F, Fritzenwanker JH, Scholz CB, Technau U. FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis. Development 2008; 135:1761-9. [PMID: 18441276 DOI: 10.1242/dev.020784] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factor (FGF) signalling regulates essential developmental processes in vertebrates and invertebrates, but its role during early metazoan evolution remains obscure. Here, we analyse the function of FGF signalling in a non-bilaterian animal, the sea anemone Nematostella vectensis. We identified the complete set of FGF ligands and FGF receptors, of which two paralogous FGFs (NvFGFa1 and NvFGFa2) and one FGF receptor (NvFGFRa) are specifically coexpressed in the developing apical organ, a sensory structure located at the aboral pole of ciliated larvae from various phyla. Morpholino-mediated knockdown experiments reveal that NvFGFa1 and NvFGFRa are required for the formation of the apical organ, whereas NvFGFa2 counteracts NvFGFRa signalling to prevent precocious and ectopic apical organ development. Marker gene expression analysis shows that FGF signalling regulates local patterning in the aboral region. Furthermore, NvFGFa1 activates its own expression and that of the antagonistic NvFGFa2, thereby establishing positive- and negative-feedback loops. Finally, we show that loss of the apical organ upon NvFGFa1 knockdown blocks metamorphosis into polyps. We propose that the control of the development of sensory structures at the apical pole of ciliated larvae is an ancestral function of FGF signalling.
Collapse
Affiliation(s)
- Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, N-5008 Bergen, Norway.
| | | | | | | |
Collapse
|
282
|
Bassham S, Cañestro C, Postlethwait JH. Evolution of developmental roles of Pax2/5/8 paralogs after independent duplication in urochordate and vertebrate lineages. BMC Biol 2008; 6:35. [PMID: 18721460 PMCID: PMC2532684 DOI: 10.1186/1741-7007-6-35] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 08/22/2008] [Indexed: 12/02/2022] Open
Abstract
Background Gene duplication provides opportunities for lineage diversification and evolution of developmental novelties. Duplicated genes generally either disappear by accumulation of mutations (nonfunctionalization), or are preserved either by the origin of positively selected functions in one or both duplicates (neofunctionalization), or by the partitioning of original gene subfunctions between the duplicates (subfunctionalization). The Pax2/5/8 family of important developmental regulators has undergone parallel expansion among chordate groups. After the divergence of urochordate and vertebrate lineages, two rounds of independent gene duplications resulted in the Pax2, Pax5, and Pax8 genes of most vertebrates (the sister group of the urochordates), and an additional duplication provided the pax2a and pax2b duplicates in teleost fish. Separate from the vertebrate genome expansions, a duplication also created two Pax2/5/8 genes in the common ancestor of ascidian and larvacean urochordates. Results To better understand mechanisms underlying the evolution of duplicated genes, we investigated, in the larvacean urochordate Oikopleura dioica, the embryonic gene expression patterns of Pax2/5/8 paralogs. We compared the larvacean and ascidian expression patterns to infer modular subfunctions present in the single pre-duplication Pax2/5/8 gene of stem urochordates, and we compared vertebrate and urochordate expression to infer the suite of Pax2/5/8 gene subfunctions in the common ancestor of olfactores (vertebrates + urochordates). Expression pattern differences of larvacean and ascidian Pax2/5/8 orthologs in the endostyle, pharynx and hindgut suggest that some ancestral gene functions have been partitioned differently to the duplicates in the two urochordate lineages. Novel expression in the larvacean heart may have resulted from the neofunctionalization of a Pax2/5/8 gene in the urochordates. Expression of larvacean Pax2/5/8 in the endostyle, in sites of epithelial remodeling, and in sensory tissues evokes like functions of Pax2, Pax5 and Pax8 in vertebrate embryos, and may indicate ancient origins for these functions in the chordate common ancestor. Conclusion Comparative analysis of expression patterns of chordate Pax2/5/8 duplicates, rooted on the single-copy Pax2/5/8 gene of amphioxus, whose lineage diverged basally among chordates, provides new insights into the evolution and development of the heart, thyroid, pharynx, stomodeum and placodes in chordates; supports the controversial conclusion that the atrial siphon of ascidians and the otic placode in vertebrates are homologous; and backs the notion that Pax2/5/8 functioned in ancestral chordates to engineer epithelial fusions and perforations, including gill slit openings.
Collapse
Affiliation(s)
- Susan Bassham
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403, USA.
| | | | | |
Collapse
|
283
|
Lartillot N, Philippe H. Improvement of molecular phylogenetic inference and the phylogeny of Bilateria. Philos Trans R Soc Lond B Biol Sci 2008; 363:1463-72. [PMID: 18192187 DOI: 10.1098/rstb.2007.2236] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inferring the relationships among Bilateria has been an active and controversial research area since Haeckel. The lack of a sufficient number of phylogenetically reliable characters was the main limitation of traditional phylogenies based on morphology. With the advent of molecular data, this problem has been replaced by another one, statistical inconsistency, which stems from an erroneous interpretation of convergences induced by multiple changes. The analysis of alignments rich in both genes and species, combined with a probabilistic method (maximum likelihood or Bayesian) using sophisticated models of sequence evolution, should alleviate these two major limitations. We applied this approach to a dataset of 94 genes and 79 species using CAT, a previously developed model accounting for site-specific amino acid replacement patterns. The resulting tree is in good agreement with current knowledge: the monophyly of most major groups (e.g. Chordata, Arthropoda, Lophotrochozoa, Ecdysozoa, Protostomia) was recovered with high support. Two results are surprising and are discussed in an evo-devo framework: the sister-group relationship of Platyhelminthes and Annelida to the exclusion of Mollusca, contradicting the Neotrochozoa hypothesis, and, with a lower statistical support, the paraphyly of Deuterostomia. These results, in particular the status of deuterostomes, need further confirmation, both through increased taxonomic sampling, and future improvements of probabilistic models.
Collapse
Affiliation(s)
- Nicolas Lartillot
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, CNRS-Université de Montpellier 2, 34392 Montpellier Cedex 5, France
| | | |
Collapse
|
284
|
Lowe CJ. Molecular genetic insights into deuterostome evolution from the direct-developing hemichordate Saccoglossus kowalevskii. Philos Trans R Soc Lond B Biol Sci 2008; 363:1569-78. [PMID: 18192177 DOI: 10.1098/rstb.2007.2247] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Progress in developmental biology, phylogenomics and palaeontology over the past five years are all making major contributions to a long-enduring problem in comparative biology: the early origins of the deuterostome phyla. Recent advances in the developmental biology of hemichordates have given a unique insight into developmental similarities between this phylum and chordates. Transcriptional and signalling gene expression patterns between the two groups during the early development of the anteroposterior and dorsoventral axes reveal close similarities, despite large morphological disparity between the body plans. These genetic networks have been proposed to play conserved roles in patterning centralized nervous systems in metazoans, yet seem to play a conserved role in patterning the diffusely organized basiepithelial nerve net of the hemichordates. Developmental genetic data are providing a unique insight into early deuterostome evolution, revealing a complexity of genetic regulation previously attributed only to vertebrates. While these data allow for key insights into the development of early deuterostomes, their utility for reconstructing ancestral morphologies is less certain, and morphological, palaeontological and molecular datasets should all be considered carefully when speculating about ancestral deuterostome features.
Collapse
Affiliation(s)
- Christopher J Lowe
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
285
|
Swalla BJ, Smith AB. Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. Philos Trans R Soc Lond B Biol Sci 2008; 363:1557-68. [PMID: 18192178 DOI: 10.1098/rstb.2007.2246] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Deuterostomes are a monophyletic group of animals that include the vertebrates, invertebrate chordates, ambulacrarians and xenoturbellids. Fossil representatives from most major deuterostome groups, including some phylum-level crown groups, are found in the Lower Cambrian, suggesting that evolutionary divergence occurred in the Late Precambrian, in agreement with some molecular clock estimates. Molecular phylogenies, larval morphology and the adult heart/kidney complex all support echinoderms and hemichordates as a sister grouping (Ambulacraria). Xenoturbellids are a relatively newly discovered phylum of worm-like deuterostomes that lacks a fossil record, but molecular evidence suggests that these animals are a sister group to the Ambulacraria. Within the chordates, cephalochordates share large stretches of chromosomal synteny with the vertebrates, have a complete Hox complex and are sister group to the vertebrates based on ribosomal and mitochondrial gene evidence. In contrast, tunicates have a highly derived adult body plan and are sister group to the vertebrates based on the analyses of concatenated genomic sequences. Cephalochordates and hemichordates share gill slits and an acellular cartilage, suggesting that the ancestral deuterostome also shared these features. Gene network data suggest that the deuterostome ancestor had an anterior-posterior body axis specified by Hox and Wnt genes, a dorsoventral axis specified by a BMP/chordin gradient, and was bilaterally symmetrical with left-right asymmetry determined by expression of nodal.
Collapse
Affiliation(s)
- Billie J Swalla
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| | | |
Collapse
|
286
|
Schlosser G. Do vertebrate neural crest and cranial placodes have a common evolutionary origin? Bioessays 2008; 30:659-72. [PMID: 18536035 DOI: 10.1002/bies.20775] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two embryonic tissues-the neural crest and the cranial placodes-give rise to most evolutionary novelties of the vertebrate head. These two tissues develop similarly in several respects: they originate from ectoderm at the neural plate border, give rise to migratory cells and develop into multiple cell fates including sensory neurons. These similarities, and the joint appearance of both tissues in the vertebrate lineage, may point to a common evolutionary origin of neural crest and placodes from a specialized population of neural plate border cells. However, a review of the developmental mechanisms underlying the induction, specification, migration and cytodifferentiation of neural crest and placodes reveals fundamental differences between the tissues. Taken together with insights from recent studies in tunicates and amphioxus, this suggests that neural crest and placodes have an independent evolutionary origin and that they evolved from the neural and non-neural side of the neural plate border, respectively.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, University of Bremen, FB 2, PO Box 33 04 40, 28334 Bremen, Germany.
| |
Collapse
|
287
|
Fritzsch G, Böhme MU, Thorndyke M, Nakano H, Israelsson O, Stach T, Schlegel M, Hankeln T, Stadler PF. PCR survey of Xenoturbella bocki Hox genes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:278-84. [PMID: 18161857 DOI: 10.1002/jez.b.21208] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Xenoturbella bocki has recently been identified as one of the most basal deuterostomes, although an even more basal phylogenetic position cannot be ruled out. Here we report on a polymerase chain reaction survey of partial Hox homeobox sequences of X. bocki. Surprisingly, we did not find evidence for more than five Hox genes, one clear labial/PG1 ortholog, one posterior gene most similar to the PG9/10 genes of Ambulacraria, and three central group genes whose precise assignment to a specific paralog group remains open. We furthermore report on a re-evaluation of the available published evidence of Hox genes in other basal deuterostomes.
Collapse
Affiliation(s)
- Guido Fritzsch
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Zhang Q, Zmasek CM, Dishaw LJ, Mueller MG, Ye Y, Litman GW, Godzik A. Novel genes dramatically alter regulatory network topology in amphioxus. Genome Biol 2008; 9:R123. [PMID: 18680598 PMCID: PMC2575513 DOI: 10.1186/gb-2008-9-8-r123] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 06/04/2008] [Accepted: 08/04/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Regulation in protein networks often utilizes specialized domains that 'join' (or 'connect') the network through specific protein-protein interactions. The innate immune system, which provides a first and, in many species, the only line of defense against microbial and viral pathogens, is regulated in this way. Amphioxus (Branchiostoma floridae), whose genome was recently sequenced, occupies a unique position in the evolution of innate immunity, having diverged within the chordate lineage prior to the emergence of the adaptive immune system in vertebrates. RESULTS The repertoire of several families of innate immunity proteins is expanded in amphioxus compared to both vertebrates and protostome invertebrates. Part of this expansion consists of genes encoding proteins with unusual domain architectures, which often contain both upstream receptor and downstream activator domains, suggesting a potential role for direct connections (shortcuts) that bypass usual signal transduction pathways. CONCLUSION Domain rearrangements can potentially alter the topology of protein-protein interaction (and regulatory) networks. The extent of such arrangements in the innate immune network of amphioxus suggests that domain shuffling, which is an important mechanism in the evolution of multidomain proteins, has also shaped the development of immune systems.
Collapse
Affiliation(s)
- Qing Zhang
- Burnham Institute for Medical Research, North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Christian M Zmasek
- Burnham Institute for Medical Research, North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Larry J Dishaw
- Department of Molecular Genetics, All Children's Hospital, 6th Street South, St. Petersburg, FL 33701, USA
- H Lee Moffitt Cancer Center and Research Institute, Magnolia Drive, Tampa, FL 33612, USA
| | - M Gail Mueller
- Department of Molecular Genetics, All Children's Hospital, 6th Street South, St. Petersburg, FL 33701, USA
| | - Yuzhen Ye
- School of Informatics, Indiana University, E. 10th Street, Bloomington, IN 47408, USA
| | - Gary W Litman
- Department of Molecular Genetics, All Children's Hospital, 6th Street South, St. Petersburg, FL 33701, USA
- H Lee Moffitt Cancer Center and Research Institute, Magnolia Drive, Tampa, FL 33612, USA
- Department of Pediatrics, University of South Florida, Children's Research Institute, First Street South, St. Petersburg, FL 33701, USA
| | - Adam Godzik
- Burnham Institute for Medical Research, North Torrey Pines Road, La Jolla, CA 92037, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
289
|
Gissi C, Iannelli F, Pesole G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity (Edinb) 2008; 101:301-20. [PMID: 18612321 DOI: 10.1038/hdy.2008.62] [Citation(s) in RCA: 441] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The mitochondrial genome (mtDNA) of Metazoa is a good model system for evolutionary genomic studies and the availability of more than 1000 sequences provides an almost unique opportunity to decode the mechanisms of genome evolution over a large phylogenetic range. In this paper, we review several structural features of the metazoan mtDNA, such as gene content, genome size, genome architecture and the new parameter of gene strand asymmetry in a phylogenetic framework. The data reviewed here show that: (1) the plasticity of Metazoa mtDNA is higher than previously thought and mainly due to variation in number and location of tRNA genes; (2) an exceptional trend towards stabilization of genomic features occurred in deuterostomes and was exacerbated in vertebrates, where gene content, genome architecture and gene strand asymmetry are almost invariant. Only tunicates exhibit a very high degree of genome variability comparable to that found outside deuterostomes. In order to analyse the genomic evolutionary process at short evolutionary distances, we have also compared mtDNAs of species belonging to the same genus: the variability observed in congeneric species significantly recapitulates the evolutionary dynamics observed at higher taxonomic ranks, especially for taxa showing high levels of genome plasticity and/or fast nucleotide substitution rates. Thus, the analysis of congeneric species promises to be a valuable approach for the assessment of the mtDNA evolutionary trend in poorly or not yet sampled metazoan groups.
Collapse
Affiliation(s)
- C Gissi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Milano, Italy.
| | | | | |
Collapse
|
290
|
A multi criterion approach for the selection of optimal outgroups in phylogeny: Recovering some support for Mandibulata over Myriochelata using mitogenomics. Mol Phylogenet Evol 2008; 48:103-11. [DOI: 10.1016/j.ympev.2008.03.033] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 03/01/2008] [Accepted: 03/17/2008] [Indexed: 11/15/2022]
|
291
|
Holland LZ, Albalat R, Azumi K, Benito-Gutiérrez È, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DE, Garcia-Fernàndez J, Gibson-Brown JJ, Gissi C, Godzik A, Hallböök F, Hirose D, Hosomichi K, Ikuta T, Inoko H, Kasahara M, Kasamatsu J, Kawashima T, Kimura A, Kobayashi M, Kozmik Z, Kubokawa K, Laudet V, Litman GW, McHardy AC, Meulemans D, Nonaka M, Olinski RP, Pancer Z, Pennacchio LA, Pestarino M, Rast JP, Rigoutsos I, Robinson-Rechavi M, Roch G, Saiga H, Sasakura Y, Satake M, Satou Y, Schubert M, Sherwood N, Shiina T, Takatori N, Tello J, Vopalensky P, Wada S, Xu A, Ye Y, Yoshida K, Yoshizaki F, Yu JK, Zhang Q, Zmasek CM, de Jong PJ, Osoegawa K, Putnam NH, Rokhsar DS, Satoh N, Holland PW. The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 2008; 18:1100-11. [PMID: 18562680 PMCID: PMC2493399 DOI: 10.1101/gr.073676.107] [Citation(s) in RCA: 378] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 02/24/2008] [Indexed: 02/07/2023]
Abstract
Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development, nuclear receptor genes, genes encoding components of the endocrine and immune systems, and conserved cis-regulatory enhancers. The amphioxus genome contains a basic set of chordate genes involved in development and cell signaling, including a fifteenth Hox gene. This set includes many genes that were co-opted in vertebrates for new roles in neural crest development and adaptive immunity. However, where amphioxus has a single gene, vertebrates often have two, three, or four paralogs derived from two whole-genome duplication events. In addition, several transcriptional enhancers are conserved between amphioxus and vertebrates--a very wide phylogenetic distance. In contrast, urochordate genomes have lost many genes, including a diversity of homeobox families and genes involved in steroid hormone function. The amphioxus genome also exhibits derived features, including duplications of opsins and genes proposed to function in innate immunity and endocrine systems. Our results indicate that the amphioxus genome is elemental to an understanding of the biology and evolution of nonchordate deuterostomes, invertebrate chordates, and vertebrates.
Collapse
Affiliation(s)
- Linda Z. Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California 92093-0202, USA
| | - Ricard Albalat
- Departament of Genetics, Faculty of Biology, University of Barcelona, Barcelona E-08028, Spain
| | - Kaoru Azumi
- Division of Innovative Research, Creative Research Initiative “Sousei”, Hokkaido University, Sapporo 001-0021, Japan
| | - Èlia Benito-Gutiérrez
- Departament of Genetics, Faculty of Biology, University of Barcelona, Barcelona E-08028, Spain
| | - Matthew J. Blow
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Marianne Bronner-Fraser
- Division of Biology 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | - Frederic Brunet
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, UCBL, ENS, INRA 1288, IFR128 BioSciences Lyon-Gerland Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Thomas Butts
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Simona Candiani
- Dipartimento di Biologia, Università di Genova, viale Benedetto XV 5, 16132 Genova, Italy
| | - Larry J. Dishaw
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 USA
- Department of Molecular Genetics, All Children’s Hospital, St. Petersburg, Florida 33701 USA
| | - David E.K. Ferrier
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
- The Gatty Marine Laboratory,University of St Andrews, St Andrews, Fife, KY16 8LB, Scotland
| | - Jordi Garcia-Fernàndez
- Departament of Genetics, Faculty of Biology, University of Barcelona, Barcelona E-08028, Spain
| | - Jeremy J. Gibson-Brown
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Carmela Gissi
- Dipartimento di Scienze Biomolecolarie Biotecnologie, Università di Milano, Milano, Italy
| | - Adam Godzik
- Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | - Finn Hallböök
- Unit of Developmental Neuroscience, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Dan Hirose
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | - Kazuyoshi Hosomichi
- Department of Molecular Life Science, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan
| | - Tetsuro Ikuta
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan
| | - Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Jun Kasamatsu
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takeshi Kawashima
- Center for Integrative Genomics, Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Ayuko Kimura
- Department of Biological Sciences, Graduate school of Science, The University of Tokyo, Tokyo 113-033, Japan
| | - Masaaki Kobayashi
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Kaoru Kubokawa
- Center for Advanced Marine Research, Ocean Research Institute, University of Tokyo, Nakano, Tokyo 164-8639, Japan
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, UCBL, ENS, INRA 1288, IFR128 BioSciences Lyon-Gerland Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Gary W. Litman
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 USA
- Department of Molecular Genetics, All Children’s Hospital, St. Petersburg, Florida 33701 USA
- Department of Pediatrics, University of South Florida, St. Petersburg, Florida 33701 USA
| | - Alice C. McHardy
- Bioinformatics and Pattern Discovery Group, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Daniel Meulemans
- Division of Biology 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | - Masaru Nonaka
- Department of Biological Sciences, Graduate school of Science, The University of Tokyo, Tokyo 113-033, Japan
| | - Robert P. Olinski
- Unit of Developmental Neuroscience, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Zeev Pancer
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202 USA
| | - Len A. Pennacchio
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Mario Pestarino
- Dipartimento di Biologia, Università di Genova, viale Benedetto XV 5, 16132 Genova, Italy
| | - Jonathan P. Rast
- Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - Isidore Rigoutsos
- Bioinformatics and Pattern Discovery Group, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | - Graeme Roch
- Department of Biology, University of Victoria, Victoria, B.C., V8W 3N5, Canada
| | - Hidetoshi Saiga
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025 Japan
| | - Masanobu Satake
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Michael Schubert
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, UCBL, ENS, INRA 1288, IFR128 BioSciences Lyon-Gerland Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Nancy Sherwood
- Department of Biology, University of Victoria, Victoria, B.C., V8W 3N5, Canada
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan
| | - Naohito Takatori
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | - Javier Tello
- Department of Biology, University of Victoria, Victoria, B.C., V8W 3N5, Canada
| | - Pavel Vopalensky
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Shuichi Wada
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, People’s Republic of China
| | - Yuzhen Ye
- Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | - Keita Yoshida
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | - Fumiko Yoshizaki
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Chiba 279-0021, Japan
| | - Jr-Kai Yu
- Division of Biology 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | - Qing Zhang
- Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | - Pieter J. de Jong
- Children’s Hospital of Oakland Research Institute, Oakland, California 94609, USA
| | - Kazutoyo Osoegawa
- Children’s Hospital of Oakland Research Institute, Oakland, California 94609, USA
| | - Nicholas H. Putnam
- Center for Integrative Genomics, Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Daniel S. Rokhsar
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
- Center for Integrative Genomics, Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Noriyuki Satoh
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Peter W.H. Holland
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
292
|
Oberst A, Bender C, Green DR. Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ 2008; 15:1139-46. [PMID: 18451868 PMCID: PMC2612587 DOI: 10.1038/cdd.2008.65] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mitochondrial pathway of cell death, in which apoptosis proceeds following mitochondrial outer membrane permeabilization, release of cytochrome c, and APAF-1 apoptosome-mediated caspase activation, represents the major pathway of physiological apoptosis in vertebrates. However, the well-characterized apoptotic pathways of the invertebrates C. elegans and D. melanogaster indicate that this apoptotic pathway is not universally conserved among animals. This review will compare the role of the mitochondria in the apoptotic programs of mammals, nematodes, and flies, and will survey our knowledge of the apoptotic pathways of other, less familiar model organisms in an effort to explore the evolutionary origins of the mitochondrial pathway of apoptosis.
Collapse
Affiliation(s)
- A Oberst
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
293
|
Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutiérrez EL, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PWH, Satoh N, Rokhsar DS. The amphioxus genome and the evolution of the chordate karyotype. Nature 2008; 453:1064-71. [PMID: 18563158 DOI: 10.1038/nature06967] [Citation(s) in RCA: 1207] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 04/04/2008] [Indexed: 12/18/2022]
Abstract
Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.
Collapse
Affiliation(s)
- Nicholas H Putnam
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Yu JK, Meulemans D, McKeown SJ, Bronner-Fraser M. Insights from the amphioxus genome on the origin of vertebrate neural crest. Genome Res 2008; 18:1127-32. [PMID: 18562679 DOI: 10.1101/gr.076208.108] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The emergence of the neural crest has been proposed to play a key role in early vertebrate evolution by remodeling the chordate head into a "new head" that enabled early vertebrates to shift from filter feeding to active predation. Here we show that the genome of the basal chordate, amphioxus, contains homologs of most vertebrate genes implicated in a putative neural crest gene regulatory network (NC-GRN) for neural crest development. Our survey of gene expression shows that early inducing signals, neural plate border patterning genes, and melanocyte differentiation genes appear conserved. Furthermore, exogenous BMP affects expression of amphioxus neural plate border genes as in vertebrates, suggesting that conserved signals specify the neural plate border throughout chordates. In contrast to this core conservation, many neural crest specifier genes are not expressed at the amphioxus neural plate/tube border, raising the intriguing possibility that this level of the network was co-opted during vertebrate evolution. Consistent with this, the regulatory region of AmphiFoxD, homologous to the vertebrate neural crest specifier FoxD3, drives tissue-specific reporter expression in chick mesoderm, but not neural crest. Thus, evolution of a new regulatory element may have allowed co-option of this gene to the NC-GRN.
Collapse
Affiliation(s)
- Jr-Kai Yu
- Division of Biology 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
295
|
Graham A. Deconstructing the pharyngeal metamere. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:336-44. [PMID: 17583579 DOI: 10.1002/jez.b.21182] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A prominent feature of all vertebrate embryos is the presence of a series of bulges on the lateral surface of the head, the pharyngeal arches. These structures constitute a metameric series, with each arch forming a similar set of derivatives. Significantly, the development of the pharyngeal arches is complex as it involves interactions between disparate embryonic cell types: ectoderm, endoderm, mesoderm and neural crest. It is becoming increasingly apparent that the development of the pharyngeal metamere revolves around the pharyngeal endoderm. The segmentation of this tissue is central to the generation of the arches. The pharyngeal endoderm also provides positional cues for the neural crest, and is involved in the induction of a number of components of the pharyngeal metamere. The segmentation of the pharyngeal endoderm has also been key to the evolution of pharyngeal metamerism. It is likely that endodermal segmentation is a deuterostome characteristic and that this basic pattern was sequentially modified and over time the more complex pharyngeal metamere of vertebrates emerged.
Collapse
Affiliation(s)
- Anthony Graham
- MRC Centre for Developmental Neurobiology, Guys Campus, King's College London, London, United Kingdom.
| |
Collapse
|
296
|
Marlétaz F, Gilles A, Caubit X, Perez Y, Dossat C, Samain S, Gyapay G, Wincker P, Le Parco Y. Chaetognath transcriptome reveals ancestral and unique features among bilaterians. Genome Biol 2008; 9:R94. [PMID: 18533022 PMCID: PMC2481426 DOI: 10.1186/gb-2008-9-6-r94] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 03/03/2008] [Accepted: 06/04/2008] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The chaetognaths (arrow worms) have puzzled zoologists for years because of their astonishing morphological and developmental characteristics. Despite their deuterostome-like development, phylogenomic studies recently positioned the chaetognath phylum in protostomes, most likely in an early branching. This key phylogenetic position and the peculiar characteristics of chaetognaths prompted further investigation of their genomic features. RESULTS Transcriptomic and genomic data were collected from the chaetognath Spadella cephaloptera through the sequencing of expressed sequence tags and genomic bacterial artificial chromosome clones. Transcript comparisons at various taxonomic scales emphasized the conservation of a core gene set and phylogenomic analysis confirmed the basal position of chaetognaths among protostomes. A detailed survey of transcript diversity and individual genotyping revealed a past genome duplication event in the chaetognath lineage, which was, surprisingly, followed by a high retention rate of duplicated genes. Moreover, striking genetic heterogeneity was detected within the sampled population at the nuclear and mitochondrial levels but cannot be explained by cryptic speciation. Finally, we found evidence for trans-splicing maturation of transcripts through splice-leader addition in the chaetognath phylum and we further report that this processing is associated with operonic transcription. CONCLUSION These findings reveal both shared ancestral and unique derived characteristics of the chaetognath genome, which suggests that this genome is likely the product of a very original evolutionary history. These features promote chaetognaths as a pivotal model for comparative genomics, which could provide new clues for the investigation of the evolution of animal genomes.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- CNRS UMR 6540 DIMAR, Station Marine d'Endoume, Centre d'Océanologie de Marseille, Chemin de la Batterie des Lions, 13007, Marseille, France
- Université de la Méditerranée Aix-Marseille II, Bd Charles Livon, 13284, Marseille, France
| | - André Gilles
- Université de Provence Aix-Marseille I, place Victor-Hugo, 13331, Marseille, France
- CNRS UMR 6116 IMEP, Centre St Charles, place Victor-Hugo, 13331, Marseille, France
| | - Xavier Caubit
- Université de la Méditerranée Aix-Marseille II, Bd Charles Livon, 13284, Marseille, France
- CNRS UMR 6216, IBDML, Campus de Luminy, Route Léon Lachamp, 13288, Marseille, France
| | - Yvan Perez
- Université de Provence Aix-Marseille I, place Victor-Hugo, 13331, Marseille, France
- CNRS UMR 6116 IMEP, Centre St Charles, place Victor-Hugo, 13331, Marseille, France
| | - Carole Dossat
- Genoscope (CEA), rue Gaston Crémieux, BP5706, 91057 Evry, France
- CNRS, UMR 8030, rue Gaston Crémieux, BP5706, 91057 Evry, France
- Université d'Evry, Boulevard François Mitterrand, 91025, Evry, France
| | - Sylvie Samain
- Genoscope (CEA), rue Gaston Crémieux, BP5706, 91057 Evry, France
- CNRS, UMR 8030, rue Gaston Crémieux, BP5706, 91057 Evry, France
- Université d'Evry, Boulevard François Mitterrand, 91025, Evry, France
| | - Gabor Gyapay
- Genoscope (CEA), rue Gaston Crémieux, BP5706, 91057 Evry, France
- CNRS, UMR 8030, rue Gaston Crémieux, BP5706, 91057 Evry, France
- Université d'Evry, Boulevard François Mitterrand, 91025, Evry, France
| | - Patrick Wincker
- Genoscope (CEA), rue Gaston Crémieux, BP5706, 91057 Evry, France
- CNRS, UMR 8030, rue Gaston Crémieux, BP5706, 91057 Evry, France
- Université d'Evry, Boulevard François Mitterrand, 91025, Evry, France
| | - Yannick Le Parco
- CNRS UMR 6540 DIMAR, Station Marine d'Endoume, Centre d'Océanologie de Marseille, Chemin de la Batterie des Lions, 13007, Marseille, France
- Université de la Méditerranée Aix-Marseille II, Bd Charles Livon, 13284, Marseille, France
| |
Collapse
|
297
|
Freeman RM, Wu M, Cordonnier-Pratt MM, Pratt LH, Gruber CE, Smith M, Lander ES, Stange-Thomann N, Lowe CJ, Gerhart J, Kirschner M. cDNA sequences for transcription factors and signaling proteins of the hemichordate Saccoglossus kowalevskii: efficacy of the expressed sequence tag (EST) approach for evolutionary and developmental studies of a new organism. THE BIOLOGICAL BULLETIN 2008; 214:284-302. [PMID: 18574105 DOI: 10.2307/25470670] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We describe a collection of expressed sequence tags (ESTs) for Saccoglossus kowalevskii, a direct-developing hemichordate valuable for evolutionary comparisons with chordates. The 202,175 ESTs represent 163,633 arrayed clones carrying cDNAs prepared from embryonic libraries, and they assemble into 13,677 continuous sequences (contigs), leaving 10,896 singletons (excluding mitochondrial sequences). Of the contigs, 53% had significant matches when BLAST was used to query the NCBI databases (< or = 10(-10)), as did 51% of the singletons. Contigs most frequently matched sequences from amphioxus (29%), chordates (67%), and deuterostomes (87%). From the clone array, we isolated 400 full-length sequences for transcription factors and signaling proteins of use for evolutionary and developmental studies. The set includes sequences for fox, pax, tbx, hox, and other homeobox-containing factors, and for ligands and receptors of the TGFbeta, Wnt, Hh, Delta/Notch, and RTK pathways. At least 80% of key sequences have been obtained, when judged against gene lists of model organisms. The median length of these cDNAs is 2.3 kb, including 1.05 kb of 3' untranslated region (UTR). Only 30% are entirely matched by single contigs assembled from ESTs. We conclude that an EST collection based on 150,000 clones is a rich source of sequences for molecular developmental work, and that the EST approach is an efficient way to initiate comparative studies of a new organism.
Collapse
Affiliation(s)
- R M Freeman
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Abstract
Many of the features that distinguish the vertebrates from other chordates are derived from the neural crest, and it has long been argued that the emergence of this multipotent embryonic population was a key innovation underpinning vertebrate evolution. More recently, however, a number of studies have suggested that the evolution of the neural crest was less sudden than previously believed. This has exposed the fact that neural crest, as evidenced by its repertoire of derivative cell types, has evolved through vertebrate evolution. In this light, attempts to derive a typological definition of neural crest, in terms of molecular signatures or networks, are unfounded. We propose a less restrictive, embryological definition of this cell type that facilitates, rather than precludes, investigating the evolution of neural crest. While the evolutionary origin of neural crest has attracted much attention, its subsequent evolution has received almost no attention and yet it is more readily open to experimental investigation and has greater relevance to understanding vertebrate evolution. Finally, we provide a brief outline of how the evolutionary emergence of neural crest potentiality may have proceeded, and how it may be investigated.
Collapse
|
299
|
Butts T, Holland PWH, Ferrier DEK. The urbilaterian Super-Hox cluster. Trends Genet 2008; 24:259-62. [PMID: 18472178 DOI: 10.1016/j.tig.2007.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 09/17/2007] [Accepted: 09/17/2007] [Indexed: 11/25/2022]
Abstract
Comparison of whole genome sequences of representative animals enables reconstruction of the ancestral bilaterian genome: the starting point from which most extant animal lineages evolved. The Hox gene cluster patterns the anterior-posterior axis of bilaterians. Here we show that this cluster was embedded within a larger homeobox gene cluster, the Super-Hox cluster, in the ancestral bilaterian. This Super-Hox cluster contained at least eight genes alongside the core Hox genes ('EuHox' genes).
Collapse
Affiliation(s)
- Thomas Butts
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | | |
Collapse
|
300
|
Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 2008; 275:3249-77. [PMID: 18513324 DOI: 10.1111/j.1742-4658.2008.06488.x] [Citation(s) in RCA: 529] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NADPH oxidases of the Nox family exist in various supergroups of eukaryotes but not in prokaryotes, and play crucial roles in a variety of biological processes, such as host defense, signal transduction, and hormone synthesis. In conjunction with NADPH oxidation, Nox enzymes reduce molecular oxygen to superoxide as a primary product, and this is further converted to various reactive oxygen species. The electron-transferring system in Nox is composed of the C-terminal cytoplasmic region homologous to the prokaryotic (and organelle) enzyme ferredoxin reductase and the N-terminal six transmembrane segments containing two hemes, a structure similar to that of cytochrome b of the mitochondrial bc(1) complex. During the course of eukaryote evolution, Nox enzymes have developed regulatory mechanisms, depending on their functions, by inserting a regulatory domain (or motif) into their own sequences or by obtaining a tightly associated protein as a regulatory subunit. For example, one to four Ca(2+)-binding EF-hand motifs are present at the N-termini in several subfamilies, such as the respiratory burst oxidase homolog (Rboh) subfamily in land plants (the supergroup Plantae), the NoxC subfamily in social amoebae (the Amoebozoa), and the Nox5 and dual oxidase (Duox) subfamilies in animals (the Opisthokonta), whereas an SH3 domain is inserted into the ferredoxin-NADP(+) reductase region of two Nox enzymes in Naegleria gruberi, a unicellular organism that belongs to the supergroup Excavata. Members of the Nox1-4 subfamily in animals form a stable heterodimer with the membrane protein p22(phox), which functions as a docking site for the SH3 domain-containing regulatory proteins p47(phox), p67(phox), and p40(phox); the small GTPase Rac binds to p67(phox) (or its homologous protein), which serves as a switch for Nox activation. Similarly, Rac activates the fungal NoxA via binding to the p67(phox)-like protein Nox regulator (NoxR). In plants, on the other hand, this GTPase directly interacts with the N-terminus of Rboh, leading to superoxide production. Here I describe the regulation of Nox-family oxidases on the basis of three-dimensional structures and evolutionary conservation.
Collapse
Affiliation(s)
- Hideki Sumimoto
- Medical Institute of Bioregulation, Kyushu University, Fukuoka CREST, Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|