251
|
A licensing step links AID to transcription elongation for mutagenesis in B cells. Nat Commun 2018; 9:1248. [PMID: 29593215 PMCID: PMC5871760 DOI: 10.1038/s41467-018-03387-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/08/2018] [Indexed: 01/01/2023] Open
Abstract
Activation-induced deaminase (AID) mutates the immunoglobulin (Ig) genes to initiate somatic hypermutation (SHM) and class switch recombination (CSR) in B cells, thus underpinning antibody responses. AID mutates a few hundred other loci, but most AID-occupied genes are spared. The mechanisms underlying productive deamination versus non-productive AID targeting are unclear. Here we show that three clustered arginine residues define a functional AID domain required for SHM, CSR, and off-target activity in B cells without affecting AID deaminase activity or Escherichia coli mutagenesis. Both wt AID and mutants with single amino acid replacements in this domain broadly associate with Spt5 and chromatin and occupy the promoter of AID target genes. However, mutant AID fails to occupy the corresponding gene bodies and loses association with transcription elongation factors. Thus AID mutagenic activity is determined not by locus occupancy but by a licensing mechanism, which couples AID to transcription elongation. Activation-induced deaminase (AID) is important for inducing desirable mutations at the B cell receptor genes for effective antibody responses. Here the authors show that three key arginine residues of AID link AID-chromatin association with transcription elongation to license AID for specific mutagenesis in B cells.
Collapse
|
252
|
Charpentier M, Khedher AHY, Menoret S, Brion A, Lamribet K, Dardillac E, Boix C, Perrouault L, Tesson L, Geny S, De Cian A, Itier JM, Anegon I, Lopez B, Giovannangeli C, Concordet JP. CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat Commun 2018; 9:1133. [PMID: 29556040 PMCID: PMC5859065 DOI: 10.1038/s41467-018-03475-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 02/16/2018] [Indexed: 12/18/2022] Open
Abstract
In genome editing with CRISPR-Cas9, transgene integration often remains challenging. Here, we present an approach for increasing the efficiency of transgene integration by homology-dependent repair (HDR). CtIP, a key protein in early steps of homologous recombination, is fused to Cas9 and stimulates transgene integration by HDR at the human AAVS1 safe harbor locus. A minimal N-terminal fragment of CtIP, designated HE for HDR enhancer, is sufficient to stimulate HDR and this depends on CDK phosphorylation sites and the multimerization domain essential for CtIP activity in homologous recombination. HDR stimulation by Cas9-HE, however, depends on the guide RNA used, a limitation that may be overcome by testing multiple guides to the locus of interest. The Cas9-HE fusion is simple to use and allows obtaining twofold or more efficient transgene integration than that with Cas9 in several experimental systems, including human cell lines, iPS cells, and rat zygotes.
Collapse
Affiliation(s)
- M Charpentier
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
| | - A H Y Khedher
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
- Translational Sciences, Sanofi, 13 Quai Jules Guesde, F-94400, Vitry-sur-Seine, France
| | - S Menoret
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU de Nantes, 30 Avenue Jean Monnet, F-44093, Nantes, France
| | - A Brion
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
| | - K Lamribet
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
| | - E Dardillac
- Equipe Labellisée Ligue Contre le Cancer, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, CNRS UMR 8200, 114 rue Edouard Vaillant, Villejuif, F-94805, France
| | - C Boix
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
| | - L Perrouault
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
| | - L Tesson
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU de Nantes, 30 Avenue Jean Monnet, F-44093, Nantes, France
| | - S Geny
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
| | - A De Cian
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
| | - J M Itier
- Translational Sciences, Sanofi, 13 Quai Jules Guesde, F-94400, Vitry-sur-Seine, France
| | - I Anegon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU de Nantes, 30 Avenue Jean Monnet, F-44093, Nantes, France
| | - B Lopez
- Equipe Labellisée Ligue Contre le Cancer, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, CNRS UMR 8200, 114 rue Edouard Vaillant, Villejuif, F-94805, France
| | - C Giovannangeli
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
| | - J P Concordet
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France.
| |
Collapse
|
253
|
Sun C, Yin J, Fang Y, Chen J, Jeong KJ, Chen X, Vellano CP, Ju Z, Zhao W, Zhang D, Lu Y, Meric-Bernstam F, Yap TA, Hattersley M, O'Connor MJ, Chen H, Fawell S, Lin SY, Peng G, Mills GB. BRD4 Inhibition Is Synthetic Lethal with PARP Inhibitors through the Induction of Homologous Recombination Deficiency. Cancer Cell 2018; 33:401-416.e8. [PMID: 29533782 PMCID: PMC5944839 DOI: 10.1016/j.ccell.2018.01.019] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/13/2017] [Accepted: 01/27/2018] [Indexed: 01/02/2023]
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) are selectively active in cells with homologous recombination (HR) deficiency (HRD) caused by mutations in BRCA1, BRCA2, and other pathway members. We sought small molecules that induce HRD in HR-competent cells to induce synthetic lethality with PARPi and extend the utility of PARPi. We demonstrated that inhibition of bromodomain containing 4 (BRD4) induced HRD and sensitized cells across multiple tumor lineages to PARPi regardless of BRCA1/2, TP53, RAS, or BRAF mutation status through depletion of the DNA double-stand break resection protein CtIP (C-terminal binding protein interacting protein). Importantly, BRD4 inhibitor (BRD4i) treatment reversed multiple mechanisms of resistance to PARPi. Furthermore, PARPi and BRD4i are synergistic in multiple in vivo models.
Collapse
Affiliation(s)
- Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Jun Yin
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Aurora Research Institute, Milwaukee, WI 53202, USA
| | - Yong Fang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Chen
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of General Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310000, China
| | - Kang Jin Jeong
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaohua Chen
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher P Vellano
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Zhao
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dong Zhang
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiling Lu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Mark J O'Connor
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0RE, UK
| | - Huawei Chen
- IMED Oncology, AstraZeneca, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Stephen Fawell
- IMED Oncology, AstraZeneca, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
254
|
Replication-Coupled Dilution of H4K20me2 Guides 53BP1 to Pre-replicative Chromatin. Cell Rep 2018; 19:1819-1831. [PMID: 28564601 PMCID: PMC5857200 DOI: 10.1016/j.celrep.2017.05.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/06/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
The bivalent histone modification reader 53BP1 accumulates around DNA double-strand breaks (DSBs), where it dictates repair pathway choice decisions by limiting DNA end resection. How this function is regulated locally and across the cell cycle to channel repair reactions toward non-homologous end joining (NHEJ) in G1 and promote homology-directed repair (HDR) in S/G2 is insufficiently understood. Here, we show that the ability of 53BP1 to accumulate around DSBs declines as cells progress through S phase and reveal that the inverse relationship between 53BP1 recruitment and replicated chromatin is linked to the replication-coupled dilution of 53BP1’s target mark H4K20me2. Consistently, premature maturation of post-replicative chromatin restores H4K20me2 and rescues 53BP1 accumulation on replicated chromatin. The H4K20me2-mediated chromatin association of 53BP1 thus represents an inbuilt mechanism to distinguish DSBs in pre- versus post-replicative chromatin, allowing for localized repair pathway choice decisions based on the availability of replication-generated template strands for HDR.
Collapse
|
255
|
Zhang Y, Zhang Z, Ge W. An efficient platform for generating somatic point mutations with germline transmission in the zebrafish by CRISPR/Cas9-mediated gene editing. J Biol Chem 2018; 293:6611-6622. [PMID: 29500194 DOI: 10.1074/jbc.ra117.001080] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/24/2018] [Indexed: 11/06/2022] Open
Abstract
Homology-directed recombination (HDR)-mediated genome editing is a powerful approach for both basic functional study and disease modeling. Although some studies have reported HDR-mediated precise editing in nonrodent models, the efficiency of establishing pure mutant animal lines that carry specific amino acid substitutions remains low. Furthermore, because the efficiency of nonhomologous end joining (NHEJ)-induced insertion and deletion (indel) mutations is normally much higher than that of HDR-induced point mutations, it is often difficult to identify the latter in the background of indel mutations. Using zebrafish as the model organism and Y box-binding protein 1 (Ybx1/ybx1) as the model molecule, we have established an efficient platform for precise CRISPR/Cas9-mediated gene editing in somatic cells, yielding an efficiency of up to 74% embryos. Moreover, we established a procedure for screening germline transmission of point mutations out of indel mutations even when germline transmission efficiency was low (<2%). To further improve germline transmission of HDR-induced point mutations, we optimized several key factors that may affect HDR efficiency, including the type of DNA donor, suppression of NHEJ, stimulation of HDR pathways, and use of Cas9 protein instead of mRNA. The optimized combination of these factors significantly increased the efficiency of germline transmission of point mutation up to 25%. In summary, we have developed an efficient procedure for creating point mutations and differentiating mutant individuals from those carrying knockouts of entire genes.
Collapse
Affiliation(s)
- Yibo Zhang
- From the Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Zhiwei Zhang
- From the Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Wei Ge
- From the Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
256
|
Bakr A, Köcher S, Volquardsen J, Petersen C, Borgmann K, Dikomey E, Rothkamm K, Mansour WY. Impaired 53BP1/RIF1 DSB mediated end-protection stimulates CtIP-dependent end resection and switches the repair to PARP1-dependent end joining in G1. Oncotarget 2018; 7:57679-57693. [PMID: 27494840 PMCID: PMC5295381 DOI: 10.18632/oncotarget.11023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/23/2016] [Indexed: 01/30/2023] Open
Abstract
End processing at DNA double strand breaks (DSB) is a decisive step in repair pathway selection. Here, we investigated the role of 53BP1/RIF1 in limiting BRCA1/CtIP-mediated end resection to control DSB repair pathway choice. ATM orchestrates this process through 53BP1 phosphorylation to promote RIF1 recruitment. As cells enter S/G2-phase, end resection is activated, which displaces pATM from DSB sites and diminishes 53BP1 phosphorylation and RIF1 recruitment. Consistently, the kinetics of ATM and 53BP1 phosphorylation in S/G2-phase concur. We show that defective 53BP1/RIF1-mediated DSB end-protection in G1-phase stimulates CtIP/MRE11-dependent end-resection, which requires Polo-like kinase 3. This end resection activity in G1 was shown to produce only short tracks of ssDNA overhangs, as evidenced by the findings that in 53BP1 depleted cells, (i) RPA focus intensity was significantly lower in G1 compared to that in S/G2 phase, and (ii) EXO1 knockdown did not alter either number or intensity of RPA foci in G1 but significantly decreased the RPA focus intensity in S/G2 phase. Importantly, we report that the observed DSB end resection in G1 phase inhibits DNA-PK-dependent nonhomologous end joining but is not sufficient to stimulate HR. Instead, it switches the repair to the alternative PARP1-dependent end joining pathway.
Collapse
Affiliation(s)
- Ali Bakr
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Köcher
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Volquardsen
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ekkehard Dikomey
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wael Y Mansour
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Tumor Biology Department, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
257
|
Tian W, Rojo de la Vega M, Schmidlin CJ, Ooi A, Zhang DD. Kelch-like ECH-associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2-related factors 1 and 2 (NRF1 and NRF2). J Biol Chem 2018; 293:2029-2040. [PMID: 29255090 PMCID: PMC5808764 DOI: 10.1074/jbc.ra117.000428] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/04/2017] [Indexed: 12/28/2022] Open
Abstract
Nuclear factor erythroid-2-related factor 1 (NRF1) and NRF2 are essential for maintaining redox homeostasis and coordinating cellular stress responses. They are highly homologous transcription factors that regulate the expression of genes bearing antioxidant-response elements (AREs). Genetic ablation of NRF1 or NRF2 results in vastly different phenotypic outcomes, implying that they play different roles and may be differentially regulated. Kelch-like ECH-associated protein 1 (KEAP1) is the main negative regulator of NRF2 and mediates ubiquitylation and degradation of NRF2 through its NRF2-ECH homology-like domain 2 (Neh2). Here, we report that KEAP1 binds to the Neh2-like (Neh2L) domain of NRF1 and stabilizes it. Consistently, NRF1 is more stable in KEAP1+/+ than in KEAP1-/- isogenic cell lines, whereas NRF2 is dramatically stabilized in KEAP1-/- cells. Replacing NRF1's Neh2L domain with NRF2's Neh2 domain renders NRF1 sensitive to KEAP1-mediated degradation, indicating that the amino acids between the DLG and ETGE motifs, not just the motifs themselves, are essential for KEAP1-mediated degradation. Systematic site-directed mutagenesis identified the core amino acid residues required for KEAP1-mediated degradation and further indicated that the DLG and ETGE motifs with correct spacing are insufficient as a KEAP1 degron. Our results offer critical insights into our understanding of the differential regulation of NRF1 and NRF2 by KEAP1 and their different physiological roles.
Collapse
Affiliation(s)
- Wang Tian
- From the Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | | | - Cody J. Schmidlin
- From the Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Aikseng Ooi
- From the Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Donna D. Zhang
- From the Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, To whom correspondence should be addressed:
Dept. of Pharmacology and Toxicology, College of Pharmacy, 1703 E. Mabel St., Rm. 408, Tucson, AZ 85721. Tel.:
520-626-9918; Fax:
520-626-2466; E-mail:
| |
Collapse
|
258
|
Her J, Bunting SF. How cells ensure correct repair of DNA double-strand breaks. J Biol Chem 2018; 293:10502-10511. [PMID: 29414795 DOI: 10.1074/jbc.tm118.000371] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) arise regularly in cells and when left unrepaired cause senescence or cell death. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are the two major DNA-repair pathways. Whereas HR allows faithful DSB repair and healthy cell growth, NHEJ has higher potential to contribute to mutations and malignancy. Many regulatory mechanisms influence which of these two pathways is used in DSB repair. These mechanisms depend on the cell cycle, post-translational modifications, and chromatin effects. Here, we summarize current research into these mechanisms, with a focus on mammalian cells, and also discuss repair by "alternative end-joining" and single-strand annealing.
Collapse
Affiliation(s)
- Joonyoung Her
- From the Department of Molecular Biology and Biochemistry, Rutgers, State University of New Jersey, Piscataway, New Jersey 08540
| | - Samuel F Bunting
- From the Department of Molecular Biology and Biochemistry, Rutgers, State University of New Jersey, Piscataway, New Jersey 08540
| |
Collapse
|
259
|
Abstract
The cellular response to external stress signals and DNA damage depends on the activity of ubiquitin ligases (E3s), which regulate numerous cellular processes, including homeostasis, metabolism and cell cycle progression. E3s recognize, interact with and ubiquitylate protein substrates in a temporally and spatially regulated manner. The topology of the ubiquitin chains dictates the fate of the substrates, marking them for recognition and degradation by the proteasome or altering their subcellular localization or assembly into functional complexes. Both genetic and epigenetic alterations account for the deregulation of E3s in cancer. Consequently, the stability and/or activity of E3 substrates are also altered, in some cases leading to downregulation of tumour-suppressor activities and upregulation of oncogenic activities. A better understanding of the mechanisms underlying E3 regulation and function in tumorigenesis is expected to identify novel prognostic markers and to enable the development of the next generation of anticancer therapies. This Review summarizes the oncogenic and tumour-suppressor roles of selected E3s and highlights novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Daniela Senft
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92130, USA
| | - Jianfei Qi
- University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92130, USA
- Technion Integrated Cancer Center, Technion, Israel Institute of Technology Faculty of Medicine, Haifa 31096, Israel
| |
Collapse
|
260
|
Ranjha L, Howard SM, Cejka P. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma 2018; 127:187-214. [PMID: 29327130 DOI: 10.1007/s00412-017-0658-1] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022]
Abstract
DNA double-strand breaks arise accidentally upon exposure of DNA to radiation and chemicals or result from faulty DNA metabolic processes. DNA breaks can also be introduced in a programmed manner, such as during the maturation of the immune system, meiosis, or cancer chemo- or radiotherapy. Cells have developed a variety of repair pathways, which are fine-tuned to the specific needs of a cell. Accordingly, vegetative cells employ mechanisms that restore the integrity of broken DNA with the highest efficiency at the lowest cost of mutagenesis. In contrast, meiotic cells or developing lymphocytes exploit DNA breakage to generate diversity. Here, we review the main pathways of eukaryotic DNA double-strand break repair with the focus on homologous recombination and its various subpathways. We highlight the differences between homologous recombination and end-joining mechanisms including non-homologous end-joining and microhomology-mediated end-joining and offer insights into how these pathways are regulated. Finally, we introduce noncanonical functions of the recombination proteins, in particular during DNA replication stress.
Collapse
Affiliation(s)
- Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sean M Howard
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland. .,Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
261
|
Simonetta M, de Krijger I, Serrat J, Moatti N, Fortunato D, Hoekman L, Bleijerveld OB, Altelaar AFM, Jacobs JJL. H4K20me2 distinguishes pre-replicative from post-replicative chromatin to appropriately direct DNA repair pathway choice by 53BP1-RIF1-MAD2L2. Cell Cycle 2018; 17:124-136. [PMID: 29160738 DOI: 10.1080/15384101.2017.1404210] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The main pathways for the repair of DNA double strand breaks (DSBs) are non-homologous end-joining (NHEJ) and homologous recombination directed repair (HDR). These operate mutually exclusive and are activated by 53BP1 and BRCA1, respectively. As HDR can only succeed in the presence of an intact copy of replicated DNA, cells employ several mechanisms to inactivate HDR in the G1 phase of cell cycle. As cells enter S-phase, these inhibitory mechanisms are released and HDR becomes active. However, during DNA replication, NHEJ and HDR pathways are both functional and non-replicated and replicated DNA regions co-exist, with the risk of aberrant HDR activity at DSBs in non-replicated DNA. It has become clear that DNA repair pathway choice depends on inhibition of DNA end-resection by 53BP1 and its downstream factors RIF1 and MAD2L2. However, it is unknown how MAD2L2 accumulates at DSBs to participate in DNA repair pathway control and how the NHEJ and HDR repair pathways are appropriately activated at DSBs with respect to the replication status of the DNA, such that NHEJ acts at DSBs in pre-replicative DNA and HDR acts on DSBs in post-replicative DNA. Here we show that MAD2L2 is recruited to DSBs in H4K20 dimethylated chromatin by forming a protein complex with 53BP1 and RIF1 and that MAD2L2, similar to 53BP1 and RIF1, suppresses DSB accumulation of BRCA1. Furthermore, we show that the replication status of the DNA locally ensures the engagement of the correct DNA repair pathway, through epigenetics. In non-replicated DNA, saturating levels of the 53BP1 binding site, di-methylated lysine 20 of histone 4 (H4K20me2), lead to robust 53BP1-RIF1-MAD2L2 recruitment at DSBs, with consequent exclusion of BRCA1. Conversely, replication-associated 2-fold dilution of H4K20me2 promotes the release of the 53BP1-RIF1-MAD2L2 complex and favours the access of BRCA1. Thus, the differential H4K20 methylation status between pre-replicative and post-replicative DNA represents an intrinsic mechanism that locally ensures appropriate recruitment of the 53BP1-RIF1-MAD2L2 complex at DNA DSBs, to engage the correct DNA repair pathway.
Collapse
Affiliation(s)
- Marco Simonetta
- a Division of Oncogenomics , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands
| | - Inge de Krijger
- a Division of Oncogenomics , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands
| | - Judit Serrat
- a Division of Oncogenomics , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands
| | - Nathalie Moatti
- a Division of Oncogenomics , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands
| | - Diogo Fortunato
- a Division of Oncogenomics , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands
| | - Liesbeth Hoekman
- b Proteomics Facility , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands
| | - Onno B Bleijerveld
- b Proteomics Facility , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands
| | - A F Maarten Altelaar
- b Proteomics Facility , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands.,c Biomolecular Mass Spectrometry and Proteomics , Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Padualaan 8, 3584 CH Utrecht , The Netherlands
| | - Jacqueline J L Jacobs
- a Division of Oncogenomics , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands
| |
Collapse
|
262
|
Tsukamoto T, Sakai E, Iizuka S, Taracena-Gándara M, Sakurai F, Mizuguchi H. Generation of the Adenovirus Vector-Mediated CRISPR/Cpf1 System and the Application for Primary Human Hepatocytes Prepared from Humanized Mice with Chimeric Liver. Biol Pharm Bull 2018; 41:1089-1095. [PMID: 29962404 DOI: 10.1248/bpb.b18-00222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) 9 system is now widely used as a genome editing tool. CRISPR-associated endonuclease in Prevotella and Francisella 1 (Cpf1) is a recently discovered Cas endonuclease that is designable and highly specific with efficiencies comparable to those of Cas9. Here we generated the adenovirus (Ad) vector carrying an Acidaminococcus sp. Cpf1 (AsCpf1) expression cassette (Ad-AsCpf1) for the first time. Ad-AsCpf1 was applied to primary human hepatocytes prepared from humanized mice with chimeric liver in combination with the Ad vector expressing the guide RNA (gRNA) directed to the Adeno-associated virus integration site 1 (AAVS1) region. The mutation rates were estimated by T7 endonuclease I assay around 12% of insertion/deletion (indel). Furthermore, the transduced human hepatocytes were viable (ca. 60%) at two weeks post transduction. These observations suggest that the Ad vector-mediated delivery of the CRISPR/AsCpf1 system provides a useful tool for genome manipulation of human hepatocytes.
Collapse
Affiliation(s)
- Tomohito Tsukamoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Eiko Sakai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shunsuke Iizuka
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Marcos Taracena-Gándara
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
- Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition
- iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University
- Global Center for Advanced Medical Engineering and Informatics, Osaka University
| |
Collapse
|
263
|
Abstract
More than a decade after a Nobel Prize was awarded for the discovery of the ubiquitin-proteasome system and clinical approval of proteasome and ubiquitin E3 ligase inhibitors, first-generation deubiquitylating enzyme (DUB) inhibitors are now approaching clinical trials. However, although our knowledge of the physiological and pathophysiological roles of DUBs has evolved tremendously, the clinical development of selective DUB inhibitors has been challenging. In this Review, we discuss these issues and highlight recent advances in our understanding of DUB enzymology and biology as well as technological improvements that have contributed to the current interest in DUBs as therapeutic targets in diseases ranging from oncology to neurodegeneration.
Collapse
Affiliation(s)
- Jeanine A. Harrigan
- Mission Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT UK
| | - Xavier Jacq
- Mission Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT UK
| | - Niall M. Martin
- Mission Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT UK
- Present Address: and Department of Biochemistry, The Wellcome Trust and Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QN UK
- Present address: Artios Pharmaceuticals Ltd, Maia, Babraham Research Campus, Cambridge CB22 3AT, UK,
| | - Stephen P. Jackson
- Mission Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT UK
- Present Address: and Department of Biochemistry, The Wellcome Trust and Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QN UK
- Present address: Artios Pharmaceuticals Ltd, Maia, Babraham Research Campus, Cambridge CB22 3AT, UK,
| |
Collapse
|
264
|
Cell cycle-dependent phosphorylation regulates RECQL4 pathway choice and ubiquitination in DNA double-strand break repair. Nat Commun 2017; 8:2039. [PMID: 29229926 PMCID: PMC5725494 DOI: 10.1038/s41467-017-02146-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022] Open
Abstract
Pathway choice within DNA double-strand break (DSB) repair is a tightly regulated process to maintain genome integrity. RECQL4, deficient in Rothmund-Thomson Syndrome, promotes the two major DSB repair pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). Here we report that RECQL4 promotes and coordinates NHEJ and HR in different cell cycle phases. RECQL4 interacts with Ku70 to promote NHEJ in G1 when overall cyclin-dependent kinase (CDK) activity is low. During S/G2 phases, CDK1 and CDK2 (CDK1/2) phosphorylate RECQL4 on serines 89 and 251, enhancing MRE11/RECQL4 interaction and RECQL4 recruitment to DSBs. After phosphorylation, RECQL4 is ubiquitinated by the DDB1-CUL4A E3 ubiquitin ligase, which facilitates its accumulation at DSBs. Phosphorylation of RECQL4 stimulates its helicase activity, promotes DNA end resection, increases HR and cell survival after ionizing radiation, and prevents cellular senescence. Collectively, we propose that RECQL4 modulates the pathway choice of NHEJ and HR in a cell cycle-dependent manner. DNA double-strand break (DSB) repair is a tightly regulated process that can occur via non-homologous end joining (NHEJ) or homologous recombination (HR). Here, the authors investigate how RECQL4 modulates DSB repair pathway choice by differentially regulating NHEJ and HR in a cell cycle-dependent manner.
Collapse
|
265
|
Germano G, Lamba S, Rospo G, Barault L, Magrì A, Maione F, Russo M, Crisafulli G, Bartolini A, Lerda G, Siravegna G, Mussolin B, Frapolli R, Montone M, Morano F, de Braud F, Amirouchene-Angelozzi N, Marsoni S, D'Incalci M, Orlandi A, Giraudo E, Sartore-Bianchi A, Siena S, Pietrantonio F, Di Nicolantonio F, Bardelli A. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 2017; 552:116-120. [PMID: 29186113 DOI: 10.1038/nature24673] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/19/2017] [Indexed: 12/21/2022]
Abstract
Molecular alterations in genes involved in DNA mismatch repair (MMR) promote cancer initiation and foster tumour progression. Cancers deficient in MMR frequently show favourable prognosis and indolent progression. The functional basis of the clinical outcome of patients with tumours that are deficient in MMR is not clear. Here we genetically inactivate MutL homologue 1 (MLH1) in colorectal, breast and pancreatic mouse cancer cells. The growth of MMR-deficient cells was comparable to their proficient counterparts in vitro and on transplantation in immunocompromised mice. By contrast, MMR-deficient cancer cells grew poorly when transplanted in syngeneic mice. The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens in vitro and in vivo, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time. Immune surveillance improved when cancer cells, in which MLH1 had been inactivated, accumulated neoantigens for several generations. When restricted to a clonal population, the dynamic generation of neoantigens driven by MMR further increased immune surveillance. Inactivation of MMR, driven by acquired resistance to the clinical agent temozolomide, increased mutational load, promoted continuous renewal of neoantigens in human colorectal cancers and triggered immune surveillance in mouse models. These results suggest that targeting DNA repair processes can increase the burden of neoantigens in tumour cells; this has the potential to be exploited in therapeutic approaches.
Collapse
Affiliation(s)
- Giovanni Germano
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy.,University of Turin, Department of Oncology, Candiolo 10060, Turin, Italy
| | - Simona Lamba
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy
| | - Giuseppe Rospo
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy
| | - Ludovic Barault
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy.,University of Turin, Department of Oncology, Candiolo 10060, Turin, Italy
| | - Alessandro Magrì
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy.,University of Turin, Department of Oncology, Candiolo 10060, Turin, Italy
| | - Federica Maione
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy
| | - Mariangela Russo
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy.,University of Turin, Department of Oncology, Candiolo 10060, Turin, Italy
| | - Giovanni Crisafulli
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy.,University of Turin, Department of Oncology, Candiolo 10060, Turin, Italy
| | - Alice Bartolini
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy
| | - Giulia Lerda
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy.,University of Turin, Department of Oncology, Candiolo 10060, Turin, Italy
| | - Giulia Siravegna
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy.,University of Turin, Department of Oncology, Candiolo 10060, Turin, Italy
| | | | - Roberta Frapolli
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan 20156, Italy
| | - Monica Montone
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy
| | - Federica Morano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.,Department of Oncology and Hemat-Oncology Università degli Studi di Milano, Milan 20122, Italy
| | - Nabil Amirouchene-Angelozzi
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy.,FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy
| | - Silvia Marsoni
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy
| | - Maurizio D'Incalci
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan 20156, Italy
| | | | - Enrico Giraudo
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy.,University of Torino, Department of Science and Drug Technology, Turin 10125, Italy
| | | | - Salvatore Siena
- Department of Oncology and Hemat-Oncology Università degli Studi di Milano, Milan 20122, Italy.,Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan 20142, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy.,University of Turin, Department of Oncology, Candiolo 10060, Turin, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Turin, Italy.,University of Turin, Department of Oncology, Candiolo 10060, Turin, Italy
| |
Collapse
|
266
|
Canny MD, Moatti N, Wan LCK, Fradet-Turcotte A, Krasner D, Mateos-Gomez PA, Zimmermann M, Orthwein A, Juang YC, Zhang W, Noordermeer SM, Seclen E, Wilson MD, Vorobyov A, Munro M, Ernst A, Ng TF, Cho T, Cannon PM, Sidhu SS, Sicheri F, Durocher D. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat Biotechnol 2017; 36:95-102. [PMID: 29176614 PMCID: PMC5762392 DOI: 10.1038/nbt.4021] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Programmable nucleases, such as Cas9, are used for precise genome editing by homology-dependent repair (HDR)1–3. However, HDR efficiency is constrained by competition from other double-strand break (DSB) repair pathways, including non-homologous end-joining (NHEJ)4. We report the discovery of a genetically encoded inhibitor of 53BP1 that increases the efficiency of HDR-dependent genome editing in human and mouse cells. 53BP1 is a key regulator of DSB repair pathway choice in eukaryotic cells4, 5 and functions to favor NHEJ over HDR by suppressing end resection, which is the rate-limiting step in the initiation of HDR. We screened an existing combinatorial library of engineered ubiquitin variants6 for inhibitors of 53BP1. Expression of one variant, named i53 (inhibitor of 53BP1), in human and mouse cells blocked accumulation of 53BP1 at sites of DNA damage and improved gene targeting and chromosomal gene conversion with either double-stranded DNA or single-stranded oligonucleotide donors by up to 5.6-fold. Inhibition of 53BP1 is a robust method to increase efficiency of HDR-based precise genome editing.
Collapse
Affiliation(s)
- Marella D Canny
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Nathalie Moatti
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Leo C K Wan
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Amélie Fradet-Turcotte
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Danielle Krasner
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Pedro A Mateos-Gomez
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Langone Medical Center, New York, New York, USA
| | - Michal Zimmermann
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Alexandre Orthwein
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yu-Chi Juang
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Wei Zhang
- The Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | - Sylvie M Noordermeer
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Eduardo Seclen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Marcus D Wilson
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andrew Vorobyov
- The Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | - Meagan Munro
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andreas Ernst
- The Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | - Timothy F Ng
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Tiffany Cho
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, Ontario, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | - Frank Sicheri
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Daniel Durocher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Ontario, Canada
| |
Collapse
|
267
|
Paudyal SC, Li S, Yan H, Hunter T, You Z. Dna2 initiates resection at clean DNA double-strand breaks. Nucleic Acids Res 2017; 45:11766-11781. [PMID: 28981724 PMCID: PMC5714177 DOI: 10.1093/nar/gkx830] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleolytic resection of DNA double-strand breaks (DSBs) is essential for both checkpoint activation and homology-mediated repair; however, the precise mechanism of resection, especially the initiation step, remains incompletely understood. Resection of blocked ends with protein or chemical adducts is believed to be initiated by the MRN complex in conjunction with CtIP through internal cleavage of the 5' strand DNA. However, it is not clear whether resection of clean DSBs with free ends is also initiated by the same mechanism. Using the Xenopus nuclear extract system, here we show that the Dna2 nuclease directly initiates the resection of clean DSBs by cleaving the 5' strand DNA ∼10-20 nucleotides away from the ends. In the absence of Dna2, MRN together with CtIP mediate an alternative resection initiation pathway where the nuclease activity of MRN apparently directly cleaves the 5' strand DNA at more distal sites. MRN also facilitates resection initiation by promoting the recruitment of Dna2 and CtIP to the DNA substrate. The ssDNA-binding protein RPA promotes both Dna2- and CtIP-MRN-dependent resection initiation, but a RPA mutant can distinguish between these pathways. Our results strongly suggest that resection of blocked and clean DSBs is initiated via distinct mechanisms.
Collapse
Affiliation(s)
- Sharad C. Paudyal
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Hong Yan
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Tony Hunter
- Salk Institute, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
268
|
Shah P, Qiang L, Yang S, Soltani K, He YY. Regulation of XPC deubiquitination by USP11 in repair of UV-induced DNA damage. Oncotarget 2017; 8:96522-96535. [PMID: 29228550 PMCID: PMC5722502 DOI: 10.18632/oncotarget.22105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA repair pathway for removing DNA damage caused by UV radiation and many environmental carcinogens. NER is essential for suppressing tumorigenesis in the skin, lungs and brain. Although the core NER proteins have been identified and characterized, molecular regulation of NER remains poorly understood. Here we show that ubiquitin-specific peptidase 11 (USP11) positively regulates NER by deubiquitinating xeroderma pigmentosum complementation group C (XPC) and promoting its retention at the DNA damage sites. In addition, UV irradiation induces both USP11 recruitment to the chromatin and USP11 interaction with XPC in an XPC-ubiquitination-dependent manner. Furthermore, we found that USP11 is down-regulated in chronically UV-exposed mouse skin and in skin tumors from mice and humans. Our findings indicate that USP11 plays an important role in maintaining NER capacity, and suggest that USP11 acts as a tumor suppressor via its role in DNA repair.
Collapse
Affiliation(s)
- Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL, USA
| | - Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Seungwon Yang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Keyoumars Soltani
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
269
|
In vivo genome editing via the HITI method as a tool for gene therapy. J Hum Genet 2017; 63:157-164. [DOI: 10.1038/s10038-017-0352-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023]
|
270
|
Hayes JD, Dinkova-Kostova AT. Oncogene-Stimulated Congestion at the KEAP1 Stress Signaling Hub Allows Bypass of NRF2 and Induction of NRF2-Target Genes that Promote Tumor Survival. Cancer Cell 2017; 32:539-541. [PMID: 29136497 DOI: 10.1016/j.ccell.2017.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this issue of Cancer Cell, Ge et al. show that overexpression of the oncoprotein iASPP in cancer cells provokes NRF2-mediated induction of cytoprotective genes, because it logjams the ubiquitin ligase substrate adaptor function of KEAP1 by virtue of the fact that it possesses a novel DLT-containing KEAP1-interaction motif.
Collapse
Affiliation(s)
- John D Hayes
- Division of Cancer Research, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland.
| |
Collapse
|
271
|
Morris JR, Garvin AJ. SUMO in the DNA Double-Stranded Break Response: Similarities, Differences, and Cooperation with Ubiquitin. J Mol Biol 2017; 429:3376-3387. [PMID: 28527786 DOI: 10.1016/j.jmb.2017.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
In recent years, our knowledge of the varied role that ubiquitination plays in promoting signal amplification, novel protein interactions, and protein turnover has progressed rapidly. This is particularly remarkable in the examination of how DNA double-stranded breaks (DSBs) are repaired, with many components of the ubiquitin (Ub) conjugation, de-conjugation, and recognition machinery now identified as key factors in DSB repair. In addition, a member of the Ub-like family, small Ub-like modifier (SUMO), has also been recognised as integral for efficient repair. Here, we summarise our emerging understanding of SUMOylation both as a distinct modification and as a cooperative modification with Ub, using the cellular response to DNA DSBs as the primary setting to compare these modifications.
Collapse
Affiliation(s)
- Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomics, Medical and Dental School, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomics, Medical and Dental School, University of Birmingham, Edgbaston, B15 2TT, UK
| |
Collapse
|
272
|
Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2017; 1869:11-28. [PMID: 29128526 DOI: 10.1016/j.bbcan.2017.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
Cullin 3-RING ligases (CRL3) play pivotal roles in the regulation of various physiological and pathological processes, including neoplastic events. The substrate adaptors of CRL3 typically contain a BTB domain that mediates the interaction between Cullin 3 and target substrates to promote their ubiquitination and subsequent degradation. The biological implications of CRL3 adaptor proteins have been well described where they have been found to play a role as either an oncogene, tumor suppressor, or can mediate either of these effects in a context-dependent manner. Among the extensively studied CRL3-based E3 ligases, the role of the adaptor protein SPOP (speckle type BTB/POZ protein) in tumorigenesis appears to be tissue or cellular context dependent. Specifically, SPOP acts as a tumor suppressor via destabilizing downstream oncoproteins in many malignancies, especially in prostate cancer. However, SPOP has largely an oncogenic role in kidney cancer. Keap1, another well-characterized CRL3 adaptor protein, likely serves as a tumor suppressor within diverse malignancies, mainly due to its specific turnover of its downstream oncogenic substrate, NRF2 (nuclear factor erythroid 2-related factor 2). In accordance with the physiological role the various CRL3 adaptors exhibit, several pharmacological agents have been developed to disrupt its E3 ligase activity, therefore blocking its potential oncogenic activity to mitigate tumorigenesis.
Collapse
|
273
|
Morgan RA, Gray D, Lomova A, Kohn DB. Hematopoietic Stem Cell Gene Therapy: Progress and Lessons Learned. Cell Stem Cell 2017; 21:574-590. [PMID: 29100011 PMCID: PMC6039108 DOI: 10.1016/j.stem.2017.10.010] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of allogeneic hematopoietic stem cells (HSCs) to treat genetic blood cell diseases has become a clinical standard but is limited by the availability of suitable matched donors and potential immunologic complications. Gene therapy using autologous HSCs should avoid these limitations and thus may be safer. Progressive improvements in techniques for genetic correction of HSCs, by either vector gene addition or gene editing, are facilitating successful treatments for an increasing number of diseases. We highlight the progress, successes, and remaining challenges toward the development of HSC gene therapies and discuss lessons they provide for the development of future clinical stem cell therapies.
Collapse
Affiliation(s)
- Richard A Morgan
- Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, CA, 90095
| | - David Gray
- Molecular Biology Institute Interdepartmental Doctoral Program, University of California, Los Angeles, CA, 90095
| | - Anastasia Lomova
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, CA, 90095
| | - Donald B Kohn
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, CA, 90095; Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA, 90095; Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, CA, 90095; The Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, CA, USA.
| |
Collapse
|
274
|
Guénolé A, Legube G. A meeting at risk: Unrepaired DSBs go for broke. Nucleus 2017; 8:589-599. [PMID: 29099269 PMCID: PMC5788565 DOI: 10.1080/19491034.2017.1380138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
Translocations are dramatic genomic rearrangements due to aberrant rejoining of distant DNA ends that can trigger cancer onset and progression. Translocations frequently occur in genes, yet the mechanisms underlying their formation remain poorly understood. One potential mechanism involves DNA Double Strand Break mobility and juxtaposition (i.e. clustering), an event that has been intensively debated over the past decade. Using Capture Hi-C, we recently found that DSBs do in fact cluster in human nuclei but only when induced in transcriptionally active genes. Notably, we found that clustering of damaged genes is regulated by cell cycle progression and coincides with damage persistency. Here, we discuss the mechanisms that could sustain clustering and speculate on the functional consequences of this seemingly double edge sword mechanism that may well stand at the heart of translocation biogenesis.
Collapse
Affiliation(s)
- Aude Guénolé
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| |
Collapse
|
275
|
Ouyang J, Lan L, Zou L. Regulation of DNA break repair by transcription and RNA. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1081-1086. [PMID: 29075944 DOI: 10.1007/s11427-017-9164-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
Abstract
Repair of DNA double-strand breaks (DSBs) via the homologous recombination (HR) pathway is a highly regulated process. A number of proteins that participate in HR are intricately modulated by the cell cycle and chromatin environments of DSBs. Recent studies have revealed a clear impact of transcription on HR in transcribed regions of the genome. Several models have been put forth to explain how the process of transcription and/or its RNA products may influence HR. Here we discuss the results and models from these studies, presenting an emerging view of transcription-coupled DSB repair.
Collapse
Affiliation(s)
- Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA
| | - Li Lan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Microbiology and Molecular Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA. .,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
276
|
Nishiyama J, Mikuni T, Yasuda R. Virus-Mediated Genome Editing via Homology-Directed Repair in Mitotic and Postmitotic Cells in Mammalian Brain. Neuron 2017; 96:755-768.e5. [PMID: 29056297 DOI: 10.1016/j.neuron.2017.10.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/25/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
Abstract
Precise genome editing via homology-directed repair (HDR) in targeted cells, particularly in vivo, provides an invaluable tool for biomedical research. However, HDR has been considered to be largely restricted to dividing cells, making it challenging to apply the technique in postmitotic neurons. Here we show that precise genome editing via HDR is possible in mature postmitotic neurons as well as mitotic cells in mice brain by combining CRISPR-Cas9-mediated DNA cleavage and the efficient delivery of donor template with adeno-associated virus (AAV). Using this strategy, we achieved efficient tagging of endogenous proteins in primary and organotypic cultures in vitro and developing, adult, aged, and pathological brains in vivo. Thus, AAV- and CRISPR-Cas9-mediated HDR will be broadly useful for precise genome editing in basic and translational neuroscience.
Collapse
Affiliation(s)
- Jun Nishiyama
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Takayasu Mikuni
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA; Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan.
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
| |
Collapse
|
277
|
Zhao W, Steinfeld JB, Liang F, Chen X, Maranon DG, Ma CJ, Kwon Y, Rao T, Wang W, Chen S, Song X, Deng Y, Jimenez-Sainz J, Lu L, Jensen RB, Xiong Y, Kupfer GM, Wiese C, Greene EC, Sung P. BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing. Nature 2017; 550:360-365. [PMID: 28976962 PMCID: PMC5800781 DOI: 10.1038/nature24060] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
The tumour suppressor complex BRCA1-BARD1 functions in the repair of DNA double-stranded breaks by homologous recombination. During this process, BRCA1-BARD1 facilitates the nucleolytic resection of DNA ends to generate a single-stranded template for the recruitment of another tumour suppressor complex, BRCA2-PALB2, and the recombinase RAD51. Here, by examining purified wild-type and mutant BRCA1-BARD1, we show that both BRCA1 and BARD1 bind DNA and interact with RAD51, and that BRCA1-BARD1 enhances the recombinase activity of RAD51. Mechanistically, BRCA1-BARD1 promotes the assembly of the synaptic complex, an essential intermediate in RAD51-mediated DNA joint formation. We provide evidence that BRCA1 and BARD1 are indispensable for RAD51 stimulation. Notably, BRCA1-BARD1 mutants with weakened RAD51 interactions show compromised DNA joint formation and impaired mediation of homologous recombination and DNA repair in cells. Our results identify a late role of BRCA1-BARD1 in homologous recombination, an attribute of the tumour suppressor complex that could be targeted in cancer therapy.
Collapse
Affiliation(s)
- Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Justin B. Steinfeld
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Section of Hematology-Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaoyong Chen
- Section of Hematology-Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G. Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Chu Jian Ma
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Timsi Rao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Weibin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sheng Chen
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xuemei Song
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Yanhong Deng
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Judit Jimenez-Sainz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lucy Lu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gary M. Kupfer
- Section of Hematology-Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Eric C. Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
278
|
Bhattacharjee S, Nandi S. DNA damage response and cancer therapeutics through the lens of the Fanconi Anemia DNA repair pathway. Cell Commun Signal 2017; 15:41. [PMID: 29017571 PMCID: PMC5635482 DOI: 10.1186/s12964-017-0195-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023] Open
Abstract
Fanconi Anemia (FA) is a rare, inherited genomic instability disorder, caused by mutations in genes involved in the repair of interstrand DNA crosslinks (ICLs). The FA signaling network contains a unique nuclear protein complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. FA proteins act at different steps of ICL repair in sensing, recognition and processing of DNA lesions. The multi-protein network is tightly regulated by complex mechanisms, such as ubiquitination, phosphorylation, and degradation signals that are critical for the maintenance of genome integrity and suppressing tumorigenesis. Here, we discuss recent advances in our understanding of how the FA proteins participate in ICL repair and regulation of the FA signaling network that assures the safeguard of the genome. We further discuss the potential application of designing small molecule inhibitors that inhibit the FA pathway and are synthetic lethal with DNA repair enzymes that can be used for cancer therapeutics.
Collapse
|
279
|
Garvin AJ, Morris JR. SUMO, a small, but powerful, regulator of double-strand break repair. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160281. [PMID: 28847818 PMCID: PMC5577459 DOI: 10.1098/rstb.2016.0281] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
The response to a DNA double-stranded break in mammalian cells is a process of sensing and signalling the lesion. It results in halting the cell cycle and local transcription and in the mediation of the DNA repair process itself. The response is launched through a series of post-translational modification signalling events coordinated by phosphorylation and ubiquitination. More recently modifications of proteins by Small Ubiquitin-like MOdifier (SUMO) isoforms have also been found to be key to coordination of the response (Morris et al. 2009 Nature462, 886-890 (doi:10.1038/nature08593); Galanty et al. 2009 Nature462, 935-939 (doi:10.1038/nature08657)). However our understanding of the role of SUMOylation is slight compared with our growing knowledge of how ubiquitin drives signal amplification and key chromatin interactions. In this review we consider our current knowledge of how SUMO isoforms, SUMO conjugation machinery, SUMO proteases and SUMO-interacting proteins contribute to directing altered chromatin states and to repair-protein kinetics at a double-stranded DNA lesion in mammalian cells. We also consider the gaps in our understanding.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
280
|
Nishi R. Balancing act: To be, or not to be ubiquitylated. Mutat Res 2017; 803-805:43-50. [PMID: 28764946 DOI: 10.1016/j.mrfmmm.2017.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 01/13/2023]
Abstract
DNA double-strand breaks (DSBs) are one of the most deleterious DNA lesions. Appropriate repair of DSB either by homologous recombination or non-homologous end-joining is critical for maintaining genome stability and fitness. DSB repair cooperates with cellular signalling networks, namely DSB response (DDR), which plays pivotal roles in the choice of DSB repair pathway, orchestrating recruitment of DDR factors to site of damage, transcription suppression and cell cycle checkpoint activation. It has been revealed that these mechanisms are strictly regulated, in time and space, by complex and minute ubiquitylation-mediated reactions. Furthermore, balancing the ubiquitylation status of the DDR and DSB repair proteins by deubiquitylation, which is carried out by deubiquitylating enzymes (DUBs), is also found to be important. Recent findings have uncovered that DUBs are involved in various aspects of both DDR and DSB repair by counteracting non-proteolytic ubiquitylations in addition to protecting substrates from proteasomal degradation by removing proteolytic ubiquitylation. An advanced understanding of the detailed molecular mechanisms of the "balancing act" between ubiquitylation and deubiquitylation will provide novel therapeutic targets for diseases caused by dysfunction of DDR and DSB repair.
Collapse
Affiliation(s)
- Ryotaro Nishi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan.
| |
Collapse
|
281
|
Lv WQ, Wang HC, Peng J, Wang YX, Jiang JH, Li CY. Gene editing of the extra domain A positive fibronectin in various tumors, amplified the effects of CRISPR/Cas system on the inhibition of tumor progression. Oncotarget 2017; 8:105020-105036. [PMID: 29285230 PMCID: PMC5739617 DOI: 10.18632/oncotarget.21136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/30/2017] [Indexed: 12/18/2022] Open
Abstract
Background The low efficiency of clustered, regularly interspaced, palindromic repeats-associated Cas (CRISPR/Cas) system editing genes in vivo limits the application. A components of the extracellular matrix (ECM), the extra domain A positive fibronectin (EDA+FN), may be a target for CRISPR/Cas system for the pro-oncogenic effects. The exclusion of EDA exon would alter the microenvironment and inhibit tumor progression, even the frequency of gene editing is still limited. Results The pro-oncogenic effects were confirmed by the exclusion of EDA exon from the fibronectin gene, as illustrated by the down-regulated proliferation, migration and invasion of CNE-2Z or SW480 cells (P<0.05). Furthermore, although the efficacy of EDA exon knockout through CRISPR/Cas system was shown to be low in vivo, the EDA+FN protein levels decrease obviously, inhibiting the tumor growth rate significantly (P<0.05), which was accompanied by a decrease in Ki-67 expression and microvessel numbers, and increased E-cadherin or decreased Vimentin expression (P<0.05). Methods and materials Human nasopharyngeal carcinoma cell line CNE-2Z, and the colorectal carcinoma cell line SW480 were transfected with CRISPR/Cas9 plasmids targeting EDA exon. The effects of the exclusion of EDA on the cell proliferation, motility and epithelial-mesenchymal transition (EMT) were investigated, and the western blot and real-time PCR were performed to analyze the underlying mechanisms. Furthermore, CRISPR/Cas9 plasmids were injected into xenograft tumors to knockout EDA exon in vivo, and tumor growth, cell proliferation, EMT rate, or vascularization were investigated using western blot, PCR and immunohistochemistry. Conclusion CRISPR/Cas system targeting ECM components was shown to be an effective method for the inhibition of tumor progression, as these paracrine or autocrine molecules are necessary for various tumor cells. This may represent a novel strategy for overcoming the drug evasion or resistance, in addition, circumventing the low efficiency of CRISPR/Cas system in vivo.
Collapse
Affiliation(s)
- Wan-Qi Lv
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Hai-Cheng Wang
- Department of Pathology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Jing Peng
- Department of Beijing Citident Stomatology Hospital, Beijing 100032, China
| | - Yi-Xiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Jiu-Hui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Cui-Ying Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
282
|
Nepomuceno TC, De Gregoriis G, de Oliveira FMB, Suarez-Kurtz G, Monteiro AN, Carvalho MA. The Role of PALB2 in the DNA Damage Response and Cancer Predisposition. Int J Mol Sci 2017; 18:ijms18091886. [PMID: 28858227 PMCID: PMC5618535 DOI: 10.3390/ijms18091886] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/26/2017] [Indexed: 01/01/2023] Open
Abstract
The deoxyribonucleic acid (DNA) damage response (DDR) is a major feature in the maintenance of genome integrity and in the suppression of tumorigenesis. PALB2 (Partner and Localizer of Breast Cancer 2 (BRCA2)) plays an important role in maintaining genome integrity through its role in the Fanconi anemia (FA) and homologous recombination (HR) DNA repair pathways. Since its identification as a BRCA2 interacting partner, PALB2 has emerged as a pivotal tumor suppressor protein associated to hereditary cancer susceptibility to breast and pancreatic cancers. In this review, we discuss how other DDR proteins (such as the kinases Ataxia Telangiectasia Mutated (ATM) and ATM- and Rad3-Related (ATR), mediators BRCA1 (Breast Cancer 1)/BRCA2 and effectors RAD51/DNA Polymerase η (Polη) interact with PALB2 to orchestrate DNA repair. We also examine the involvement of PALB2 mutations in the predisposition to cancer and the role of PALB2 in stimulating error-free DNA repair through the FA/HR pathway.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Giuliana De Gregoriis
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | | | - Guilherme Suarez-Kurtz
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Alvaro N Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Marcelo A Carvalho
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
- Instituto Federal do Rio de Janeiro-IFRJ, Rio de Janeiro 20270-021, Brazil.
| |
Collapse
|
283
|
Rivera B, Di Iorio M, Frankum J, Nadaf J, Fahiminiya S, Arcand SL, Burk DL, Grapton D, Tomiak E, Hastings V, Hamel N, Wagener R, Aleynikova O, Giroux S, Hamdan FF, Dionne-Laporte A, Zogopoulos G, Rousseau F, Berghuis AM, Provencher D, Rouleau GA, Michaud JL, Mes-Masson AM, Majewski J, Bens S, Siebert R, Narod SA, Akbari MR, Lord CJ, Tonin PN, Orthwein A, Foulkes WD. Functionally Null RAD51D Missense Mutation Associates Strongly with Ovarian Carcinoma. Cancer Res 2017; 77:4517-4529. [PMID: 28646019 DOI: 10.1158/0008-5472.can-17-0190] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/23/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022]
Abstract
RAD51D is a key player in DNA repair by homologous recombination (HR), and RAD51D truncating variant carriers have an increased risk for ovarian cancer. However, the contribution of nontruncating RAD51D variants to cancer predisposition remains uncertain. Using deep sequencing and case-control genotyping studies, we show that in French Canadians, the missense RAD51D variant c.620C>T;p.S207L is highly prevalent and is associated with a significantly increased risk for ovarian high-grade serous carcinoma (HGSC; 3.8% cases vs. 0.2% controls). The frequency of the p.S207L variant did not significantly differ from that of controls in breast, endometrial, pancreas, or colorectal adenocarcinomas. Functionally, we show that this mutation impairs HR by disrupting the RAD51D-XRCC2 interaction and confers PARP inhibitor sensitivity. These results highlight the importance of a functional RAD51D-XRCC2 interaction to promote HR and prevent the development of HGSC. This study identifies c.620C>T;p.S207L as the first bona fide pathogenic RAD51D missense cancer susceptibility allele and supports the use of targeted PARP-inhibitor therapies in ovarian cancer patients carrying deleterious missense RAD51D variants. Cancer Res; 77(16); 4517-29. ©2017 AACR.
Collapse
Affiliation(s)
- Barbara Rivera
- Department of Human Genetics, McGill University, Montreal, Canada
- Lady Davis Institute, Montreal, Canada
| | - Massimo Di Iorio
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Jessica Frankum
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Javad Nadaf
- Department of Human Genetics, McGill University, Montreal, Canada
- Genome Quebec Innovation Centre, Montreal, Canada
| | - Somayyeh Fahiminiya
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Suzanna L Arcand
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - David L Burk
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Eva Tomiak
- Department of Genetics, University of Ottawa, Children's Hospital of Eastern Ontario, Canada
| | - Valerie Hastings
- Department of Genetics, University of Ottawa, Children's Hospital of Eastern Ontario, Canada
| | - Nancy Hamel
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Rabea Wagener
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Olga Aleynikova
- Department of pathology, Jewish General Hospital, Montreal, Canada
| | - Sylvie Giroux
- University of Laval and CHU Research Centre, Quebec; Canada
| | - Fadi F Hamdan
- CHU Sainte-Justine Research Center, Montreal, Canada
| | | | - George Zogopoulos
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Canada
- The Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | | | | | - Diane Provencher
- Centre de recherche du CHUM and Institut du cancer de Montréal, University of Montreal, Montreal, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Anne-Marie Mes-Masson
- Centre de recherche du CHUM and Institut du cancer de Montréal, University of Montreal, Montreal, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Canada
- Genome Quebec Innovation Centre, Montreal, Canada
| | - Susanne Bens
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Steven A Narod
- Dalla Lana School of Public Health, Toronto, Canada
- Women's College Hospital, Toronto, Canada
| | - Mohammad R Akbari
- Dalla Lana School of Public Health, Toronto, Canada
- Women's College Hospital, Toronto, Canada
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Patricia N Tonin
- Department of Human Genetics, McGill University, Montreal, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
| | - Alexandre Orthwein
- Lady Davis Institute, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, Canada.
- Lady Davis Institute, Montreal, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Medical Genetics, Research Institute, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
284
|
Abstract
Genetic abnormalities are present in all tumor types, although the frequency and type can vary. Chromosome abnormalities include highly aberrant structures, particularly chromothriptic chromosomes. The generation of massive sequencing data has illuminated the scope of the mutational burden in cancer genomes, identifying patterns of mutations (mutation signatures), which have the potential to shed light on the relatedness and etiologies of cancers and impact therapy response. Some mutation patterns are clearly attributable to disruptions in pathways that maintain genomic integrity. Here we review recent advances in our understanding of genetic changes occurring in cancers and the roles of genome maintenance pathways.
Collapse
Affiliation(s)
- Elizabeth M Kass
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mary Ellen Moynahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
285
|
Zhao X, Wei C, Li J, Xing P, Li J, Zheng S, Chen X. Cell cycle-dependent control of homologous recombination. Acta Biochim Biophys Sin (Shanghai) 2017; 49:655-668. [PMID: 28541389 DOI: 10.1093/abbs/gmx055] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Indexed: 01/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are among the most deleterious type of DNA lesions threatening genome integrity. Homologous recombination (HR) and non-homologous end joining (NHEJ) are two major pathways to repair DSBs. HR requires a homologous template to direct DNA repair, and is generally recognized as a high-fidelity pathway. In contrast, NHEJ directly seals broken ends, but the repair product is often accompanied by sequence alterations. The choice of repair pathways is strictly controlled by the cell cycle. The occurrence of HR is restricted to late S to G2 phases while NHEJ operates predominantly in G1 phase, although it can act throughout most of the cell cycle. Deregulation of repair pathway choice can result in genotoxic consequences associated with cancers. How the cell cycle regulates the choice of HR and NHEJ has been extensively studied in the past decade. In this review, we will focus on the current progresses on how HR is controlled by the cell cycle in both Saccharomyces cerevisiae and mammals. Particular attention will be given to how cyclin-dependent kinases modulate DSB end resection, DNA damage checkpoint signaling, repair and processing of recombination intermediates. In addition, we will discuss recent findings on how HR is repressed in G1 and M phases by the cell cycle.
Collapse
Affiliation(s)
- Xin Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Chengwen Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jingjing Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Poyuan Xing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jingyao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Sihao Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
286
|
Ubiquitin-specific protease 21 stabilizes BRCA2 to control DNA repair and tumor growth. Nat Commun 2017; 8:137. [PMID: 28743957 PMCID: PMC5526993 DOI: 10.1038/s41467-017-00206-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 06/13/2017] [Indexed: 01/23/2023] Open
Abstract
Tumor growth relies on efficient DNA repair to mitigate the detrimental impact of DNA damage associated with excessive cell division. Modulating repair factor function, thus, provides a promising strategy to manipulate malignant growth. Here, we identify the ubiquitin-specific protease USP21 as a positive regulator of BRCA2, a key mediator of DNA repair by homologous recombination. USP21 interacts with, deubiquitinates and stabilizes BRCA2 to promote efficient RAD51 loading at DNA double-strand breaks. As a result, depletion of USP21 decreases homologous recombination efficiency, causes an increase in DNA damage load and impairs tumor cell survival. Importantly, BRCA2 overexpression partially restores the USP21-associated survival defect. Moreover, we show that USP21 is overexpressed in hepatocellular carcinoma, where it promotes BRCA2 stability and inversely correlates with patient survival. Together, our findings identify deubiquitination as a means to regulate BRCA2 function and point to USP21 as a potential therapeutic target in BRCA2-proficient tumors.BRCA2 is essential for the repair of DNA damage; therefore, defects in BRCA2 are associated with tumorigenesis but also with increased susceptibility to genotoxic stress. Here the authors show that USP21 regulates the ability of tumor cells to repair damaged DNA by regulating BRCA2 stability.
Collapse
|
287
|
Chen CC, Kass EM, Yen WF, Ludwig T, Moynahan ME, Chaudhuri J, Jasin M. ATM loss leads to synthetic lethality in BRCA1 BRCT mutant mice associated with exacerbated defects in homology-directed repair. Proc Natl Acad Sci U S A 2017; 114:7665-7670. [PMID: 28659469 PMCID: PMC5530697 DOI: 10.1073/pnas.1706392114] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BRCA1 is essential for homology-directed repair (HDR) of DNA double-strand breaks in part through antagonism of the nonhomologous end-joining factor 53BP1. The ATM kinase is involved in various aspects of DNA damage signaling and repair, but how ATM participates in HDR and genetically interacts with BRCA1 in this process is unclear. To investigate this question, we used the Brca1S1598F mouse model carrying a mutation in the BRCA1 C-terminal domain of BRCA1. Whereas ATM loss leads to a mild HDR defect in adult somatic cells, we find that ATM inhibition leads to severely reduced HDR in Brca1S1598F cells. Consistent with a critical role for ATM in HDR in this background, loss of ATM leads to synthetic lethality of Brca1S1598F mice. Whereas both ATM and BRCA1 promote end resection, which can be regulated by 53BP1, 53bp1 deletion does not rescue the HDR defects of Atm mutant cells, in contrast to Brca1 mutant cells. These results demonstrate that ATM has a role in HDR independent of the BRCA1-53BP1 antagonism and that its HDR function can become critical in certain contexts.
Collapse
Affiliation(s)
- Chun-Chin Chen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Allied Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| | - Elizabeth M Kass
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Wei-Feng Yen
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Allied Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Thomas Ludwig
- Department of Cancer Biology and Genetics, Ohio State University College of Medicine, Columbus, OH 43210
| | - Mary Ellen Moynahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Allied Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| |
Collapse
|
288
|
Bleuyard JY, Fournier M, Nakato R, Couturier AM, Katou Y, Ralf C, Hester SS, Dominguez D, Rhodes D, Humphrey TC, Shirahige K, Esashi F. MRG15-mediated tethering of PALB2 to unperturbed chromatin protects active genes from genotoxic stress. Proc Natl Acad Sci U S A 2017; 114:7671-7676. [PMID: 28673974 PMCID: PMC5530651 DOI: 10.1073/pnas.1620208114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The partner and localiser of BRCA2 (PALB2) plays important roles in the maintenance of genome integrity and protection against cancer. Although PALB2 is commonly described as a repair factor recruited to sites of DNA breaks, recent studies provide evidence that PALB2 also associates with unperturbed chromatin. Here, we investigated the previously poorly described role of chromatin-associated PALB2 in undamaged cells. We found that PALB2 associates with active genes through its major binding partner, MRG15, which recognizes histone H3 trimethylated at lysine 36 (H3K36me3) by the SETD2 methyltransferase. Missense mutations that ablate PALB2 binding to MRG15 confer elevated sensitivity to the topoisomerase inhibitor camptothecin (CPT) and increased levels of aberrant metaphase chromosomes and DNA stress in gene bodies, which were suppressed by preventing DNA replication. Remarkably, the level of PALB2 at genic regions was frequently decreased, rather than increased, upon CPT treatment. We propose that the steady-state presence of PALB2 at active genes, mediated through the SETD2/H3K36me3/MRG15 axis, ensures an immediate response to DNA stress and therefore effective protection of these regions during DNA replication. This study provides a conceptual advance in demonstrating that the constitutive chromatin association of repair factors plays a key role in the maintenance of genome stability and furthers our understanding of why PALB2 defects lead to human genome instability syndromes.
Collapse
Affiliation(s)
- Jean-Yves Bleuyard
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Marjorie Fournier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Ryuichiro Nakato
- Research Center for Epigenetic Disease, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Anthony M Couturier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Yuki Katou
- Research Center for Epigenetic Disease, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Christine Ralf
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Svenja S Hester
- Advanced Proteomics Facility, Department of Biochemisty, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Daniel Dominguez
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
| | - Daniela Rhodes
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Timothy C Humphrey
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom;
| |
Collapse
|
289
|
Gilberto S, Peter M. Dynamic ubiquitin signaling in cell cycle regulation. J Cell Biol 2017; 216:2259-2271. [PMID: 28684425 PMCID: PMC5551716 DOI: 10.1083/jcb.201703170] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/11/2017] [Accepted: 05/25/2017] [Indexed: 12/16/2022] Open
Abstract
Gilberto and Peter discuss the role of ubiquitylation in the regulation of DNA replication and mitosis. The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation.
Collapse
Affiliation(s)
- Samuel Gilberto
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.,Molecular Life Science PhD Program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
290
|
Nuclear Acetyl-CoA Production by ACLY Promotes Homologous Recombination. Mol Cell 2017; 67:252-265.e6. [PMID: 28689661 DOI: 10.1016/j.molcel.2017.06.008] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/02/2017] [Accepted: 06/07/2017] [Indexed: 12/21/2022]
Abstract
While maintaining the integrity of the genome and sustaining bioenergetics are both fundamental functions of the cell, potential crosstalk between metabolic and DNA repair pathways is poorly understood. Since histone acetylation plays important roles in DNA repair and is sensitive to the availability of acetyl coenzyme A (acetyl-CoA), we investigated a role for metabolic regulation of histone acetylation during the DNA damage response. In this study, we report that nuclear ATP-citrate lyase (ACLY) is phosphorylated at S455 downstream of ataxia telangiectasia mutated (ATM) and AKT following DNA damage. ACLY facilitates histone acetylation at double-strand break (DSB) sites, impairing 53BP1 localization and enabling BRCA1 recruitment and DNA repair by homologous recombination. ACLY phosphorylation and nuclear localization are necessary for its role in promoting BRCA1 recruitment. Upon PARP inhibition, ACLY silencing promotes genomic instability and cell death. Thus, the spatial and temporal control of acetyl-CoA production by ACLY participates in the mechanism of DNA repair pathway choice.
Collapse
|
291
|
Dong D, Guo M, Wang S, Zhu Y, Wang S, Xiong Z, Yang J, Xu Z, Huang Z. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature 2017; 546:436-439. [PMID: 28448066 DOI: 10.1038/nature22377] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022]
Abstract
CRISPR-Cas9 systems are bacterial adaptive immune systems that defend against infection by phages. Through the RNA-guided endonuclease activity of Cas9 they degrade double-stranded DNA with a protospacer adjacent motif (PAM) and sequences complementary to the guide RNA. Recently, two anti-CRISPR proteins (AcrIIA2 and AcrIIA4 from Listeria monocytogenes prophages) were identified, both of which inhibit Streptococcus pyogenes Cas9 (SpyCas9) and L. monocytogenes Cas9 activity in bacteria and human cells. However, the mechanism of AcrIIA2- or AcrIIA4-mediated Cas9 inhibition remains unknown. Here we report a crystal structure of SpyCas9 in complex with a single-guide RNA (sgRNA) and AcrIIA4. Our data show that AcrIIA2 and AcrIIA4 interact with SpyCas9 in a sgRNA-dependent manner. The structure reveals that AcrIIA4 inhibits SpyCas9 activity by structurally mimicking the PAM to occupy the PAM-interacting site in the PAM-interacting domain, thereby blocking recognition of double-stranded DNA substrates by SpyCas9. AcrIIA4 further inhibits the endonuclease activity of SpyCas9 by shielding its RuvC active site. Structural comparison reveals that formation of the AcrIIA4-binding site of SpyCas9 is induced by sgRNA binding. Our study reveals the mechanism of SpyCas9 inhibition by AcrIIA4, providing a structural basis for developing 'off-switch' tools for SpyCas9 to avoid unwanted genome edits within cells and tissues.
Collapse
Affiliation(s)
- De Dong
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Minghui Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Sihan Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Shuo Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhi Xiong
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Jianzheng Yang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zengliang Xu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
292
|
Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol Cell 2017; 66:801-817. [PMID: 28622525 DOI: 10.1016/j.molcel.2017.05.015] [Citation(s) in RCA: 1218] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/28/2017] [Accepted: 05/16/2017] [Indexed: 01/09/2023]
Abstract
In vertebrate cells, the DNA damage response is controlled by three related kinases: ATM, ATR, and DNA-PK. It has been 20 years since the cloning of ATR, the last of the three to be identified. During this time, our understanding of how these kinases regulate DNA repair and associated events has grown profoundly, although major questions remain unanswered. Here, we provide a historical perspective of their discovery and discuss their established functions in sensing and responding to genotoxic stress. We also highlight what is known regarding their structural similarities and common mechanisms of regulation, as well as emerging non-canonical roles and how our knowledge of ATM, ATR, and DNA-PK is being translated to benefit human health.
Collapse
Affiliation(s)
- Andrew N Blackford
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | - Stephen P Jackson
- Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
293
|
Abstract
DNA double strand breaks need to be repaired in an organized fashion to preserve genomic integrity. In the organization of faithful repair, histone ubiquitination plays a crucial role. Recent findings suggest an integrated model for DNA repair regulation through site-specific histone ubiquitination and crosstalk to other posttranslational modifications. Here we discuss how site-specific histone ubiquitination is achieved on a molecular level and how different multi-protein complexes work together to integrate different histone ubiquitination states. We propose a model where site-specific H2A ubiquitination organizes the spatio-temporal recruitment of DNA repair factors which will ultimately contribute to DNA repair pathway choice between homologous recombination and non-homologous end joining.
Collapse
Affiliation(s)
- Michael Uckelmann
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
294
|
Li Y, Luo K, Yin Y, Wu C, Deng M, Li L, Chen Y, Nowsheen S, Lou Z, Yuan J. USP13 regulates the RAP80-BRCA1 complex dependent DNA damage response. Nat Commun 2017; 8:15752. [PMID: 28569838 PMCID: PMC5461494 DOI: 10.1038/ncomms15752] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/25/2017] [Indexed: 12/16/2022] Open
Abstract
BRCA1 regulates multiple cellular pathways that maintain genomic stability including cell cycle checkpoints, DNA repair, protein ubiquitination, chromatin remodelling, transcriptional regulation and apoptosis. Receptor-associated protein 80 (RAP80) helps recruit BRCA1 to double-strand breaks (DSBs) through the scaffold protein CCDC98 (Abraxas) and facilitates DNA damage response (DDR). However, the regulation of RAP80-BRCA1 complex is still unclear. Here we report that a deubiquitinase, USP13, regulates DDR by targeting RAP80. Mechanistically, USP13 is phosphorylated by ATM following DNA damage which, in turn, facilitates its DSB localization. USP13, in turn, deubiquitinates RAP80 and promotes RAP80 recruitment and proper DDR. Depleting or inhibiting USP13 sensitizes ovarian cancer cells to cisplatin and PARP inhibitor (olaparib) while overexpression of USP13 renders ovarian cancer cells resistant to chemotherapy. Overall, we identify USP13 as a regulator of DNA repair and reveal a model in which a phosphorylation-deubiquitination axis dynamically regulates RAP80-BRCA1 complex foci formation and function. RAP80 helps to recruit BRCA1 to double-strand breaks, facilitating DNA damage responses. Here the authors report that phosphorylated USP13 deubiquitinates RAP80 after DNA damage, prompting recruitment to the break site.
Collapse
Affiliation(s)
- Yunhui Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Kuntian Luo
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Yujiao Yin
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chenming Wu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Lei Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuping Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Clinic School of Medicine, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
295
|
Abstract
The correct duplication and transmission of genetic material to daughter cells is the primary objective of the cell division cycle. DNA replication and chromosome segregation present both challenges and opportunities for DNA repair pathways that safeguard genetic information. As a consequence, there is a profound, two-way connection between DNA repair and cell cycle control. Here, we review how DNA repair processes, and DNA double-strand break repair in particular, are regulated during the cell cycle to optimize genomic integrity.
Collapse
|
296
|
Schwertman P, Bekker-Jensen S, Mailand N. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat Rev Mol Cell Biol 2017; 17:379-94. [PMID: 27211488 DOI: 10.1038/nrm.2016.58] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. The swift recognition and faithful repair of such damage is crucial for the maintenance of genomic stability, as well as for cell and organismal fitness. Signalling by ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs) orchestrates and regulates cellular responses to DSBs at multiple levels, often involving extensive crosstalk between these modifications. Recent findings have revealed compelling insights into the complex mechanisms by which ubiquitin and UBLs regulate protein interactions with DSB sites to promote accurate lesion repair and protection of genome integrity in mammalian cells. These advances offer new therapeutic opportunities for diseases linked to genetic instability.
Collapse
Affiliation(s)
- Petra Schwertman
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Niels Mailand
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
297
|
Canver MC, Bauer DE, Orkin SH. Functional interrogation of non-coding DNA through CRISPR genome editing. Methods 2017; 121-122:118-129. [PMID: 28288828 PMCID: PMC5483188 DOI: 10.1016/j.ymeth.2017.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/18/2017] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA.
Collapse
Affiliation(s)
| | - Daniel E Bauer
- Harvard Medical School, Boston, MA 02115, United States; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, United States; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States.
| | - Stuart H Orkin
- Harvard Medical School, Boston, MA 02115, United States; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, United States; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States; Howard Hughes Medical Institute, Boston, MA 02115, United States.
| |
Collapse
|
298
|
Lee NS, Kim S, Jung YW, Kim H. Eukaryotic DNA damage responses: Homologous recombination factors and ubiquitin modification. Mutat Res 2017; 809:88-98. [PMID: 28552167 DOI: 10.1016/j.mrfmmm.2017.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/17/2017] [Accepted: 04/30/2017] [Indexed: 12/20/2022]
Abstract
To prevent genomic instability disorders, cells have developed a DNA damage response. The response involves various proteins that sense damaged DNA, transduce damage signals, and effect DNA repair. In addition, ubiquitin modifications modulate the signaling pathway depending on cellular context. Among various types of DNA damage, double-stranded breaks are highly toxic to genomic integrity. Homologous recombination (HR) repair is an essential mechanism that fixes DNA damage because of its high level of accuracy. Although factors in the repair pathway are well established, pinpointing the exact mechanisms of repair and devising therapeutic applications requires more studies. Moreover, essential functions of ubiquitin modification in the DNA damage signaling pathway have emerged. In this review, to explore the eukaryotic DNA damage response, we will mention the functions of main factors in the HR repair pathway and ubiquitin modification.
Collapse
Affiliation(s)
- Nam Soo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Soomi Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong 30019, South Korea.
| | - Hongtae Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
299
|
Hilmi K, Jangal M, Marques M, Zhao T, Saad A, Zhang C, Luo VM, Syme A, Rejon C, Yu Z, Krum A, Fabian MR, Richard S, Alaoui-Jamali M, Orthwein A, McCaffrey L, Witcher M. CTCF facilitates DNA double-strand break repair by enhancing homologous recombination repair. SCIENCE ADVANCES 2017; 3:e1601898. [PMID: 28560323 PMCID: PMC5443639 DOI: 10.1126/sciadv.1601898] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 03/29/2017] [Indexed: 05/06/2023]
Abstract
The repair of DNA double-strand breaks (DSBs) is mediated via two major pathways, nonhomologous end joining (NHEJ) and homologous recombination (HR) repair. DSB repair is vital for cell survival, genome stability, and tumor suppression. In contrast to NHEJ, HR relies on extensive homology and templated DNA synthesis to restore the sequence surrounding the break site. We report a new role for the multifunctional protein CCCTC-binding factor (CTCF) in facilitating HR-mediated DSB repair. CTCF is recruited to DSB through its zinc finger domain independently of poly(ADP-ribose) polymers, known as PARylation, catalyzed by poly(ADP-ribose) polymerase 1 (PARP-1). CTCF ensures proper DSB repair kinetics in response to γ-irradiation, and the loss of CTCF compromises HR-mediated repair. Consistent with its role in HR, loss of CTCF results in hypersensitivity to DNA damage, inducing agents and inhibitors of PARP. Mechanistically, CTCF acts downstream of BRCA1 in the HR pathway and associates with BRCA2 in a PARylation-dependent manner, enhancing BRCA2 recruitment to DSB. In contrast, CTCF does not influence the recruitment of the NHEJ protein 53BP1 or LIGIV to DSB. Together, our findings establish for the first time that CTCF is an important regulator of the HR pathway.
Collapse
Affiliation(s)
- Khalid Hilmi
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Maïka Jangal
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Maud Marques
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Tiejun Zhao
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Amine Saad
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Chenxi Zhang
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Vincent M. Luo
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Alasdair Syme
- Department of Radiation Oncology, Medical Physics Unit, Jewish General Hospital, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Carlis Rejon
- Department of Oncology, Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montréal, Quebec H3A 1A3, Canada
| | - Zhenbao Yu
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Asiev Krum
- Department of Radiation Oncology, Medical Physics Unit, Jewish General Hospital, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Marc R. Fabian
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Stéphane Richard
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Moulay Alaoui-Jamali
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
| | - Alexander Orthwein
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Luke McCaffrey
- Department of Oncology, Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montréal, Quebec H3A 1A3, Canada
| | - Michael Witcher
- Departments of Oncology and Experimental Medicine, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Chemin Côte-Ste-Catherine, Montréal, Quebec H3T 1E2, Canada
- Corresponding author.
| |
Collapse
|
300
|
Petibone DM, Mustafa T, Bourdo SE, Lafont A, Ding W, Karmakar A, Nima ZA, Watanabe F, Casciano D, Morris SM, Dobrovolsky VN, Biris AS. p53
-competent cells and p53
-deficient cells display different susceptibility to oxygen functionalized graphene cytotoxicity and genotoxicity. J Appl Toxicol 2017; 37:1333-1345. [DOI: 10.1002/jat.3472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Dayton M. Petibone
- Division of Genetic and Molecular Toxicology; National Center for Toxicological Research, FDA; Jefferson AR 72079 USA
| | - Thikra Mustafa
- Center for Integrative Nanotechnology Sciences; University of Arkansas at Little Rock; Little Rock AR 72204 USA
- Department of Medical Bioscience; College of Veterinary Medicine, University of Kirkuk; Kirkuk Iraq
| | - Shawn E. Bourdo
- Center for Integrative Nanotechnology Sciences; University of Arkansas at Little Rock; Little Rock AR 72204 USA
| | - Andersen Lafont
- Nanotechnology Core Facility, Office of Scientific Coordination, National Center for Toxicological Research, FDA; Jefferson AR 72079 USA
| | - Wei Ding
- Division of Genetic and Molecular Toxicology; National Center for Toxicological Research, FDA; Jefferson AR 72079 USA
| | - Alokita Karmakar
- Nanotechnology Core Facility, Office of Scientific Coordination, National Center for Toxicological Research, FDA; Jefferson AR 72079 USA
| | - Zeid A. Nima
- Center for Integrative Nanotechnology Sciences; University of Arkansas at Little Rock; Little Rock AR 72204 USA
| | - Fumiya Watanabe
- Center for Integrative Nanotechnology Sciences; University of Arkansas at Little Rock; Little Rock AR 72204 USA
| | - Daniel Casciano
- Center for Integrative Nanotechnology Sciences; University of Arkansas at Little Rock; Little Rock AR 72204 USA
| | - Suzanne M. Morris
- Division of Genetic and Molecular Toxicology; National Center for Toxicological Research, FDA; Jefferson AR 72079 USA
| | - Vasily N. Dobrovolsky
- Division of Genetic and Molecular Toxicology; National Center for Toxicological Research, FDA; Jefferson AR 72079 USA
| | - Alexandru S. Biris
- Center for Integrative Nanotechnology Sciences; University of Arkansas at Little Rock; Little Rock AR 72204 USA
| |
Collapse
|