251
|
Ransohoff KJ, Jaju PD, Jaju PD, Tang JY, Carbone M, Leachman S, Sarin KY. Familial skin cancer syndromes: Increased melanoma risk. J Am Acad Dermatol 2016; 74:423-34; quiz 435-6. [PMID: 26892652 DOI: 10.1016/j.jaad.2015.09.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/01/2015] [Accepted: 09/19/2015] [Indexed: 12/20/2022]
Abstract
Phenotypic traits, such as red hair and freckling, increase melanoma risk by 2- to 3-fold. In addition, approximately 10% of melanomas are caused by inherited germline mutations that increase melanoma risk from 4- to >1000-fold. This review highlights the key genes responsible for inherited melanoma, with an emphasis on when a patient should undergo genetic testing. Many genetic syndromes associated with increased melanoma risk are also associated with an increased risk of other cancers. Identification of these high-risk patients is essential for preventive behavior reinforcement, genetic counseling, and ensuring other required cancer screenings.
Collapse
Affiliation(s)
| | | | - Prajaka D Jaju
- Department of Dermatology, Stanford University Medical Center, Stanford, California
| | - Jean Y Tang
- Department of Dermatology, Stanford University Medical Center, Stanford, California
| | - Michele Carbone
- Department of Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Sancy Leachman
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University Medical Center, Stanford, California.
| |
Collapse
|
252
|
Hereditary melanoma: Update on syndromes and management: Emerging melanoma cancer complexes and genetic counseling. J Am Acad Dermatol 2016; 74:411-20; quiz 421-2. [PMID: 26892651 DOI: 10.1016/j.jaad.2015.08.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 12/19/2022]
Abstract
Recent advances in cancer genomics have enabled the discovery of many cancer-predisposing genes that are being used to classify new familial melanoma/cancer syndromes. In addition to CDKN2A and CDK4, germline variants in TERT, MITF, and BAP1 have been added to the list of genes harboring melanoma-predisposing mutations. These newer entities may have escaped earlier description in part because of more advanced technologies now being used and in part because of their mixed cancer phenotype as opposed to a melanoma-focused syndrome. Dermatologists should be aware of (and be able to recognize) the clinical signs in high-risk patients in different contexts. Personal and family histories of cancer should always be sought in patients with multiple nevi or a positive history for melanoma, and should be updated annually. Various features that are unique to specific disorders, such as the appearance of melanocytic BAP1-mutated atypical intradermal tumors in cases of BAP1 melanoma syndrome, should also be recognized early. These patients should be offered regular screenings with the use of dermoscopy and total body photography, as needed. More importantly, referral to other specialists may be needed if a risk for internal malignancy is suspected. It is important to have in mind that these patients tend to develop multiple melanomas, along with various internal organ malignancies, often at younger ages; a multidisciplinary approach to their cancer screening and treatment is ideal.
Collapse
|
253
|
Ratnikov BI, Scott DA, Osterman AL, Smith JW, Ronai ZA. Metabolic rewiring in melanoma. Oncogene 2016; 36:147-157. [PMID: 27270434 PMCID: PMC5140782 DOI: 10.1038/onc.2016.198] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
Oncogene-driven metabolic rewiring is an adaptation to low nutrient and oxygen conditions in the tumor microenvironment that enables cancer cells of diverse origin to hyperproliferate. Aerobic glycolysis and enhanced reliance on glutamine utilization are prime examples of such rewiring. However, tissue of origin as well as specific genetic and epigenetic changes determines gene expression profiles underlying these metabolic alterations in specific cancers. In melanoma, activation of the mitogen-activated protein kinase (MAPK) pathway driven by mutant BRAF or NRAS is a primary cause of malignant transformation. Activity of the MAPK pathway, as well as other factors, such as HIF1α, Myc and MITF, are among those that control the balance between non-oxidative and oxidative branches of central carbon metabolism. Here, we discuss the nature of metabolic alterations that underlie melanoma development and affect its response to therapy.
Collapse
Affiliation(s)
- B I Ratnikov
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA, USA
| | - D A Scott
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA, USA
| | - A L Osterman
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA, USA
| | - J W Smith
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA, USA
| | - Z A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA, USA
| |
Collapse
|
254
|
Abstract
In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.
Collapse
Affiliation(s)
- Nina Raben
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
255
|
Kemper K, Krijgsman O, Cornelissen-Steijger P, Shahrabi A, Weeber F, Song JY, Kuilman T, Vis DJ, Wessels LF, Voest EE, Schumacher TN, Blank CU, Adams DJ, Haanen JB, Peeper DS. Intra- and inter-tumor heterogeneity in a vemurafenib-resistant melanoma patient and derived xenografts. EMBO Mol Med 2016; 7:1104-18. [PMID: 26105199 PMCID: PMC4568946 DOI: 10.15252/emmm.201404914] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The development of targeted inhibitors, like vemurafenib, has greatly improved the clinical outcome of BRAFV600E metastatic melanoma. However, resistance to such compounds represents a formidable problem. Using whole-exome sequencing and functional analyses, we have investigated the nature and pleiotropy of vemurafenib resistance in a melanoma patient carrying multiple drug-resistant metastases. Resistance was caused by a plethora of mechanisms, all of which reactivated the MAPK pathway. In addition to three independent amplifications and an aberrant form of BRAFV600E, we identified a new activating insertion in MEK1. This MEK1T55delinsRT mutation could be traced back to a fraction of the pre-treatment lesion and not only provided protection against vemurafenib but also promoted local invasion of transplanted melanomas. Analysis of patient-derived xenografts (PDX) from therapy-refractory metastases revealed that multiple resistance mechanisms were present within one metastasis. This heterogeneity, both inter- and intra-tumorally, caused an incomplete capture in the PDX of the resistance mechanisms observed in the patient. In conclusion, vemurafenib resistance in a single patient can be established through distinct events, which may be preexisting. Furthermore, our results indicate that PDX may not harbor the full genetic heterogeneity seen in the patient’s melanoma.
Collapse
Affiliation(s)
- Kristel Kemper
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Aida Shahrabi
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fleur Weeber
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thomas Kuilman
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniel J Vis
- Computational Cancer Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lodewyk F Wessels
- Computational Cancer Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emile E Voest
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ton Nm Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christian U Blank
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - John B Haanen
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
256
|
Tuominen R, Engström PG, Helgadottir H, Eriksson H, Unneberg P, Kjellqvist S, Yang M, Lindén D, Edsgärd D, Hansson J, Höiom V. The role of germline alterations in the DNA damage response genes BRIP1 and BRCA2 in melanoma susceptibility. Genes Chromosomes Cancer 2016; 55:601-11. [PMID: 27074266 DOI: 10.1002/gcc.22363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 01/25/2023] Open
Abstract
We applied a targeted sequencing approach to identify germline mutations conferring a moderately to highly increased risk of cutaneous and uveal melanoma. Ninety-two high-risk melanoma patients were screened for inherited variation in 120 melanoma candidate genes. Observed gene variants were filtered based on frequency in reference populations, cosegregation with melanoma in families and predicted functional effect. Several novel or rare genetic variants in genes involved in DNA damage response, cell-cycle regulation and transcriptional control were identified in melanoma patients. Among identified genetic alterations was an extremely rare variant (minor allele frequency of 0.00008) in the BRIP1 gene that was found to cosegregate with the melanoma phenotype. We also found a rare nonsense variant in the BRCA2 gene (rs11571833), previously associated with cancer susceptibility but not with melanoma, which showed weak association with melanoma susceptibility in the Swedish population. Our results add to the growing knowledge about genetic factors associated with melanoma susceptibility and also emphasize the role of DNA damage response as an important factor in melanoma etiology. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rainer Tuominen
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pär G Engström
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Hanna Eriksson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Per Unneberg
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Sanela Kjellqvist
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Muyi Yang
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Diana Lindén
- Department of Oncology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Daniel Edsgärd
- Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Johan Hansson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Veronica Höiom
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
257
|
Zhang T, Dutton-Regester K, Brown KM, Hayward NK. The genomic landscape of cutaneous melanoma. Pigment Cell Melanoma Res 2016; 29:266-83. [PMID: 26833684 DOI: 10.1111/pcmr.12459] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/25/2016] [Indexed: 12/31/2022]
Abstract
Somatic mutation analysis of melanoma has been performed at the single gene level extensively over the past several decades. This has provided considerable insight into the critical pathways controlling melanoma initiation and progression. During the last 5 yr, next-generation sequencing (NGS) has enabled even more comprehensive mutational screening at the level of multigene panels, exomes and genomes. These studies have uncovered many new and unexpected players in melanoma development. The recent landmark study from The Cancer Genome Atlas (TCGA) consortium describing the genomic architecture of 333 cutaneous melanomas provides the largest and broadest analysis to date on the somatic aberrations underlying melanoma genesis. It thus seems timely to review the mutational landscape of melanoma and highlight the key genes and cellular pathways that appear to drive this cancer.
Collapse
Affiliation(s)
- Tongwu Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ken Dutton-Regester
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Kevin M Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nicholas K Hayward
- Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| |
Collapse
|
258
|
Müller C, Wendt J, Rauscher S, Burgstaller-Muehlbacher S, Sunder-Plassmann R, Scheurecker C, Richtig E, Fae I, Fischer G, Pehamberger H, Okamoto I. Characterization of patients at high risk of melanoma in Austria. Br J Dermatol 2016; 174:1308-17. [PMID: 26800492 DOI: 10.1111/bjd.14407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Risk of melanoma is determined by genetic and exogenous factors. Only a few studies have included both characteristics in a comprehensive multivariable analysis. OBJECTIVES To find determinants of patients at high risk of melanoma in Austria, including phenotype, genotype and lifestyle characteristics in comprehensive analyses. METHODS In total, 1668 patients with melanoma from the M3 case-control study were studied. Overall, 567 participants were sequenced for CDKN2A, 232 for CDK4, 123 for MITF encoding the variant E318K and 964 for MC1R. RESULTS Patients with melanoma with a positive family history (n = 190, 11·6%), multiple primary melanomas (n = 261, 15·7%) and younger age (< 50 years, n = 675, 40·5%) were defined as being at high risk. All other patients with melanoma were defined as the reference group. We found significant differences between those two groups and between the high-risk subgroups (positive family history, multiple primary melanomas and younger age). Pigmentation phenotype was associated with the high-risk group in general (childhood freckling, odds ratio 1·46, P = 0·007; blond/reddish hair colour, odds ratio 1·43, P = 0·011). Patients with a positive family history and patients with early-onset disease were similar regarding both their phenotypic characteristics and external factors. Established high-risk mutations in CDKN2A were found in cases with a positive family history (n = 12) or multiple melanomas (n = 2). Moreover, we found three patients carrying the MITF p.E318K variant, two with a CDK4 variant and seven with nonsynonymous MC1R variants with undescribed biological significance, of which four were predicted as damaging. CONCLUSIONS Austrian patients could represent a reservoir for novel genetic variants. Further investigation of populations in Central and Eastern Europe might reveal more novel and disease-relevant variants.
Collapse
Affiliation(s)
- C Müller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - J Wendt
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - S Rauscher
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - R Sunder-Plassmann
- Clinical Institute for Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - C Scheurecker
- Department of Dermatology and Venereology, General Hospital Linz, Linz, Austria
| | - E Richtig
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - I Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - G Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - H Pehamberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - I Okamoto
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
259
|
Wojciechowska S, van Rooijen E, Ceol C, Patton EE, White RM. Generation and analysis of zebrafish melanoma models. Methods Cell Biol 2016; 134:531-49. [PMID: 27312504 DOI: 10.1016/bs.mcb.2016.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The rapid emergence of the zebrafish as a cancer model has been aided by advances in genetic, chemical, and imaging technologies. Melanoma in particular highlights both the power and challenges associated with cancer modeling in zebrafish. This chapter focuses on the lessons that have emerged from the melanoma models as paradigmatic of what will apply to nearly all cancer models in the zebrafish system. We specifically focus on methodologies related to germline and mosaic transgenic melanoma generation, and how these can be used to deeply interrogate additional cooperating oncogenes or tumor suppressors. These transgenic tumors can in turn be used to generate zebrafish-specific, stable melanoma cell lines which can be fluorescently labeled, modified by cDNA/CRISPR techniques, and used for detailed in vivo imaging of cancer progression in real time. These zebrafish melanoma models are beginning to elucidate both cell intrinsic and microenvironmental factors in melanoma that have broader implications for human disease. We envision that nearly all of the techniques described here can be applied to other zebrafish cancer models, and likely expanded beyond what we describe here.
Collapse
Affiliation(s)
- S Wojciechowska
- MRC Human Genetics Unit, and The University of Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, United Kingdom
| | - E van Rooijen
- Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, MA, United States; Harvard Medical School, Boston, MA, United States
| | - C Ceol
- Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - E E Patton
- MRC Human Genetics Unit, and The University of Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, United Kingdom
| | - R M White
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
260
|
Abstract
This review discusses our current understanding of the small ubiquitin-like modifier (SUMO) pathway and how it functionally intersects with Ras signaling in cancer. The Ras family of small GTPases are frequently mutated in cancer. The role of the SUMO pathway in cancer and in Ras signaling is currently not well understood. Recent studies have shown that the SUMO pathway can both regulate Ras/MAPK pathway activity directly and support Ras-driven oncogenesis through the regulation of proteins that are not direct Ras effectors. We recently discovered that in Ras mutant cancer cells, the SUMOylation status of a subset of proteins is altered and one such protein, KAP1, is required for Ras-driven transformation. A better understanding of the functional interaction between the SUMO and Ras pathways could lead to new insights into the mechanism of Ras-driven oncogenesis.
Collapse
Affiliation(s)
- Haibo Zhang
- a Laboratory of Canter Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| | - Ji Luo
- a Laboratory of Canter Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| |
Collapse
|
261
|
Stoehr CG, Walter B, Denzinger S, Ghiorzo P, Sturm RA, Hinze R, Moch H, Junker K, Hartmann A, Stoehr R. The Microphthalmia-Associated Transcription Factor p.E318K Mutation Does Not Play a Major Role in Sporadic Renal Cell Tumors from Caucasian Patients. Pathobiology 2016; 83:165-169. [PMID: 26999813 DOI: 10.1159/000443311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/14/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The transcription factor MITF (microphthalmia-associated transcription factor) is known to induce expression of hypoxia-inducible factor (HIF1-α), which is involved in renal carcinogenesis. The MITF p.E318K mutation leads to deficient SUMOylation of MITF, resulting in enhanced activation of its target genes. A case-control study on melanoma patients who coincidentally were affected by renal cell carcinoma (RCC) has revealed an elevated risk for mutation carriers to be affected by one or both of these malignancies, suggesting a possible role for MITF p.E318K in renal carcinogenesis. The same study described an MITF mutation frequency of 1.5% in a small cohort of sporadic RCC, but comprehensive data on sporadic renal cell tumors are missing. We therefore tested a large cohort of sporadic renal tumors for MITF p.E318K mutation status. METHODS Genomic DNA was extracted from 426 formalin-fixed, paraffin-embedded sporadic renal tumors that had been graded according to the 2004 WHO classification of renal tumors and staged according to the 2002 TNM classification. The tumor cohort was enriched with papillary and chromophobe RCC, and also contained benign oncocytomas. DNA was tested for MITF p.E318K by pyrosequencing. RESULTS Of 403 analyzable tumors, 402 renal tumors were wild-type ones, and only 1 case showed the MITF p.E318K mutation. This tumor was a clear-cell RCC (pT3b N0 M0 G3 according to the TNM classification 2002). The affected patient was male, 61 years old, and had no known coexisting malignancies. CONCLUSION The MITF p.E318K mutation does not appear to play a major role in sporadic RCC carcinogenesis, but is possibly restricted to a rare subpopulation of inherited RCC.
Collapse
Affiliation(s)
- Christine G Stoehr
- Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M, Bille K, Dessen P, d'Hayer B, Mohamdi H, Remenieras A, Maubec E, de la Fouchardière A, Molinié V, Vabres P, Dalle S, Poulalhon N, Martin-Denavit T, Thomas L, Andry-Benzaquen P, Dupin N, Boitier F, Rossi A, Perrot JL, Labeille B, Robert C, Escudier B, Caron O, Brugières L, Saule S, Gardie B, Gad S, Richard S, Couturier J, Teh BT, Ghiorzo P, Pastorino L, Puig S, Badenas C, Olsson H, Ingvar C, Rouleau E, Lidereau R, Bahadoran P, Vielh P, Corda E, Blanché H, Zelenika D, Galan P, Chaudru V, Lenoir GM, Lathrop M, Davidson I, Avril MF, Demenais F, Ballotti R, Bressac-de Paillerets B. Corrigendum: A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 2016; 531:126. [PMID: 26633630 DOI: 10.1038/nature16158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
263
|
Bruno W, Pastorino L, Ghiorzo P, Andreotti V, Martinuzzi C, Menin C, Elefanti L, Stagni C, Vecchiato A, Rodolfo M, Maurichi A, Manoukian S, De Giorgi V, Savarese I, Gensini F, Borgognoni L, Testori A, Spadola G, Mandalà M, Imberti G, Savoia P, Astrua C, Ronco AM, Farnetti A, Tibiletti MG, Lombardo M, Palmieri G, Ayala F, Ascierto P, Ghigliotti G, Muggianu M, Spagnolo F, Picasso V, Tanda ET, Queirolo P, Bianchi-Scarrà G. Multiple primary melanomas (MPMs) and criteria for genetic assessment: MultiMEL, a multicenter study of the Italian Melanoma Intergroup. J Am Acad Dermatol 2016; 74:325-332. [PMID: 26775776 DOI: 10.1016/j.jaad.2015.09.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Multiple primary melanoma (MPM), in concert with a positive family history, is a predictor of cyclin-dependent kinase (CDK) inhibitor 2A (CDKN2A) germline mutations. A rule regarding the presence of either 2 or 3 or more cancer events (melanoma and pancreatic cancer) in low or high melanoma incidence populations, respectively, has been established to select patients for genetic referral. OBJECTIVE We sought to determine the CDKN2A/CDK4/microphthalmia-associated transcription factor mutation rate among Italian patients with MPM to appropriately direct genetic counseling regardless of family history. METHODS In all, 587 patients with MPM and an equal number with single primary melanomas and control subjects were consecutively enrolled at the participating centers and tested for CDKN2A, CDK4, and microphthalmia-associated transcription factor. RESULTS CDKN2A germline mutations were found in 19% of patients with MPM versus 4.4% of patients with single primary melanoma. In familial MPM cases the mutation rate varied from 36.6% to 58.8%, whereas in sporadic MPM cases it varied from 8.2% to 17.6% in patients with 2 and 3 or more melanomas, respectively. The microphthalmia-associated transcription factor E318K mutation accounted for 3% of MPM cases altogether. LIMITATIONS The study was hospital based, not population based. Rare novel susceptibility genes were not tested. CONCLUSION Italian patients who developed 2 melanomas, even in situ, should be referred for genetic counseling even in the absence of family history.
Collapse
Affiliation(s)
- William Bruno
- Department of Internal Medicine, Medical Specialties and Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy; Genetics of Rare Cancers, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Lorenza Pastorino
- Department of Internal Medicine, Medical Specialties and Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy; Genetics of Rare Cancers, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy.
| | - Paola Ghiorzo
- Department of Internal Medicine, Medical Specialties and Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy; Genetics of Rare Cancers, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Virginia Andreotti
- Department of Internal Medicine, Medical Specialties and Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Claudia Martinuzzi
- Department of Internal Medicine, Medical Specialties and Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy; Department of Internal Medicine, Medical Specialties and Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, Istituto Oncologico Veneto (IOV)-IRCCS, Padua, Italy
| | - Lisa Elefanti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, Istituto Oncologico Veneto (IOV)-IRCCS, Padua, Italy
| | - Camilla Stagni
- Section of Oncology and Immunology, Department of Surgery, Oncology, and Gastroenterology, University of Padua, Padua, Italy
| | - Antonella Vecchiato
- Melanoma and Soft Tissue Sarcoma Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Monica Rodolfo
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Andrea Maurichi
- Melanoma and Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Siranoush Manoukian
- Medical Genetics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Imma Savarese
- Department of Dermatology, University of Florence, Florence, Italy
| | - Francesca Gensini
- Unit of Medical Genetics, Department of Biomedical Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Lorenzo Borgognoni
- Plastic Surgery Unit, Regional Melanoma Referral Center, Santa Maria Annunziata Hospital, Florence, Italy
| | - Alessandro Testori
- Division of Dermatoncological Surgery, European Institute of Oncology, Milan, Italy
| | - Giuseppe Spadola
- Division of Dermatoncological Surgery, European Institute of Oncology, Milan, Italy
| | - Mario Mandalà
- Medical Oncology Unit, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | | | - Paola Savoia
- Department of Medical Sciences, Dermatology Section, University of Turin, Turin, Italy
| | - Chiara Astrua
- Department of Medical Sciences, Dermatology Section, University of Turin, Turin, Italy
| | - Anna Maria Ronco
- Dermatoncological Surgery Unit, Presidio Sanitario Gradenigo, Turin, Italy
| | | | | | | | - Giuseppe Palmieri
- Cancer Genetics Unit, Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Fabrizio Ayala
- Department of Melanoma, National Cancer Institute Pascale Foundation, Naples, Italy
| | - Paolo Ascierto
- Department of Melanoma, National Cancer Institute Pascale Foundation, Naples, Italy
| | - Giovanni Ghigliotti
- Dermatology Unit, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Marisa Muggianu
- Department of Plastic and Reconstructive Surgery, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Francesco Spagnolo
- Department of Plastic and Reconstructive Surgery, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Virginia Picasso
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria (AOU) San Martino-Istituto Nazionale dei Tumori (IST) Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Enrica Teresa Tanda
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria (AOU) San Martino-Istituto Nazionale dei Tumori (IST) Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Paola Queirolo
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria (AOU) San Martino-Istituto Nazionale dei Tumori (IST) Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Giovanna Bianchi-Scarrà
- Department of Internal Medicine, Medical Specialties and Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy; Genetics of Rare Cancers, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| |
Collapse
|
264
|
Berwick M, Buller DB, Cust A, Gallagher R, Lee TK, Meyskens F, Pandey S, Thomas NE, Veierød MB, Ward S. Melanoma Epidemiology and Prevention. Cancer Treat Res 2016; 167:17-49. [PMID: 26601858 DOI: 10.1007/978-3-319-22539-5_2] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The epidemiology of melanoma is complex, and individual risk depends on sun exposure, host factors, and genetic factors, and in their interactions as well. Sun exposure can be classified as intermittent, chronic, or cumulative (overall) exposure, and each appears to have a different effect on type of melanoma. Other environmental factors, such as chemical exposures-either through occupation, atmosphere, or food-may increase risk for melanoma, and this area warrants further study. Host factors that are well known to be important are the numbers and types of nevi and the skin phenotype. Genetic factors are classified as high-penetrant genes, moderate-risk genes, or low-risk genetic polymorphisms. Subtypes of tumors, such as BRAF-mutated tumors, have different risk factors as well as different therapies. Prevention of melanoma has been attempted using various strategies in specific subpopulations, but to date optimal interventions to reduce incidence have not emerged.
Collapse
Affiliation(s)
- Marianne Berwick
- Department of Internal Medicine, University of New Mexico, MSC10-5550, Albuquerque, NM, 87131-0001, USA.
| | - David B Buller
- Klein Buendel, Inc., 1667 Cole Boulevard, Suite 225, Golden, CO, 80401, USA.
| | - Anne Cust
- Sydney School of Public Health, Sydney Medical School, University of Sydney, Level 6, 119-143 Missenden Road, Camperdown, NSW, 2050, Australia.
| | - Richard Gallagher
- Cancer Control Research Program, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Tim K Lee
- Cancer Control Research Program, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Frank Meyskens
- Public Health and Epidemiology, University of California, Irvine, USA.
| | - Shaily Pandey
- Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Nancy E Thomas
- University of North Carolina, 413 Mary Ellen Jones Bldg. CB#7287, Chapel Hill, NC, 275992, USA.
| | - Marit B Veierød
- Department of Biostatistics, Institute of Basic Medical Sciences, P.O. Box 1122 Blindern, 0317, Oslo, Norway.
| | - Sarah Ward
- Centre for Genetic Origins of Health and Disease (GOHaD), The University of Western Australia, M409, 35 Stirling Hwy, Crawley, WA, 6009, Australia.
| |
Collapse
|
265
|
Prediction of Melanoma Risk in a Southern European Population Based on a Weighted Genetic Risk Score. J Invest Dermatol 2015; 136:690-695. [PMID: 27015455 DOI: 10.1016/j.jid.2015.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 12/23/2022]
Abstract
Many single nucleotide polymorphisms (SNPs) have been described as putative risk factors for melanoma. The aim of our study was to validate the most prominent genetic risk loci in an independent Greek melanoma case-control dataset and to assess their cumulative effect solely or combined with established phenotypic risk factors on individualized risk prediction. We genotyped 59 SNPs in 800 patients and 800 controls and tested their association with melanoma using logistic regression analyses. We constructed a weighted genetic risk score (GRSGWS) based on SNPs that showed genome-wide significant (GWS) association with melanoma in previous studies and assessed their impact on risk prediction. Fifteen independent SNPs from 12 loci were significantly associated with melanoma (P < 0.05). Risk score analysis yielded an odds ratio of 1.36 per standard deviation increase of the GRSGWS (P = 1.1 × 10(-7)). Individuals in the highest 20% of the GRSGWS had a 1.88-fold increase in melanoma risk compared with those in the middle quintile. By adding the GRSGWS to a phenotypic risk model, the C-statistic increased from 0.764 to 0.775 (P = 0.007). In summary, the GRSGWS is associated with melanoma risk and achieves a modest improvement in risk prediction when added to a phenotypic risk model.
Collapse
|
266
|
Suzawa M, Miranda DA, Ramos KA, Ang KKH, Faivre EJ, Wilson CG, Caboni L, Arkin MR, Kim YS, Fletterick RJ, Diaz A, Schneekloth JS, Ingraham HA. A gene-expression screen identifies a non-toxic sumoylation inhibitor that mimics SUMO-less human LRH-1 in liver. eLife 2015; 4. [PMID: 26653140 PMCID: PMC4749390 DOI: 10.7554/elife.09003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
SUMO-modification of nuclear proteins has profound effects on gene expression. However, non-toxic chemical tools that modulate sumoylation in cells are lacking. Here, to identify small molecule sumoylation inhibitors we developed a cell-based screen that focused on the well-sumoylated substrate, human Liver Receptor Homolog-1 (hLRH-1, NR5A2). Our primary gene-expression screen assayed two SUMO-sensitive transcripts, APOC3 and MUC1, that are upregulated by SUMO-less hLRH-1 or by siUBC9 knockdown, respectively. A polyphenol, tannic acid (TA) emerged as a potent sumoylation inhibitor in vitro (IC50 = 12.8 µM) and in cells. TA also increased hLRH-1 occupancy on SUMO-sensitive transcripts. Most significantly, when tested in humanized mouse primary hepatocytes, TA inhibits hLRH-1 sumoylation and induces SUMO-sensitive genes, thereby recapitulating the effects of expressing SUMO-less hLRH-1 in mouse liver. Our findings underscore the benefits of phenotypic screening for targeting post-translational modifications, and illustrate the potential utility of TA for probing the cellular consequences of sumoylation. DOI:http://dx.doi.org/10.7554/eLife.09003.001 Proteins in cells carry out diverse tasks. One way in which this diversity is achieved by proteins is through the attachment of molecular tags. SUMO is one such tag that can reversibly attach to proteins and alter their activity. The modification of proteins by SUMO is known as sumoylation, and it regulates many processes that are essential for living cells. In particular, transcription factors—the proteins that bind to DNA to switch genes on or off—are highly modified by SUMO. However, the consequences of sumoylation are not fully understood, and current research into this area has been hindered by a lack of effective and non-toxic chemicals that stop or slow down sumoylation. Suzawa, Miranda, Ramos et al. have now screened a large collection of compounds, which had already been approved for medical use, to find one that could inhibit sumoylation without toxic effects. The compounds were tested for their ability to alter the activity of a transcription factor called human Liver Receptor Homolog-1. This protein, which is referred to as LRH-1 for short, is an ideal candidate to test SUMO inhibitors because it is highly modified by multiple SUMO tags. This screen identified a compound from plants called tannic acid as a non-toxic and potent inhibitor of sumoylation. Further experiments confirmed that tannic acid prevented the modification of LHR-1 as well a number of different proteins that also commonly modified by SUMO. Inhibiting the sumoylation of LRH-1 led to an increase in the expression of genes that are normally silenced by SUMO-modified LRH-1. Similar results were obtained when tannic acid was tested using human cells and “humanized” liver cells from mice that had been engineered to express human LRH-1. The next big challenge is to find new chemical probes that can be used to specifically promote or inhibit SUMO modification of just one particular protein. DOI:http://dx.doi.org/10.7554/eLife.09003.002
Collapse
Affiliation(s)
- Miyuki Suzawa
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Diego A Miranda
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Karmela A Ramos
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Kenny K-H Ang
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Emily J Faivre
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Christopher G Wilson
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Laura Caboni
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Michelle R Arkin
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Yeong-Sang Kim
- Chemical Biology Laboratory, National Cancer Institute, Frederick, United States
| | - Robert J Fletterick
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Aaron Diaz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, United States
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, United States
| | - Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
267
|
Wozniak M, Sztiller-Sikorska M, Czyz M. Diminution of miR-340-5p levels is responsible for increased expression of ABCB5 in melanoma cells under oxygen-deprived conditions. Exp Mol Pathol 2015; 99:707-16. [PMID: 26554847 DOI: 10.1016/j.yexmp.2015.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/06/2015] [Accepted: 11/06/2015] [Indexed: 12/21/2022]
Abstract
Melanoma is usually highly refractory to chemotherapy. This resistance to treatment is mainly due to high heterogeneity and plasticity of melanoma cells strictly connected to changes in tumor microenvironment. Hypoxia can drastically alter cancer biology. Solid tumor cells under hypoxia gain stem-like features, they are more invasive and drug-resistant than their normoxic counterparts. These effects could be mediated by changes in miRNA expression under hypoxia. MiRNAs are small non-coding RNA molecules that can negatively control gene expression. In the present study using microarray technology we evaluated the expression of miRNAs in melanoma cells derived from nodular melanoma and grown under normoxic and hypoxic conditions. Using R environment for statistical analysis we found that 70 miRNAs were differentially-expressed, and 16 of them were significantly down-regulated in melanoma cells grown in hypoxic conditions compared to cells grown in normoxia. We intended to find transcripts whose expression is increased due to down-regulation of selected miRNAs. Bioinformatics analysis revealed that increased levels of HIF-2α, ABCB5, OCT4, SOX2 and ZEB1 in different melanoma populations under hypoxia could be a result of significant down-regulation of miR-340-5p. Inhibition of miR-340-5p confirmed that this miRNA negatively influences the expression of ABCB5. This is the first study showing the relationship between miR-340-5p and expression of ABCB5, a transmembrane transporter involved in drug resistance considered as a marker of melanoma stem-like cells.
Collapse
Affiliation(s)
- Michal Wozniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland.
| | - Malgorzata Sztiller-Sikorska
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
268
|
Eifler K, Vertegaal ACO. SUMOylation-Mediated Regulation of Cell Cycle Progression and Cancer. Trends Biochem Sci 2015; 40:779-793. [PMID: 26601932 DOI: 10.1016/j.tibs.2015.09.006] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023]
Abstract
Protein conjugation with Small ubiquitin-like modifier (SUMOylation) has critical roles during cell cycle progression. Many important cell cycle regulators, including many oncogenes and tumor suppressors, are functionally regulated via SUMOylation. The dynamic SUMOylation pattern observed throughout the cell cycle is ensured via distinct spatial and temporal regulation of the SUMO machinery. Additionally, SUMOylation cooperates with other post-translational modifications to mediate cell cycle progression. Deregulation of these SUMOylation and deSUMOylation enzymes causes severe defects in cell proliferation and genome stability. Different types of cancer were recently shown to be dependent on a functioning SUMOylation system, a finding that could be exploited in anticancer therapies.
Collapse
Affiliation(s)
- Karolin Eifler
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
269
|
Potrony M, Badenas C, Aguilera P, Puig-Butille JA, Carrera C, Malvehy J, Puig S. Update in genetic susceptibility in melanoma. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:210. [PMID: 26488006 DOI: 10.3978/j.issn.2305-5839.2015.08.11] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Melanoma is the most deadly of the common skin cancers and its incidence is rapidly increasing. Approximately 10% of cases occur in a familial context. To date, cyclin-dependent kinase inhibitor 2A (CDKN2A), which was identified as the first melanoma susceptibility gene more than 20 years ago, is the main high-risk gene for melanoma. A few years later cyclin-dependent kinase 4 (CDK4) was also identified as a melanoma susceptibility gene. The technologic advances have allowed the identification of new genes involved in melanoma susceptibility: Breast cancer 1 (BRCA1) associated protein 1 (BAP1), CXC genes, telomerase reverse transcriptase (TERT), protection of telomeres 1 (POT1), ACD and TERF2IP, the latter four being involved in telomere maintenance. Furthermore variants in melanocortin 1 receptor (MC1R) and microphthalmia-associated transcription factor (MITF) give a moderately increased risk to develop melanoma. Melanoma genetic counseling is offered to families in order to better understand the disease and the genetic susceptibility of developing it. Genetic counseling often implies genetic testing, although patients can benefit from genetic counseling even when they do not fulfill the criteria for these tests. Genetic testing for melanoma predisposition mutations can be used in clinical practice under adequate selection criteria and giving a valid test interpretation and genetic counseling to the individual.
Collapse
Affiliation(s)
- Miriam Potrony
- 1 Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain ; 2 Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain ; 3 Molecular Biology and Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Celia Badenas
- 1 Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain ; 2 Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain ; 3 Molecular Biology and Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Paula Aguilera
- 1 Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain ; 2 Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain ; 3 Molecular Biology and Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Joan Anton Puig-Butille
- 1 Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain ; 2 Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain ; 3 Molecular Biology and Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Cristina Carrera
- 1 Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain ; 2 Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain ; 3 Molecular Biology and Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Josep Malvehy
- 1 Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain ; 2 Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain ; 3 Molecular Biology and Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Susana Puig
- 1 Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain ; 2 Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain ; 3 Molecular Biology and Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
270
|
Abstract
Approximately 10% of melanoma cases report a relative affected with melanoma, and a positive family history is associated with an increased risk of developing melanoma. Although the majority of genetic alterations associated with melanoma development are somatic, the underlying presence of heritable melanoma risk genes is an important component of disease occurrence. Susceptibility for some families is due to mutation in one of the known high penetrance melanoma predisposition genes: CDKN2A, CDK4, BAP1, POT1, ACD, TERF2IP and TERT. However, despite such mutations being implicated in a combined total of approximately 50% of familial melanoma cases, the underlying genetic basis is unexplained for the remainder of high-density melanoma families. Aside from the possibility of extremely rare mutations in a few additional high penetrance genes yet to be discovered, this suggests a likely polygenic component to susceptibility, and a unique level of personal melanoma risk influenced by multiple low-risk alleles and genetic modifiers. In addition to conferring a risk of cutaneous melanoma, some 'melanoma' predisposition genes have been linked to other cancers, with cancer clustering observed in melanoma families at rates greater than expected by chance. The most extensively documented association is between CDKN2A germ line mutations and pancreatic cancer, and a cancer syndrome including cutaneous melanoma, uveal melanoma and mesothelioma has been proposed for BAP1 germ line mutations. Other medium to high penetrance melanoma predisposition genes have been associated with renal cell carcinoma (MITF, BAP1) and glioma (POT1). These associations between melanoma and other cancers hint at the possibility of common pathways for oncogenesis, and better knowledge of these pathways may improve understanding of the genetic basis underpinning familial melanoma. It is likely that 'melanoma' risk genes will impact on mutation screening and genetic counselling not only for melanoma but also a range of other cancers.
Collapse
Affiliation(s)
- Jazlyn Read
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia The University of Queensland, Brisbane, Queensland, Australia
| | - Karin A W Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
271
|
Ploper D, De Robertis EM. The MITF family of transcription factors: Role in endolysosomal biogenesis, Wnt signaling, and oncogenesis. Pharmacol Res 2015; 99:36-43. [DOI: 10.1016/j.phrs.2015.04.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 04/18/2015] [Accepted: 04/18/2015] [Indexed: 12/19/2022]
|
272
|
Adornetto G, Porchetta A, Palleschi G, Plaxco KW, Ricci F. A general approach to the design of allosteric, transcription factor-regulated DNAzymes. Chem Sci 2015; 6:3692-3696. [PMID: 28706715 PMCID: PMC5496187 DOI: 10.1039/c5sc00228a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/09/2015] [Indexed: 12/26/2022] Open
Abstract
Here we explore a general strategy for the rational design of nucleic acid catalysts that can be allosterically activated by specific nucleic-acid binding proteins. To demonstrate this we have combined a catalytic DNAzyme sequence and the consensus sequence recognized by specific transcription factors to create a construct exhibiting two low-energy conformations: a more stable conformation lacking catalytic activity and lacking the transcription factor binding site, and a less stable conformation that is both catalytically active and competent to bind the transcription factor. The presence of the target transcription factor pushes the equilibrium between these states towards the latter conformation, concomitantly activating catalysis. To demonstrate this we have designed and characterized two peroxidase-like DNAzymes whose activities are triggered upon binding either TATA binding protein or the microphthalmia-associated transcription factor. Our approach augments the current tool kit for the allosteric control of DNAzymes and ribozymes and, because transcription factors control many key biological functions, could have important clinical and diagnostic applications.
Collapse
Affiliation(s)
- G Adornetto
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
| | - A Porchetta
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
- Consorzio Interuniversitario Biostrutture e Biosistemi "INBB" , Rome 00136 , Italy
| | - G Palleschi
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
- Consorzio Interuniversitario Biostrutture e Biosistemi "INBB" , Rome 00136 , Italy
| | - K W Plaxco
- Department of Chemistry and Biochemistry , University of California Santa Barbara , Santa Barbara , California 93106 , USA
- Center for Bioengineering , University of California Santa Barbara , Santa Barbara , California 93106 , USA
| | - F Ricci
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
- Consorzio Interuniversitario Biostrutture e Biosistemi "INBB" , Rome 00136 , Italy
| |
Collapse
|
273
|
Koster R, Chanock SJ. Hard Work Ahead: Fine Mapping and Functional Follow-up of Susceptibility Alleles in Cancer GWAS. CURR EPIDEMIOL REP 2015. [DOI: 10.1007/s40471-015-0049-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
274
|
Ciccarese C, Massari F, Santoni M, Heng DY, Sotte V, Brunelli M, Conti A, Cheng L, Lopez-Beltran A, Scarpelli M, Cascinu S, Tortora G, Montironi R. New molecular targets in non clear renal cell carcinoma: An overview of ongoing clinical trials. Cancer Treat Rev 2015; 41:614-22. [DOI: 10.1016/j.ctrv.2015.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/07/2015] [Accepted: 05/09/2015] [Indexed: 12/20/2022]
|
275
|
Wellbrock C, Arozarena I. Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell Melanoma Res 2015; 28:390-406. [PMID: 25818589 PMCID: PMC4692100 DOI: 10.1111/pcmr.12370] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/16/2015] [Indexed: 12/12/2022]
Abstract
Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia-associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of melanomas and MITF mutation can predispose to melanoma development. Furthermore, the regulation of MITF expression and function is strongly linked to the BRAF/MEK/ERK/MAP-kinase (MAPK) pathway, which is deregulated in >90% of melanomas and central target of current therapies. MITF expression in melanoma is heterogeneous, and recent findings highlight the relevance of this heterogeneity for the response of melanoma to MAPK pathway targeting drugs, as well as for MITF's role in melanoma progression. This review aims to provide an updated overview on the regulation of MITF function and plasticity in melanoma with a focus on its link to MAPK signaling.
Collapse
Affiliation(s)
- Claudia Wellbrock
- Manchester Cancer Research CentreWellcome Trust Centre for Cell Matrix ResearchFaculty of Life SciencesThe University of ManchesterManchesterUK
| | - Imanol Arozarena
- Manchester Cancer Research CentreWellcome Trust Centre for Cell Matrix ResearchFaculty of Life SciencesThe University of ManchesterManchesterUK
| |
Collapse
|
276
|
Cheli Y, Bonnazi VF, Jacquel A, Allegra M, De Donatis GM, Bahadoran P, Bertolotto C, Ballotti R. CD271 is an imperfect marker for melanoma initiating cells. Oncotarget 2015; 5:5272-83. [PMID: 25105565 PMCID: PMC4170612 DOI: 10.18632/oncotarget.1967] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Understanding the molecular and cellular processes underlying melanoma plasticity and heterogeneity is of paramount importance to improve the efficiency of current treatment and to overcome resistance to chemotherapy drugs. The notion of plasticity and heterogeneity implies the existence of melanoma cell populations with different phenotypic and tumorigenic properties. Using melanoma cell lines and melanoma cells freshly isolated from patient biopsies, we investigated the relationship between ABCB5+, CD271+ and low-MITF, expressing populations that were reported to display melanoma initiating cell properties. Here, we showed that ABCB5+ and CD271+ populations poorly overlap. However, we found that the CD271+ population is enriched in low-MITF cells and expresses a higher level of stemness genes, such as OCT4, NANOG and NES. These features could explain the increased tumorigenicity of the CD271+ cells. The rapid conversion of CD271+ to CD271− cells in vitro demonstrates the plasticity ability of melanoma cells. Finally, we observed that the transient slow-growing population contains only CD271+ cells that are highly tumorigenic. However, the fast growing/CD271+ population exhibits a poor tumorigenic ability. Taking together, our data show that CD271 is an imperfect marker for melanoma initiating cells, but may be useful to identify melanoma cells with an increased stemness and tumorigenic potential.
Collapse
Affiliation(s)
- Yann Cheli
- INSERM U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, Equipe labellisée Ligue 2013, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | - Vanessa F Bonnazi
- INSERM U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, Equipe labellisée Ligue 2013, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | - Arnaud Jacquel
- INSERM U1065, Equipe 2, Cell death, differentiation and cancer, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | - Maryline Allegra
- INSERM U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, Equipe labellisée Ligue 2013, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, France; CHU Nice, Service de Dermatologie, Nice, France
| | - Gian Marco De Donatis
- INSERM U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, Equipe labellisée Ligue 2013, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | - Philippe Bahadoran
- INSERM U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, Equipe labellisée Ligue 2013, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, France; CHU Nice, Service de Dermatologie, Nice, France; CHU Nice, Clinical Research Center, Nice, France
| | - Corine Bertolotto
- INSERM U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, Equipe labellisée Ligue 2013, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, France; CHU Nice, Service de Dermatologie, Nice, France
| | - Robert Ballotti
- INSERM U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, Equipe labellisée Ligue 2013, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, France; CHU Nice, Service de Dermatologie, Nice, France
| |
Collapse
|
277
|
Helgadottir H, Höiom V, Tuominen R, Jönsson G, Månsson-Brahme E, Olsson H, Hansson J. CDKN2a mutation-negative melanoma families have increased risk exclusively for skin cancers but not for other malignancies. Int J Cancer 2015; 137:2220-6. [PMID: 25943250 DOI: 10.1002/ijc.29595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/23/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
Germline CDKN2A mutations are found in 5-20% of melanoma families. Numerous studies have shown that carriers of CDKN2A mutations have increased risks of non-melanoma cancers, but so far there have been no studies investigating cancer risks in CDKN2A wild type (wt) melanoma families. In this prospective cohort study, index melanoma cases (n = 224) and their first-degree relatives (n = 944) were identified from 154 confirmed CDKN2A wt melanoma families. Cancer diagnoses in family members and matched controls were obtained from the Swedish Cancer Registry. Relative risks (RR), odds ratios (OR) and two-sided 95% confidence intervals (95% CI) were calculated. In index cases and first-degree relatives, the prospective RR for melanoma was 56.9 (95% CI 31.4-102.1) and 7.0 (95% CI 4.2-11.4), respectively, and for squamous cell skin cancers 9.1 (95% CI 6.0-13.7) and 3.4 (95% CI 2.2-5.2), respectively. In neither group, elevated risks were seen for non-skin cancers. In a subgroup analysis, CDKN2A wt melanoma families with young (<40 years) melanoma cases were found to have increased risk of non-skin cancers (RR 1.5, 95% CI 1.0-1.5). Further, MC1R gene variants were increased in familial melanoma cases compared to controls (OR 2.4, 95% CI 1.6-3.4). Our findings suggest that in the majority of CDKN2A wt melanoma families, a segregation of variants in low-risk melanoma genes such as MC1R causes increased skin cancer susceptibility, rather than mutations in high-risk cancer predisposing genes, such mutations are more probable to be found in melanoma families with young melanoma cases. This study further supports an implication of CDKN2A mutation screening as a clinical test that determines counseling and follows up routines of melanoma families.
Collapse
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital, Solna, 171 76, Stockholm, Sweden
| | - Veronica Höiom
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital, Solna, 171 76, Stockholm, Sweden
| | - Rainer Tuominen
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital, Solna, 171 76, Stockholm, Sweden
| | - Göran Jönsson
- Department of Oncology, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Eva Månsson-Brahme
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital, Solna, 171 76, Stockholm, Sweden
| | - Håkan Olsson
- Department of Oncology, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Johan Hansson
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital, Solna, 171 76, Stockholm, Sweden
| |
Collapse
|
278
|
Papakostas D, Stefanaki I, Stratigos A. Genetic epidemiology of malignant melanoma susceptibility. Melanoma Manag 2015; 2:165-169. [PMID: 30190845 DOI: 10.2217/mmt.15.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Germline CDKN2A mutations were the first to be associated with familial melanoma. MC1R polymorphisms are associated, in conformity with epidemiological observations, with fair skin phenotype and a moderately increased risk for melanoma. The wider implementation of genome-wide association studies along with improved whole exome sequencing techniques made possible the identification of novel high-penetrant mutations (TERT, MITF, POT1, BAP1) beyond the established pathways of pigmentation and nevus count suggesting an additional role for pathways involved in cell cycle control and DNA repair. A multitude of common polymorphisms in the general population have been associated through candidate gene studies with a low risk for melanoma, supporting the hypothesis of a complex disease.
Collapse
Affiliation(s)
- Dimitrios Papakostas
- Department of Dermatology, Dermatooncology Unit, A. Syggros Hospital, University of Athens, Greece
| | - Irene Stefanaki
- Department of Dermatology, Dermatooncology Unit, A. Syggros Hospital, University of Athens, Greece
| | - Alexander Stratigos
- Department of Dermatology, Dermatooncology Unit, A. Syggros Hospital, University of Athens, Greece
| |
Collapse
|
279
|
Meierjohann S. Hypoxia-independent drivers of melanoma angiogenesis. Front Oncol 2015; 5:102. [PMID: 26000250 PMCID: PMC4419834 DOI: 10.3389/fonc.2015.00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/15/2015] [Indexed: 12/28/2022] Open
Abstract
Tumor angiogenesis is a process which is traditionally regarded as the tumor’s response to low nutrient supply occurring under hypoxic conditions. However, hypoxia is not a pre-requisite for angiogenesis. The fact that even single tumor cells or small tumor cell aggregates are capable of attracting blood vessels reveals the early metastatic capability of tumor cells. This review sheds light on the hypoxia-independent mechanisms of tumor angiogenesis in melanoma.
Collapse
Affiliation(s)
- Svenja Meierjohann
- Department of Physiological Chemistry, Biocenter, University of Würzburg , Würzburg , Germany ; Comprehensive Cancer Center Mainfranken, University Hospital Würzburg , Würzburg , Germany
| |
Collapse
|
280
|
Park F. Activators of G protein signaling in the kidney. J Pharmacol Exp Ther 2015; 353:235-45. [PMID: 25628392 PMCID: PMC4407716 DOI: 10.1124/jpet.115.222695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/23/2015] [Indexed: 12/15/2022] Open
Abstract
Heterotrimeric G proteins play a crucial role in regulating signal processing to maintain normal cellular homeostasis, and subtle perturbations in its activity can potentially lead to the pathogenesis of renal disorders or diseases. Cell-surface receptors and accessory proteins, which normally modify and organize the coupling of individual G protein subunits, contribute to the regulation of heterotrimeric G protein activity and their convergence and/or divergence of downstream signaling initiated by effector systems. Activators of G protein signaling (AGS) are a family of accessory proteins that intervene at multiple distinct points during the activation-inactivation cycle of G proteins, even in the absence of receptor stimulation. Perturbations in the expression of individual AGS proteins have been reported to modulate signal transduction pathways in a wide array of diseases and disorders within the brain, heart, immune system, and more recently, the kidney. This review will provide an overview of the expression profile, localization, and putative biologic role of the AGS family in the context of normal and diseased states of the kidney.
Collapse
Affiliation(s)
- Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
281
|
Palmieri G, Colombino M, Casula M, Budroni M, Manca A, Sini MC, Lissia A, Stanganelli I, Ascierto PA, Cossu A. Epidemiological and genetic factors underlying melanoma development in Italy. Melanoma Manag 2015; 2:149-163. [PMID: 30190844 PMCID: PMC6094587 DOI: 10.2217/mmt.15.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Among human cancers, melanoma remains one of the malignancies with an ever-growing incidence in white populations. Recent advances in biological and immunological therapeutic approaches as well as increased efforts for secondary prevention are contributing to improve the survival rates. It is likely that a significant fall in mortality rates for melanoma will be achieved by further increase of the early detection through a more accurate selection of the higher-risk individuals (i.e., carriers of predisposing genetic alterations). A similar scenario occurs in Italy. In the present review, we have considered data on incidence, survival and mortality rates of melanoma in Italian population, including evaluation of the main risk factors and genetic mutations underlying disease susceptibility.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Institute of Biomolecular Chemistry, National Research Council (CNR), Sassari, Italy
| | - Maria Colombino
- Institute of Biomolecular Chemistry, National Research Council (CNR), Sassari, Italy
| | - Milena Casula
- Institute of Biomolecular Chemistry, National Research Council (CNR), Sassari, Italy
| | - Mario Budroni
- Department of Pathology, Hospital-University Health Unit (AOU), Sassari, Italy
| | - Antonella Manca
- Institute of Biomolecular Chemistry, National Research Council (CNR), Sassari, Italy
| | - Maria Cristina Sini
- Institute of Biomolecular Chemistry, National Research Council (CNR), Sassari, Italy
| | - Amelia Lissia
- Department of Pathology, Hospital-University Health Unit (AOU), Sassari, Italy
| | - Ignazio Stanganelli
- Skin Cancer Unit, Istituto Scientifico Romagnolo Tumori (IRST), Meldola, Italy
| | - Paolo A Ascierto
- Istituto Nazionale Tumori (INT), Fondazione G. Pascale, Naples, Italy
| | - Antonio Cossu
- Department of Pathology, Hospital-University Health Unit (AOU), Sassari, Italy
| |
Collapse
|
282
|
Benusiglio PR, Couvé S, Gilbert-Dussardier B, Deveaux S, Le Jeune H, Da Costa M, Fromont G, Memeteau F, Yacoub M, Coupier I, Leroux D, Méjean A, Escudier B, Giraud S, Gimenez-Roqueplo AP, Blondel C, Frouin E, Teh BT, Ferlicot S, Bressac-de Paillerets B, Richard S, Gad S. A germline mutation inPBRM1predisposes to renal cell carcinoma. J Med Genet 2015; 52:426-30. [DOI: 10.1136/jmedgenet-2014-102912] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/04/2015] [Indexed: 12/22/2022]
|
283
|
Abstract
Melanocyte development provides an excellent model for studying more complex developmental processes. Melanocytes have an apparently simple aetiology, differentiating from the neural crest and migrating through the developing embryo to specific locations within the skin and hair follicles, and to other sites in the body. The study of pigmentation mutations in the mouse provided the initial key to identifying the genes and proteins involved in melanocyte development. In addition, work on chicken has provided important embryological and molecular insights, whereas studies in zebrafish have allowed live imaging as well as genetic and transgenic approaches. This cross-species approach is powerful and, as we review here, has resulted in a detailed understanding of melanocyte development and differentiation, melanocyte stem cells and the role of the melanocyte lineage in diseases such as melanoma. Summary: This Review discusses melanocyte development and differentiation, melanocyte stem cells, and the role of the melanocyte lineage in diseases such as melanoma.
Collapse
Affiliation(s)
| | - Ian J Jackson
- MRC Human Genetics Unit and University of Edinburgh Cancer Research UK Cancer Centre, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit and Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|
284
|
Abstract
PURPOSE OF REVIEW Despite the controversy surrounding the benefits of nephron-sparing surgery, multiple absolute indications for nephron-sparing surgery still exist, including the classic indications of hereditary and bilateral kidney tumors. RECENT FINDINGS Multiple genetic mutations have been identified which lead to hereditary kidney cancer conditions. These are briefly reviewed because the surgical management of hereditary kidney tumors depends on the genetic and histologic subtypes involved. Clear understanding of these hereditary conditions is crucial for proper surgical management of these tumors. SUMMARY Complex partial nephrectomy for multiple renal tumors, or multiplex partial nephrectomy, requires not only exceptional surgical skills but expertise of numerous nonsurgical methodologies, such as hands-on intraoperative ultrasonography and interpretation of multiple imaging modalities. In addition, multidisciplinary management is crucial for optimal outcomes in patient care. This review evaluates the most advanced surgical techniques and perioperative management required to successfully care for these challenging cases.
Collapse
|
285
|
Ward SV, Dowty JG, Webster RJ, Cadby G, Glasson EJ, Heyworth JS, Emery J, Cole JM, Millward MJ, Wood FM, Palmer LJ. The aggregation of early-onset melanoma in young Western Australian families. Cancer Epidemiol 2015; 39:346-52. [PMID: 25843692 DOI: 10.1016/j.canep.2015.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/11/2015] [Accepted: 03/12/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Few studies have examined the familial aggregation of melanoma or its co-aggregation with other cancers using whole-population based designs. This study aimed to investigate aggregation patterns in young Western Australian families, using population-based linked health data to identify individuals born in Western Australia between 1974 and 2007, their known relatives, and all incident cancer diagnoses within the resulting 1,506,961 individuals. METHODS Cox proportional hazards regression models were used to compare the risk of melanoma for first-degree relatives of melanoma cases to that for first-degree relatives of controls, with bootstrapping used to account for correlations within families. The risk of (i) developing melanoma based on the number of first-degree relatives with other cancers, and (ii) developing non-melanoma cancers based on the number of first-degree relatives diagnosed with melanoma was also investigated. RESULTS First-degree relatives of melanoma cases had a significantly greater incidence of melanoma than first-degree relatives of individuals not affected with melanoma (Hazard Ratio (HR)=3.58, 95% bootstrap confidence interval (CI): 2.43-5.43). Sensitivity analyses produced a higher hazard ratio estimate when restricted to melanoma cases diagnosed before 40 years of age (HR=3.77, bootstrap 95% CI: 2.49-6.39) and a lower estimate when only later-onset cases (>40 years) were considered (HR=2.45, bootstrap 95% CI: 1.23-4.82). No significant evidence was found for co-aggregation between melanoma and any other cancers. CONCLUSIONS Results indicated a strong familial basis of melanoma, with the higher than expected hazard ratio observed likely to reflect early-age at onset cases in this young cohort, supported by the results of the sensitivity analyses. Exploratory analyses suggested that the determinants of melanoma causing the observed aggregation within families may be independent of other malignancies, although these analyses were limited by the young age of the sample. Determining familial aggregation patterns will provide valuable knowledge regarding improved clinical risk prediction and the underlying biological mechanisms of melanoma and other cancers.
Collapse
Affiliation(s)
- S V Ward
- Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, Western Australia, Australia.
| | - J G Dowty
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - R J Webster
- Laboratory for Cancer Medicine, Harry Perkins Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - G Cadby
- Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, Western Australia, Australia
| | - E J Glasson
- Telethon Kids Institute, Subiaco, Western Australia, Australia
| | - J S Heyworth
- School of Population Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - J Emery
- Department of General Practice, The University of Melbourne, Melbourne, Victoria, Australia
| | - J M Cole
- St John of God Dermatology, St John of God Health Care, Subiaco, Perth, Western Australia, Australia
| | - M J Millward
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - F M Wood
- Burn Injury Research Unit, The University of Western Australia, Crawley, Western Australia, Australia; Fiona Wood Foundation, Telstra Burns Reconstruction and Rehabilitation Unit, Royal Perth Hospital, Perth, Western Australia, Australia
| | - L J Palmer
- Joanna Briggs Institute and School of Translational Health Science, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
286
|
Pośpiech E, Ligęza J, Wilk W, Gołas A, Jaszczyński J, Stelmach A, Ryś J, Blecharczyk A, Wojas-Pelc A, Jura J, Branicki W. Variants of SCARB1 and VDR Involved in Complex Genetic Interactions May Be Implicated in the Genetic Susceptibility to Clear Cell Renal Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:860405. [PMID: 25945350 PMCID: PMC4402472 DOI: 10.1155/2015/860405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/21/2015] [Accepted: 03/15/2015] [Indexed: 11/17/2022]
Abstract
The current data are still inconclusive in terms of a genetic component involved in the susceptibility to renal cell carcinoma. Our aim was to evaluate 40 selected candidate polymorphisms for potential association with clear cell renal cell carcinoma (ccRCC) based on independent group of 167 patients and 200 healthy controls. The obtained data were searched for independent effects of particular polymorphisms as well as haplotypes and genetic interactions. Association testing implied position rs4765623 in the SCARB1 gene (OR = 1.688, 95% CI: 1.104-2.582, P = 0.016) and a haplotype in VDR comprising positions rs739837, rs731236, rs7975232, and rs1544410 (P = 0.012) to be the risk factors in the studied population. The study detected several epistatic effects contributing to the genetic susceptibility to ccRCC. Variation in GNAS1 was implicated in a strong synergistic interaction with BIRC5. This effect was part of a model suggested by multifactor dimensionality reduction method including also a synergy between GNAS1 and SCARB1 (P = 0.036). Significance of GNAS1-SCARB1 interaction was further confirmed by logistic regression (P = 0.041), which also indicated involvement of SCARB1 in additional interaction with EPAS1 (P = 0.008) as well as revealing interactions between GNAS1 and EPAS1 (P = 0.016), GNAS1 and MC1R (P = 0.031), GNAS1 and VDR (P = 0.032), and MC1R and VDR (P = 0.035).
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Institute of Zoology, Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland
| | - Janusz Ligęza
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Wacław Wilk
- Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Garncarska 11, 31-115 Cracow, Poland
| | - Aniela Gołas
- Institute of Zoology, Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland
| | - Janusz Jaszczyński
- Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Garncarska 11, 31-115 Cracow, Poland
| | - Andrzej Stelmach
- Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Garncarska 11, 31-115 Cracow, Poland
| | - Janusz Ryś
- Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Garncarska 11, 31-115 Cracow, Poland
| | - Aleksandra Blecharczyk
- Institute of Zoology, Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland
| | - Anna Wojas-Pelc
- Department of Dermatology, Collegium Medicum of the Jagiellonian University, Skawińska 8, 31-066 Cracow, Poland
| | - Jolanta Jura
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Wojciech Branicki
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| |
Collapse
|
287
|
Ozola A, Pjanova D. The lack of E318K MITF germline mutation in Latvian melanoma patients. Cancer Genet 2015; 208:355-6. [PMID: 25975176 DOI: 10.1016/j.cancergen.2015.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Aija Ozola
- Latvian Biomedical Research and Study Centre, Riga, Latvia.
| | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
288
|
Antonopoulou K, Stefanaki I, Lill CM, Chatzinasiou F, Kypreou KP, Karagianni F, Athanasiadis E, Spyrou GM, Ioannidis JPA, Bertram L, Evangelou E, Stratigos AJ. Updated field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma: the MelGene database. J Invest Dermatol 2015; 135:1074-1079. [PMID: 25407435 DOI: 10.1038/jid.2014.491] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/09/2014] [Accepted: 10/31/2014] [Indexed: 12/26/2022]
Abstract
We updated a field synopsis of genetic associations of cutaneous melanoma (CM) by systematically retrieving and combining data from all studies in the field published as of August 31, 2013. Data were available from 197 studies, which included 83,343 CM cases and 187,809 controls and reported on 1,126 polymorphisms in 289 different genes. Random-effects meta-analyses of 81 eligible polymorphisms evaluated in >4 data sets confirmed 20 single-nucleotide polymorphisms across 10 loci (TYR, AFG3L1P, CDK10, MYH7B, SLC45A2, MTAP, ATM, CLPTM1L, FTO, and CASP8) that have previously been published with genome-wide significant evidence for association (P<5 × 10(-8)) with CM risk, with certain variants possibly functioning as proxies of already tagged genes. Four other loci (MITF, CCND1, MX2, and PLA2G6) were also significantly associated with 5 × 10(-8)
Collapse
Affiliation(s)
- Kyriaki Antonopoulou
- Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Irene Stefanaki
- Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Christina M Lill
- Neuropsychiatric Genetics Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany; Department of Neurology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Foteini Chatzinasiou
- Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Katerina P Kypreou
- Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Fani Karagianni
- Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Emmanouil Athanasiadis
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - George M Spyrou
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - John P A Ioannidis
- Department of Medicine, Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, California, USA
| | - Lars Bertram
- Neuropsychiatric Genetics Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany; Department of Medicine, School of Public Health, Imperial College London, London, UK
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, Clinical and Molecular Epidemiology Unit, School of Medicine, University of Ioannina, Ioannina, Greece; Department of Epidemiology and Biostatistics, Imperial College London, St Mary's Campus, London, UK
| | - Alexander J Stratigos
- Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece.
| |
Collapse
|
289
|
Wadt KAW, Aoude LG, Krogh L, Sunde L, Bojesen A, Grønskov K, Wartacz N, Ek J, Tolstrup-Andersen M, Klarskov-Andersen M, Borg Å, Heegaard S, Kiilgaard JF, Hansen TVO, Klein K, Jönsson G, Drzewiecki KT, Dunø M, Hayward NK, Gerdes AM. Molecular characterization of melanoma cases in Denmark suspected of genetic predisposition. PLoS One 2015; 10:e0122662. [PMID: 25803691 PMCID: PMC4372390 DOI: 10.1371/journal.pone.0122662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/12/2015] [Indexed: 12/20/2022] Open
Abstract
Both environmental and host factors influence risk of cutaneous
melanoma (CM), and worldwide, the incidence varies depending on constitutional determinants of skin type and pigmentation, latitude, and patterns of sun exposure. We performed genetic analysis of CDKN2A, CDK4, BAP1, MC1R, and MITFp.E318K in Danish high-risk melanoma cases and found CDKN2A germline mutations in 11.3% of CM families with three or more affected individuals, including four previously undescribed mutations. Rare mutations were also seen in CDK4 and BAP1, while MC1R variants were common, occurring at more than twice the frequency compared to Danish controls. The MITF p.E318K variant similarly occurred at an approximately three-fold higher frequency in melanoma cases than controls. To conclude, we propose that mutation screening of CDKN2A and CDK4 in Denmark should predominantly be performed in families with at least 3 cases of CM. In addition, we recommend that testing of BAP1 should not be conducted routinely in CM families but should be reserved for families with CM and uveal melanoma, or mesothelioma.
Collapse
Affiliation(s)
- Karin A. W. Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Lauren G. Aoude
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lotte Krogh
- Department of Clinical Genetics, University hospital of Odense, Odense, Denmark
| | - Lone Sunde
- Department of Clinical Genetics, University hospital of Århus, Århus, Denmark
| | - Anders Bojesen
- Department of Clinical Genetics, Vejle hospital, Lillebaelt Hospital, Vejle, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nine Wartacz
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Jakob Ek
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | | | - Åke Borg
- Department of Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Steffen Heegaard
- Department of Ophthalmology, Glostrup Hospital, University of Copenhagen, Denmark
- Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jens F. Kiilgaard
- Department of Ophthalmology, Glostrup Hospital, University of Copenhagen, Denmark
| | - Thomas V. O. Hansen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University hospital, Copenhagen, Denmark
| | | | - Göran Jönsson
- Department of Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Krzysztof T. Drzewiecki
- Department of Plastic Surgery, Breast Surgery and Burns, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Dunø
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | - Anne-Marie Gerdes
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
290
|
Aoude LG, Wadt KAW, Pritchard AL, Hayward NK. Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell Melanoma Res 2015; 28:148-60. [PMID: 25431349 DOI: 10.1111/pcmr.12333] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/24/2014] [Indexed: 01/29/2023]
Abstract
Twenty years ago, the first familial melanoma susceptibility gene, CDKN2A, was identified. Two years later, another high-penetrance gene, CDK4, was found to be responsible for melanoma development in some families. Progress in identifying new familial melanoma genes was subsequently slow; however, with the advent of next-generation sequencing, a small number of new high-penetrance genes have recently been uncovered. This approach has identified the lineage-specific oncogene MITF as a susceptibility gene both in melanoma families and in the general population, as well as the discovery of telomere maintenance as a key pathway underlying melanoma predisposition. Given these rapid recent advances, this approach seems likely to continue to pay dividends. Here, we review the currently known familial melanoma genes, providing evidence that most additionally confer risk to other cancers, indicating that they are likely general tumour suppressor genes or oncogenes, which has significant implications for surveillance and screening.
Collapse
Affiliation(s)
- Lauren G Aoude
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia; University of Queensland, Brisbane, Qld, Australia
| | | | | | | |
Collapse
|
291
|
Howlin J, Cirenajwis H, Lettiero B, Staaf J, Lauss M, Saal L, Borg Å, Gruvberger-Saal S, Jönsson G. Loss of CITED1, an MITF regulator, drives a phenotype switch in vitro and can predict clinical outcome in primary melanoma tumours. PeerJ 2015; 3:e788. [PMID: 25755924 PMCID: PMC4349148 DOI: 10.7717/peerj.788] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/04/2015] [Indexed: 12/15/2022] Open
Abstract
CITED1 is a non-DNA binding transcriptional co-regulator whose expression can distinguish the ‘proliferative’ from ‘invasive’ signature in the phenotype-switching model of melanoma. We have found that, in addition to other ‘proliferative’ signature genes, CITED1 expression is repressed by TGFβ while the ‘invasive’ signature genes are upregulated. In agreement, CITED1 positively correlates with MITF expression and can discriminate the MITF-high/pigmentation tumour molecular subtype in a large cohort (120) of melanoma cell lines. Interestingly, CITED1 overexpression significantly suppressed MITF promoter activation, mRNA and protein expression levels while MITF was transiently upregulated following siRNA mediated CITED1 silencing. Conversely, MITF siRNA silencing resulted in CITED1 downregulation indicating a reciprocal relationship. Whole genome expression analysis identified a phenotype shift induced by CITED1 silencing and driven mainly by expression of MITF and a cohort of MITF target genes that were significantly altered. Concomitantly, we found changes in the cell-cycle profile that manifest as transient G1 accumulation, increased expression of CDKN1A and a reduction in cell viability. Additionally, we could predict survival outcome by classifying primary melanoma tumours using our in vitro derived ‘CITED1-silenced’ gene expression signature. We hypothesize that CITED1 acts a regulator of MITF, functioning to maintain MITF levels in a range compatible with tumourigenesis.
Collapse
Affiliation(s)
- Jillian Howlin
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Scheelevägen, Lund, Sweden.,Cell and Experimental Pathology, Department of Laboratory Medicine Malmö, Lund University, Sweden
| | - Helena Cirenajwis
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Scheelevägen, Lund, Sweden
| | - Barbara Lettiero
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Scheelevägen, Lund, Sweden
| | - Johan Staaf
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Scheelevägen, Lund, Sweden
| | - Martin Lauss
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Scheelevägen, Lund, Sweden
| | - Lao Saal
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Scheelevägen, Lund, Sweden
| | - Åke Borg
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Scheelevägen, Lund, Sweden
| | - Sofia Gruvberger-Saal
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Scheelevägen, Lund, Sweden
| | - Göran Jönsson
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Scheelevägen, Lund, Sweden
| |
Collapse
|
292
|
Pracht M, Mogha A, Lespagnol A, Fautrel A, Mouchet N, Le Gall F, Paumier V, Lefeuvre-Plesse C, Rioux-Leclerc N, Mosser J, Oger E, Adamski H, Galibert MD, Lesimple T. Prognostic and predictive values of oncogenic BRAF, NRAS, c-KIT
and MITF
in cutaneous and mucous melanoma. J Eur Acad Dermatol Venereol 2015; 29:1530-8. [DOI: 10.1111/jdv.12910] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/05/2014] [Indexed: 12/13/2022]
Affiliation(s)
- M. Pracht
- Service d'Oncologie Médicale; Centre Eugene Marquis; Rennes France
- Brittany Melanoma Network; GRoupe Ouest Mélanome (GROUM); Rennes France
| | - A. Mogha
- Gene Expression and Oncogenesis Team; Institut de Génétique et Developement de Rennes; CNRS UMR6290; Rennes France
- CHU Pontchaillou; Université Européenne de Bretagne; Rennes France
| | - A. Lespagnol
- CHU Pontchaillou; Université Européenne de Bretagne; Rennes France
- CHU Pontchaillou; Service de Génétique Moléculaire et Génomique des Cancers; Rennes France
| | - A. Fautrel
- CHU Pontchaillou; Université Européenne de Bretagne; Rennes France
- SFR Biosit UMS CNRS 3480/US INSERM 018; Rennes France
| | - N. Mouchet
- Gene Expression and Oncogenesis Team; Institut de Génétique et Developement de Rennes; CNRS UMR6290; Rennes France
- CHU Pontchaillou; Université Européenne de Bretagne; Rennes France
| | - F. Le Gall
- Brittany Melanoma Network; GRoupe Ouest Mélanome (GROUM); Rennes France
- CHU Pontchaillou; Université Européenne de Bretagne; Rennes France
- Service d'Anatomopathologie; CHU Pontchaillou; Rennes France
| | - V. Paumier
- Brittany Melanoma Network; GRoupe Ouest Mélanome (GROUM); Rennes France
- Laboratoire d'Anatomopathologie Atalante; Rennes France
| | - C. Lefeuvre-Plesse
- Service d'Oncologie Médicale; Centre Eugene Marquis; Rennes France
- Brittany Melanoma Network; GRoupe Ouest Mélanome (GROUM); Rennes France
| | - N. Rioux-Leclerc
- CHU Pontchaillou; Université Européenne de Bretagne; Rennes France
- Service d'Anatomopathologie; CHU Pontchaillou; Rennes France
| | - J. Mosser
- CHU Pontchaillou; Université Européenne de Bretagne; Rennes France
- CHU Pontchaillou; Service de Génétique Moléculaire et Génomique des Cancers; Rennes France
| | - E. Oger
- CHU Pontchaillou; Université Européenne de Bretagne; Rennes France
- Centre d'Investigations Cliniques et Unité de Pharmacologie et de Pharmaco-épidémiologie; Rennes France
| | - H. Adamski
- Brittany Melanoma Network; GRoupe Ouest Mélanome (GROUM); Rennes France
- CHU Pontchaillou; Université Européenne de Bretagne; Rennes France
- CHU Pontchaillou; Service de Dermatologie; Rennes France
| | - M.-D. Galibert
- Brittany Melanoma Network; GRoupe Ouest Mélanome (GROUM); Rennes France
- Gene Expression and Oncogenesis Team; Institut de Génétique et Developement de Rennes; CNRS UMR6290; Rennes France
- CHU Pontchaillou; Université Européenne de Bretagne; Rennes France
| | - T. Lesimple
- Service d'Oncologie Médicale; Centre Eugene Marquis; Rennes France
- Brittany Melanoma Network; GRoupe Ouest Mélanome (GROUM); Rennes France
| |
Collapse
|
293
|
Abildgaard C, Guldberg P. Molecular drivers of cellular metabolic reprogramming in melanoma. Trends Mol Med 2015; 21:164-71. [PMID: 25618774 DOI: 10.1016/j.molmed.2014.12.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/12/2014] [Accepted: 12/18/2014] [Indexed: 01/12/2023]
Abstract
The development of metastatic melanoma is accompanied by distinct changes in cellular metabolism, most notably a change in strategy for energy production from mitochondrial oxidative phosphorylation to cytoplasmic aerobic glycolysis. This bioenergetic switch occurs at the expense of less-efficient utilization of glucose, but is required for melanoma cells to meet their bioenergetic and biosynthetic demands. Recent work has implicated well-established melanoma drivers such as BRAF, PTEN, MITF, and ARF in the regulation of cellular energy metabolism. The metabolic changes in melanoma cells offer new opportunities for therapeutic intervention. However, inter- and intratumor bioenergetic heterogeneity caused by variation in genetic driver profiles and mitochondrial performance may impact on the effectiveness of treatment.
Collapse
Affiliation(s)
- Cecilie Abildgaard
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Per Guldberg
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.
| |
Collapse
|
294
|
MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc Natl Acad Sci U S A 2015; 112:E420-9. [PMID: 25605940 DOI: 10.1073/pnas.1424576112] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Canonical Wnt signaling plays an important role in development and disease, regulating transcription of target genes and stabilizing many proteins phosphorylated by glycogen synthase kinase 3 (GSK3). We observed that the MiT family of transcription factors, which includes the melanoma oncogene MITF (micropthalmia-associated transcription factor) and the lysosomal master regulator TFEB, had the highest phylogenetic conservation of three consecutive putative GSK3 phosphorylation sites in animal proteomes. This finding prompted us to examine the relationship between MITF, endolysosomal biogenesis, and Wnt signaling. Here we report that MITF expression levels correlated with the expression of a large subset of lysosomal genes in melanoma cell lines. MITF expression in the tetracycline-inducible C32 melanoma model caused a marked increase in vesicular structures, and increased expression of late endosomal proteins, such as Rab7, LAMP1, and CD63. These late endosomes were not functional lysosomes as they were less active in proteolysis, yet were able to concentrate Axin1, phospho-LRP6, phospho-β-catenin, and GSK3 in the presence of Wnt ligands. This relocalization significantly enhanced Wnt signaling by increasing the number of multivesicular bodies into which the Wnt signalosome/destruction complex becomes localized upon Wnt signaling. We also show that the MITF protein was stabilized by Wnt signaling, through the novel C-terminal GSK3 phosphorylations identified here. MITF stabilization caused an increase in multivesicular body biosynthesis, which in turn increased Wnt signaling, generating a positive-feedback loop that may function during the proliferative stages of melanoma. The results underscore the importance of misregulated endolysosomal biogenesis in Wnt signaling and cancer.
Collapse
|
295
|
Ohanna M, Bonet C, Bille K, Allegra M, Davidson I, Bahadoran P, Lacour JP, Ballotti R, Bertolotto C. SIRT1 promotes proliferation and inhibits the senescence-like phenotype in human melanoma cells. Oncotarget 2015; 5:2085-95. [PMID: 24742694 PMCID: PMC4039147 DOI: 10.18632/oncotarget.1791] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SIRT1 operates as both a tumor suppressor and oncogenic factor depending on the cell context. Whether SIRT1 plays a role in melanoma biology remained poorly elucidated. Here, we demonstrate that SIRT1 is a critical regulator of melanoma cell proliferation. SIRT1 suppression by genetic or pharmacological approaches induces cell cycle arrest and a senescence-like phenotype. Gain and loss of function experiments show that M-MITF regulates SIRT1 expression, thereby revealing a melanocyte-specific control of SIRT1. SIRT1 over-expression relieves the senescence-like phenotype and the proliferation arrest caused by MITF suppression, demonstrating that SIRT1 is an effector of MITF-induced proliferation in melanoma cells. Interestingly, SIRT1 level and activity are enhanced in the PLX4032-resistant BRAFV600E-mutated melanoma cells compared with their sensitive counterpart. SIRT1 inhibition decreases melanoma cell growth and rescues the sensibility to PLX4032 of PLX4032-resistant BRAFV600E-mutated melanoma cells. In conclusion, we provide the first evidence that inhibition of SIRT1 warrants consideration as an anti-melanoma therapeutic option.
Collapse
Affiliation(s)
- Mickaël Ohanna
- INSERM, U1065 (équipe 1), Equipe labélisée Ligue Contre le Cancer, C3M, Nice, France
| | | | | | | | | | | | | | | | | |
Collapse
|
296
|
|
297
|
Kalkat M, Chan PK, Wasylishen AR, Srikumar T, Kim SS, Ponzielli R, Bazett-Jones DP, Raught B, Penn LZ. Identification of c-MYC SUMOylation by mass spectrometry. PLoS One 2014; 9:e115337. [PMID: 25522242 PMCID: PMC4270761 DOI: 10.1371/journal.pone.0115337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/21/2014] [Indexed: 01/10/2023] Open
Abstract
The c-MYC transcription factor is a master regulator of many cellular processes and deregulation of this oncogene has been linked to more than 50% of all cancers. This deregulation can take many forms, including altered post-translational regulation. Here, using immunoprecipitation combined with mass spectrometry, we identified a MYC SUMOylation site (K326). Abrogation of signaling through this residue by substitution with arginine (K326R) has no obvious effects on MYC half-life, intracellular localization, transcriptional targets, nor on the biological effects of MYC overexpression in two different cell systems assessed for soft agar colony formation, proliferation, and apoptosis. While we have definitively demonstrated that MYC SUMOylation can occur on K326, future work will be needed to elucidate the mechanisms and biological significance of MYC regulation by SUMOylation.
Collapse
Affiliation(s)
- Manpreet Kalkat
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Pak-Kei Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Amanda R. Wasylishen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tharan Srikumar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sam S. Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Romina Ponzielli
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - David P. Bazett-Jones
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Linda Z. Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
298
|
Müller J, Krijgsman O, Tsoi J, Robert L, Hugo W, Song C, Kong X, Possik PA, Cornelissen-Steijger PDM, Geukes Foppen MH, Kemper K, Goding CR, McDermott U, Blank C, Haanen J, Graeber TG, Ribas A, Lo RS, Peeper DS. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat Commun 2014; 5:5712. [PMID: 25502142 DOI: 10.1038/ncomms6712] [Citation(s) in RCA: 465] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023] Open
Abstract
Increased expression of the Microphthalmia-associated transcription factor (MITF) contributes to melanoma progression and resistance to BRAF pathway inhibition. Here we show that the lack of MITF is associated with more severe resistance to a range of inhibitors, while its presence is required for robust drug responses. Both in primary and acquired resistance, MITF levels inversely correlate with the expression of several activated receptor tyrosine kinases, most frequently AXL. The MITF-low/AXL-high/drug-resistance phenotype is common among mutant BRAF and NRAS melanoma cell lines. The dichotomous behaviour of MITF in drug response is corroborated in vemurafenib-resistant biopsies, including MITF-high and -low clones in a relapsed patient. Furthermore, drug cocktails containing AXL inhibitor enhance melanoma cell elimination by BRAF or ERK inhibition. Our results demonstrate that a low MITF/AXL ratio predicts early resistance to multiple targeted drugs, and warrant clinical validation of AXL inhibitors to combat resistance of BRAF and NRAS mutant MITF-low melanomas.
Collapse
Affiliation(s)
- Judith Müller
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Jennifer Tsoi
- Division of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, University of California, Los Angeles (UCLA), 10833 Le Conte Avenue, Los Angeles, California 90095-1750, USA
| | - Lidia Robert
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), 10833 Le Conte Avenue, Los Angeles, California 90095-7227, USA
| | - Willy Hugo
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), 10833 Le Conte Avenue, Los Angeles, California 90095-7227, USA
| | - Chunying Song
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), 10833 Le Conte Avenue, Los Angeles, California 90095-7227, USA
| | - Xiangju Kong
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), 10833 Le Conte Avenue, Los Angeles, California 90095-7227, USA
| | - Patricia A Possik
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | | | - Marnix H Geukes Foppen
- Division of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Kristel Kemper
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Ultan McDermott
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Christian Blank
- Division of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - John Haanen
- Division of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Thomas G Graeber
- 1] Division of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, University of California, Los Angeles (UCLA), 10833 Le Conte Avenue, Los Angeles, California 90095-1750, USA [2] UCLA Metabolomics Center, Crump Institute for Molecular Imaging, California Nanosystems Institute, UCLA, 570 Westwood Plaza, Building 114, Los Angeles, California 90095-7227, USA [3] Jonsson Comprehensive Cancer Center (JCCC), 8-684 Factor Building, Los Angeles, California 90095-1781, USA
| | - Antoni Ribas
- 1] Division of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, University of California, Los Angeles (UCLA), 10833 Le Conte Avenue, Los Angeles, California 90095-1750, USA [2] Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), 10833 Le Conte Avenue, Los Angeles, California 90095-7227, USA [3] Jonsson Comprehensive Cancer Center (JCCC), 8-684 Factor Building, Los Angeles, California 90095-1781, USA
| | - Roger S Lo
- 1] Division of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, University of California, Los Angeles (UCLA), 10833 Le Conte Avenue, Los Angeles, California 90095-1750, USA [2] Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), 10833 Le Conte Avenue, Los Angeles, California 90095-7227, USA [3] Jonsson Comprehensive Cancer Center (JCCC), 8-684 Factor Building, Los Angeles, California 90095-1781, USA
| | - Daniel S Peeper
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
299
|
van Kempen LC, Redpath M, Robert C, Spatz A. Molecular pathology of cutaneous melanoma. Melanoma Manag 2014; 1:151-164. [PMID: 30190820 DOI: 10.2217/mmt.14.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cutaneous melanoma is associated with strong prognostic phenotypic features, such as gender, Breslow's thickness and ulceration, although the biological significance of these variables is largely unknown. It is likely that these features are surrogates of important biological events rather than directly promoting cutaneous melanoma progression. In this article, we address the molecular mechanisms that drive these phenotypic changes. Furthermore, we present a comprehensive overview of recurrent genetic abnormalities, both germline and somatic, in relation to cutaneous melanoma subtypes, ultraviolet exposure and anatomical localization, as well as pre-existing and targeted therapy-induced mutations that may contribute to resistance. The increasing knowledge of critically important oncogenes and tumor-suppressor genes is promoting a transition in melanoma diagnosis, in which single-gene testing will be replaced by multiplex and multidimensional analyses that combine classical histopathological characteristics with the molecular profile for the prognostication and selection of melanoma therapy.
Collapse
Affiliation(s)
- Léon C van Kempen
- McGill University, Montreal, QC, Canada.,Lady Davis Institute for Medical Research, Montreal, QC, Canada.,McGill University, Montreal, QC, Canada.,Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - Margaret Redpath
- McGill University, Montreal, QC, Canada.,McGill University, Montreal, QC, Canada
| | - Caroline Robert
- Gustave Roussy Cancer Institute, Villejuif, Paris, France.,Gustave Roussy Cancer Institute, Villejuif, Paris, France
| | - Alan Spatz
- McGill University, Montreal, QC, Canada.,Lady Davis Institute for Medical Research, Montreal, QC, Canada.,Department of Pathology, Jewish General Hospital, 3755 Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada.,McGill University, Montreal, QC, Canada.,Lady Davis Institute for Medical Research, Montreal, QC, Canada.,Department of Pathology, Jewish General Hospital, 3755 Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada
| |
Collapse
|
300
|
Youlden DR, Youl PH, Peter Soyer H, Fritschi L, Baade PD. Multiple Primary Cancers Associated with Merkel Cell Carcinoma in Queensland, Australia, 1982–2011. J Invest Dermatol 2014; 134:2883-2889. [DOI: 10.1038/jid.2014.266] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 01/08/2023]
|