251
|
Abstract
The mitotic spindle assembles to a steady-state length at metaphase through the integrated action of molecular mechanisms that generate and respond to mechanical forces. While molecular mechanisms that produce force have been described, our understanding of how they integrate with each other, and with the assembly/disassembly mechanisms that regulate length, is poor. We review current understanding of the basic architecture and dynamics of the metaphase spindle, and some of the elementary force-producing mechanisms. We then discuss models for force integration and spindle length determination. We also emphasize key missing data that notably include absolute values of forces and how they vary as a function of position within the spindle.
Collapse
Affiliation(s)
- Sophie Dumont
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
252
|
Li Z, Umeyama T, Wang CC. The Aurora Kinase in Trypanosoma brucei plays distinctive roles in metaphase-anaphase transition and cytokinetic initiation. PLoS Pathog 2009; 5:e1000575. [PMID: 19750216 PMCID: PMC2734176 DOI: 10.1371/journal.ppat.1000575] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/12/2009] [Indexed: 02/06/2023] Open
Abstract
Aurora B kinase is an essential regulator of chromosome segregation with the action well characterized in eukaryotes. It is also implicated in cytokinesis, but the detailed mechanism remains less clear, partly due to the difficulty in separating the latter from the former function in a growing cell. A chemical genetic approach with an inhibitor of the enzyme added to a synchronized cell population at different stages of the cell cycle would probably solve this problem. In the deeply branched parasitic protozoan Trypanosoma brucei, an Aurora B homolog, TbAUK1, was found to control both chromosome segregation and cytokinetic initiation by evidence from RNAi and dominant negative mutation. To clearly separate these two functions, VX-680, an inhibitor of TbAUK1, was added to a synchronized T. brucei procyclic cell population at different cell cycle stages. The unique trans-localization pattern of the chromosomal passenger complex (CPC), consisting of TbAUK1 and two novel proteins TbCPC1 and TbCPC2, was monitored during mitosis and cytokinesis by following the migration of the proteins tagged with enhanced yellow fluorescence protein in live cells with time-lapse video microscopy. Inhibition of TbAUK1 function in S-phase, prophase or metaphase invariably arrests the cells in the metaphase, suggesting an action of TbAUK1 in promoting metaphase-anaphase transition. TbAUK1 inhibition in anaphase does not affect mitotic exit, but prevents trans-localization of the CPC from the spindle midzone to the anterior tip of the new flagellum attachment zone for cytokinetic initiation. The CPC in the midzone is dispersed back to the two segregated nuclei, while cytokinesis is inhibited. In and beyond telophase, TbAUK1 inhibition has no effect on the progression of cytokinesis or the subsequent G1, S and G2 phases until a new metaphase is attained. There are thus two clearly distinct points of TbAUK1 action in T. brucei: the metaphase-anaphase transition and cytokinetic initiation. This is the first time to our knowledge that the dual functions of an Aurora B homolog is dissected and separated into two clearly distinct time frames in a cell cycle. The chromosomal passenger complex (CPC) is essential for chromosome segregation and cytokinesis in eukaryotes, but the detailed mechanism of cytokinetic regulation remains less clear, partly due to the difficulty in separating the two functions in a growing cell. A chemical genetic approach by adding an inhibitor of the Aurora kinase in the CPC to a synchronized cell population at different cell cycle stages would probably solve this problem. The CPC in Trypanosoma brucei consists of an Aurora-like kinase (TbAUK1) and two novel proteins and bears little resemblance to the CPC in other eukaryotes. It moves from kinetochores to the spindle midzone during metaphase-anaphase transition, and then displays a unique trans-localization to the anterior end of the cell to initiate cytokinesis by moving from the anterior to the posterior end of the cell to separate it into two. To envision the role of TbAUK1 in driving this unusual process, we applied a chemical genetic approach and demonstrated that there are two distinct points of TbAUK1 action in T. brucei: the metaphase to anaphase transition and cytokinetic initiation. This is the first time to our knowledge that the dual functions of an Aurora B homolog is dissected and separated into two clearly distinct time frames in a cell cycle.
Collapse
Affiliation(s)
- Ziyin Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Takashi Umeyama
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - C. C. Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
253
|
Vale RD, Spudich JA, Griffis ER. Dynamics of myosin, microtubules, and Kinesin-6 at the cortex during cytokinesis in Drosophila S2 cells. J Cell Biol 2009; 186:727-38. [PMID: 19720876 PMCID: PMC2742194 DOI: 10.1083/jcb.200902083] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 07/27/2009] [Indexed: 12/22/2022] Open
Abstract
Signals from the mitotic spindle during anaphase specify the location of the actomyosin contractile ring during cytokinesis, but the detailed mechanism remains unresolved. Here, we have imaged the dynamics of green fluorescent protein-tagged myosin filaments, microtubules, and Kinesin-6 (which carries activators of Rho guanosine triphosphatase) at the cell cortex using total internal reflection fluorescence microscopy in flattened Drosophila S2 cells. At anaphase onset, Kinesin-6 relocalizes to microtubule plus ends that grow toward the cortex, but refines its localization over time so that it concentrates on a subset of stable microtubules and along a diffuse cortical band at the equator. The pattern of Kinesin-6 localization closely resembles where new myosin filaments appear at the cortex by de novo assembly. While accumulating at the equator, myosin filaments disappear from the poles of the cell, a process that also requires Kinesin-6 as well as possibly other signals that emanate from the elongating spindle. These results suggest models for how Kinesin-6 might define the position of cortical myosin during cytokinesis.
Collapse
Affiliation(s)
- Ronald D Vale
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | | |
Collapse
|
254
|
Steigemann P, Gerlich DW. Cytokinetic abscission: cellular dynamics at the midbody. Trends Cell Biol 2009; 19:606-16. [PMID: 19733077 DOI: 10.1016/j.tcb.2009.07.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/18/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
The intercellular canal containing the midbody is one of the most prominent structures in dividing animal cells, yet its function in the completion of cytokinesis by abscission remains largely unknown. This is because of its small size, which makes it difficult to investigate the cytoskeletal and membrane dynamics underlying abscission by standard light microscopy. The advent of new fluorescent probes and imaging technologies, along with sophisticated perturbation tools, provides new possibilities to elucidate the molecular control of this essential cell biological process. Here we discuss the control of midbody assembly and current models for the mechanism of abscission in animal cells. We highlight new methodologies that will facilitate testing and refining of these models.
Collapse
Affiliation(s)
- Patrick Steigemann
- Institute of Biochemistry, Swiss Federal Institute of Technology Zurich (ETHZ), Schafmattstr. 18, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
255
|
Ban R, Matsuzaki H, Akashi T, Sakashita G, Taniguchi H, Park SY, Tanaka H, Furukawa K, Urano T. Mitotic regulation of the stability of microtubule plus-end tracking protein EB3 by ubiquitin ligase SIAH-1 and Aurora mitotic kinases. J Biol Chem 2009; 284:28367-28381. [PMID: 19696028 DOI: 10.1074/jbc.m109.000273] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microtubule plus-end tracking proteins (+TIPs) control microtubule dynamics in fundamental processes such as cell cycle, intracellular transport, and cell motility, but how +TIPs are regulated during mitosis remains largely unclear. Here we show that the endogenous end-binding protein family EB3 is stable during mitosis, facilitates cell cycle progression at prometaphase, and then is down-regulated during the transition to G(1) phase. The ubiquitin-protein isopeptide ligase SIAH-1 facilitates EB3 polyubiquitination and subsequent proteasome-mediated degradation, whereas SIAH-1 knockdown increases EB3 stability and steady-state levels. Two mitotic kinases, Aurora-A and Aurora-B, phosphorylate endogenous EB3 at Ser-176, and the phosphorylation triggers disruption of the EB3-SIAH-1 complex, resulting in EB3 stabilization during mitosis. Our results provide new insight into a regulatory mechanism of +TIPs in cell cycle transition.
Collapse
Affiliation(s)
- Reiko Ban
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501; Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550.
| | - Hideki Matsuzaki
- Institute for Enzyme Research, University of Tokushima, 3-15-18 Kuramoto, Tokushima 770-8503
| | - Tomohiro Akashi
- Division of Molecular Mycology and Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550
| | - Gyosuke Sakashita
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501; Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550
| | - Hisaaki Taniguchi
- Institute for Enzyme Research, University of Tokushima, 3-15-18 Kuramoto, Tokushima 770-8503
| | - Sam-Yong Park
- Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045
| | - Hirofumi Tanaka
- School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | - Koichi Furukawa
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501; Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550.
| |
Collapse
|
256
|
Aye-Han NN, Ni Q, Zhang J. Fluorescent biosensors for real-time tracking of post-translational modification dynamics. Curr Opin Chem Biol 2009; 13:392-7. [PMID: 19682946 DOI: 10.1016/j.cbpa.2009.07.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/07/2009] [Accepted: 07/13/2009] [Indexed: 11/20/2022]
Abstract
Dynamic post-translational modifications (PTMs) regulate and diversify protein properties and cellular behaviors. Real-time monitoring of these modifications has been made possible with biosensors based on fluorescent proteins (FPs) and fluorescence resonance energy transfer (FRET), which can provide spatiotemporal information of PTMs with little perturbation to the cellular environment. In this review, we highlight available fluorescent biosensors applicable to detect PTMs in living cells and how they have shed light on biological questions that have been difficult to address otherwise. In addition, we also provide discussions about various engineering strategies for overcoming potential challenges associated with the development and application of such biosensors.
Collapse
Affiliation(s)
- Nwe-Nwe Aye-Han
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
257
|
Abstract
The explosion of scientific interest in protein kinase-mediated signaling networks has led to the infusion of new chemical methods and their applications related to the analysis of phosphorylation pathways. We highlight some of these chemical biology approaches across three areas. First, we discuss the development of chemical tools to modulate the activity of protein kinases to explore kinase mechanisms and their contributions to phosphorylation events and cellular processes. Second, we describe chemical techniques developed in the past few years to dissect the structural and functional effects of phosphate modifications at specific sites in proteins. Third, we cover newly developed molecular imaging approaches to elucidate the spatiotemporal aspects of phosphorylation cascades in live cells. Exciting advances in our understanding of protein phosphorylation have been obtained with these chemical biology approaches, but continuing opportunities for technological innovation remain.
Collapse
Affiliation(s)
- Mary Katherine Tarrant
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
258
|
Dumont S, Mitchison TJ. Compression regulates mitotic spindle length by a mechanochemical switch at the poles. Curr Biol 2009; 19:1086-95. [PMID: 19540117 DOI: 10.1016/j.cub.2009.05.056] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 01/10/2023]
Abstract
BACKGROUND Although the molecules involved in mitosis are becoming better characterized, we still lack an understanding of the emergent mechanical properties of the mitotic spindle. For example, we cannot explain how spindle length is determined. To gain insight into how forces are generated and responded to in the spindle, we developed a method to apply controlled mechanical compression to metaphase mitotic spindles in living mammalian cells while monitoring microtubules and kinetochores by fluorescence microscopy. RESULTS Compression caused reversible spindle widening and lengthening to a new steady state. Widening was a passive mechanical response, and lengthening was an active mechanochemical process requiring microtubule polymerization but not kinesin-5 activity. Spindle morphology during lengthening and drug perturbations suggested that kinetochore fibers are pushed outward by pole-directed forces generated within the spindle. Lengthening of kinetochore fibers occurred by inhibition of microtubule depolymerization at poles, with no change in sliding velocity, interkinetochore stretching, or kinetochore dynamics. CONCLUSIONS We propose that spindle length is controlled by a mechanochemical switch at the poles that regulates the depolymerization rate of kinetochore fibers in response to compression and discuss models for how this switch is controlled. Poleward force appears to be exerted along kinetochore fibers by some mechanism other than kinesin-5 activity, and we speculate that it may arise from polymerization pressure from growing plus ends of interpolar microtubules whose minus ends are anchored in the fiber. These insights provide a framework for conceptualizing mechanical integration within the spindle.
Collapse
Affiliation(s)
- Sophie Dumont
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
259
|
Hans F, Skoufias DA, Dimitrov S, Margolis RL. Molecular distinctions between Aurora A and B: a single residue change transforms Aurora A into correctly localized and functional Aurora B. Mol Biol Cell 2009; 20:3491-502. [PMID: 19494039 DOI: 10.1091/mbc.e09-05-0370] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aurora A and Aurora B, paralogue mitotic kinases, share highly similar primary sequence. Both are important to mitotic progression, but their localizations and functions are distinct. We have combined shRNA suppression with overexpression of Aurora mutants to address the cause of the distinction between Aurora A and Aurora B. Aurora A residue glycine 198 (G198), mutated to asparagine to mimic the aligned asparagine 142 (N142) of Aurora B, causes Aurora A to bind the Aurora B binding partner INCENP but not the Aurora A binding partner TPX2. The mutant Aurora A rescues Aurora B mitotic function. We conclude that binding to INCENP is alone critical to the distinct function of Aurora B. Although G198 of Aurora A is required for TPX2 binding, N142G Aurora B retains INCENP binding and Aurora B function. Thus, although a single residue change transforms Aurora A, the reciprocal mutation of Aurora B does not create Aurora A function. An Aurora A-Delta120 N-terminal truncation construct reinforces Aurora A similarity to Aurora B, because it does not associate with centrosomes but instead associates with kinetochores.
Collapse
Affiliation(s)
- Fabienne Hans
- Institut National de la Santé et de la Recherche Médicale, Université Joseph Fourier-Grenoble 1, Grenoble, France
| | | | | | | |
Collapse
|
260
|
Abstract
Overactivation of both Polo-like kinase-1 (Plk1) and Aurora-A is linked to cancer development, and small-molecule inhibitors that target these kinases are currently tested as anticancer drugs. Here, we discuss recent advances in the understanding of the functional crosstalk between Plk1 and Aurora-A before and during mitosis. Several recent findings have led to a better appreciation of how the activities of these distinct mitotic kinases are intertwined. Such insight is important for the expected utility of small-molecule inhibitors targeting Plk1 or Aurora-A, and it might help us to improve their application.
Collapse
Affiliation(s)
- Libor Macurek
- Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
261
|
Martin SG, Berthelot-Grosjean M. Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle. Nature 2009; 459:852-6. [DOI: 10.1038/nature08054] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 04/09/2009] [Indexed: 01/10/2023]
|
262
|
Abstract
Cytokinesis is the terminal step of the cell cycle during which a mother cell divides into daughter cells. Often, the machinery of cytokinesis is positioned in such a way that daughter cells are born roughly equal in size. However, in many specialized cell types or under certain environmental conditions, the cell division machinery is placed at nonmedial positions to produce daughter cells of different sizes and in many cases of different fates. Here we review the different mechanisms that position the division machinery in prokaryotic and eukaryotic cell types. We also describe cytokinesis-positioning mechanisms that are not adequately explained by studies in model organisms and model cell types.
Collapse
Affiliation(s)
- Snezhana Oliferenko
- Temasek Life Sciences Laboratory and the Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | | | | |
Collapse
|
263
|
Burkard ME, Maciejowski J, Rodriguez-Bravo V, Repka M, Lowery DM, Clauser KR, Zhang C, Shokat KM, Carr SA, Yaffe MB, Jallepalli PV. Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells. PLoS Biol 2009; 7:e1000111. [PMID: 19468302 PMCID: PMC2680336 DOI: 10.1371/journal.pbio.1000111] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 03/31/2009] [Indexed: 12/24/2022] Open
Abstract
Animal cells initiate cytokinesis in parallel with anaphase onset, when an actomyosin ring assembles and constricts through localized activation of the small GTPase RhoA, giving rise to a cleavage furrow. Furrow formation relies on positional cues provided by anaphase spindle microtubules (MTs), but how such cues are generated remains unclear. Using chemical genetics to achieve both temporal and spatial control, we show that the self-organized delivery of Polo-like kinase 1 (Plk1) to the midzone and its local phosphorylation of a MT-bound substrate are critical for generating this furrow-inducing signal. When Plk1 was active but unable to target itself to this equatorial landmark, both cortical RhoA recruitment and furrow induction failed to occur, thus recapitulating the effects of anaphase-specific Plk1 inhibition. Using tandem mass spectrometry and phosphospecific antibodies, we found that Plk1 binds and directly phosphorylates the HsCYK-4 subunit of centralspindlin (also known as MgcRacGAP) at the midzone. At serine 157, this modification creates a major docking site for the tandem BRCT repeats of the Rho GTP exchange factor Ect2. Cells expressing only a nonphosphorylatable form of HsCYK-4 failed to localize Ect2 at the midzone and were severely impaired in cleavage furrow formation, implying that HsCYK-4 is Plk1's rate-limiting target upstream of RhoA. Conversely, tethering an inhibitor-resistant allele of Plk1 to HsCYK-4 allowed furrows to form despite global inhibition of all other Plk1 molecules in the cell. Our findings illuminate two key mechanisms governing the initiation of cytokinesis in human cells and illustrate the power of chemical genetics to probe such regulation both in time and space.
Collapse
Affiliation(s)
- Mark E. Burkard
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - John Maciejowski
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Verónica Rodriguez-Bravo
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Michael Repka
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Drew M. Lowery
- Departments of Biology and Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Karl R. Clauser
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Chao Zhang
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States of America
| | - Kevan M. Shokat
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States of America
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Michael B. Yaffe
- Departments of Biology and Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Prasad V. Jallepalli
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
264
|
Salmela AL, Pouwels J, Varis A, Kukkonen AM, Toivonen P, Halonen PK, Perälä M, Kallioniemi O, Gorbsky GJ, Kallio MJ. Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint. Carcinogenesis 2009; 30:1032-40. [PMID: 19395653 DOI: 10.1093/carcin/bgp101] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fisetin is a natural flavonol present in edible vegetables, fruits and wine at 2-160 microg/g concentrations and an ingredient in nutritional supplements with much higher concentrations. The compound has been reported to exert anticarcinogenic effects as well as antioxidant and anti-inflammatory activity via its ability to act as an inhibitor of cell proliferation and free radical scavenger, respectively. Our cell-based high-throughput screen for small molecules that override chemically induced mitotic arrest identified fisetin as an antimitotic compound. Fisetin rapidly compromised microtubule drug-induced mitotic block in a proteasome-dependent manner in several human cell lines. Moreover, in unperturbed human cancer cells fisetin caused premature initiation of chromosome segregation and exit from mitosis without normal cytokinesis. To understand the molecular mechanism behind these mitotic errors, we analyzed the consequences of fisetin treatment on the localization and phoshorylation of several mitotic proteins. Aurora B, Bub1, BubR1 and Cenp-F rapidly lost their kinetochore/centromere localization and others became dephosphorylated upon addition of fisetin to the culture medium. Finally, we identified Aurora B kinase as a novel direct target of fisetin. The activity of Aurora B was significantly reduced by fisetin in vitro and in cells, an effect that can explain the observed forced mitotic exit, failure of cytokinesis and decreased cell viability. In conclusion, our data propose that fisetin perturbs spindle checkpoint signaling, which may contribute to the antiproliferative effects of the compound.
Collapse
|
265
|
Kelly AE, Funabiki H. Correcting aberrant kinetochore microtubule attachments: an Aurora B-centric view. Curr Opin Cell Biol 2009; 21:51-8. [PMID: 19185479 DOI: 10.1016/j.ceb.2009.01.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/19/2008] [Accepted: 01/06/2009] [Indexed: 01/16/2023]
Abstract
The directed movement of chromosomes during mitosis and meiosis relies on microtubule-mediated connections between spindle poles and kinetochores assembled on chromosomes. The molecular basis for the dynamic interaction between microtubules and kinetochores is just beginning to be unveiled. Here, focusing on the mitotic centromere kinase Aurora B, we review our current understanding of the signaling pathways that correct erroneous microtubule attachment at kinetochores. We evaluate several potential models that may explain how maloriented attachments are recognized and processed by the Aurora B pathway.
Collapse
Affiliation(s)
- Alexander E Kelly
- The Rockefeller University, Laboratory of Chromosome and Cell Biology, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
266
|
Cdk1 negatively regulates midzone localization of the mitotic kinesin Mklp2 and the chromosomal passenger complex. Curr Biol 2009; 19:607-12. [PMID: 19303298 DOI: 10.1016/j.cub.2009.02.046] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 02/02/2009] [Accepted: 02/18/2009] [Indexed: 11/21/2022]
Abstract
The survival of eukaryotes depends on the accurate coordination of mitosis with cytokinesis. Key for the coordination of both processes is the chromosomal passenger complex (CPC) comprising Aurora-B, INCENP, survivin, and borealin. The translocation of the CPC from centromeres to the spindle midzone, a structure composed of antiparallel microtubules, at anaphase onset is critical for the completion of cytokinesis. In mammalian cells, the mitotic kinesin Mklp2 is essential for recruitment of the CPC to the spindle midzone. However, the mechanism regulating the binding of Mklp2 to microtubules has remained unknown. Here, we demonstrate that Mklp2 and the CPC mutually depend on each other for midzone localization; i.e., Mklp2 is mislocalized in INCENP-RNAi cells and vice versa. Remarkably, INCENP is required for localization of Mklp2 to the ends of stable microtubules in cells with low Cdk1 activity. In vitro assays revealed that the association between the CPC and Mklp2 is negatively regulated by Cdk1. Collectively, our data suggest that anaphase onset triggers the association between the CPC and Mklp2 and that this association targets the CPC-Mklp2 complex to the ends of stable microtubules in the spindle midzone.
Collapse
|
267
|
von Dassow G. Concurrent cues for cytokinetic furrow induction in animal cells. Trends Cell Biol 2009; 19:165-73. [PMID: 19285868 DOI: 10.1016/j.tcb.2009.01.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/19/2009] [Accepted: 01/27/2009] [Indexed: 01/23/2023]
Abstract
Animal cells are deformable, yet live together bound into tissues. Consequently, physical perturbations imposed by neighbors threaten to disrupt the spatial coordination of cell cleavage with chromosome segregation during mitosis. Emerging evidence demonstrates that animal cells integrate multiple positional cues during cleavage-furrow induction, perhaps to facilitate error correction. Classical work indicated that the asters provide the stimulus for furrow induction, but recent results implicate the central spindle at least as much. Similarly, although classical work concluded that the stimulus occurs at the cell equator, new evidence shows that asters modulate cortical contractility outside the equator as well. Meanwhile, a newly revealed distinction between stable and dynamic astral microtubules suggests that these subsets might have complementary effects on furrow induction.
Collapse
Affiliation(s)
- George von Dassow
- Oregon Institute of Marine Biology, University of Oregon, Charleston, 97420, USA.
| |
Collapse
|
268
|
Ribeiro SA, Gatlin JC, Dong Y, Joglekar A, Cameron L, Hudson DF, Farr CJ, McEwen BF, Salmon ED, Earnshaw WC, Vagnarelli P. Condensin regulates the stiffness of vertebrate centromeres. Mol Biol Cell 2009; 20:2371-80. [PMID: 19261808 DOI: 10.1091/mbc.e08-11-1127] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
When chromosomes are aligned and bioriented at metaphase, the elastic stretch of centromeric chromatin opposes pulling forces exerted on sister kinetochores by the mitotic spindle. Here we show that condensin ATPase activity is an important regulator of centromere stiffness and function. Condensin depletion decreases the stiffness of centromeric chromatin by 50% when pulling forces are applied to kinetochores. However, condensin is dispensable for the normal level of compaction (rest length) of centromeres, which probably depends on other factors that control higher-order chromatin folding. Kinetochores also do not require condensin for their structure or motility. Loss of stiffness caused by condensin-depletion produces abnormal uncoordinated sister kinetochore movements, leads to an increase in Mad2(+) kinetochores near the metaphase plate and delays anaphase onset.
Collapse
Affiliation(s)
- Susana A Ribeiro
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Muñoz-García J, Neufeld Z, Kholodenko BN. Positional information generated by spatially distributed signaling cascades. PLoS Comput Biol 2009; 5:e1000330. [PMID: 19300504 PMCID: PMC2654021 DOI: 10.1371/journal.pcbi.1000330] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 02/10/2009] [Indexed: 02/05/2023] Open
Abstract
The temporal and stationary behavior of protein modification cascades has been extensively studied, yet little is known about the spatial aspects of signal propagation. We have previously shown that the spatial separation of opposing enzymes, such as a kinase and a phosphatase, creates signaling activity gradients. Here we show under what conditions signals stall in the space or robustly propagate through spatially distributed signaling cascades. Robust signal propagation results in activity gradients with long plateaus, which abruptly decay at successive spatial locations. We derive an approximate analytical solution that relates the maximal amplitude and propagation length of each activation profile with the cascade level, protein diffusivity, and the ratio of the opposing enzyme activities. The control of the spatial signal propagation appears to be very different from the control of transient temporal responses for spatially homogenous cascades. For spatially distributed cascades where activating and deactivating enzymes operate far from saturation, the ratio of the opposing enzyme activities is shown to be a key parameter controlling signal propagation. The signaling gradients characteristic for robust signal propagation exemplify a pattern formation mechanism that generates precise spatial guidance for multiple cellular processes and conveys information about the cell size to the nucleus.
Collapse
Affiliation(s)
- Javier Muñoz-García
- School of Mathematical Sciences and Complex Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Zoltan Neufeld
- School of Mathematical Sciences and Complex Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
| | - Boris N. Kholodenko
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
270
|
Liu D, Vader G, Vromans MJM, Lampson MA, Lens SMA. Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 2009; 323:1350-3. [PMID: 19150808 DOI: 10.1126/science.1167000] [Citation(s) in RCA: 420] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Successful cell division requires that chromosomes attach to opposite poles of the mitotic spindle (bi-orientation). Aurora B kinase regulates chromosome-spindle attachments by phosphorylating kinetochore substrates that bind microtubules. Centromere tension stabilizes bi-oriented attachments, but how physical forces are translated into signaling at individual centromeres is unknown. Using fluorescence resonance energy transfer-based biosensors to measure localized phosphorylation dynamics in living cells, we found that phosphorylation of an Aurora B substrate at the kinetochore depended on its distance from the kinase at the inner centromere. Furthermore, repositioning Aurora B closer to the kinetochore prevented stabilization of bi-oriented attachments and activated the spindle checkpoint. Thus, centromere tension can be sensed by increased spatial separation of Aurora B from kinetochore substrates, which reduces phosphorylation and stabilizes kinetochore microtubules.
Collapse
Affiliation(s)
- Dan Liu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
271
|
Conze T, Shetye A, Tanaka Y, Gu J, Larsson C, Göransson J, Tavoosidana G, Söderberg O, Nilsson M, Landegren U. Analysis of genes, transcripts, and proteins via DNA ligation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2009; 2:215-239. [PMID: 20636060 DOI: 10.1146/annurev-anchem-060908-155239] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Analytical reactions in which short DNA strands are used in combination with DNA ligases have proven useful for measuring, decoding, and locating most classes of macromolecules. Given the need to accumulate large amounts of precise molecular information from biological systems in research and in diagnostics, ligation reactions will continue to offer valuable strategies for advanced analytical reactions. Here, we provide a basis for further development of methods by reviewing the history of analytical ligation reactions, discussing the properties of ligation reactions that render them suitable for engineering novel assays, describing a wide range of successful ligase-based assays, and briefly considering future directions.
Collapse
Affiliation(s)
- Tim Conze
- Department of Genetics and Pathology, The Rudbeck Lab, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Vogt E, Kipp A, Eichenlaub-Ritter U. Aurora kinase B, epigenetic state of centromeric heterochromatin and chiasma resolution in oocytes. Reprod Biomed Online 2009; 19:352-68. [DOI: 10.1016/s1472-6483(10)60169-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
273
|
Abstract
In animal cells, cytokinesis is powered by a contractile ring of actin filaments (F-actin) and myosin-2. Formation of the contractile ring is dependent on the small GTPase, RhoA1,2, which is activated in a precise zone at the cell equator3. It has long been assumed that cytokinesis and other Rho-dependent processes are controlled in a sequential manner, whereby Rho activation via guanine nucleotide exchange factors (GEFs) initiates a particular event, and Rho inactivation via GTPase activating proteins (GAPs) terminates that event. MgcRacGAP is a conserved cytokinesis regulator thought to be required only at the end of cytokinesis4,5. Here we show that MgcRacGAP’s GAP activity is necessary early during cytokinesis for the formation and maintenance of the Rho activity zone. Disruption of GAP activity by point mutation results in poorly focused Rho activity zones, while complete removal of the GAP domain results in unfocused zones that display lateral instability and/or rapid side-to-side oscillations. We propose that the GAP domain of MgcRacGAP plays two unexpected roles throughout cytokinesis: first, it transiently anchors active Rho, and second it promotes local Rho inactivation resulting in the constant flux of Rho through the GTPase cycle.
Collapse
|
274
|
Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol 2008; 11:27-35. [PMID: 19060894 PMCID: PMC2614462 DOI: 10.1038/ncb1809] [Citation(s) in RCA: 337] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/26/2008] [Indexed: 12/14/2022]
Abstract
Most solid tumors are aneuploid and many frequently mis-segregate chromosomes. This chromosomal instability is commonly caused by persistent maloriented attachment of chromosomes to spindle microtubules. Chromosome segregation requires stable microtubule attachment at kinetochores, yet those attachments must be sufficiently dynamic to permit correction of malorientations. How this balance is achieved is unknown, and the permissible boundaries of attachment stability versus dynamics essential for genome stability remain poorly understood. Here we show that two microtubule-depolymerizing kinesins, Kif2b and MCAK, stimulate kinetochore-microtubule dynamics during distinct phases of mitosis to correct malorientations. Few-fold reductions in kinetochore-microtubule turnover, particularly in early mitosis, induce severe chromosome segregation defects. In addition, we show that stimulation of microtubule dynamics at kinetochores restores chromosome stability to chromosomally unstable tumor cell lines, establishing a causal relationship between deregulation of kinetochore-microtubule dynamics and chromosomal instability. Thus, temporal control of microtubule attachment to chromosomes during mitosis is central to genome stability in human cells.
Collapse
|
275
|
Li Z, Umeyama T, Wang CC. The chromosomal passenger complex and a mitotic kinesin interact with the Tousled-like kinase in trypanosomes to regulate mitosis and cytokinesis. PLoS One 2008; 3:e3814. [PMID: 19043568 PMCID: PMC2583928 DOI: 10.1371/journal.pone.0003814] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 11/04/2008] [Indexed: 12/04/2022] Open
Abstract
Aurora B kinase plays essential roles in mitosis and cytokinesis in eukaryotes. In the procyclic form of Trypanosoma brucei, the Aurora B homolog TbAUK1 regulates mitosis and cytokinesis, phosphorylates the Tousled-like kinase TbTLK1, interacts with two mitotic kinesins TbKIN-A and TbKIN-B and forms a novel chromosomal passenger complex (CPC) with two novel proteins TbCPC1 and TbCPC2. Here we show with time-lapse video microscopy the time course of CPC trans-localization from the spindle midzone in late anaphase to the dorsal side of the cell where the anterior end of daughter cell is tethered, and followed by a glide toward the posterior end to divide the cell, representing a novel mode of cytokinesis in eukaryotes. The three subunits of CPC, TbKIN-B and TbTLK1 interact with one another suggesting a close association among the five proteins. An ablation of TbTLK1 inhibited the subsequent trans-localization of CPC and TbKIN-B, whereas a knockdown of CPC or TbKIN-B disrupted the spindle pole localization of TbTLK1 during mitosis. In the bloodstream form of T. brucei, the five proteins also play essential roles in chromosome segregation and cytokinesis and display subcellular localization patterns similar to that in the procyclic form. The CPC in bloodstream form also undergoes a trans-localization during cytokinesis similar to that in the procyclic form. All together, our results indicate that the five-protein complex CPC-TbTLK1-TbKIN-B plays key roles in regulating chromosome segregation in the early phase of mitosis and that the highly unusual mode of cytokinesis mediated by CPC occurs in both forms of trypanosomes.
Collapse
Affiliation(s)
- Ziyin Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Takashi Umeyama
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
276
|
Abstract
In spite of conspicuous differences in their polarized architecture, swimming unicellular eukaryotes and migrating cells from metazoa display a conserved hierarchical interlocking of the main cellular compartments, in which the microtubule network has a dominant role. A microtubule array can organize the distribution of endomembranes owing to a cell-wide and polarized extension around a unique nucleus-associated structure. The nucleus-associated structure in animal cells contains a highly conserved organelle, the centriole or basal body. This organelle has a defined polarity that can be transmitted to the cell. Its conservative mode of duplication seems to be a core mechanism for the transmission of polarities through cell division.
Collapse
Affiliation(s)
- Michel Bornens
- Compartimentation et Dynamique Cellulaires, UMR144 CNRS-Institut Curie, 26 rue d'Ulm, 75 248, Paris cedex 05, France.
| |
Collapse
|
277
|
Neves SR, Iyengar R. Models of spatially restricted biochemical reaction systems. J Biol Chem 2008; 284:5445-9. [PMID: 18940805 DOI: 10.1074/jbc.r800058200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many reactions within the cell occur only in specific intracellular regions. Such local reaction networks give rise to microdomains of activated signaling components. The dynamics of microdomains can be visualized by live cell imaging. Computational models using partial differential equations provide mechanistic insights into the interacting factors that control microdomain dynamics. The mathematical models show that, for membrane-initiated signaling, the ratio of the surface area of the plasma membrane to the volume of the cytoplasm, the topology of the signaling network, the negative regulators, and kinetic properties of key components together define microdomain dynamics. Thus, patterns of locally restricted signaling reaction systems can be considered an emergent property of the cell.
Collapse
Affiliation(s)
- Susana R Neves
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
278
|
Macůrek L, Lindqvist A, Lim D, Lampson MA, Klompmaker R, Freire R, Clouin C, Taylor SS, Yaffe MB, Medema RH. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 2008; 455:119-23. [PMID: 18615013 DOI: 10.1038/nature07185] [Citation(s) in RCA: 531] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 06/23/2008] [Indexed: 01/25/2023]
Abstract
Polo-like kinase-1 (PLK1) is an essential mitotic kinase regulating multiple aspects of the cell division process. Activation of PLK1 requires phosphorylation of a conserved threonine residue (Thr 210) in the T-loop of the PLK1 kinase domain, but the kinase responsible for this has not yet been affirmatively identified. Here we show that in human cells PLK1 activation occurs several hours before entry into mitosis, and requires aurora A (AURKA, also known as STK6)-dependent phosphorylation of Thr 210. We find that aurora A can directly phosphorylate PLK1 on Thr 210, and that activity of aurora A towards PLK1 is greatly enhanced by Bora (also known as C13orf34 and FLJ22624), a known cofactor for aurora A (ref. 7). We show that Bora/aurora-A-dependent phosphorylation is a prerequisite for PLK1 to promote mitotic entry after a checkpoint-dependent arrest. Importantly, expression of a PLK1-T210D phospho-mimicking mutant partially overcomes the requirement for aurora A in checkpoint recovery. Taken together, these data demonstrate that the initial activation of PLK1 is a primary function of aurora A.
Collapse
Affiliation(s)
- Libor Macůrek
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht 3584CG, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Wang W, Stukenberg PT, Brautigan DL. Phosphatase inhibitor-2 balances protein phosphatase 1 and aurora B kinase for chromosome segregation and cytokinesis in human retinal epithelial cells. Mol Biol Cell 2008; 19:4852-62. [PMID: 18716057 DOI: 10.1091/mbc.e08-05-0460] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mitosis in Saccharomyces cerevisiae depends on IPL1 kinase, which genetically interacts with GLC8. The metazoan homologue of GLC8 is inhibitor-2 (I-2), but its function is not understood. We found endogenous and ectopic I-2 localized to the spindle, midzone, and midbody of mitotic human epithelial ARPE-19 cells. Knockdown of I-2 by RNA interference produced multinucleated cells, with supernumerary centrosomes, multipolar spindles and lagging chromosomes during anaphase. These defects did not involve changes in levels of protein phosphatase-1 (PP1), and the multinuclear phenotype was rescued by overexpression of I-2. Appearance of multiple nuclei and supernumerary centrosomes required progression through the cell cycle and I-2 knockdown cells failed cytokinesis, as observed by time-lapse microscopy. Inhibition of Aurora B by hesperadin produced multinucleated cells and reduced H3S10 phosphorylation. I-2 knockdown enhanced this latter effect. Partial knockdown of PP1Calpha prevented multiple nuclei caused by either knockdown of I-2 or treatment with hesperadin. Expression of enhanced green fluorescent protein-I-2 or hemagglutinin-I-2 made cells resistant to hesperadin. We propose that I-2 acts to enhance Aurora B by inhibiting specific PP1 holoenzymes that dephosphorylate Aurora B substrates necessary for chromosome segregation and cytokinesis. Conserved together throughout eukaryotic evolution, I-2, PP1 and Aurora B function interdependently during mitosis.
Collapse
Affiliation(s)
- Weiping Wang
- Center for Cell Signaling, Departments of Microbiology and Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
280
|
Slawson C, Lakshmanan T, Knapp S, Hart GW. A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. Mol Biol Cell 2008; 19:4130-40. [PMID: 18653473 DOI: 10.1091/mbc.e07-11-1146] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
O-linked beta-N-acetylglucosamine (O-GlcNAc) is a highly dynamic intracellular protein modification responsive to stress, hormones, nutrients, and cell cycle stage. Alterations in O-GlcNAc addition or removal (cycling) impair cell cycle progression and cytokinesis, but the mechanisms are not well understood. Here, we demonstrate that the enzymes responsible for O-GlcNAc cycling, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) are in a transient complex at M phase with the mitotic kinase Aurora B and protein phosphatase 1. OGT colocalized to the midbody during telophase with Aurora B. Furthermore, these proteins coprecipitated with each other in a late mitotic extract. The complex was stable under Aurora inhibition; however, the total cellular levels of O-GlcNAc were increased and the localization of OGT was decreased at the midbody after Aurora inhibition. Vimentin, an intermediate filament protein, is an M phase substrate for both Aurora B and OGT. Overexpression of OGT or OGA led to defects in mitotic phosphorylation on multiple sites, whereas OGT overexpression increased mitotic GlcNAcylation of vimentin. OGA inhibition caused a decrease in vimentin late mitotic phosphorylation but increased GlcNAcylation. Together, these data demonstrate that the O-GlcNAc cycling enzymes associate with kinases and phosphatases at M phase to regulate the posttranslational status of vimentin.
Collapse
Affiliation(s)
- Chad Slawson
- Department of Biological Chemistry, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
281
|
Yang Y, Wu F, Ward T, Yan F, Wu Q, Wang Z, McGlothen T, Peng W, You T, Sun M, Cui T, Hu R, Dou Z, Zhu J, Xie W, Rao Z, Ding X, Yao X. Phosphorylation of HsMis13 by Aurora B kinase is essential for assembly of functional kinetochore. J Biol Chem 2008; 283:26726-36. [PMID: 18640974 DOI: 10.1074/jbc.m804207200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromosome movements in mitosis are orchestrated by dynamic interactions between spindle microtubules and the kinetochore, a multiprotein complex assembled onto centromeric DNA of the chromosome. Here we show that phosphorylation of human HsMis13 by Aurora B kinase is required for functional kinetochore assembly in HeLa cells. Aurora B interacts with HsMis13 in vitro and in vivo. HsMis13 is a cognate substrate of Aurora B, and the phosphorylation sites were mapped to Ser-100 and Ser-109. Suppression of Aurora B kinase by either small interfering RNA or chemical inhibitors abrogates the localization of HsMis13 but not HsMis12 to the kinetochore. In addition, non-phosphorylatable but not wild type and phospho-mimicking HsMis13 failed to localize to the kinetochore, demonstrating the requirement of phosphorylation by Aurora B for the assembly of HsMis13 to kinetochore. In fact, localization of HsMis13 to the kinetochore is spatiotemporally regulated by Aurora B kinase, which is essential for recruiting outer kinetochore components such as Ndc80 components and CENP-E for functional kinetochore assembly. Importantly, phospho-mimicking mutant HsMis13 restores the assembly of CENP-E to the kinetochore, and tension developed across the sister kinetochores in Aurora B-inhibited cells. Thus, we reason that HsMis13 phosphorylation by Aurora B is required for organizing a stable bi-oriented microtubule kinetochore attachment that is essential for faithful chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Yong Yang
- Hefei National Laboratory for Physical Sciences at Micro-scale and University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Sanz-García M, López-Sánchez I, Lazo PA. Proteomics identification of nuclear Ran GTPase as an inhibitor of human VRK1 and VRK2 (vaccinia-related kinase) activities. Mol Cell Proteomics 2008; 7:2199-214. [PMID: 18617507 PMCID: PMC2577208 DOI: 10.1074/mcp.m700586-mcp200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human vaccinia-related kinase (VRK) 1 is a novel serine-threonine kinase that regulates several transcription factors, nuclear envelope assembly, and chromatin condensation and is also required for cell cycle progression. The regulation of this kinase family is unknown. Mass spectrometry has permitted the identification of Ran as an interacting and regulatory protein of the VRK serine-threonine kinase activities. The stable interaction has been validated by pulldown of endogenous proteins as well as by reciprocal immunoprecipitations. The three members of the VRK family stably interact with Ran, and the interaction was not affected by the bound nucleotide, GDP or GTP. The interaction was stronger with the RanT24N that is locked in its inactive conformation and cannot bind nucleotides. None of the kinases phosphorylated Ran or RCC1. VRK1 does not directly interact with RCC1, but if Ran is present they can be isolated as a complex. The main effect of the interaction of inactive RanGDP with VRK1 is the inhibition of its kinase activity, which was detected by a reduction in VRK1 autophosphorylation and a reduction in phosphorylation of histone H3 in residues Thr-3 and Ser-10. The kinase activity inhibition can be relieved by the interaction with the constitutively active RanGTP or RanL43E, which locks Ran in its GTP-bound active conformation. In this complex, the interaction with VRK proteins does not alter the effect of its guanine exchange factor, RCC1. Ran is a novel negative regulator of nuclear VRK1 and VRK2 kinase activity, which may vary in different subcellular localizations generating an asymmetric intracellular distribution of kinase activity depending on local protein interactions.
Collapse
Affiliation(s)
- Marta Sanz-García
- Programa de Oncología Translacional, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca E-37007, Spain
| | | | | |
Collapse
|