251
|
Abstract
Tight junctions are intercellular junctions adjacent to the apical ends of paracellular spaces. They have two classical functions, the barrier function and the fence function. The former regulates the passage of ions, water and various molecules through paracellular spaces, and is thus related to edema, jaundice, diarrhea and blood‐borne metastasis. The latter function maintains cell polarity by forming a fence to prevent intermixing of molecules in the apical membrane with those in the lateral membrane. This function is deeply involved in cancer cell properties in terms of loss of cell polarity. Recently, two novel aspects of tight junctions have been reported. One is their involvement in signal transduction. The other is that fact that tight junctions are considered to be a crucial component of innate immunity. In addition, since some proteins comprising tight junctions work as receptors for viruses and extracellular stimuli, pathogenic bacteria and viruses target and affect the tight junction functions, leading to diseases. In this review, the relationship between tight junctions and human diseases will be described.
Collapse
Affiliation(s)
- Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
252
|
Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host Microbe 2013; 12:20-33. [PMID: 22817985 DOI: 10.1016/j.chom.2012.05.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 04/06/2012] [Accepted: 05/07/2012] [Indexed: 02/06/2023]
Abstract
The Helicobacter pylori type IV secretion effector CagA is a major bacterial virulence determinant and critical for gastric carcinogenesis. Upon delivery into gastric epithelial cells, CagA localizes to the inner face of the plasma membrane, where it acts as a pathogenic scaffold/hub that promiscuously recruits host proteins to potentiate oncogenic signaling. We find that CagA comprises a structured N-terminal region and an intrinsically disordered C-terminal region that directs versatile protein interactions. X-ray crystallographic analysis of the N-terminal CagA fragment (residues 1-876) revealed that the region has a structure comprised of three discrete domains. Domain I constitutes a mobile CagA N terminus, while Domain II tethers CagA to the plasma membrane by interacting with membrane phosphatidylserine. Domain III interacts intramolecularly with the intrinsically disordered C-terminal region, and this interaction potentiates the pathogenic scaffold/hub function of CagA. The present work provides a tertiary-structural basis for the pathophysiological/oncogenic action of H. pylori CagA.
Collapse
|
253
|
Noto JM, Gaddy JA, Lee JY, Piazuelo MB, Friedman DB, Colvin DC, Romero-Gallo J, Suarez G, Loh J, Slaughter JC, Tan S, Morgan DR, Wilson KT, Bravo LE, Correa P, Cover TL, Amieva MR, Peek RM. Iron deficiency accelerates Helicobacter pylori-induced carcinogenesis in rodents and humans. J Clin Invest 2012; 123:479-92. [PMID: 23257361 DOI: 10.1172/jci64373] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 09/27/2012] [Indexed: 12/13/2022] Open
Abstract
Gastric adenocarcinoma is strongly associated with Helicobacter pylori infection; however, most infected persons never develop this malignancy. H. pylori strains harboring the cag pathogenicity island (cag+), which encodes CagA and a type IV secretion system (T4SS), induce more severe disease outcomes. H. pylori infection is also associated with iron deficiency, which similarly augments gastric cancer risk. To define the influence of iron deficiency on microbial virulence in gastric carcinogenesis, Mongolian gerbils were maintained on iron-depleted diets and infected with an oncogenic H. pylori cag+ strain. Iron depletion accelerated the development of H. pylori-induced premalignant and malignant lesions in a cagA-dependent manner. H. pylori strains harvested from iron-depleted gerbils or grown under iron-limiting conditions exhibited enhanced virulence and induction of inflammatory factors. Further, in a human population at high risk for gastric cancer, H. pylori strains isolated from patients with the lowest ferritin levels induced more robust proinflammatory responses compared with strains isolated from patients with the highest ferritin levels, irrespective of histologic status. These data demonstrate that iron deficiency enhances H. pylori virulence and represents a measurable biomarker to identify populations of infected persons at high risk for gastric cancer.
Collapse
Affiliation(s)
- Jennifer M Noto
- Division of Gastroenterology, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Noto JM, Gaddy JA, Lee JY, Piazuelo MB, Friedman DB, Colvin DC, Romero-Gallo J, Suarez G, Loh J, Slaughter JC, Tan S, Morgan DR, Wilson KT, Bravo LE, Correa P, Cover TL, Amieva MR, Peek RM. Iron deficiency accelerates Helicobacter pylori-induced carcinogenesis in rodents and humans. J Clin Invest 2012. [PMID: 23257361 DOI: 10.1172/jci6437364373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastric adenocarcinoma is strongly associated with Helicobacter pylori infection; however, most infected persons never develop this malignancy. H. pylori strains harboring the cag pathogenicity island (cag+), which encodes CagA and a type IV secretion system (T4SS), induce more severe disease outcomes. H. pylori infection is also associated with iron deficiency, which similarly augments gastric cancer risk. To define the influence of iron deficiency on microbial virulence in gastric carcinogenesis, Mongolian gerbils were maintained on iron-depleted diets and infected with an oncogenic H. pylori cag+ strain. Iron depletion accelerated the development of H. pylori-induced premalignant and malignant lesions in a cagA-dependent manner. H. pylori strains harvested from iron-depleted gerbils or grown under iron-limiting conditions exhibited enhanced virulence and induction of inflammatory factors. Further, in a human population at high risk for gastric cancer, H. pylori strains isolated from patients with the lowest ferritin levels induced more robust proinflammatory responses compared with strains isolated from patients with the highest ferritin levels, irrespective of histologic status. These data demonstrate that iron deficiency enhances H. pylori virulence and represents a measurable biomarker to identify populations of infected persons at high risk for gastric cancer.
Collapse
Affiliation(s)
- Jennifer M Noto
- Division of Gastroenterology, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Stage-specific expression, immunolocalization of Clonorchis sinensis lysophospholipase and its potential role in hepatic fibrosis. Parasitol Res 2012. [PMID: 23183703 DOI: 10.1007/s00436-012-3194-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lysophospholipase, belonging to the complex family of phospholipases, is supposed to play a vital role in virulence and pathogenesis of parasites and fungi. In the current study, the potential role of Clonorchis sinensis lysophospholipase (CslysoPLA) in hepatic fibrosis induced by C. sinensis was explored for the first time. In the liver of the cat infected with C. sinensis, CslysoPLA was recognized in the lumen between adult worms and surrounding bile duct epithelia together with some inside the cells by means of immunolocalization. Both Cell Counting Kit-8 (CCK-8 assay) and cell cycle analysis of human hepatic stellate cell line LX-2 showed that a higher percentage of cells were at proliferation phase after incubation with lower concentrations of recombinant CslysoPLA (rCslysoPLA). Quantitative real-time polymerase chain reaction (RT-PCR) demonstrated an upregulation in fibrogenic genes of smooth muscle α-actin, collagen III, matrix metalloproteinase 2 and tissue inhibitors of metalloproteinase II in LX-2 treated with rCslysoPLA. Moreover, human biliary epithelial cell line 5100 proliferated significantly in response to rCslysoPLA. Notably, CslysoPLA was localized in the adenomatoid hyperplastic tissue within the intrahepatic bile duct of experimentally infected rats by immunolocalization analysis. In addition, quantitative RT-PCR implied that CslysoPLA was differentially expressed at the developmental stages of C. sinensis (metacercariae, adult worms and eggs), with the highest level at metacercariae stage. Immunolocalization analysis showed that CslysoPLA was distributed in the intestine, vitelline gland, tegument and eggs in the adult worms and in the tegument and vitelline gland in the metacercariae, respectively. Collectively, it suggests that CslysoPLA might be involved in the initiation and promotion of C. sinensis-related human hepatic fibrosis and advance future studies on its promotion to C. sinensis-induced cholangiocarcinogenesis.
Collapse
|
256
|
Chen MY, Yuan Y. Helicobacter pylori virulence factors that act at different stages of infection. Shijie Huaren Xiaohua Zazhi 2012; 20:2937-2943. [DOI: 10.11569/wcjd.v20.i30.2937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) plays an essential role in the development of various gastroduodenal diseases, such as chronic superficial gastritis, peptic ulcer, gastric mucosa associated lymphoid tissue (MALT) lymphoma, and gastric adenocarcinoma. The diverse clinical outcomes after H. pylori infection are partly attributable to various H. pylori virulence factors. These virulence factors can act at different stages of infection, including (1) establishing successful colonization; (2) evading the host's immune system and (3) invading the gastric mucosa. In this paper, we review the recent advances in research of H. pylori virulence factors associated with the pathogenic process of H. pylori infection.
Collapse
|
257
|
Yang Z, Xue B, Umitsu M, Ikura M, Muthuswamy SK, Neel BG. The signaling adaptor GAB1 regulates cell polarity by acting as a PAR protein scaffold. Mol Cell 2012; 47:469-83. [PMID: 22883624 DOI: 10.1016/j.molcel.2012.06.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 05/16/2012] [Accepted: 06/18/2012] [Indexed: 12/21/2022]
Abstract
Cell polarity plays a key role in development and is disrupted in tumors, yet the molecules and mechanisms that regulate polarity remain poorly defined. We found that the scaffolding adaptor GAB1 interacts with two polarity proteins, PAR1 and PAR3. GAB1 binds PAR1 and enhances its kinase activity. GAB1 brings PAR1 and PAR3 into a transient complex, stimulating PAR3 phosphorylation by PAR1. GAB1 and PAR6 bind the PAR3 PDZ1 domain and thereby compete for PAR3 binding. Consequently, GAB1 depletion causes PAR3 hypophosphorylation and increases PAR3/PAR6 complex formation, resulting in accelerated and enhanced tight junction formation, increased transepithelial resistance, and lateral domain shortening. Conversely, GAB1 overexpression, in a PAR1/PAR3-dependent manner, disrupts epithelial apical-basal polarity, promotes multilumen cyst formation, and enhances growth factor-induced epithelial cell scattering. Our results identify GAB1 as a negative regulator of epithelial cell polarity that functions as a scaffold for modulating PAR protein complexes on the lateral membrane.
Collapse
Affiliation(s)
- Ziqiang Yang
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | | | | | | | | | | |
Collapse
|
258
|
Wandler AM, Guillemin K. Transgenic expression of the Helicobacter pylori virulence factor CagA promotes apoptosis or tumorigenesis through JNK activation in Drosophila. PLoS Pathog 2012; 8:e1002939. [PMID: 23093933 PMCID: PMC3475654 DOI: 10.1371/journal.ppat.1002939] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/16/2012] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer development is strongly correlated with infection by Helicobacter pylori possessing the effector protein CagA. Using a transgenic Drosophila melanogaster model, we show that CagA expression in the simple model epithelium of the larval wing imaginal disc causes dramatic tissue perturbations and apoptosis when CagA-expressing and non-expressing cells are juxtaposed. This cell death phenotype occurs through activation of JNK signaling and is enhanced by loss of the neoplastic tumor suppressors in CagA-expressing cells or loss of the TNF homolog Eiger in wild type neighboring cells. We further explored the effects of CagA-mediated JNK pathway activation on an epithelium in the context of oncogenic Ras activation, using a Drosophila model of metastasis. In this model, CagA expression in epithelial cells enhances the growth and invasion of tumors in a JNK-dependent manner. These data suggest a potential role for CagA-mediated JNK pathway activation in promoting gastric cancer progression. The gastric pathogen Helicobacter pylori infects an estimated 50% of the world's population and is a major risk factor for the development of gastric cancer. Strains of H. pylori that can inject the CagA effector protein into host cells are known to be more virulent, but the potential contributions of host genetics to pathogenesis are not well-understood. Using transgenic Drosophila melanogaster, we show that the genetic context of both the host cells in which CagA is expressed and their neighboring cells changes CagA's effects on epithelial tissue. When CagA is expressed in a subset of cells within an epithelium, it disrupts tissue integrity and induces apoptosis through activation of JNK signaling, a pathway that functions to remove aberrant cells from an epithelium. CagA's proapoptotic effects are inhibited by neoplastic tumor suppressor genes in CagA-expressing cells, and by the tumor necrosis factor homolog Eiger in neighboring cells. In contrast, when CagA is coexpressed with oncogenic Ras in a Drosophila model of metastasis, it enhances the growth and invasion of tumors in a JNK-dependent manner. Our study demonstrates how changes in host genetics can cooperate with activation of JNK signaling by the bacterial virulence factor CagA to promote tumorigenesis.
Collapse
Affiliation(s)
- Anica M Wandler
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | |
Collapse
|
259
|
Yamahashi Y, Hatakeyama M. PAR1b takes the stage in the morphogenetic and motogenetic activity of Helicobacter pylori CagA oncoprotein. Cell Adh Migr 2012; 7:11-8. [PMID: 23076215 DOI: 10.4161/cam.21936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori CagA oncoprotein is critically involved in gastric carcinogenesis. Upon delivery into gastric epithelial cells via type IV secretion, CagA induces an extremely elongated cell-shape known as the hummingbird phenotype, which is associated with massive changes in actin cytoskeleton and elevated motility. With the notion that the hummingbird phenotype reflects pathogenic/oncogenic activity of CagA, many studies have focused on the mechanism through which CagA induces the morphological change. Once delivered, CagA interacts with host proteins such as oncogenic phosphatase SHP2 and polarity-regulating kinase PAR1b. Whereas the essential role of the CagA-SHP2 interaction in inducing the hummingbird phenotype has been extensively investigated, involvement of the CagA-PAR1b interaction in the morphological change has remained uncertain. Recently, we found that the CagA-PAR1b interaction, which inhibits PAR1b kinase activity, influences the actin cytoskeletal system and potentiates the magnitude of the hummingbird phenotype. We also found that PAR1b inactivates a RhoA-specific GEF, GEF-H1, via phosphorylation and thereby inhibits cortical actin and stress fiber formation. Collectively, these findings indicate that CagA-mediated inhibition of PAR1b promotes RhoA-dependent actin-cytoskeletal rearrangement and thereby strengthens the hummingbird phenotype induced by CagA-stimulated SHP2 during infection with H. pylori cagA-positive strains.
Collapse
Affiliation(s)
- Yukie Yamahashi
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
260
|
Sun C, Tian L, Nie J, Zhang H, Han X, Shi Y. Inactivation of MARK4, an AMP-activated protein kinase (AMPK)-related kinase, leads to insulin hypersensitivity and resistance to diet-induced obesity. J Biol Chem 2012; 287:38305-15. [PMID: 22992738 DOI: 10.1074/jbc.m112.388934] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MARK4, also known as Par-1d/MarkL1, is a member of the AMP-activated protein kinase (AMPK)-related family of kinases, which are implicated in the regulation of dynamic biological functions, including glucose and energy homeostasis. However, the physiological function of MARK4 in mammals remains elusive. Here, we investigated a role for MARK4 in regulating energy homeostasis by generating mice with targeted inactivation of the mark4 gene. We show that MARK4 deficiency in mice caused hyperphagia, hyperactivity, and hypermetabolism, leading to protection from diet-induced obesity and its related metabolic complications through up-regulation of brown fat activity. Consequently, MARK4 deficiency mitigated insulin resistance associated with diet-induced obesity by dramatically enhancing insulin-stimulated AKT phosphorylation in major metabolic tissues. Ablation of MARK4 also significantly improved glucose homeostasis by up-regulating the activity and expression of AMPK kinase in key metabolic tissues. Taken together, these data identify a key role of MARK4 in energy metabolism, implicating the kinase as a novel drug target for the treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | | | | | | | | | | |
Collapse
|
261
|
Structural insights into Helicobacter pylori oncoprotein CagA interaction with β1 integrin. Proc Natl Acad Sci U S A 2012; 109:14640-5. [PMID: 22908298 DOI: 10.1073/pnas.1206098109] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection with the gastric pathogen Helicobacter pylori is a risk factor for the development of gastric cancer. Pathogenic strains of H. pylori carry a type IV secretion system (T4SS) responsible for the injection of the oncoprotein CagA into host cells. H. pylori and its cag-T4SS exploit α5β1 integrin as a receptor for CagA translocation. Injected CagA localizes to the inner leaflet of the host cell membrane, where it hijacks host cell signaling and induces cytoskeleton reorganization. Here we describe the crystal structure of the N-terminal ~100-kDa subdomain of CagA at 3.6 Å that unveils a unique combination of folds. The core domain of the protein consists of an extended single-layer β-sheet stabilized by two independent helical subdomains. The core is followed by a long helix that forms a four-helix helical bundle with the C-terminal domain. Mapping of conserved regions in a set of CagA sequences identified four conserved surface-exposed patches (CSP1-4), which represent putative hot-spots for protein-protein interactions. The proximal part of the single-layer β-sheet, covering CSP4, is involved in specific binding of CagA to the β1 integrin, as determined by yeast two-hybrid and in vivo competition assays in H. pylori cell-culture infection studies. These data provide a structural basis for the first step of CagA internalization into host cells and suggest that CagA uses a previously undescribed mechanism to bind β1 integrin to mediate its own translocation.
Collapse
|
262
|
Aituov B, Duisembekova A, Bulenova A, Alibek K. Pathogen-driven gastrointestinal cancers: Time for a change in treatment paradigm? Infect Agent Cancer 2012; 7:18. [PMID: 22873119 PMCID: PMC3508868 DOI: 10.1186/1750-9378-7-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/27/2012] [Indexed: 02/06/2023] Open
Abstract
The regulation of cancerous tumor development is converged upon by multiple pathways and factors. Besides environmental factors, gastrointestinal (GI) tract cancer can be caused by chronic inflammation, which is generally induced by bacteria, viruses, and parasites. The role of these inducers in cancer development, cell differentiation and transformation, cell cycle deregulation, and in the expression of tumor-associated genes cannot be ignored. Although Helicobacter pylori activates many oncogenic pathways, particularly those in gastric and colorectal cancers, the role of viruses in tumor development is also significant. Viruses possess significant oncogenic potential to interfere with normal cell cycle control and genome stability, stimulating the growth of deregulated cells. An increasing amount of recent data also implies the association of GI cancers with bacterial colonization and viruses. This review focuses on host-cell interactions that facilitate primary mechanisms of tumorigenesis and provides new insights into novel GI cancer treatments.
Collapse
Affiliation(s)
- Bauyrzhan Aituov
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
| | - Assem Duisembekova
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
| | - Assel Bulenova
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
| | - Kenneth Alibek
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
- Republican Scientific Center for Emergency Care, 3 Kerey and Zhanibek Khan Street, Astana 010000, Kazakhstan
| |
Collapse
|
263
|
Abstract
INTRODUCTION STAT3 is a key transcription factor for many regulatory factors that modulate gene transcription. Particularly important are cytokines and growth factors that maintain homeostasis by regulating immunocytes, stromal and epithelial cells. Dysregulation of STAT3 by constitutive activation plays an important role in the initiation of inflammation and cellular transformation in numerous cancers, especially of epithelial origin. This review focuses on STAT3 drive in gastric cancer initiation and progression, with emphasis on its activation by cytokines, and how targeting the primary drivers or gastric STAT3 therapeutically may prevent or slow stomach cancer development. AREAS COVERED This review will discuss the mechanics of STAT3 signalling, how constitutive STAT3 activation promotes gastric tumourigenesis in both human adenocarcinomas and mouse models, the nature of the upstream regulators of STAT3, and their association with chronic Helicobacter pylori infection, STAT3-activated genes that promote transformation and progression, and finally the development and use of STAT3 and upstream cytokine inhibitors as therapeutics. EXPERT OPINION Chronic STAT3 activation is a key event in gastric cancer induction and progression. Specific targeting of stomach epithelial STAT3 or blocking IL-11Rα/gp130 and/or EGFR signal transduction in chronic gastric inflammation and metaplasia may be therapeutically effective in preventing gastric carcinogenesis.
Collapse
Affiliation(s)
- Andrew S Giraud
- Murdoch Childrens Research Institute, Royal Childrens Hospital, Parkville, Australia.
| | | | | |
Collapse
|
264
|
Chattopadhyay S, Patra R, Chatterjee R, De R, Alam J, Ramamurthy T, Chowdhury A, Nair GB, Berg DE, Mukhopadhyay AK. Distinct repeat motifs at the C-terminal region of CagA of Helicobacter pylori strains isolated from diseased patients and asymptomatic individuals in West Bengal, India. Gut Pathog 2012; 4:4. [PMID: 22631862 PMCID: PMC3405419 DOI: 10.1186/1757-4749-4-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/25/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Infection with Helicobacter pylori strains that express CagA is associated with gastritis, peptic ulcer disease, and gastric adenocarcinoma. The biological function of CagA depends on tyrosine phosphorylation by a cellular kinase. The phosphate acceptor tyrosine moiety is present within the EPIYA motif at the C-terminal region of the protein. This region is highly polymorphic due to variations in the number of EPIYA motifs and the polymorphism found in spacer regions among EPIYA motifs. The aim of this study was to analyze the polymorphism at the C-terminal end of CagA and to evaluate its association with the clinical status of the host in West Bengal, India. RESULTS Seventy-seven H. pylori strains isolated from patients with various clinical statuses were used to characterize the C-ternimal polymorphic region of CagA. Our analysis showed that there is no correlation between the previously described CagA types and various disease outcomes in Indian context. Further analyses of different CagA structures revealed that the repeat units in the spacer sequences within the EPIYA motifs are actually more discrete than the previously proposed models of CagA variants. CONCLUSION Our analyses suggest that EPIYA motifs as well as the spacer sequence units are present as distinct insertions and deletions, which possibly have arisen from extensive recombination events. Moreover, we have identified several new CagA types, which could not be typed by the existing systems and therefore, we have proposed a new typing system. We hypothesize that a cagA gene encoding higher number EPIYA motifs may perhaps have arisen from cagA genes that encode lesser EPIYA motifs by acquisition of DNA segments through recombination events.
Collapse
|
265
|
Zhu Y, Jiang Q, Lou X, Ji X, Wen Z, Wu J, Tao H, Jiang T, He W, Wang C, Du Q, Zheng S, Mao J, Huang J. MicroRNAs up-regulated by CagA of Helicobacter pylori induce intestinal metaplasia of gastric epithelial cells. PLoS One 2012; 7:e35147. [PMID: 22536353 PMCID: PMC3335061 DOI: 10.1371/journal.pone.0035147] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/08/2012] [Indexed: 02/07/2023] Open
Abstract
CagA of Helicobacter pylori is a bacterium-derived oncogenic protein closely associated with the development of gastric cancers. MicroRNAs (miRNAs) are a class of widespread non-coding RNAs, many of which are involved in cell growth, cell differentiation and tumorigenesis. The relationship between CagA protein and miRNAs is unclear. Using mammalian miRNA profile microarrays, we found that miRNA-584 and miRNA-1290 expression was up-regulated in CagA-transformed cells, miRNA-1290 was up-regulated in an Erk1/2-dependent manner, and miRNA-584 was activated by NF-κB. miRNA-584 sustained Erk1/2 activities through inhibition of PPP2a activities, and miRNA-1290 activated NF-κB by knockdown of NKRF. Foxa1 was revealed to be an important target of miRNA-584 and miRNA-1290. Knockdown of Foxa1 promoted the epithelial-mesenchymal transition significantly. Overexpression of miRNA-584 and miRNA-1290 induced intestinal metaplasia of gastric epithelial cells in knock-in mice. These results indicate that miRNA-584 and miRNA-1290 interfere with cell differentiation and remodel the tissues. Thus, the miRNA pathway is a new pathogenic mechanism of CagA.
Collapse
Affiliation(s)
- Yongliang Zhu
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Jin S, Wu M, Cao H, Ying S, Hua J, Chen Y. p27(kip1) upregulated by hnRNPC1/2 antagonizes CagA (a virulence factor of Helicobacter pylori)-mediated pathogenesis. Helicobacter 2012; 17:140-7. [PMID: 22404445 DOI: 10.1111/j.1523-5378.2011.00927.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Infection by Helicobacter pylori is one of the major contributing factors of chronic active gastritis and peptic ulcer and is closely associated with the occurrence and progression of gastric cancer. CagA protein is a major virulence factor of H. pylori that interacts with SHP-2, a true oncogene, to interfere with cellular signaling pathways; CagA also plays a crucial role in promoting the carcinogenesis of gastric epithelial cells. However, currently, the molecular mechanisms of gastric epithelial cells that antagonize CagA pathogenesis remain inconclusive. METHODS We showed that AGS gastric cancer cells transfected with CagA exhibited the inhibition of proliferation and increased activity of caspase 3/7 using two-dimensional gel electrophoresis and secondary mass spectrometry (MS/MS). RESULTS It was found that the AGS gastric cancer cells stably expressing CagA displayed significantly increased the expression of 16 proteins, including hnRNPC1/2. Further analysis revealed that hnRNPC1/2 significantly boosted the expression of the p27(kip1) protein. CONCLUSION Our data suggested that hnRNPC1/2 upregulates p27(kip1) expression and the subsequent suppression of cell proliferation and induction of apoptosis, thereby providing an important mechanism whereby gastric epithelial cells antagonize CagA-mediated pathogenesis.
Collapse
Affiliation(s)
- Shenghang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | | | | | | | | | | |
Collapse
|
267
|
Reid DW, Muyskens JB, Neal JT, Gaddini GW, Cho LY, Wandler AM, Botham CM, Guillemin K. Identification of genetic modifiers of CagA-induced epithelial disruption in Drosophila. Front Cell Infect Microbiol 2012; 2:24. [PMID: 22919616 PMCID: PMC3417398 DOI: 10.3389/fcimb.2012.00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/16/2012] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori strains containing the CagA protein are associated with high risk of gastric diseases including atrophic gastritis, peptic ulcers, and gastric cancer. CagA is injected into host cells via a Type IV secretion system where it activates growth factor-like signaling, disrupts cell-cell junctions, and perturbs host cell polarity. Using a transgenic Drosophila model, we have shown that CagA expression disrupts the morphogenesis of epithelial tissues such as the adult eye. Here we describe a genetic screen to identify modifiers of CagA-induced eye defects. We determined that reducing the copy number of genes encoding components of signaling pathways known to be targeted by CagA, such as the epidermal growth factor receptor (EGFR), modified the CagA-induced eye phenotypes. In our screen of just over half the Drosophila genome, we discovered 12 genes that either suppressed or enhanced CagA's disruption of the eye epithelium. Included in this list are genes involved in epithelial integrity, intracellular trafficking, and signal transduction. We investigated the mechanism of one suppressor, encoding the epithelial polarity determinant and junction protein Coracle, which is homologous to the mammalian Protein 4.1. We found that loss of a single copy of coracle improved the organization and integrity of larval retinal epithelia expressing CagA, but did not alter CagA's localization to cell junctions. Loss of a single copy of the coracle antagonist crumbs enhanced CagA-associated disruption of the larval retinal epithelium, whereas overexpression of crumbs suppressed this phenotype. Collectively, these results point to new cellular pathways whose disruption by CagA are likely to contribute to H. pylori-associated disease pathology.
Collapse
Affiliation(s)
- David W Reid
- Institute of Molecular Biology, University of Oregon, Eugene OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Müller A. Multistep activation of the Helicobacter pylori effector CagA. J Clin Invest 2012; 122:1192-5. [PMID: 22378039 DOI: 10.1172/jci61578] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with the Gram-negative bacterium Helicobacter pylori is a major risk factor for the development of gastric cancer. Accumulating evidence indicates that the H. pylori virulence determinant cytotoxin-associated gene A (CagA) has a key oncogenic role in the process. Certain biological activities of CagA require its tyrosine phosphorylation by host cell kinases. In this issue of the JCI, Mueller and colleagues report their detailed kinetic and functional analysis of CagA phosphorylation, which indicates that c-Src and c-Abl kinases sequentially phosphorylate CagA. Interestingly, the two phosphorylation events need not occur on the same CagA molecule but are both required for the biological effects of CagA. The results provide a clinically relevant example of how a successful bacterial pathogen has evolved to exploit the tightly coordinated, sequential activity of host cell kinases for virulence factor activation and induction of pathology.
Collapse
Affiliation(s)
- Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
269
|
Bonazzi M, Cossart P. Impenetrable barriers or entry portals? The role of cell-cell adhesion during infection. ACTA ACUST UNITED AC 2012; 195:349-58. [PMID: 22042617 PMCID: PMC3206337 DOI: 10.1083/jcb.201106011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-cell adhesion plays a fundamental role in cell polarity and organogenesis. It also contributes to the formation and establishment of physical barriers against microbial infections. However, a large number of pathogens, from viruses to bacteria and parasites, have developed countless strategies to specifically target cell adhesion molecules in order to adhere to and invade epithelial cells, disrupt epithelial integrity, and access deeper tissues for dissemination. The study of all these processes has contributed to the characterization of molecular machineries at the junctions of eukaryotic cells that have been better understood by using pathogens as probes.
Collapse
Affiliation(s)
- Matteo Bonazzi
- Centre Nationale de la Recherche Scientifique, UMR 5236, CPBS, CNRS, 34293 Montpellier, France.
| | | |
Collapse
|
270
|
Rizzato C, Torres J, Plummer M, Muñoz N, Franceschi S, Camorlinga-Ponce M, Fuentes-Pananá EM, Canzian F, Kato I. Variations in Helicobacter pylori cytotoxin-associated genes and their influence in progression to gastric cancer: implications for prevention. PLoS One 2012; 7:e29605. [PMID: 22235308 PMCID: PMC3250449 DOI: 10.1371/journal.pone.0029605] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/01/2011] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori (HP) is a bacterium that colonizes the human stomach and can establish a long-term infection of the gastric mucosa. Persistent Hp infection often induces gastritis and is associated with the development of peptic ulcer disease, atrophic gastritis, and gastric adenocarcinoma. Virulent HP isolates harbor the cag (cytotoxin-associated genes) pathogenicity island (cagPAI), a 40 kb stretch of DNA that encodes components of a type IV secretion system (T4SS). This T4SS forms a pilus for the injection of virulence factors into host target cells, such as the CagA oncoprotein. We analyzed the genetic variability in cagA and other selected genes of the HP cagPAI (cagC, cagE, cagL, cagT, cagV and cag Gamma) using DNA extracted from frozen gastric biopsies or from clinical isolates. Study subjects were 95 cagA+ patients that were histologically diagnosed with chronic gastritis or gastric cancer in Venezuela and Mexico, areas with high prevalence of Hp infection. Sequencing reactions were carried out by both Sanger and next-generation pyrosequencing (454 Roche) methods. We found a total of 381 variants with unambiguous calls observed in at least 10% of the originally tested samples and reference strains. We compared the frequencies of these genetic variants between gastric cancer and chronic gastritis cases. Twenty-six SNPs (11 non-synonymous and 14 synonymous) showed statistically significant differences (P<0.05), and two SNPs, in position 1039 and 1041 of cagE, showed a highly significant association with cancer (p-value = 2.07×10⁻⁶), and the variant codon was located in the VirB3 homology domain of Agrobacterium. The results of this study may provide preliminary information to target antibiotic treatment to high-risk individuals, if effects of these variants are confirmed in further investigations.
Collapse
Affiliation(s)
| | - Javier Torres
- Unidad de Investigacion en Enfermedades Infecciosas, Unidad Médica de Alta Especialidad (UMAE) Pediatria, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Martyn Plummer
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Nubia Muñoz
- National Cancer Institute of Colombia, Bogota, Colombia
| | | | - Margarita Camorlinga-Ponce
- Unidad de Investigacion en Enfermedades Infecciosas, Unidad Médica de Alta Especialidad (UMAE) Pediatria, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigacion en Enfermedades Infecciosas, Unidad Médica de Alta Especialidad (UMAE) Pediatria, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Ikuko Kato
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
271
|
Abstract
The cag pathogenicity island is a well-characterized virulence determinant. It is composed of 32 genes that encode a type IV bacterial secretion system and is linked with a more severe clinical outcome. The following chapters will explore the manipulation of bacterial factors in order to understand their role in gastric mucosal disease.
Collapse
Affiliation(s)
- Jennifer M Noto
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, MRB IV 1030C MRB IV, Nashville, TN, USA.
| | | |
Collapse
|
272
|
Ashida H, Ogawa M, Kim M, Mimuro H, Sasakawa C. Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol 2011; 8:36-45. [PMID: 22173358 DOI: 10.1038/nchembio.741] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The gut mucosa acts as a barrier against microbial invaders, whereas resident commensal and foreign invading bacteria interact intimately with the gut epithelium and influence the host cellular and immune systems. The epithelial barrier serves as an infectious foothold for many bacterial pathogens and as an entry port for pathogens to disseminate into deeper tissues. Enteric bacterial pathogens can efficiently infect the gut mucosa using highly sophisticated virulence mechanisms that allow bacteria to circumvent the defense barriers in the gut. We provide an overview of the components of the mucosal barrier and discuss the bacterial stratagems that circumvent these barriers with particular emphasis on the roles of bacterial effector proteins.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
273
|
Kikuchi K, Murata-Kamiya N, Kondo S, Hatakeyama M. Helicobacter pylori stimulates epithelial cell migration via CagA-mediated perturbation of host cell signaling. Microbes Infect 2011; 14:470-6. [PMID: 22202178 DOI: 10.1016/j.micinf.2011.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/30/2011] [Accepted: 12/05/2011] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori CagA is delivered into gastric epithelial cells, where undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif to interact with Src homology 2-containing protein tyrosine phosphatase-2 (SHP2) oncoprotein. CagA also binds to partitioning-defective 1 (PAR1) polarity-regulating kinase via the CagA multimerization (CM) sequence. To investigate pathophysiological role of CagA-SHP2 and/or CagA-PAR1 interaction in H. pylori infection, we generated H. pylori isogenic strains producing a phosphorylation-resistant CagA and a CagA without CM sequence. Infection studies revealed that deregulation of epithelial cell motility was more prominent in the wild-type strain than in the mutant strains. Thus, both CagA-SHP2 and CagA-PAR1 interactions are involved in the pathogenicity of cagA-positive H. pylori.
Collapse
Affiliation(s)
- Kenji Kikuchi
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
274
|
Huang CH, Chiou SH. Proteomic analysis of upregulated proteins in Helicobacter pylori under oxidative stress induced by hydrogen peroxide. Kaohsiung J Med Sci 2011; 27:544-53. [DOI: 10.1016/j.kjms.2011.06.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 04/18/2011] [Indexed: 01/03/2023] Open
|
275
|
Delgado-Rosado G, Dominguez-Bello MG, Massey SE. Positive selection on a bacterial oncoprotein associated with gastric cancer. Gut Pathog 2011; 3:18. [PMID: 22078307 PMCID: PMC3228766 DOI: 10.1186/1757-4749-3-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/11/2011] [Indexed: 01/01/2023] Open
Abstract
Background Helicobacter pylori is a vertically inherited gut commensal that is carcinogenic if it possesses the cag pathogenicity island (cag PaI); infection with H.pylori is the major risk factor for gastric cancer, the second leading cause of death from cancer worldwide (WHO). The cag PaI locus encodes the cagA gene, whose protein product is injected into stomach epithelial cells via a Type IV secretion system, also encoded by the cag PaI. Once there, the cagA protein binds to various cellular proteins, resulting in dysregulation of cell division and carcinogenesis. For this reason, cagA may be described as an oncoprotein. A clear understanding of the mechanism of action of cagA and its benefit to the bacteria is lacking.
Collapse
Affiliation(s)
- Gisela Delgado-Rosado
- Biology Department, University of Puerto Rico - Rio Piedras, PO Box 23360, San Juan, Puerto Rico, USA 00931.
| | | | | |
Collapse
|
276
|
Yamahashi Y, Saito Y, Murata-Kamiya N, Hatakeyama M. Polarity-regulating kinase partitioning-defective 1b (PAR1b) phosphorylates guanine nucleotide exchange factor H1 (GEF-H1) to regulate RhoA-dependent actin cytoskeletal reorganization. J Biol Chem 2011; 286:44576-84. [PMID: 22072711 DOI: 10.1074/jbc.m111.267021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Partitioning-defective 1b (PAR1b), also known as microtubule affinity-regulating kinase 2 (MARK2), is a member of evolutionally conserved PAR1/MARK serine/threonine kinase family, which plays a key role in the establishment and maintenance of cell polarity at least partly by phosphorylating microtubule-associated proteins (MAPs) that regulate microtubule stability. PAR1b has also been reported to influence actin cytoskeletal organization, raising the possibility that PAR1b functionally interacts with the Rho family of small GTPases, central regulators of the actin cytoskeletal system. Consistent with this notion, PAR1 was recently found to be physically associated with a RhoA-specific guanine nucleotide exchange factor H1 (GEF-H1). This observation suggests a functional link between PAR1b and GEF-H1. Here we show that PAR1b induces phosphorylation of GEF-H1 on serine 885 and serine 959. We also show that PAR1b-induced serine 885/serine 959 phosphorylation inhibits RhoA-specific GEF activity of GEF-H1. As a consequence, GEF-H1 phosphorylated on both of the serine residues loses the ability to stimulate RhoA and thereby fails to induce RhoA-dependent stress fiber formation. These findings indicate that PAR1b not only regulates microtubule stability through phosphorylation of MAPs but also influences actin stress fiber formation by inducing GEF-H1 phosphorylation. The dual function of PAR1b in the microtubule-based cytoskeletal system and the actin-based cytoskeletal system in the coordinated regulation of cell polarity, cell morphology, and cell movement.
Collapse
Affiliation(s)
- Yukie Yamahashi
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
277
|
Wroblewski LE, Peek RM. "Targeted disruption of the epithelial-barrier by Helicobacter pylori". Cell Commun Signal 2011; 9:29. [PMID: 22044698 PMCID: PMC3225297 DOI: 10.1186/1478-811x-9-29] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/01/2011] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori colonizes the human gastric epithelium and induces chronic gastritis, which can lead to gastric cancer. Through cell-cell contacts the gastric epithelium forms a barrier to protect underlying tissue from pathogenic bacteria; however, H. pylori have evolved numerous strategies to perturb the integrity of the gastric barrier. In this review, we summarize recent research into the mechanisms through which H. pylori disrupts intercellular junctions and disrupts the gastric epithelial barrier.
Collapse
Affiliation(s)
- Lydia E Wroblewski
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
278
|
Tegtmeyer N, Wittelsberger R, Hartig R, Wessler S, Martinez-Quiles N, Backert S. Serine phosphorylation of cortactin controls focal adhesion kinase activity and cell scattering induced by Helicobacter pylori. Cell Host Microbe 2011; 9:520-31. [PMID: 21669400 DOI: 10.1016/j.chom.2011.05.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/29/2011] [Accepted: 05/25/2011] [Indexed: 02/04/2023]
Abstract
Cell migration and invasion require the coordinated regulation of cytoskeletal architectural changes by signaling factors, including the actin-binding protein cortactin. Bacterial and viral pathogens subvert these signaling factors to promote their uptake, spread and dissemination. We show that the gastric pathogen Helicobacter pylori (Hp) targets cortactin by two independent processes leading to its tyrosine dephosphorylation and serine phosphorylation to regulate cell scattering and elongation. The phosphorylation status of cortactin dictates its subcellular localization and signaling partners. Upon infection, cortactin was found to interact with and stimulate the kinase activity of focal adhesion kinase (FAK). This interaction required the SH3 domain and phosphorylation of cortactin at serine 405 and a proline-rich sequence in FAK. Using Hp as a model, this study unravels a previously unrecognized FAK activation pathway. We propose that Hp targets cortactin to protect the gastric epithelium from excessive cell lifting and ensure sustained infection in the stomach.
Collapse
Affiliation(s)
- Nicole Tegtmeyer
- Department of Microbiology, Otto von Guericke University, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
279
|
Takahashi A, Tsutsumi R, Kikuchi I, Obuse C, Saito Y, Seidi A, Karisch R, Fernandez M, Cho T, Ohnishi N, Rozenblatt-Rosen O, Meyerson M, Neel BG, Hatakeyama M. SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver. Mol Cell 2011; 43:45-56. [PMID: 21726809 DOI: 10.1016/j.molcel.2011.05.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/04/2011] [Accepted: 05/08/2011] [Indexed: 12/11/2022]
Abstract
Deregulation of SHP2 is associated with malignant diseases as well as developmental disorders. Although SHP2 is required for full activation of RAS signaling, other potential roles in cell physiology have not been elucidated. Here we show that SHP2 dephosphorylates parafibromin/Cdc73, a core component of the RNA polymerase II-associated factor (PAF) complex. Parafibromin is known to act as a tumor suppressor that inhibits cyclin D1 and c-myc by recruiting SUV39H1 histone methyltransferase. However, parafibromin can also act in the opposing direction by binding β-catenin, thereby activating promitogenic/oncogenic Wnt signaling. We found that, on tyrosine dephosphorylation by SHP2, parafibromin acquires the ability to stably bind β-catenin. The parafibromin/β-catenin interaction overrides parafibromin/SUV39H1-mediated transrepression and induces expression of Wnt target genes, including cyclin D1 and c-myc. Hence, SHP2 governs the opposing functions of parafibromin, deregulation of which may cause the development of tumors or developmental malformations.
Collapse
Affiliation(s)
- Atsushi Takahashi
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Furuta Y, Yahara K, Hatakeyama M, Kobayashi I. Evolution of cagA oncogene of Helicobacter pylori through recombination. PLoS One 2011; 6:e23499. [PMID: 21853141 PMCID: PMC3154945 DOI: 10.1371/journal.pone.0023499] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/19/2011] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a gastric pathogen that infects half the human population and causes gastritis, ulcers, and cancer. The cagA gene product is a major virulence factor associated with gastric cancer. It is injected into epithelial cells, undergoes phosphorylation by host cell kinases, and perturbs host signaling pathways. CagA is known for its geographical, structural, and functional diversity in the C-terminal half, where an EPIYA host-interacting motif is repeated. The Western version of CagA carries the EPIYA segment types A, B, and C, while the East Asian CagA carries types A, B, and D and shows higher virulence. Many structural variants such as duplications and deletions are reported. In this study, we gained insight into the relationships of CagA variants through various modes of recombination, by analyzing all known cagA variants at the DNA sequence level with the single nucleotide resolution. Processes that occurred were: (i) homologous recombination between DNA sequences for CagA multimerization (CM) sequence; (ii) recombination between DNA sequences for the EPIYA motif; and (iii) recombination between short similar DNA sequences. The left half of the EPIYA-D segment characteristic of East Asian CagA was derived from Western type EPIYA, with Amerind type EPIYA as the intermediate, through rearrangements of specific sequences within the gene. Adaptive amino acid changes were detected in the variable region as well as in the conserved region at sites to which no specific function has yet been assigned. Each showed a unique evolutionary distribution. These results clarify recombination-mediated routes of cagA evolution and provide a solid basis for a deeper understanding of its function in pathogenesis.
Collapse
Affiliation(s)
- Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Koji Yahara
- Graduate School of Medicine, Kurume University, Kurume, Fukuoka, Japan
- Fujitsu Kyushu Systems LTD, Fukuoka, Fukuoka, Japan
| | - Masanori Hatakeyama
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
281
|
Nagase L, Murata-Kamiya N, Hatakeyama M. Potentiation of Helicobacter pylori CagA protein virulence through homodimerization. J Biol Chem 2011; 286:33622-31. [PMID: 21813645 DOI: 10.1074/jbc.m111.258673] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic infection with Helicobacter pylori cagA-positive strains is associated with atrophic gastritis, peptic ulceration, and gastric carcinoma. The cagA gene product, CagA, is delivered into gastric epithelial cells via type IV secretion, where it undergoes tyrosine phosphorylation at the EPIYA motifs. Tyrosine-phosphorylated CagA binds and aberrantly activates the oncogenic tyrosine phosphatase SHP2, which mediates induction of elongated cell morphology (hummingbird phenotype) that reflects CagA virulence. CagA also binds and inhibits the polarity-regulating kinase partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) via the CagA multimerization (CM) sequence independently of tyrosine phosphorylation. Because PAR1 exists as a homodimer, two CagA proteins appear to be passively dimerized through complex formation with a PAR1 dimer in cells. Interestingly, a CagA mutant that lacks the CM sequence displays a reduced SHP2 binding activity and exhibits an attenuated ability to induce the hummingbird phenotype, indicating that the CagA-PAR1 interaction also influences the morphological transformation. Here we investigated the role of CagA dimerization in induction of the hummingbird phenotype with the use of a chemical dimerizer, coumermycin. We found that CagA dimerization markedly stabilizes the CagA-SHP2 complex and thereby potentiates SHP2 deregulation, causing an increase in the number of hummingbird cells. Protrusions of hummingbird cells induced by chemical dimerization of CagA are further elongated by simultaneous inhibition of PAR1. This study revealed a role of the CM sequence in amplifying the magnitude of SHP2 deregulation by CagA, which, in conjunction with the CM sequence-mediated inhibition of PAR1, evokes morphological transformation that reflects in vivo CagA virulence.
Collapse
Affiliation(s)
- Lisa Nagase
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
282
|
Bornschein J, Malfertheiner P. Gastric carcinogenesis. Langenbecks Arch Surg 2011; 396:729-42. [PMID: 21611816 DOI: 10.1007/s00423-011-0810-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/09/2011] [Indexed: 02/07/2023]
Abstract
INTRODUCTION In most patients, gastric cancer is diagnosed in advanced stage. Curative treatment options are limited and the mortality is high. The process of gastric carcinogenesis is triggered by Helicobacter pylori-driven gastritis and is further characterized by its complexity of interaction with other risk factors. Health care systems are challenged for the improvement of prevention, early diagnosis, and effective treatments. METHODS An extensive literature research has been performed to elucidate the interplay between etiological factors involved in gastric carcinogenesis. RESULTS H. pylori is the most important carcinogen for gastric adenocarcinoma. Evidence is provided by experiments including animal studies as well as clinical observational and interventional studies in humans. Eradication has the potential to prevent gastric cancer and offers the greatest benefit if performed before premalignant changes of the gastric mucosa have occurred. Bacterial virulence factors are essential players in modulating the immune response involved in the initiation of the carcinogenesis in the stomach. Host genetic factors contribute to the regulation of the inflammatory response and in the aggravation of mucosal damage. The harmful role of environmental factors is restricted to salt intake and smoking of tobacco. The ingestion of fruit and vegetables has some protective effect. CONCLUSION Infection with H. pylori is the major risk factor for gastric cancer development, and thus, eradication of the Helicobacter offers a promising best option for prevention of the disease. Bacterial virulence, host genetic factors, and environmental influences are interacting in the multifactorial process of gastric carcinogenesis.
Collapse
Affiliation(s)
- Jan Bornschein
- Department of Gastroenterology, Hepatology & Infectious Diseases, Otto-von-Guericke University of Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | |
Collapse
|
283
|
Nagy TA, Wroblewski LE, Wang D, Piazuelo MB, Delgado A, Romero-Gallo J, Noto J, Israel DA, Ogden SR, Correa P, Cover TL, Peek RM. β-Catenin and p120 mediate PPARδ-dependent proliferation induced by Helicobacter pylori in human and rodent epithelia. Gastroenterology 2011; 141:553-64. [PMID: 21704622 PMCID: PMC3152603 DOI: 10.1053/j.gastro.2011.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 04/28/2011] [Accepted: 05/05/2011] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Colonization of gastric mucosa by Helicobacter pylori leads to epithelial hyperproliferation, which increases the risk for gastric adenocarcinoma. One H pylori virulence locus associated with cancer risk, cag, encodes a secretion system that transports effectors into host cells and leads to aberrant activation of β-catenin and p120-catenin (p120). Peroxisome proliferator-activated receptor (PPAR)δ is a ligand-activated transcription factor that affects oncogenesis in conjunction with β-catenin. We used a carcinogenic H pylori strain to define the role of microbial virulence constituents and PPARδ in regulating epithelial responses that mediate development of adenocarcinoma. METHODS Gastric epithelial cells or colonies were co-cultured with the H pylori cag(+) strain 7.13 or cagE(-), cagA(-), soluble lytic transglycosylase(-), or cagA(-)/soluble lytic transglycosylase(-) mutants. Levels of PPARδ and cyclin E1 were determined by real-time, reverse-transcription polymerase chain reaction, immunoblot analysis, or immunofluorescence microscopy; proliferation was measured in 3-dimensional culture. PPARδ and Ki67 expression were determined by immunohistochemical analysis of human biopsies and rodent gastric mucosa. RESULTS H pylori induced β-catenin- and p120-dependent expression and activation of PPARδ in gastric epithelial cells, which were mediated by the cag secretion system substrates CagA and peptidoglycan. H pylori stimulated proliferation in vitro, which required PPARδ-mediated activation of cyclin E1; H pylori did not induce expression of cyclin E1 in a genetic model of PPARδ deficiency. PPARδ expression and proliferation in rodent and human gastric tissue was selectively induced by cag(+) strains and PPARδ levels normalized after eradication of H pylori. CONCLUSIONS The H pylori cag secretion system activates β-catenin, p120, and PPARδ, which promote gastric epithelial cell proliferation via activation of cyclin E1. PPARδ might contribute to gastric adenocarcinoma development in humans.
Collapse
Affiliation(s)
- Toni A. Nagy
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Lydia E. Wroblewski
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Dingzhi Wang
- Department of Cancer Biology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA 77030
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Alberto Delgado
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Judith Romero-Gallo
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Jennifer Noto
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Dawn A. Israel
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Seth R. Ogden
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Pelayo Correa
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Timothy L. Cover
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University, Nashville, TN 37232
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA 37212
| | - Richard M. Peek
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA 37212
| |
Collapse
|
284
|
The Human Gastric Pathogen Helicobacter pylori and Its Association with Gastric Cancer and Ulcer Disease. ACTA ACUST UNITED AC 2011. [DOI: 10.1155/2011/340157] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the momentous discovery in the 1980's that a bacterium, Helicobacter pylori, can cause peptic ulcer disease and gastric cancer, antibiotic therapies and prophylactic measures have been successful, only in part, in reducing the global burden of these diseases. To date, ~700,000 deaths worldwide are still attributable annually to gastric cancer alone. Here, we review H. pylori's contribution to the epidemiology and histopathology of both gastric cancer and peptic ulcer disease. Furthermore, we examine the host-pathogen relationship and H. pylori biology in context of these diseases, focusing on strain differences, virulence factors (CagA and VacA), immune activation and the challenges posed by resistance to existing therapies. We consider also the important role of host-genetic variants, for example, in inflammatory response genes, in determining infection outcome and the role of H. pylori in other pathologies—some accepted, for example, MALT lymphoma, and others more controversial, for example, idiopathic thrombocytic purpura. More recently, intriguing suggestions that H. pylori has protective effects in GERD and autoimmune diseases, such as asthma, have gained momentum. Therefore, we consider the basis for these suggestions and discuss the potential impact for future therapeutic rationales.
Collapse
|
285
|
Suzuki M, Kiga K, Kersulyte D, Cok J, Hooper CC, Mimuro H, Sanada T, Suzuki S, Oyama M, Kozuka-Hata H, Kamiya S, Zou QM, Gilman RH, Berg DE, Sasakawa C. Attenuated CagA oncoprotein in Helicobacter pylori from Amerindians in Peruvian Amazon. J Biol Chem 2011; 286:29964-72. [PMID: 21757722 DOI: 10.1074/jbc.m111.263715] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Population genetic analyses of bacterial genes whose products interact with host tissues can give new understanding of infection and disease processes. Here we show that strains of the genetically diverse gastric pathogen Helicobacter pylori from Amerindians from the remote Peruvian Amazon contain novel alleles of cagA, a major virulence gene, and reveal distinctive properties of their encoded CagA proteins. CagA is injected into the gastric epithelium where it hijacks pleiotropic signaling pathways, helps Hp exploit its special gastric mucosal niche, and affects the risk that infection will result in overt gastroduodenal diseases including gastric cancer. The Amerindian CagA proteins contain unusual but functional tyrosine phosphorylation motifs and attenuated CRPIA motifs, which affect gastric epithelial proliferation, inflammation, and bacterial pathogenesis. Amerindian CagA proteins induced less production of IL-8 and cancer-associated Mucin 2 than did those of prototype Western or East Asian strains and behaved as dominant negative inhibitors of action of prototype CagA during mixed infection of Mongolian gerbils. We suggest that Amerindian cagA is of relatively low virulence, that this may have been selected in ancestral strains during infection of the people who migrated from Asia into the Americas many thousands of years ago, and that such attenuated CagA proteins could be useful therapeutically.
Collapse
Affiliation(s)
- Masato Suzuki
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Breurec S, Michel R, Seck A, Brisse S, Côme D, Dieye FB, Garin B, Huerre M, Mbengue M, Fall C, Sgouras DN, Thiberge JM, Dia D, Raymond J. Clinical relevance of cagA and vacA gene polymorphisms in Helicobacter pylori isolates from Senegalese patients. Clin Microbiol Infect 2011; 18:153-9. [PMID: 21722260 DOI: 10.1111/j.1469-0691.2011.03524.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The molecular epidemiology of Helicobacter pylori in Africa is poorly documented. From January 2007 to December 2008, we investigated 187 patients with gastric symptoms in one of the main tertiary hospitals in Dakar, Senegal. One hundred and seventeen patients were culture-positive for H. pylori. Polymorphisms in vacA and cagA status were investigated by PCR; the 3'-region of cagA was sequenced, and EPIYA motifs were identified. Bacterial heterogeneity within individuals was extensively assessed by using an approach based on vacA and cagA heterogeneity. Fourteen per cent of H. pylori-positive patients displayed evidence of mixed infection, which may affect disease outcome. Patients with multiple vacA alleles were excluded from subsequent analyses. Among the final study population of 105 patients, 29 had gastritis only, 61 had ulcerated lesions, and 15 had suspicion of neoplasia based on endoscopic findings. All cases of suspected neoplasia were histologically confirmed as gastric cancer (GC). The cagA gene was present in 73.3% of isolates. CagA proteins contained zero (3.7%), one (93.9%) or two (2.4%) EPIYA-C segments, and all were western CagA. Most of the isolates possessed presumed high-vacuolization isotypes (s1i1m1 (57.1%) or s1i1m2 (21.9%)). Despite the small number of cases, GC was associated with cagA (p 0.03), two EPIYA-C segments in the C-terminal region of CagA (p 0.03), and the s1 vacA allele (p 0.002). Multiple EPIYA-C segments were less frequent than reported in other countries, possibly contributing to the low incidence of GC in Senegal.
Collapse
Affiliation(s)
- S Breurec
- Institut Pasteur, Unité de Biologie Médicale et Environnementale, Dakar, Senegal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Alkylhydroperoxide reductase of Helicobacter pylori as a biomarker for gastric patients with different pathological manifestations. Biochimie 2011; 93:1115-23. [DOI: 10.1016/j.biochi.2011.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 03/17/2011] [Indexed: 12/25/2022]
|
288
|
Kim SS, Ruiz VE, Carroll JD, Moss SF. Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma. Cancer Lett 2011; 305:228-38. [PMID: 20692762 PMCID: PMC2980557 DOI: 10.1016/j.canlet.2010.07.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/11/2010] [Accepted: 07/13/2010] [Indexed: 12/13/2022]
Abstract
Chronic gastric infection by the gram-negative bacterium Helicobacter pylori is strongly associated with the development of distal gastric carcinoma and gastric mucosal lymphoma in humans. Eradication of H. pylori with combination antibiotic therapy cures most cases of gastric lymphoma and slows progression to gastric adenocarcinoma. H. pylori promotes gastric neoplasia, principally via the induction of an intense gastric inflammatory response that lasts over decades. This persistent inflammatory state produces chronic oxidative stress and adaptive changes in gastric epithelial and immune cell pathobiology that in a minority of infected subjects eventually proceeds to frank neoplastic transformation.
Collapse
Affiliation(s)
- Sung Soo Kim
- Department of Internal Medicine, Uijongbu St. Mary Hospital, Catholic University of Korea, Seoul, Korea
| | - Victoria E. Ruiz
- Department of Medicine, Division of Gastroenterology, Rhode Island Hospital and Brown University, Providence, RI, USA
| | - Jaqueline D. Carroll
- Department of Medicine, Division of Gastroenterology, Rhode Island Hospital and Brown University, Providence, RI, USA
| | - Steven F. Moss
- Department of Medicine, Division of Gastroenterology, Rhode Island Hospital and Brown University, Providence, RI, USA
| |
Collapse
|
289
|
Engel J, Eran Y. Subversion of mucosal barrier polarity by pseudomonas aeruginosa. Front Microbiol 2011; 2:114. [PMID: 21747810 PMCID: PMC3129012 DOI: 10.3389/fmicb.2011.00114] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/09/2011] [Indexed: 02/05/2023] Open
Abstract
The lumenal surfaces of human body are lined by a monolayer of epithelia that together with mucus secreting cells and specialized immune cells form the mucosal barrier. This barrier is one of the most fundamental components of the innate immune system, protecting organisms from the vast environmental microbiota. The mucosal epithelium is comprised of polarized epithelial cells with distinct apical and basolateral surfaces that are defined by unique set of protein and lipid composition and are separated by tight junctions. The apical surface serves as a barrier to the outside world and is specialized for the exchange of materials with the lumen. The basolateral surface is adapted for interaction with other cells and for exchange with the bloodstream. A wide network of proteins and lipids regulates the formation and maintenance of the epithelium polarity. Many human pathogens have evolved virulence mechanisms that target this network and interfere with epithelial polarity to enhance binding to the apical surface, enter into cells, and/or cross the mucosal barrier. This review highlights recent advances in our understanding of how Pseudomonas aeruginosa, an important opportunistic human pathogen that preferentially infects damaged epithelial tissues, exploits the epithelial cell polarization machinery to enhance infection.
Collapse
Affiliation(s)
- Joanne Engel
- Department of Medicine, University of California at San Francisco San Francisco, CA, USA
| | | |
Collapse
|
290
|
Tan S, Noto JM, Romero-Gallo J, Peek RM, Amieva MR. Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface. PLoS Pathog 2011; 7:e1002050. [PMID: 21589900 PMCID: PMC3093365 DOI: 10.1371/journal.ppat.1002050] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/11/2011] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche. Helicobacter pylori (Hp) is a bacterium that chronically infects the stomach of humans and can lead to serious illness. To survive in the stomach, the bacteria intimately interact with the epithelial lining. Some inject the virulence protein CagA into the host cells, and we previously showed that CagA helps Hp survive and grow directly on the epithelial cell surface. Iron is one of the limiting factors that infectious bacteria must acquire from their host. Using a model polarized epithelium system, we discovered that CagA is able to alter the internalization, intracellular transport, and polarity of the transferrin/transferrin receptor iron uptake system. This allows the bacteria to shuttle iron across the epithelium and suggests a novel mechanism of iron acquisition from host cells, enabling Hp growth on the cell surface. Another major virulence factor of Hp, VacA, is also involved in this process. To test the role of CagA in iron acquisition in vivo, we infected iron-deficient Mongolian gerbils and found that CagA-deficient bacteria had a decreased ability to colonize the stomach. Our study illustrates how microbes that chronically infect our mucosal surfaces can manipulate the epithelium to acquire micronutrients from host cells and grow on the cell surface.
Collapse
Affiliation(s)
- Shumin Tan
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Jennifer M. Noto
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Judith Romero-Gallo
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Richard M. Peek
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Manuel R. Amieva
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
291
|
Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc Natl Acad Sci U S A 2011; 108:9238-43. [PMID: 21562218 DOI: 10.1073/pnas.1106200108] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type I strains of Helicobacter pylori (Hp) possess a pathogenicity island, cag, that encodes the effector protein cytotoxin-associated gene A (CagA) and a type four secretion system. After translocation into the host cell, CagA affects cell shape, increases cell motility, abrogates junctional activity, and promotes an epithelial to mesenchymal transition-like phenotype. Transgenic expression of CagA enhances gastrointestinal and intestinal carcinomas as well as myeloid and B-cell lymphomas in mice, but the mechanism of the induced cancer formation is not fully understood. Here, we show that CagA subverts the tumor suppressor function of apoptosis-stimulating protein of p53 (ASPP2). Delivery of CagA inside the host results in its association with ASPP2. After this interaction, ASPP2 recruits its natural target p53 and inhibits its apoptotic function. CagA leads to enhanced degradation of p53 and thereby, down-regulates its activity in an ASPP2-dependent manner. Finally, Hp-infected cells treated with the p53-activating drug Doxorubicin are more resistant to apoptosis than uninfected cells, an effect that requires ASPP2. The interaction between CagA and ASPP2 and the consequent degradation of p53 are examples of a bacterial protein that subverts the p53 tumor suppressor pathway in a manner similar to DNA tumor viruses. This finding may contribute to the understanding of the increased risk of gastric cancer in patients infected with Hp CagA+ strains.
Collapse
|
292
|
Murata-Kamiya N. Pathophysiological functions of the CagA oncoprotein during infection by Helicobacter pylori. Microbes Infect 2011; 13:799-807. [PMID: 21477660 DOI: 10.1016/j.micinf.2011.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 03/26/2011] [Accepted: 03/28/2011] [Indexed: 02/06/2023]
Abstract
Infection with Helicobacter pylori cagA-positive strains plays an essential role in the development of gastric carcinoma. This review summarizes the pathophysiological functions of the cagA gene product, CagA, particularly focusing on the molecular mechanisms underlying CagA translocation into the host cells as well as CagA-mediated deregulation of host cell signaling.
Collapse
Affiliation(s)
- Naoko Murata-Kamiya
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
293
|
Gilbreath JJ, Cody WL, Merrell DS, Hendrixson DR. Change is good: variations in common biological mechanisms in the epsilonproteobacterial genera Campylobacter and Helicobacter. Microbiol Mol Biol Rev 2011; 75:84-132. [PMID: 21372321 PMCID: PMC3063351 DOI: 10.1128/mmbr.00035-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Microbial evolution and subsequent species diversification enable bacterial organisms to perform common biological processes by a variety of means. The epsilonproteobacteria are a diverse class of prokaryotes that thrive in diverse habitats. Many of these environmental niches are labeled as extreme, whereas other niches include various sites within human, animal, and insect hosts. Some epsilonproteobacteria, such as Campylobacter jejuni and Helicobacter pylori, are common pathogens of humans that inhabit specific regions of the gastrointestinal tract. As such, the biological processes of pathogenic Campylobacter and Helicobacter spp. are often modeled after those of common enteric pathogens such as Salmonella spp. and Escherichia coli. While many exquisite biological mechanisms involving biochemical processes, genetic regulatory pathways, and pathogenesis of disease have been elucidated from studies of Salmonella spp. and E. coli, these paradigms often do not apply to the same processes in the epsilonproteobacteria. Instead, these bacteria often display extensive variation in common biological mechanisms relative to those of other prototypical bacteria. In this review, five biological processes of commonly studied model bacterial species are compared to those of the epsilonproteobacteria C. jejuni and H. pylori. Distinct differences in the processes of flagellar biosynthesis, DNA uptake and recombination, iron homeostasis, interaction with epithelial cells, and protein glycosylation are highlighted. Collectively, these studies support a broader view of the vast repertoire of biological mechanisms employed by bacteria and suggest that future studies of the epsilonproteobacteria will continue to provide novel and interesting information regarding prokaryotic cellular biology.
Collapse
Affiliation(s)
- Jeremy J. Gilbreath
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - William L. Cody
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - D. Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - David R. Hendrixson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
294
|
Lee KH, Kim JY, Kim WK, Shin DH, Choi KU, Kim DW, Lee WJ, Choi JH, Lee SH, Kim GH, Song GA, Jeon TY, Kim CD, Hong KW, Park DY. Protective effect of rebamipide against Helicobacter pylori-CagA-induced effects on gastric epithelial cells. Dig Dis Sci 2011; 56:441-448. [PMID: 20556513 DOI: 10.1007/s10620-010-1299-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 06/03/2010] [Indexed: 12/28/2022]
Abstract
BACKGROUND Helicobacter pylori CagA dysregulates cell signaling pathways and leads to targeted transcriptional up-regulation of genes implicated in gastric cell injury. The aim of this study was to determine the effects of rebamipide on CagA-induced effects on gastric epithelial cells. We investigated the effects of rebamipide treatment (pre- or post-treatment before or after CagA transfection) on CagA-induced gastric cell injury. METHOD We evaluated the morphologic changes (hummingbird phenotype) associated with ZO-1 mislocalization by confocal microscopy, IL-8 production by ELISA, and NF-κB activation by luciferase assay in AGS gastric epithelial cells and MDCK cells. RESULTS Transfection of CagA into gastric epithelial cells induced morphologic changes (hummingbird phenotype), ZO-1 mislocalization, and IL-8 production in gastric epithelial cells. Pre-treatment with rebamipide inhibits CagA-induced effects on gastric epithelial cells, including morphologic changes (hummingbird phenotype) associated with ZO-1 mislocalization, IL-8 production, and NF-κB activity. CONCLUSIONS These results suggest that rebamipide might have a potential role in the protection of H. pylori CagA-induced effects on gastric epithelial cells.
Collapse
Affiliation(s)
- Kyung Hwa Lee
- Department of Pathology, Pusan National University School of Medicine and Pusan National University Hospital, Pusan National University, Seo-Gu, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Pelz C, Steininger S, Weiss C, Coscia F, Vogelmann R. A novel inhibitory domain of Helicobacter pylori protein CagA reduces CagA effects on host cell biology. J Biol Chem 2011; 286:8999-9008. [PMID: 21212271 DOI: 10.1074/jbc.m110.166504] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Helicobacter pylori protein CagA (cytotoxin-associated gene A) is associated with an increased risk for gastric cancer formation. After attachment to epithelial cells, the bacteria inject CagA via a type IV secretion apparatus into host cells, where it exerts its biological activity. Host cell responses to intracellular CagA have been linked exclusively to signaling motifs in the C terminus of the CagA protein. Little is known about the functional role of the remaining CagA protein. Using transgenic expression of CagA mutants in epithelial cells, we were able to identify a novel CagA inhibitory domain at the N terminus consisting of the first 200 amino acids. This domain localizes to cell-cell contacts and increases the rate and strength of cell-cell adhesion in epithelial cells. Thus, it compensates for the loss of cell-cell adhesion induced by the C terminus of the CagA protein. Consistent with its stabilizing role on cell-cell adhesion, the CagA N terminus domain reduces the CagA-induced β-catenin transcriptional activity in the nucleus. Furthermore, it inhibits apical surface constriction and cell elongations, host cell phenotypes induced by the C terminus in polarized epithelia. Therefore, our study suggests that CagA contains an intrinsic inhibitory domain that reduces host cell responses to CagA, which have been associated with the formation of cancer.
Collapse
Affiliation(s)
- Christiane Pelz
- Second Department of Internal Medicine, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | | | | | | | | |
Collapse
|
296
|
Hussey S, Jones NL. Helicobacter pylori in Childhood. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2011:293-308.e10. [DOI: 10.1016/b978-1-4377-0774-8.10028-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
297
|
Ahmed N. Coevolution and adaptation of Helicobacter pylori and the case for 'functional molecular infection epidemiology'. Med Princ Pract 2011; 20:497-503. [PMID: 21986005 DOI: 10.1159/000329786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 05/10/2011] [Indexed: 01/08/2023] Open
Abstract
Helicobacter pylori is a major human pathogen and its transmission and epidemiology have been extensively studied; it has been found that H. pylori's prevalence and infection outcome is characterized by marked differences between the developing and the developed worlds. Recent data on genomic analyses and comparative core genome haplotyping have revealed that H. pylori has coevolved with its human host. While several studies advocate the protective effects of H. pylori colonization, it is prudent to systematically unleash the role of the strong virulence apparatus present within most H. pylori strains and to determine how to disarm them (or protect the host from the effects) if the intent is to allow it to remain a friendly organism or to use it as a vaccine delivery tool. While genotyping and phenotyping based on a few genetic markers have not provided much insight into such issues, use of replicate/chronological genomics (of virulent versus innocuous strains) coupled with functional screens in animal models is expected to be able to explain the acquisition and evolution of virulence factors of H. pylori and their discreet associations with serious clinical outcomes such as gastric cancer.
Collapse
Affiliation(s)
- Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
298
|
Hatakeyama M. Anthropological and clinical implications for the structural diversity of the Helicobacter pylori CagA oncoprotein. Cancer Sci 2011; 102:36-43. [PMID: 20942897 PMCID: PMC11159401 DOI: 10.1111/j.1349-7006.2010.01743.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori CagA is the first bacterial oncoprotein to be identified in relation to human cancer. CagA is delivered into gastric epithelial cells through a bacterial type IV secretion system and localizes to the plasma membrane, where it undergoes tyrosine phosphorylation by host cell kinases. Membrane-localized CagA then mimics mammalian scaffold proteins and perturbs a number of host signaling pathways in both tyrosine phosphorylation-dependent and -independent manners, thereby promoting transformation of gastric epithelial cells. Helicobacter pylori CagA is noted for structural diversity in its C-terminal region, with which CagA interacts with numerous host cell proteins. This CagA polymorphism is primarily due to differential combination and alignment of the four distinct EPIYA segments and the two different CagA-multimerization sequences in making the C-terminal region. The structural diversity substantially influences the pathophysiological action of CagA. This review focuses on the molecular basis for the structural polymorphism that determines the degrees of virulence and oncogenic potential of individual CagA. The pylogeographic distribution of differential CagA isoforms is also discussed in the context of human migration history, which may underlie large geographical variations in the incidence of gastric cancer in different parts of the world.
Collapse
Affiliation(s)
- Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
299
|
Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 2010; 23:713-39. [PMID: 20930071 DOI: 10.1128/cmr.00011-10] [Citation(s) in RCA: 995] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a gastric pathogen that colonizes approximately 50% of the world's population. Infection with H. pylori causes chronic inflammation and significantly increases the risk of developing duodenal and gastric ulcer disease and gastric cancer. Infection with H. pylori is the strongest known risk factor for gastric cancer, which is the second leading cause of cancer-related deaths worldwide. Once H. pylori colonizes the gastric environment, it persists for the lifetime of the host, suggesting that the host immune response is ineffective in clearing this bacterium. In this review, we discuss the host immune response and examine other host factors that increase the pathogenic potential of this bacterium, including host polymorphisms, alterations to the apical-junctional complex, and the effects of environmental factors. In addition to host effects and responses, H. pylori strains are genetically diverse. We discuss the main virulence determinants in H. pylori strains and the correlation between these and the diverse clinical outcomes following H. pylori infection. Since H. pylori inhibits the gastric epithelium of half of the world, it is crucial that we continue to gain understanding of host and microbial factors that increase the risk of developing more severe clinical outcomes.
Collapse
|
300
|
Xu S, Zhang C, Miao Y, Gao J, Xu D. Effector prediction in host-pathogen interaction based on a Markov model of a ubiquitous EPIYA motif. BMC Genomics 2010; 11 Suppl 3:S1. [PMID: 21143776 PMCID: PMC2999339 DOI: 10.1186/1471-2164-11-s3-s1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Effector secretion is a common strategy of pathogen in mediating host-pathogen interaction. Eight EPIYA-motif containing effectors have recently been discovered in six pathogens. Once these effectors enter host cells through type III/IV secretion systems (T3SS/T4SS), tyrosine in the EPIYA motif is phosphorylated, which triggers effectors binding other proteins to manipulate host-cell functions. The objectives of this study are to evaluate the distribution pattern of EPIYA motif in broad biological species, to predict potential effectors with EPIYA motif, and to suggest roles and biological functions of potential effectors in host-pathogen interactions. Results A hidden Markov model (HMM) of five amino acids was built for the EPIYA-motif based on the eight known effectors. Using this HMM to search the non-redundant protein database containing 9,216,047 sequences, we obtained 107,231 sequences with at least one EPIYA motif occurrence and 3115 sequences with multiple repeats of the EPIYA motif. Although the EPIYA motif exists among broad species, it is significantly over-represented in some particular groups of species. For those proteins containing at least four copies of EPIYA motif, most of them are from intracellular bacteria, extracellular bacteria with T3SS or T4SS or intracellular protozoan parasites. By combining the EPIYA motif and the adjacent SH2 binding motifs (KK, R4, Tarp and Tir), we built HMMs of nine amino acids and predicted many potential effectors in bacteria and protista by the HMMs. Some potential effectors for pathogens (such as Lawsonia intracellularis, Plasmodium falciparum and Leishmania major) are suggested. Conclusions Our study indicates that the EPIYA motif may be a ubiquitous functional site for effectors that play an important pathogenicity role in mediating host-pathogen interactions. We suggest that some intracellular protozoan parasites could secrete EPIYA-motif containing effectors through secretion systems similar to the T3SS/T4SS in bacteria. Our predicted effectors provide useful hypotheses for further studies.
Collapse
Affiliation(s)
- Shunfu Xu
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China.
| | | | | | | | | |
Collapse
|