251
|
Kim HY, Li R, Ng TS, Courties G, Rodell CB, Prytyskach M, Kohler RH, Pittet MJ, Nahrendorf M, Weissleder R, Miller MA. Quantitative Imaging of Tumor-Associated Macrophages and Their Response to Therapy Using 64Cu-Labeled Macrin. ACS NANO 2018; 12:12015-12029. [PMID: 30508377 PMCID: PMC6482841 DOI: 10.1021/acsnano.8b04338] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tumor-associated macrophages (TAMs) are widely implicated in cancer progression, and TAM levels can influence drug responses, particularly to immunotherapy and nanomedicines. However, it has been difficult to quantify total TAM numbers and their dynamic spatiotemporal distribution in a non-invasive and translationally relevant manner. Here, we address this need by developing a pharmacokinetically optimized, 64Cu-labeled polyglucose nanoparticle (Macrin) for quantitative positron emission tomography (PET) imaging of macrophages in tumors. By combining PET with high-resolution in vivo confocal microscopy and ex vivo imaging of optically cleared tissue, we found that Macrin was taken up by macrophages with >90% selectivity. Uptake correlated with the content of macrophages in both healthy tissue and tumors ( R2 > 0.9) and showed striking heterogeneity in the TAM content of an orthotopic and immunocompetent mouse model of lung carcinoma. In a proof-of-principle application, we imaged Macrin to monitor the macrophage response to neo-adjuvant therapy, using a panel of chemotherapeutic and γ-irradiation regimens. Multiple treatments elicited 180-650% increase in TAMs. Imaging identified especially TAM-rich tumors thought to exhibit enhanced permeability and retention of nanotherapeutics. Indeed, these TAM-rich tumors accumulated >700% higher amounts of a model poly(d,l-lactic- co-glycolic acid)- b-polyethylene glycol (PLGA-PEG) therapeutic nanoparticle compared to TAM-deficient tumors, suggesting that imaging may guide patient selection into nanomedicine trials. In an orthotopic breast cancer model, chemoradiation enhanced TAM and Macrin accumulation in tumors, which corresponded to the improved delivery and efficacy of two model nanotherapies, PEGylated liposomal doxorubicin and a TAM-targeted nanoformulation of the toll-like receptor 7/8 agonist resiquimod (R848). Thus, Macrin imaging offers a selective and translational means to quantify TAMs and inform therapeutic decisions.
Collapse
Affiliation(s)
- Hye-Yeong Kim
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
| | - Thomas S.C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
| | - Gabriel Courties
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
| | - Christopher B. Rodell
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
| | - Mark Prytyskach
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
| | - Rainer H. Kohler
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
| | - Mikael J. Pittet
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
252
|
Napp J, Markus MA, Heck JG, Dullin C, Möbius W, Gorpas D, Feldmann C, Alves F. Therapeutic Fluorescent Hybrid Nanoparticles for Traceable Delivery of Glucocorticoids to Inflammatory Sites. Am J Cancer Res 2018; 8:6367-6383. [PMID: 30613305 PMCID: PMC6299685 DOI: 10.7150/thno.28324] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/19/2018] [Indexed: 01/15/2023] Open
Abstract
Treatment of inflammatory disorders with glucocorticoids (GCs) is often accompanied by severe adverse effects. Application of GCs via nanoparticles (NPs), especially those using simple formulations, could possibly improve their delivery to sites of inflammation and therefore their efficacy, minimising the required dose and thus reducing side effects. Here, we present the evaluation of NPs composed of GC betamethasone phosphate (BMP) and the fluorescent dye DY-647 (BMP-IOH-NPs) for improved treatment of inflammation with simultaneous in vivo monitoring of NP delivery. Methods: BMP-IOH-NP uptake by MH-S macrophages was analysed by fluorescence and electron microscopy. Lipopolysaccharide (LPS)-stimulated cells were treated for 48 h with BMP-IOH-NPs (1×10-5-1×10-9 M), BMP or dexamethasone (Dexa). Drug efficacy was assessed by measurement of interleukin 6. Mice with Zymosan-A-induced paw inflammation were intraperitoneally treated with BMP-IOH-NPs (10 mg/kg) and mice with ovalbumin (OVA)-induced allergic airway inflammation (AAI) were treated intranasally with BMP-IOH-NPs, BMP or Dexa (each 2.5 mg/kg). Efficacy was assessed in vivo by paw volume measurements with µCT and ex vivo by measurement of paw weight for Zymosan-A-treated mice, or in the AAI model by in vivo x-ray-based lung function assessment and by cell counts in the bronchoalveolar lavage (BAL) fluid and histology. Delivery of BMP-IOH-NPs to the lungs of AAI mice was monitored by in vivo optical imaging and by fluorescence microscopy. Results: Uptake of BMP-IOH-NPs by MH-S cells was observed during the first 10 min of incubation, with the NP load increasing over time. The anti-inflammatory effect of BMP-IOH-NPs in vitro was dose dependent and higher than that of Dexa or free BMP, confirming efficient release of the drug. In vivo, Zymosan-A-induced paw inflammation was significantly reduced in mice treated with BMP-IOH-NPs. AAI mice that received BMP-IOH-NPs or Dexa but not BMP revealed significantly decreased eosinophil numbers in BALs and reduced immune cell infiltration in lungs. Correspondingly, lung function parameters, which were strongly affected in non-treated AAI mice, were unaffected in AAI mice treated with BMP-IOH-NPs and resembled those of healthy animals. Accumulation of BMP-IOH-NPs within the lungs of AAI mice was detectable by optical imaging for at least 4 h in vivo, where they were preferentially taken up by peribronchial and alveolar M2 macrophages. Conclusion: Our results show that BMP-IOH-NPs can effectively be applied in therapy of inflammatory diseases with at least equal efficacy as the gold standard Dexa, while their delivery can be simultaneously tracked in vivo by fluorescence imaging. BMP-IOH-NPs thus have the potential to reach clinical applications.
Collapse
|
253
|
Tan T, Wang H, Cao H, Zeng L, Wang Y, Wang Z, Wang J, Li J, Wang S, Zhang Z, Li Y. Deep Tumor-Penetrated Nanocages Improve Accessibility to Cancer Stem Cells for Photothermal-Chemotherapy of Breast Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1801012. [PMID: 30581704 PMCID: PMC6299727 DOI: 10.1002/advs.201801012] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/29/2018] [Indexed: 05/26/2023]
Abstract
Cancer stem cells (CSCs) are proposed to account for the initiation of cancer metastasis, but their accessibility remains a great challenge. This study reports deep tumor-penetrated biomimetic nanocages to augment the accessibility to CSCs fractions in tumor for anti-metastasis therapy. The nanocages can load photothermal agent of 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide (DBN) and chemotherapeutic epirubicin (EBN) to eradicate CSCs for photothermal-chemotherapy of breast cancer metastasis. In metastatic 4T1-indcued tumor model, both DBN and EBN can efficiently accumulate in tumor sites and feasibly permeate throughout the tumor mass. These biomimetic nanosystems can be preferentially internalized by cancer cells and effectively accessed to CSCs fractions in tumor. The DBN+laser/EBN treatment produces considerable depression of primary tumor growth, drastically eradicates around 80% of CSCs fractions in primary tumor, and results in 95.2% inhibition of lung metastasis. Thus, the biomimetic nanocages can be a promising delivery nanovehicle with preferential CSCs-accessibility for effective anti-metastasis therapy.
Collapse
Affiliation(s)
- Tao Tan
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016LiaoningChina
| | - Hong Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Haiqiang Cao
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Lijuan Zeng
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016LiaoningChina
| | - Yuqi Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016LiaoningChina
| | - Zhiwan Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Jing Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Siling Wang
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016LiaoningChina
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| |
Collapse
|
254
|
Kanemaru M, Asai J, Jo JI, Arita T, Kawai-Ohnishi M, Tsutsumi M, Wada M, Tabata Y, Katoh N. Nanoparticle-mediated local delivery of pioglitazone attenuates bleomycin-induced skin fibrosis. J Dermatol Sci 2018; 93:41-49. [PMID: 30655107 DOI: 10.1016/j.jdermsci.2018.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/24/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nanoparticle-loaded delivery systems have attracted much attention recently. Poly(lactic-co-glycolic acid) (PLGA) is one of the most successful biodegradable polymers for biomedical applications. There are only a few studies on the treatment of dermal fibrosis with sustained-release drugs. Peroxisome proliferator-activated receptor-γ (PPAR-γ) plays an important role in endogenous anti-fibrotic defense mechanisms. Recent studies have suggested that pioglitazone, a synthetic PPAR-γ activator, has effects beyond reducing blood sugar and it can reduce fibrosis and inflammation when used systemically. OBJECTIVE We aimed to assess the effects of local injections of pioglitazone-loaded PLGA nanoparticles (PGN-NP) on an experimental sclerosis and to demonstrate the in vivo pharmacokinetics of subcutaneously administered PLGA nanoparticles. METHODS Locally injectable PGN-NP were prepared and subcutaneously administered to bleomycin (BLM)-induced scleroderma model mice. The effect of pioglitazone was also evaluated with cultured fibroblasts. Coumarin-6-loaded fluorescent PLGA nanoparticles (FL-NP) and silicon naphthalocyanine-loaded near-infrared PLGA nanoparticles (NIR-NP) were used to demonstrate in vitro cellular uptake by cultured fibroblasts and the in vivo pharmacokinetics of subcutaneously administered nanoparticles. RESULTS Weekly subcutaneous injections of PGN-NP attenuated skin fibrosis in BLM-induced scleroderma model mice. Pioglitazone significantly suppressed migration ability and TGF-β-mediated myofibroblast differentiation in cultured fibroblasts. FL-NP were internalized into cultured fibroblasts within 60 min, and PGN-NP-primed fibroblasts expressed anti-fibrotic phenotypes. Subcutaneously injected NIR-NP remained in the vicinity of the injection site more than non-particulate silicon naphthalocyanine. CONCLUSION These results provide a basis for the development of new treatments for dermal fibrosis and a better understanding of the potential of PLGA nanoparticles in dermatology.
Collapse
Affiliation(s)
- Mai Kanemaru
- Department of Dermatology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan; Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jun Asai
- Department of Dermatology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan.
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takahiro Arita
- Department of Dermatology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Minako Kawai-Ohnishi
- Department of Dermatology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Miho Tsutsumi
- Department of Dermatology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Makoto Wada
- Department of Dermatology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Norito Katoh
- Department of Dermatology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
255
|
Raza MK, Gautam S, Howlader P, Bhattacharyya A, Kondaiah P, Chakravarty AR. Pyriplatin-Boron-Dipyrromethene Conjugates for Imaging and Mitochondria-Targeted Photodynamic Therapy. Inorg Chem 2018; 57:14374-14385. [PMID: 30376306 DOI: 10.1021/acs.inorgchem.8b02546] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monofunctional pyriplatin analogues cis-[Pt(NH3)2(L)Cl](NO3) (1-3) having boron-dipyrromethene (BODIPY) pendants (L) with 1,3,5,7-tetramethyl-8-(4-pyridyl)-4,4'-difluoroboradiazaindacene moieties were designed and synthesized, and their photocytotoxic properties were studied. The Pt-BODIPY conjugates displayed an absorption band within 505-550 nm and a green emissive band near 535 nm in 1% DMSO/DMEM (Dulbecco's modified Eagle's medium) buffer. Complex cis-[Pt(NH3)2(4-Me-py)Cl](NO3) (4) was used as a control for determining the structural aspects by X-ray crystallography. The mono- and diiodinated BODIPY complexes 2 and 3 showed generation of singlet oxygen on light activation as evidenced from the 1,3-diphenylisobenzofuran (DPBF) titration experiments. The cytotoxicity of the BODIPY complexes was tested against A549 (human lung cancer), MCF-7 (human breast cancer), and HaCaT (human skin keratinocyte) cells in dark and visible light (400-700 nm, 10 J cm-2). While complexes 2 and 3 showed excellent photocytotoxicity (IC50 ≈ 0.05 μM), they remained essentially nontoxic in the dark (IC50 > 100 μM). The emissive bands of 1 and 2 were used for cellular imaging by confocal microscopy study, which showed their mitochondrial localization. This was further supported by platinum estimation from isolated mitochondria and mitochondrial depolarization through a JC-1 assay. The photomediated apoptotic cell death was evidenced from flow cytometric assays, annexin-V/FITC-PI (fluorescein isothiocyanate-propidium iodide) and cell cycle arrest in sub-G1 and G2/M phases. The complexes bind to 9-ethylguanine as a model nucleobase to form monoadducts. A mechanistic study on DNA photocleavage activity using pUC19 DNA showed singlet oxygen as the reactive oxygen species (ROS). The combination of photodynamic therapy with DNA cross-linking property enhanced the anticancer potential of the monofunctional BODIPY-conjugates of pyriplatins.
Collapse
|
256
|
He H, Guo C, Wang J, Korzun WJ, Wang XY, Ghosh S, Yang H. Leutusome: A Biomimetic Nanoplatform Integrating Plasma Membrane Components of Leukocytes and Tumor Cells for Remarkably Enhanced Solid Tumor Homing. NANO LETTERS 2018; 18:6164-6174. [PMID: 30207473 PMCID: PMC6292712 DOI: 10.1021/acs.nanolett.8b01892] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cell membrane-camouflaged nanoparticles have appeared as a promising platform to develop active tumor targeting nanomedicines. To evade the immune surveillance, we designed a composite cell membrane-camouflaged biomimetic nanoplatform, namely, leutusome, which is made of liposomal nanoparticles incorporating plasma membrane components derived from both leukocytes (murine J774A.1 cells) and tumor cells (head and neck tumor cells HN12). Exogenous phospholipids were used as building blocks to fuse with two cell membranes to form liposomal nanoparticles. Liposomal nanoparticles made of exogenous phospholipids only or in combination with one type of cell membrane were fabricated and compared. The anticancer drug paclitaxel (PTX) was used to make drug-encapsulating liposomal nanoparticles. Leutusome resembling characteristic plasma membrane components of the two cell membranes were examined and confirmed in vitro. A xenograft mouse model of head and neck cancer was used to profile the blood clearance kinetics, biodistribution, and antitumor efficacy of the different liposomal nanoparticles. The results demonstrated that leutusome obtained prolonged blood circulation and was most efficient accumulating at the tumor site (79.1 ± 6.6% ID per gram of tumor). Similarly, leutusome composed of membrane fractions of B16 melanoma cells and leukocytes (J774A.1) showed prominent accumulation within the B16 tumor, suggesting the generalization of the approach. Furthermore, PTX-encapsulating leutusome was found to most potently inhibit tumor growth while not causing systemic adverse effects.
Collapse
Affiliation(s)
- Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Chunqing Guo
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Jing Wang
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - William J. Korzun
- Department of Clinical Laboratory Sciences, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Xiang-Yang Wang
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
257
|
Mendes M, Sousa JJ, Pais A, Vitorino C. Targeted Theranostic Nanoparticles for Brain Tumor Treatment. Pharmaceutics 2018; 10:E181. [PMID: 30304861 PMCID: PMC6321593 DOI: 10.3390/pharmaceutics10040181] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
The poor prognosis and rapid recurrence of glioblastoma (GB) are associated to its fast-growing process and invasive nature, which make difficult the complete removal of the cancer infiltrated tissues. Additionally, GB heterogeneity within and between patients demands a patient-focused method of treatment. Thus, the implementation of nanotechnology is an attractive approach considering all anatomic issues of GB, since it will potentially improve brain drug distribution, due to the interaction between the blood⁻brain barrier and nanoparticles (NPs). In recent years, theranostic techniques have also been proposed and regarded as promising. NPs are advantageous for this application, due to their respective size, easy surface modification and versatility to integrate multiple functional components in one system. The design of nanoparticles focused on therapeutic and diagnostic applications has increased exponentially for the treatment of cancer. This dual approach helps to understand the location of the tumor tissue, the biodistribution of nanoparticles, the progress and efficacy of the treatment, and is highly useful for personalized medicine-based therapeutic interventions. To improve theranostic approaches, different active strategies can be used to modulate the surface of the nanotheranostic particle, including surface markers, proteins, drugs or genes, and take advantage of the characteristics of the microenvironment using stimuli responsive triggers. This review focuses on the different strategies to improve the GB treatment, describing some cell surface markers and their ligands, and reports some strategies, and their efficacy, used in the current research.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| |
Collapse
|
258
|
Li Z, Yu L, Yang T, Chen Y. Theranostic nanomedicine by surface nanopore engineering. Sci China Chem 2018; 61:1243-1260. [DOI: 10.1007/s11426-018-9297-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/27/2018] [Indexed: 01/26/2023]
|
259
|
Pittet MJ, Garris CS, Arlauckas SP, Weissleder R. Recording the wild lives of immune cells. Sci Immunol 2018; 3:eaaq0491. [PMID: 30194240 PMCID: PMC6771424 DOI: 10.1126/sciimmunol.aaq0491] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Intravital microscopic imaging can uncover fundamental aspects of immune cell behavior in real time in both healthy and pathological states. Here, we discuss approaches for single-cell imaging of adaptive and innate immune cells to explore how they migrate, communicate, and mediate regulatory or effector functions in various tissues throughout the body. We further review how intravital single-cell imaging can be used to study drug effects on immune cells.
Collapse
Affiliation(s)
- Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA.
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher S Garris
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
- Graduate Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Sean P Arlauckas
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
260
|
Awad RM, De Vlaeminck Y, Maebe J, Goyvaerts C, Breckpot K. Turn Back the TIMe: Targeting Tumor Infiltrating Myeloid Cells to Revert Cancer Progression. Front Immunol 2018; 9:1977. [PMID: 30233579 PMCID: PMC6127274 DOI: 10.3389/fimmu.2018.01977] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor cells frequently produce soluble factors that favor myelopoiesis and recruitment of myeloid cells to the tumor microenvironment (TME). Consequently, the TME of many cancer types is characterized by high infiltration of monocytes, macrophages, dendritic cells and granulocytes. Experimental and clinical studies show that most myeloid cells are kept in an immature state in the TME. These studies further show that tumor-derived factors mold these myeloid cells into cells that support cancer initiation and progression, amongst others by enabling immune evasion, tumor cell survival, proliferation, migration and metastasis. The key role of myeloid cells in cancer is further evidenced by the fact that they negatively impact on virtually all types of cancer therapy. Therefore, tumor-associated myeloid cells have been designated as the culprits in cancer. We review myeloid cells in the TME with a focus on the mechanisms they exploit to support cancer cells. In addition, we provide an overview of approaches that are under investigation to deplete myeloid cells or redirect their function, as these hold promise to overcome resistance to current cancer therapies.
Collapse
|
261
|
Heck J, Rox K, Lünsdorf H, Lückerath T, Klaassen N, Medina E, Goldmann O, Feldmann C. Zirconyl Clindamycinphosphate Antibiotic Nanocarriers for Targeting Intracellular Persisting Staphylococcus aureus. ACS OMEGA 2018; 3:8589-8594. [PMID: 31458988 PMCID: PMC6644946 DOI: 10.1021/acsomega.8b00637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/13/2018] [Indexed: 06/10/2023]
Abstract
[ZrO]2+[CLP]2- (CLP: clindamycinphosphate) inorganic-organic hybrid nanoparticles (IOH-NPs) represent a novel strategy to treat persisting, recurrent infections with multiresistant Staphylococcus aureus. [ZrO]2+[CLP]2- is prepared in water and contains the approved antibiotic with unprecedented high load (82 wt % CLP per nanoparticle). The IOH-NPs result in 70-150-times higher antibiotic concentrations at difficult-to-reach infection sites, offering new options for improved drug delivery for chronic and difficult-to-treat infections.
Collapse
Affiliation(s)
- Joachim
G. Heck
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Katharina Rox
- Helmholtz-Zentrum
für Infektionsforschung, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
- Deutsches
Zentrum für Infektionsforschung, Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Heinrich Lünsdorf
- Helmholtz-Zentrum
für Infektionsforschung, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Thorsten Lückerath
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Nicole Klaassen
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Eva Medina
- Helmholtz-Zentrum
für Infektionsforschung, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Oliver Goldmann
- Helmholtz-Zentrum
für Infektionsforschung, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Claus Feldmann
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| |
Collapse
|
262
|
Oh N, Kim Y, Kweon HS, Oh WY, Park JH. Macrophage-Mediated Exocytosis of Elongated Nanoparticles Improves Hepatic Excretion and Cancer Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28450-28457. [PMID: 30067899 DOI: 10.1021/acsami.8b10302] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The introduction of nanoparticle-mediated delivery and therapy has revolutionized cancer treatment approaches. However, there has been limited success in clinical trials because current approaches have not simultaneously satisfied therapeutic efficacy and biosafety criteria to an adequate degree. Here, we employ efficient macrophage-mediated exocytosis of elongated nanoparticles to facilitate their localization in tumor cells for cancer therapy and their transport to hepatocytes for hepatobiliary excretion. In vitro studies show that PEGylated high-aspect ratio gold nanoparticles exit macrophages more rapidly and remain in tumor cells longer, compared with low-aspect ratio and spherical nanoparticles. In tumors, high-aspect ratio nanoparticles tend to stay in tumor cells and escape from tumor-associated macrophages when they are taken up by those cells. In the liver, high-aspect ratio nanoparticles cleared by Kupffer cells mostly take the hepatobiliary excretion pathway through efficient Kupffer cell-hepatocyte transfer. Furthermore, we demonstrate that time-dependent localization of elongated gold nanoparticles toward tumor cells in tumor tissues enhances the overall phototherapeutic outcome. Engineering nanoparticles to modulate their exocytosis provides a new approach to improve cancer nanomedicine and pave the way toward clinical translation.
Collapse
Affiliation(s)
| | | | - Hee-Seok Kweon
- Electron Microscopy Research Center , Korea Basic Science Institute , Daejeon 34133 , Republic of Korea
| | | | | |
Collapse
|
263
|
Dai Q, Wilhelm S, Ding D, Syed AM, Sindhwani S, Zhang Y, Chen YY, MacMillan P, Chan WCW. Quantifying the Ligand-Coated Nanoparticle Delivery to Cancer Cells in Solid Tumors. ACS NANO 2018; 12:8423-8435. [PMID: 30016073 DOI: 10.1021/acsnano.8b03900] [Citation(s) in RCA: 428] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Coating the nanoparticle surface with cancer cell recognizing ligands is expected to facilitate specific delivery of nanoparticles to diseased cells in vivo. While this targeting strategy is appealing, no nanoparticle-based active targeting formulation for solid tumor treatment had made it past phase III clinical trials. Here, we quantified the cancer cell-targeting efficiencies of Trastuzumab (Herceptin) and folic acid coated gold and silica nanoparticles in multiple mouse tumor models. Surprisingly, we showed that less than 14 out of 1 million (0.0014% injected dose) intravenously administrated nanoparticles were delivered to targeted cancer cells, and that only 2 out of 100 cancer cells interacted with the nanoparticles. The majority of the intratumoral nanoparticles were either trapped in the extracellular matrix or taken up by perivascular tumor associated macrophages. The low cancer cell targeting efficiency and significant uptake by noncancer cells suggest the need to re-evaluate the active targeting process and therapeutic mechanisms using quantitative methods. This will be important for developing strategies to deliver emerging therapeutics such as genome editing, nucleic acid therapy, and immunotherapy for cancer treatment using nanocarriers.
Collapse
Affiliation(s)
- Qin Dai
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering , University of Oklahoma , 101 David L. Boren Boulevard , Norman , Oklahoma 73019 , United States
| | - Ding Ding
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , China
| | - Abdullah Muhammad Syed
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
| | - Shrey Sindhwani
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
| | - Yuwei Zhang
- Departments of Chemistry, Materials Science and Engineering, and Chemical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
| | - Yih Yang Chen
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
| | - Presley MacMillan
- Departments of Chemistry, Materials Science and Engineering, and Chemical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
| | - Warren C W Chan
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
- Departments of Chemistry, Materials Science and Engineering, and Chemical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
- Donnelly Center for Cellular and Biomolecular Research , University of Toronto , 160 College Street , Toronto , Ontario M5S 3E1 , Canada
| |
Collapse
|
264
|
Stapleton S, Dunne M, Milosevic M, Tran CW, Gold MJ, Vedadi A, Mckee TD, Ohashi PS, Allen C, Jaffray DA. Radiation and Heat Improve the Delivery and Efficacy of Nanotherapeutics by Modulating Intratumoral Fluid Dynamics. ACS NANO 2018; 12:7583-7600. [PMID: 30004666 DOI: 10.1021/acsnano.7b06301] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanomedicine drug delivery systems are capable of transporting significant payloads to solid tumors. However, only a modest increase in antitumor efficacy relative to the standard of care has been observed. In this study, we demonstrate that a single dose of radiation or mild hyperthermia can substantially improve tumor uptake and distribution of nanotherapeutics, resulting in improved treatment efficacy. The delivery of nanomedicine was driven by a reduction in interstitial fluid pressure (IFP) and small perturbation of steady-state fluid flow. The transient effects on fluid dynamics in tumors with high IFP was also shown to dominate over immune cell endocytic capacity, another mechanism suspected of improving drug delivery. Furthermore, we demonstrate the specificity of this mechanism by showing that delivery of nanotherapeutics to low IFP tumors with high leukocyte infiltration does not benefit from pretreatment with radiation or heat. These results demonstrate that focusing on small perturbations to steady-state fluid dynamics, rather than large sustained effects or uncertain immune cell recruitment strategies, can impart a vulnerability to tumors with high IFP and enhance nanotherapeutic drug delivery and treatment efficacy.
Collapse
Affiliation(s)
- Shawn Stapleton
- Department of Medical Biophysics , University of Toronto , Toronto , ON M5G 1L7 , Canada
| | - Michael Dunne
- Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , ON M5S 3M2 , Canada
| | - Michael Milosevic
- Department of Radiation Oncology , University of Toronto , Toronto , ON M5S 3E2 , Canada
| | - Charles W Tran
- Department of Immunology , University of Toronto , Toronto , ON M5S 1A1 , Canada
| | | | | | | | - Pamela S Ohashi
- Department of Immunology , University of Toronto , Toronto , ON M5S 1A1 , Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , ON M5S 3M2 , Canada
| | - David A Jaffray
- Department of Medical Biophysics , University of Toronto , Toronto , ON M5G 1L7 , Canada
- Department of Radiation Oncology , University of Toronto , Toronto , ON M5S 3E2 , Canada
- Techna Institute , University Health Network , Toronto , ON M5G 1L5 , Canada
| |
Collapse
|
265
|
Joshi BP, Hardie J, Mingroni MA, Farkas ME. Surface-Modified Macrophages Facilitate Tracking of Breast Cancer-Immune Interactions. ACS Chem Biol 2018; 13:2339-2346. [PMID: 29856604 PMCID: PMC6201758 DOI: 10.1021/acschembio.8b00509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The immune system has been found to play key roles in cancer development and progression. Macrophages are typically considered to be pro-inflammatory cells but can also facilitate pro-oncogenic activities via associations with tumors and metastases. The study of macrophages and their interactions within the context of cancer microenvironments is stymied by the lack of a system to track them. We present a cell-based strategy for studying cancer-immune cell interactions by chemically modifying the surfaces of macrophages with fluorophores. Two widely used methods are employed, affecting cell surface proteins and glycans via NHS-ester and Staudinger ligation reactions, respectively. We show that these modifications do not interfere with macrophage responses to chemoattractants and that interactions with cancer cells can be readily monitored. This work describes the development of macrophage-based imaging agents for tumor detection and assessment of interactions between immune cells and cancers.
Collapse
Affiliation(s)
- Bishnu P. Joshi
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Joseph Hardie
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Michael A. Mingroni
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Michelle E. Farkas
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
266
|
Vakili‐Ghartavol R, Mombeiny R, Salmaninejad A, Sorkhabadi SMR, Faridi‐Majidi R, Jaafari MR, Mirzaei H. Tumor‐associated macrophages and epithelial–mesenchymal transition in cancer: Nanotechnology comes into view. J Cell Physiol 2018; 233:9223-9236. [DOI: 10.1002/jcp.27027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Roghayyeh Vakili‐Ghartavol
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Reza Mombeiny
- Cellular and Molecular Research Center, Iran University of Medical Sciences Tehran Iran
| | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science Tabriz Iran
- Department of Medical Genetics Faculty of Medicine, Student Research Committee, Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mahdi Rezayat Sorkhabadi
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences Tehran Iran
- Department of Toxicology–Pharmacology Faculty of Pharmacy, Pharmaceutical Science Branch, Islamic Azad University (IAUPS) Tehran Iran
| | - Reza Faridi‐Majidi
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Nanotechnology School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Hamed Mirzaei
- Department of Biomaterials Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
267
|
Efremova MV, Naumenko VA, Spasova M, Garanina AS, Abakumov MA, Blokhina AD, Melnikov PA, Prelovskaya AO, Heidelmann M, Li ZA, Ma Z, Shchetinin IV, Golovin YI, Kireev II, Savchenko AG, Chekhonin VP, Klyachko NL, Farle M, Majouga AG, Wiedwald U. Magnetite-Gold nanohybrids as ideal all-in-one platforms for theranostics. Sci Rep 2018; 8:11295. [PMID: 30050080 PMCID: PMC6062557 DOI: 10.1038/s41598-018-29618-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
High-quality, 25 nm octahedral-shaped Fe3O4 magnetite nanocrystals are epitaxially grown on 9 nm Au seed nanoparticles using a modified wet-chemical synthesis. These Fe3O4-Au Janus nanoparticles exhibit bulk-like magnetic properties. Due to their high magnetization and octahedral shape, the hybrids show superior in vitro and in vivo T2 relaxivity for magnetic resonance imaging as compared to other types of Fe3O4-Au hybrids and commercial contrast agents. The nanoparticles provide two functional surfaces for theranostic applications. For the first time, Fe3O4-Au hybrids are conjugated with two fluorescent dyes or the combination of drug and dye allowing the simultaneous tracking of the nanoparticle vehicle and the drug cargo in vitro and in vivo. The delivery to tumors and payload release are demonstrated in real time by intravital microscopy. Replacing the dyes by cell-specific molecules and drugs makes the Fe3O4-Au hybrids a unique all-in-one platform for theranostics.
Collapse
Affiliation(s)
- Maria V Efremova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Victor A Naumenko
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Marina Spasova
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Anastasiia S Garanina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Maxim A Abakumov
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
- Department of Medical Nanobiotechnology, Russian National Research Medical University, Moscow, 117997, Russian Federation
| | - Anastasia D Blokhina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Pavel A Melnikov
- Department of Fundamental and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Ministry of Health and Social Development of the Russian Federation, Moscow, 119034, Russian Federation
| | | | - Markus Heidelmann
- ICAN - Interdisciplinary Center for Analytics on the Nanoscale and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Zi-An Li
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Zheng Ma
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Igor V Shchetinin
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Yuri I Golovin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
- Derzhavin Tambov State University, Nanocenter, Tambov, 392000, Russian Federation
| | - Igor I Kireev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Alexander G Savchenko
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Vladimir P Chekhonin
- Department of Medical Nanobiotechnology, Russian National Research Medical University, Moscow, 117997, Russian Federation
- Department of Fundamental and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Ministry of Health and Social Development of the Russian Federation, Moscow, 119034, Russian Federation
| | - Natalia L Klyachko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Michael Farle
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Alexander G Majouga
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation.
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation.
- D. Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation.
| | - Ulf Wiedwald
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation.
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany.
| |
Collapse
|
268
|
Ling X, Chen X, Riddell IA, Tao W, Wang J, Hollett G, Lippard SJ, Farokhzad OC, Shi J, Wu J. Glutathione-Scavenging Poly(disulfide amide) Nanoparticles for the Effective Delivery of Pt(IV) Prodrugs and Reversal of Cisplatin Resistance. NANO LETTERS 2018; 18:4618-4625. [PMID: 29902013 PMCID: PMC6271432 DOI: 10.1021/acs.nanolett.8b01924] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Despite the broad antitumor spectrum of cisplatin, its therapeutic efficacy in cancer treatment is compromised by the development of drug resistance in tumor cells and systemic side effects. A close correlation has been drawn between cisplatin resistance in tumor cells and increased levels of intracellular thiol-containing species, especially glutathione (GSH). The construction of a unique nanoparticle (NP) platform composed of poly(disulfide amide) polymers with a high disulfide density for the effective delivery of Pt(IV) prodrugs capable of reversing cisplatin resistance through the disulfide-group-based GSH-scavenging process, as described herein, is a promising route by which to overcome limitations associated with tumor resistance. Following systematic screening, the optimized NPs (referred to as CP5 NPs) showed a small particle size (76.2 nm), high loading of Pt(IV) prodrugs (15.50% Pt), a sharp response to GSH, the rapid release of platinum (Pt) ions, and notable apoptosis of cisplatin-resistant A2780cis cells. CP5 NPs also exhibited long blood circulation and high tumor accumulation after intravenous injection. Moreover, in vivo efficacy and safety results showed that CP5 NPs effectively inhibited the growth of cisplatin-resistant xenograft tumors with an inhibition rate of 83.32% while alleviating serious side effects associated with cisplatin. The GSH-scavenging nanoplatform is therefore a promising route by which to enhance the therapeutic index of Pt drugs used currently in cancer treatment.
Collapse
Affiliation(s)
- Xiang Ling
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xing Chen
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Imogen A. Riddell
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Junqing Wang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Geoffrey Hollett
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Omid C. Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun Wu
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
269
|
Li H, Jin H, Wan W, Wu C, Wei L. Cancer nanomedicine: mechanisms, obstacles and strategies. Nanomedicine (Lond) 2018; 13:1639-1656. [PMID: 30035660 DOI: 10.2217/nnm-2018-0007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Targeting nanoparticles to cancers for improved therapeutic efficacy and decreased side effects remains a popular concept in the past decades. Although the enhanced permeability and retention effect serves as a key rationale for all the currently commercialized nanoformulations, it does not enable uniform delivery of nanoparticles to all tumorous regions in all patients with sufficient quantities. Also, the increase in overall survival is often modest. Many factors may influence the delivering process of nanoparticles, which must be taken into consideration for the promise of nanomedicine in patients to be realized. Herein, we review the mechanisms and influencing factors during the delivery of cancer therapeutics and summarize current strategies that have been developed for the fabrication of smart drug delivery systems.
Collapse
Affiliation(s)
- Huafei Li
- Department of Pathology, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
- Tumor Immunology & Gene Therapy Center, Third Affiliated Hospital of the Second Military Medical University, 225 Changhai Road, Shanghai, 200438, PR China
- International Joint Cancer Institute, Translational Medicine Institute, the Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, PR China
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, PR China
| | - Hai Jin
- Department of Thoracic Surgery/LaboratoryDiagnosis, First Affiliated Hospital of the Second Military Medical University,168 Changhai Road, Shanghai, 200438, PR China
| | - Wei Wan
- Department of Orthopedic Oncology, Spine Tumor Center, Second Affiliated Hospital of the Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, PR China
| | - Cong Wu
- Department of Thoracic Surgery/LaboratoryDiagnosis, First Affiliated Hospital of the Second Military Medical University,168 Changhai Road, Shanghai, 200438, PR China
| | - Lixin Wei
- Tumor Immunology & Gene Therapy Center, Third Affiliated Hospital of the Second Military Medical University, 225 Changhai Road, Shanghai, 200438, PR China
| |
Collapse
|
270
|
Joshi BP, Hardie J, Farkas ME. Harnessing Biology to Deliver Therapeutic and Imaging Entities via Cell-Based Methods. Chemistry 2018; 24:8717-8726. [PMID: 29543990 PMCID: PMC6174085 DOI: 10.1002/chem.201706180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/12/2018] [Indexed: 01/21/2023]
Abstract
The accumulation of therapeutic and imaging agents at sites of interest is critical to their efficacy. Similarly, off-target effects (especially toxicity) are a major liability for these entities. For this reason, the use of delivery vehicles to improve the distribution characteristics of bio-active agents has become ubiquitous in the field. However, the majority of traditionally employed, cargo-bearing platforms rely on passive accumulation. Even in cases where "targeting" functionalities are used, the agents must first reach the site in order for the ligand-receptor interaction to occur. The next stage of vehicle development is the use of "recruited" entities, which respond to biological signals produced in the tissues to be targeted, resulting in improved specificities. Recently, many advances have been made in the utilization of cells as delivery agents. They are biocompatible, exhibit excellent circulation lifetimes and tissue penetration capabilities, and respond to chemotactic signals. In this Minireview, we will explore various cell types, modifications, and applications where cell-based delivery agents are used.
Collapse
Affiliation(s)
- Bishnu P Joshi
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA, 01002, USA
| | - Joseph Hardie
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA, 01002, USA
| | - Michelle E Farkas
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA, 01002, USA
| |
Collapse
|
271
|
Pelt J, Busatto S, Ferrari M, Thompson EA, Mody K, Wolfram J. Chloroquine and nanoparticle drug delivery: A promising combination. Pharmacol Ther 2018; 191:43-49. [PMID: 29932886 DOI: 10.1016/j.pharmthera.2018.06.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clinically approved cancer therapies include small molecules, antibodies, and nanoparticles. There has been major progress in the treatment of several cancer types over recent decades. However, many challenges remain for optimal use of conventional and nanoparticle-based therapies in oncology including poor drug delivery, rapid clearance, and drug resistance. The antimalarial agent chloroquine has been found to mitigate some of these challenges by modulating cancer cells and the tissue microenvironment. Particularly, chloroquine was recently found to reduce immunological clearance of nanoparticles by resident macrophages in the liver, leading to increased tumor accumulation of nanodrugs. Additionally, chloroquine has been shown to improve drug delivery and efficacy through normalization of tumor vasculature and suppression of several oncogenic and stress-tolerance pathways, such as autophagy, that protect cancer cells from cytotoxic agents. This review will discuss the use of chloroquine as combination therapy to improve cancer treatment.
Collapse
Affiliation(s)
- Joe Pelt
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Florida State University, Tallahassee, FL 32306, USA
| | - Sara Busatto
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Molecular and Translational Medicine, University of Brescia, Brescia 25133, Italy.
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kabir Mody
- Division of Hematology/Oncology, Mayo Clinic Cancer Center, Mayo Clinic Florida, Jacksonville, FL 32224, USA.
| | - Joy Wolfram
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
272
|
Sulheim E, Kim J, van Wamel A, Kim E, Snipstad S, Vidic I, Grimstad IH, Widerøe M, Torp SH, Lundgren S, Waxman DJ, de Lange Davies C. Multi-modal characterization of vasculature and nanoparticle accumulation in five tumor xenograft models. J Control Release 2018; 279:292-305. [PMID: 29684498 PMCID: PMC5972071 DOI: 10.1016/j.jconrel.2018.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
Preclinical research has demonstrated that nanoparticles and macromolecules can accumulate in solid tumors due to the enhanced permeability and retention effect. However, drug loaded nanoparticles often fail to show increased efficacy in clinical trials. A better understanding of how tumor heterogeneity affects nanoparticle accumulation could help elucidate this discrepancy and help in patient selection for nanomedicine therapy. Here we studied five human tumor models with varying morphology and evaluated the accumulation of 100 nm polystyrene nanoparticles. Each tumor model was characterized in vivo using micro-computed tomography, contrast-enhanced ultrasound and diffusion-weighted and dynamic contrast-enhanced magnetic resonance imaging. Ex vivo, the tumors were sectioned for both fluorescence microscopy and histology. Nanoparticle uptake and distribution in the tumors were generally heterogeneous. Density of functional blood vessels measured by fluorescence microscopy correlated significantly (p = 0.0056) with nanoparticle accumulation and interestingly, inflow of microbubbles measured with ultrasound also showed a moderate but significant (p = 0.041) correlation with nanoparticle accumulation indicating that both amount of vessels and vessel morphology and perfusion predict nanoparticle accumulation. This indicates that blood vessel characterization using contrast-enhanced ultrasound imaging or other methods could be valuable for patient stratification for treatment with nanomedicines.
Collapse
Affiliation(s)
- Einar Sulheim
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway.
| | - Jana Kim
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway; Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Annemieke van Wamel
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Eugene Kim
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Sofie Snipstad
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Igor Vidic
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingeborg Hovde Grimstad
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Marius Widerøe
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Sverre H Torp
- Department of Laboratory Medicine, Children's and Women's Health, NTNU, Trondheim, Norway; Department of Pathology, St. Olav's University Hospital, Trondheim, Norway
| | - Steinar Lundgren
- Department of Oncology, St. Olav's University Hospital, Trondheim, Norway; Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Trondheim, Norway
| | - David J Waxman
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Catharina de Lange Davies
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
273
|
Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ, Weissleder R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng 2018; 2:578-588. [PMID: 31015631 PMCID: PMC6192054 DOI: 10.1038/s41551-018-0236-8] [Citation(s) in RCA: 727] [Impact Index Per Article: 103.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/13/2018] [Indexed: 12/21/2022]
Abstract
Tumour-associated macrophages (TAMs) are abundant in many cancers, and often display an immune-suppressive M2-like phenotype that fosters tumour growth and promotes resistance to therapy. Yet macrophages are highly plastic and can also acquire an anti-tumourigenic M1-like phenotype. Here, we show that R848, an agonist of the toll-like receptors (TLRs) TLR7 and TLR8 identified in a morphometric-based screen, is a potent driver of the M1 phenotype in vitro and that R848-loaded β-cyclodextrin nanoparticles (CDNPs) lead to efficient drug delivery to TAMs in vivo. As a monotherapy, the administration of CDNP-R848 in multiple tumour models in mice altered the functional orientation of the tumour immune microenvironment towards an M1 phenotype, leading to controlled tumour growth and protecting the animals against tumour rechallenge. When used in combination with the immune checkpoint inhibitor anti-PD-1, we observed improved immunotherapy response rates, also in a tumour model resistant to anti-PD-1 therapy. Our findings demonstrate the ability of rationally engineered drug–nanoparticle combinations to efficiently modulate TAMs for cancer immunotherapy.
Collapse
|
274
|
Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev 2018; 130:17-38. [PMID: 30009886 PMCID: PMC6130746 DOI: 10.1016/j.addr.2018.07.007] [Citation(s) in RCA: 827] [Impact Index Per Article: 118.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
The tumor accumulation of nanomedicines relies on the enhanced permeability and retention (EPR) effect. In the last 5-10 years, it has been increasingly recognized that there is a large inter- and intra-individual heterogeneity in EPR-mediated tumor targeting, explaining the heterogeneous outcomes of clinical trials in which nanomedicine formulations have been evaluated. To address this heterogeneity, as in other areas of oncology drug development, we have to move away from a one-size-fits-all tumor targeting approach, towards methods that can be employed to individualize and improve nanomedicine treatments. To this end, efforts have to be invested in better understanding the nature, the complexity and the heterogeneity of the EPR effect, and in establishing systems and strategies to enhance, combine, bypass and image EPR-based tumor targeting. In the present manuscript, we summarize key studies in which these strategies are explored, and we discuss how these approaches can be employed to enhance patient responses.
Collapse
Affiliation(s)
- Susanne K Golombek
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Jan-Niklas May
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Benjamin Theek
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Lia Appold
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Natascha Drude
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Nuclear Medicine, RWTH Aachen University Clinic, Aachen, Germany
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Pharmaceutics, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
275
|
Guipaud O, Jaillet C, Clément-Colmou K, François A, Supiot S, Milliat F. The importance of the vascular endothelial barrier in the immune-inflammatory response induced by radiotherapy. Br J Radiol 2018; 91:20170762. [PMID: 29630386 DOI: 10.1259/bjr.20170762] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Altered by ionising radiation, the vascular network is considered as a prime target to limit normal tissue damage and improve tumour control in radiotherapy (RT). Irradiation damages and/or activates endothelial cells, which then participate in the recruitment of circulating cells, especially by overexpressing cell adhesion molecules, but also by other as yet unknown mechanisms. Radiation-induced lesions are associated with infiltration of immune-inflammatory cells from the blood and/or the lymph circulation. Damaged cells from the tissues and immune-inflammatory resident cells release factors that attract cells from the circulation, leading to the restoration of tissue balance by fighting against infection, elimination of damaged cells and healing of the injured area. In normal tissues that surround the tumours, the development of an immune-inflammatory reaction in response to radiation-induced tissue injury can turn out to be chronic and deleterious for the organ concerned, potentially leading to fibrosis and/or necrosis of the irradiated area. Similarly, tumours can elicit an immune-inflammation reaction, which can be initialised and amplified by cancer therapy such as radiotherapy, although immune checkpoints often allow many cancers to be protected by inhibiting the T-cell signal. Herein, we have explored the involvement of vascular endothelium in the fate of healthy tissues and tumours undergoing radiotherapy. This review also covers current investigations that take advantage of the radiation-induced response of the vasculature to spare healthy tissue and/or target tumours better.
Collapse
Affiliation(s)
- Olivier Guipaud
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Cyprien Jaillet
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Karen Clément-Colmou
- 2 Département de Radiothérapie, Institut de Cancérologie de l'Ouest , Nantes St-Herblain , France.,3 Oncology and New Concept in Oncology Department, Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCiNA), Unité U1232, Institut de Recherche en Santé de l'Université de Nantes , Nantes , France
| | - Agnès François
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Stéphane Supiot
- 2 Département de Radiothérapie, Institut de Cancérologie de l'Ouest , Nantes St-Herblain , France.,3 Oncology and New Concept in Oncology Department, Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCiNA), Unité U1232, Institut de Recherche en Santé de l'Université de Nantes , Nantes , France
| | - Fabien Milliat
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| |
Collapse
|
276
|
Simón-Gracia L, Scodeller P, Fuentes SS, Vallejo VG, Ríos X, San Sebastián E, Sidorenko V, Di Silvio D, Suck M, De Lorenzi F, Rizzo LY, von Stillfried S, Kilk K, Lammers T, Moya SE, Teesalu T. Application of polymersomes engineered to target p32 protein for detection of small breast tumors in mice. Oncotarget 2018; 9:18682-18697. [PMID: 29721153 PMCID: PMC5922347 DOI: 10.18632/oncotarget.24588] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/10/2018] [Indexed: 12/11/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the deadliest form of breast cancer and its successful treatment critically depends on early diagnosis and therapy. The multi-compartment protein p32 is overexpressed and present at cell surfaces in a variety of tumors, including TNBC, specifically in the malignant cells and endothelial cells, and in macrophages localized in hypoxic areas of the tumor. Herein we used polyethylene glycol-polycaprolactone polymersomes that were affinity targeted with the p32-binding tumor penetrating peptide LinTT1 (AKRGARSTA) for imaging of TNBC lesions. A tyrosine residue was added to the peptide to allow for 124I labeling and PET imaging. In a TNBC model in mice, systemic LinTT1-targeted polymersomes accumulated in early tumor lesions more than twice as efficiently as untargeted polymersomes with up to 20% ID/cc at 24 h after administration. The PET-imaging was very sensitive, allowing detection of tumors as small as ∼20 mm3. Confocal imaging of tumor tissue sections revealed a high degree of vascular exit and stromal penetration of LinTT1-targeted polymersomes and co-localization with tumor-associated macrophages. Our studies show that systemic LinTT1-targeted polymersomes can be potentially used for precision-guided tumor imaging and treatment of TNBC.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Pablo Scodeller
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | | | | | - Xabier Ríos
- Laboratory of Radiochemistry, CIC Biomagune, 20009 Donostia, Spain
| | | | - Valeria Sidorenko
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | | | - Meina Suck
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany.,Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE Enschede, The Netherlands
| | - Federica De Lorenzi
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Larissa Yokota Rizzo
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Saskia von Stillfried
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Kalle Kilk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Estonia
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany.,Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE Enschede, The Netherlands
| | - Sergio E Moya
- Soft Matter Laboratoy, CIC Biomagune, 20009 Donostia, Spain
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia.,Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92097, USA.,Center for Nanomedicine, University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
277
|
Harrison EB, Azam SH, Pecot CV. Targeting Accessories to the Crime: Nanoparticle Nucleic Acid Delivery to the Tumor Microenvironment. Front Pharmacol 2018; 9:307. [PMID: 29670528 PMCID: PMC5893903 DOI: 10.3389/fphar.2018.00307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
Nucleic acid delivery for cancer holds extraordinary promise. Increasing expression of tumor suppressor genes or inhibition of oncogenes in cancer cells has important therapeutic potential. However, several barriers impair progress in cancer gene delivery. These include effective delivery to cancer cells and relevant intracellular compartments. Although viral gene delivery can be effective, it has the disadvantages of being immuno-stimulatory, potentially mutagenic and lacking temporal control. Various nanoparticle (NP) platforms have been developed to overcome nucleic acid delivery hurdles, but several challenges still exist. One such challenge has been the accumulation of NPs in non-cancer cells within the tumor microenvironment (TME) as well as the circulation. While uptake by these cancer-associated cells is considered to be an off-target effect in some contexts, several strategies have now emerged to utilize NP-mediated gene delivery to intentionally alter the TME. For example, the similarity of NPs in shape and size to pathogens promotes uptake by antigen presenting cells, which can be used to increase immune stimulation and promote tumor killing by T-lymphocytes. In the era of immunotherapy, boosting the ability of the immune system to eliminate cancer cells has proven to be an exciting new area in cancer nanotechnology. Given the importance of cancer-associated cells in tumor growth and metastasis, targeting these cells in the TME opens up new therapeutic applications for NPs. This review will cover evidence for non-cancer cell accumulation of NPs in animal models and patients, summarize characteristics that promote NP delivery to different cell types, and describe several therapeutic strategies for gene modification within the TME.
Collapse
Affiliation(s)
- Emily B. Harrison
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Salma H. Azam
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chad V. Pecot
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
278
|
Zhao Y, Zhao X, Cheng Y, Guo X, Yuan W. Iron Oxide Nanoparticles-Based Vaccine Delivery for Cancer Treatment. Mol Pharm 2018; 15:1791-1799. [DOI: 10.1021/acs.molpharmaceut.7b01103] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yi Zhao
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaotian Zhao
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yuan Cheng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoshuang Guo
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
279
|
Abstract
Cell therapy has become a momentum-gathering treatment strategy for a variety of diseases, including cancer, diabetes, hemophilia, and cardiomyopathy. However, clinical applications of conventional cell therapies have often been compromised by rapid decline in viability and function of the transplanted cells due to host recognition and subsequent foreign body rejection. Along this line, cell engineering technologies such as cell encapsulation within microcapsules and immobilization in porous scaffolds have been implemented to address the immunosuppression concerns. As a recent emerging research topic, drawing inspiration from the ways that natural cells interact with the body has opened new avenues for cell engineering, such as direct modification of whole cells with synthetic materials and "top-down" integration of biological membranes with micro/nanomaterials, which aim to alleviate immune response while harnessing the complex biological functions of cells. In this Account, we summarize our recent contribution to the field of cell engineering methodologies, with which we have demonstrated their promising applications for cancer immunotherapy, targeted drug delivery, and blood glucose regulation. For example, inspired by the inherent ability of platelets to accumulate at wound sites and interact with circulating tumor cells, we exploited a targeted checkpoint antibody delivery strategy for treatment of postsurgical cancer recurrence and metastatic spread by covalent binding of platelets' cell surfaces with a monoclonal antibody against programmed-death ligand 1 (aPDL1). Without interfering with the platelets' surgical-site homing property, the conjugated aPDL1 could be triggered to release in the form of microparticles after in situ activation. As an extension, we then engineered the platelet membrane to cloak nanoparticles for anticancer drug delivery, mimicking the targeting capability of the source cells while possessing prolonged circulation lifetime and insignificant immunogenicity. At the same time, we also found that the subcellular compartment membrane-derived particulates exhibited high specificity toward homotypic cells, by which enhanced intracellular drug delivery was achieved. Moreover, by taking advantage of the reversible interaction between glucose-derivative-modified insulin and the red blood cell membrane, we constructed a glucose-responsive smart insulin delivery system for long-term maintenance of blood glucose levels within a normal range. Recently, by virtue of painless microneedle patches as convenient cell engineering platforms, a minimally invasive intradermal antitumor vaccine was invented by integrating whole-tumor lysis into near-infrared light-illuminated microneedle patches. The microneedle patches also showed promise in combining with conventional cell encapsulation techniques, by which an externally positioned β-cell engineering strategy was proposed for diabetes treatment. The results presented in this Account demonstrate distinct approaches to the development and application of cell engineering strategies for drug delivery.
Collapse
Affiliation(s)
- Zhaowei Chen
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Quanyin Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
280
|
Miller MA, Chandra R, Cuccarese MF, Pfirschke C, Engblom C, Stapleton S, Adhikary U, Kohler RH, Mohan JF, Pittet MJ, Weissleder R. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci Transl Med 2018; 9:9/392/eaal0225. [PMID: 28566423 DOI: 10.1126/scitranslmed.aal0225] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/23/2017] [Accepted: 04/24/2017] [Indexed: 12/13/2022]
Abstract
Efficient delivery of therapeutic nanoparticles (TNPs) to tumors is critical in improving efficacy, yet strategies that universally maximize tumoral targeting by TNP modification have been difficult to achieve in the clinic. Instead of focusing on TNP optimization, we show that the tumor microenvironment itself can be therapeutically primed to facilitate accumulation of multiple clinically relevant TNPs. Building on the recent finding that tumor-associated macrophages (TAM) can serve as nanoparticle drug depots, we demonstrate that local tumor irradiation substantially increases TAM relative to tumor cells and, thus, TNP delivery. High-resolution intravital imaging reveals that after radiation, TAM primarily accumulate adjacent to microvasculature, elicit dynamic bursts of extravasation, and subsequently enhance drug uptake in neighboring tumor cells. TAM depletion eliminates otherwise beneficial radiation effects on TNP accumulation and efficacy, and controls with unencapsulated drug show that radiation effects are more pronounced with TNPs. Priming with combined radiation and cyclophosphamide enhances vascular bursting and tumoral TNP concentration, in some cases leading to a sixfold increase of TNP accumulation in the tumor, reaching 6% of the injected dose per gram of tissue. Radiation therapy alters tumors for enhanced TNP delivery in a TAM-dependent fashion, and these observations have implications for the design of next-generation tumor-targeted nanomaterials and clinical trials for adjuvant strategies.
Collapse
Affiliation(s)
- Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Ravi Chandra
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA.,Harvard Radiation Oncology Program, 55 Fruit Street, Boston, MA 02114, USA
| | - Michael F Cuccarese
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Christina Pfirschke
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Camilla Engblom
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Shawn Stapleton
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Utsarga Adhikary
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - James F Mohan
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA. .,Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
281
|
Ramu V, Gautam S, Garai A, Kondaiah P, Chakravarty AR. Glucose-Appended Platinum(II)-BODIPY Conjugates for Targeted Photodynamic Therapy in Red Light. Inorg Chem 2018; 57:1717-1726. [PMID: 29400953 DOI: 10.1021/acs.inorgchem.7b02249] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Platinum(II) complexes [Pt(L1)(R-BODIPY)]Cl (1) and [Pt(L2)(R-BODIPY)]Cl (2), where R-BODIPY is 8-(4-ethynylphenyl)-distyryl-4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3, L1 is 4'-phenyl-2,2':6',2″-terpyridine, and L2 is (2,2':6',2″-terpyridin-4'-oxy)ethyl-β-d-glucopyranoside, were synthesized and characterized, and their photocytotoxicity was studied. The phenylacetylide complex [Pt(L1)(C≡CPh)]Cl (3) was prepared and used as a control. Complexes 1 and 2 showed near-IR absorption bands at 713 nm (ε = 3.47 × 104 M-1 cm-1) and 715 nm (3.2 × 104 M-1 cm-1) in 10% dimethyl sulfoxide (DMSO)-Dulbecco's Modified Eagle's Medium (DMEM) (pH 7.2). The BODIPY complexes are emissive in 10% DMSO-DMEM at pH 7.2 with λem (λex, Φf) = 822 nm (710 nm, 0.022) for complex 1 and λem (λex, Φf) = 825 nm (710 nm, 0.026) for complex 2. They generated singlet oxygen (1O2) in red light as evidenced from 1,3-diphenylisobenzofuran (DPBF) titration experiments. The singlet oxygen quantum yield (ΦΔ) values for 1 and 2 were ∼0.6 signifying their photosensitizing ability. They were remarkably photodynamic therapy (PDT) active in red light showing significant red light-induced cytotoxicity in cervical HeLa, lung cancer A549, and breast cancer MCF-7 cells (IC50: 2.3-24.7 μM in light) with negligible dark toxicity (IC50 > 100 μM). A significant enhancement in cellular uptake was observed for 2 having glucose-appended terpyridine ligand compared to 1. The confocal microscopy showed significant mitochondrial localization of the complexes as evidenced from the JC-1 assay. The complexes released the photoactive R-BODIPY ligand upon red light-irradiation as evidenced from the mass and 1H NMR spectral studies. Complex 2 is remarkable in satisfying the essential requirements of targeted PDT in red light.
Collapse
Affiliation(s)
- Vanitha Ramu
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Srishti Gautam
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Paturu Kondaiah
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
282
|
Hartshorn CM, Bradbury MS, Lanza GM, Nel AE, Rao J, Wang AZ, Wiesner UB, Yang L, Grodzinski P. Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care. ACS NANO 2018; 12:24-43. [PMID: 29257865 PMCID: PMC6589353 DOI: 10.1021/acsnano.7b05108] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ongoing research into the application of nanotechnology for cancer treatment and diagnosis has demonstrated its advantages within contemporary oncology as well as its intrinsic limitations. The National Cancer Institute publishes the Cancer Nanotechnology Plan every 5 years since 2005. The most recent iteration helped codify the ongoing basic and translational efforts of the field and displayed its breadth with several evolving areas. From merely a technological perspective, this field has seen tremendous growth and success. However, an incomplete understanding of human cancer biology persists relative to the application of nanoscale materials within contemporary oncology. As such, this review presents several evolving areas in cancer nanotechnology in order to identify key clinical and biological challenges that need to be addressed to improve patient outcomes. From this clinical perspective, a sampling of the nano-enabled solutions attempting to overcome barriers faced by traditional therapeutics and diagnostics in the clinical setting are discussed. Finally, a strategic outlook of the future is discussed to highlight the need for next-generation cancer nanotechnology tools designed to address critical gaps in clinical cancer care.
Collapse
Affiliation(s)
- Christopher M Hartshorn
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Corresponding Author,
| | - Michelle S Bradbury
- Department of Radiology and Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, New York, 10065, United States
| | - Gregory M Lanza
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63108, United States
| | - Andre E Nel
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jianghong Rao
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, California 94305, United States
| | - Andrew Z. Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ulrich B Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14843, United States
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Piotr Grodzinski
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Corresponding Author,
| |
Collapse
|
283
|
Atkinson SP, Andreu Z, Vicent MJ. Polymer Therapeutics: Biomarkers and New Approaches for Personalized Cancer Treatment. J Pers Med 2018; 8:E6. [PMID: 29360800 PMCID: PMC5872080 DOI: 10.3390/jpm8010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
Polymer therapeutics (PTs) provides a potentially exciting approach for the treatment of many diseases by enhancing aqueous solubility and altering drug pharmacokinetics at both the whole organism and subcellular level leading to improved therapeutic outcomes. However, the failure of many polymer-drug conjugates in clinical trials suggests that we may need to stratify patients in order to match each patient to the right PT. In this concise review, we hope to assess potential PT-specific biomarkers for cancer treatment, with a focus on new studies, detection methods, new models and the opportunities this knowledge will bring for the development of novel PT-based anti-cancer strategies. We discuss the various "hurdles" that a given PT faces on its passage from the syringe to the tumor (and beyond), including the passage through the bloodstream, tumor targeting, tumor uptake and the intracellular release of the active agent. However, we also discuss other relevant concepts and new considerations in the field, which we hope will provide new insight into the possible applications of PT-related biomarkers.
Collapse
Affiliation(s)
- Stuart P Atkinson
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Zoraida Andreu
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
284
|
Bhavsar C, Momin M, Khan T, Omri A. Targeting tumor microenvironment to curb chemoresistance via novel drug delivery strategies. Expert Opin Drug Deliv 2018; 15:641-663. [PMID: 29301448 DOI: 10.1080/17425247.2018.1424825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Tumor is a heterogeneous mass of malignant cells co-existing with non-malignant cells. This co-existence evolves from the initial developmental stages of the tumor and is one of the hallmarks of cancer providing a protumorigenic niche known as tumor microenvironment (TME). Proliferation, invasiveness, metastatic potential and maintenance of stemness through cross-talk between tumors and its stroma forms the basis of TME. AREAS COVERED The article highlights the developmental phases of a tumor from dysplasia to the formation of clinically detectable tumors. The authors discuss the mechanistic stages involved in the formation of TME and its contribution in tumor outgrowth and chemoresistance. The authors have reviewed various approaches for targeting TME and its hallmarks along with their advantages and pitfalls. The authors also highlight cancer stem cells (CSCs) that are resistant to chemotherapeutics and thus a primary reason for tumor recurrence thereby, posing a challenge for the oncologists. EXPERT OPINION Recent understanding of the cellular and molecular mechanisms involved in acquired chemoresistance has enabled scientists to target the tumor niche and TME and modulate and/or disrupt this communication leading to the transformation from a tumor-supportive niche environment to a tumor-non-supporting environment and give synergistic results towards an effective management of cancer.
Collapse
Affiliation(s)
- Chintan Bhavsar
- a Department of Pharmaceutics, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Munira Momin
- a Department of Pharmaceutics, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Tabassum Khan
- b Department of Quality Assurance and Pharmaceutical Chemistry, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Abdelwahab Omri
- c The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry , Laurentian University , Sudbury , ON , Canada
| |
Collapse
|
285
|
Dai Q, Bertleff‐Zieschang N, Braunger JA, Björnmalm M, Cortez‐Jugo C, Caruso F. Particle Targeting in Complex Biological Media. Adv Healthc Mater 2018; 7. [PMID: 28809092 DOI: 10.1002/adhm.201700575] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/04/2017] [Indexed: 12/22/2022]
Abstract
Over the past few decades, nanoengineered particles have gained increasing interest for applications in the biomedical realm, including diagnosis, imaging, and therapy. When functionalized with targeting ligands, these particles have the potential to interact with specific cells and tissues, and accumulate at desired target sites, reducing side effects and improve overall efficacy in applications such as vaccination and drug delivery. However, when targeted particles enter a complex biological environment, the adsorption of biomolecules and the formation of a surface coating (e.g., a protein corona) changes the properties of the carriers and can render their behavior unpredictable. For this reason, it is of importance to consider the potential challenges imposed by the biological environment at the early stages of particle design. This review describes parameters that affect the targeting ability of particulate drug carriers, with an emphasis on the effect of the protein corona. We highlight strategies for exploiting the protein corona to improve the targeting ability of particles. Finally, we provide suggestions for complementing current in vitro assays used for the evaluation of targeting and carrier efficacy with new and emerging techniques (e.g., 3D models and flow-based technologies) to advance fundamental understanding in bio-nano science and to accelerate the development of targeted particles for biomedical applications.
Collapse
Affiliation(s)
- Qiong Dai
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Nadja Bertleff‐Zieschang
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Julia A. Braunger
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Christina Cortez‐Jugo
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
286
|
Ouyang C, Chen L, Rees TW, Chen Y, Liu J, Ji L, Long J, Chao H. A mitochondria-targeting hetero-binuclear Ir(iii)–Pt(ii) complex induces necrosis in cisplatin-resistant tumor cells. Chem Commun (Camb) 2018; 54:6268-6271. [DOI: 10.1039/c8cc02795a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A hetero-binuclear Ir(iii)–Pt(ii) complex can selectively accumulate in the mitochondria to induce mitochondrial DNA (mtDNA) damage and evoke cellular events consistent with necrosis in A549R cells.
Collapse
Affiliation(s)
- Cheng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Lei Chen
- Center for Mitochondrial Biology and Medicine
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology and Frontier Institute of Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology and Frontier Institute of Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology and Frontier Institute of Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| |
Collapse
|
287
|
Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, Moghimi SM. Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol 2017; 34:33-51. [DOI: 10.1016/j.smim.2017.08.013] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
|
288
|
Abstract
The effectiveness of anticancer drugs in treating a solid tumour is dependent on delivery of the drug to virtually all cancer cells in the tumour. The distribution of drug in tumour tissue depends on the plasma pharmacokinetics, the structure and function of the tumour vasculature and the transport properties of the drug as it moves through microvessel walls and in the extravascular tissue. The aim of this Review is to provide a broad, balanced perspective on the current understanding of drug transport to tumour cells and on the progress in developing methods to enhance drug delivery. First, the fundamental processes of solute transport in blood and tissue by convection and diffusion are reviewed, including the dependence of penetration distance from vessels into tissue on solute binding or uptake in tissue. The effects of the abnormal characteristics of tumour vasculature and extravascular tissue on these transport properties are then discussed. Finally, methods for overcoming limitations in drug transport and thereby achieving improved therapeutic results are surveyed.
Collapse
Affiliation(s)
- Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, Arizona 85724, USA
| |
Collapse
|
289
|
Wang C, Li K, Li T, Chen Z, Wen Y, Liu X, Jia X, Zhang Y, Xu Y, Han M, Komatsu N, Zhao L, Chen X. Monocyte-mediated chemotherapy drug delivery in glioblastoma. Nanomedicine (Lond) 2017; 13:157-178. [PMID: 29173008 DOI: 10.2217/nnm-2017-0266] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To mechanistically prove the concept of monocyte-mediated nano drug delivery in glioblastoma (GBM). RESULTS nano-doxorubicin-loaded monocytes (Nano-DOX-MC) were viable, able to cross an artificial endothelial barrier and capable of infiltrating GBM spheroids and releasing drug therein. GBM cells stimulated unloading of Nano-DOX-MC and took up the unloaded drug and released damage-associated molecular patterns. In mice with orthotopic GBM xenografts, Nano-DOX-MC resulted in much improved tumor drug delivery efficacy and damage-associated molecular patterns emission. Mechanistically, Nano-DOX was found sequestered in the lysosomal compartment and to induce autophagy, which may underlie MC's tolerance to Nano-DOX. Lysosomal exocytosis was found involved in the discharging mechanism of intracellular Nano-DOX. CONCLUSION Nano-DOX can be effectively delivered by MC in GBM and induce cancer cell damage.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Ke Li
- Center for Lab Teaching of Basic Medicine, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Tongfei Li
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Zhuo Chen
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Yu Wen
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Xin Liu
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Xuemei Jia
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Yichao Zhang
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Yonghong Xu
- Department of Ophthalmology, Institute of Ophthalmological Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Min Han
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Naoki Komatsu
- Graduate School of Human & Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Li Zhao
- School of Radiation Medicine & Protection (SRMP), School of Radiation & Multidisciplinary Sciences (RAD-X), Medical College, Soochow University, Suzhou 215123, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
290
|
Chen H, Chen F, Hu W, Gou S. Effective platinum(IV) prodrugs conjugated with lonidamine as a functional group working on the mitochondria. J Inorg Biochem 2017; 180:119-128. [PMID: 29253663 DOI: 10.1016/j.jinorgbio.2017.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 01/08/2023]
Abstract
Platinum-based anticancer drugs are one of the most widely used anticancer chemotherapeutics in oncology. Lonidamine (LND) could increase the response of human tumor cells to platinum(II) drugs in preclinical studies by working on the mitochondria. Herein, five platinum(IV) prodrugs conjugated with their potentiator LND are prepared, and most of the target complexes achieve improved anticancer activities compared with their platinum(II) precursors. Notably, Pt(NH3)2(LND)Cl3 (complex 1) derived from cisplatin achieve significantly improved anticancer activities against LNCaP cells and could trigger cancer cell death via an apoptotic pathway and the cell cycle arrest mainly at S phases. And the induction of apoptosis by complex 1 in LNCaP cells is closely associated with mitochondrial function disruption and reactive oxygen species (ROS) accumulation. Moreover, it is possessed of the ability to overcome cisplatin-resistance. Further research revealed that complex 1 could be easily reduced to release its platinum(II) precursor and axial ligand by ascorbic acid. All the results provid evidence to support the design strategy of conjugating platinum complexes with its potentiator to improve their anticancer effect.
Collapse
Affiliation(s)
- Hong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; JiangsuProvince Hi-Tech Key Laboratory for Bio-medical Research, SoutheastUniversity, Nanjing 211189, China
| | - Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; JiangsuProvince Hi-Tech Key Laboratory for Bio-medical Research, SoutheastUniversity, Nanjing 211189, China
| | - Weiwei Hu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; JiangsuProvince Hi-Tech Key Laboratory for Bio-medical Research, SoutheastUniversity, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; JiangsuProvince Hi-Tech Key Laboratory for Bio-medical Research, SoutheastUniversity, Nanjing 211189, China.
| |
Collapse
|
291
|
Abstract
The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.
Collapse
Affiliation(s)
- Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, Pennsylvania 19104, USA
- Department of Chemical Engineering, David H. Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories of Tumour Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Cox 7, Boston, Massachusetts 02114, USA
| | - Robert Langer
- Department of Chemical Engineering, David H. Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
292
|
Björnmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging Bio-Nano Science and Cancer Nanomedicine. ACS NANO 2017; 11:9594-9613. [PMID: 28926225 DOI: 10.1021/acsnano.7b04855] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The interface of bio-nano science and cancer medicine is an area experiencing much progress but also beset with controversy. Core concepts of the field-e.g., the enhanced permeability and retention (EPR) effect, tumor targeting and accumulation, and even the purpose of "nano" in cancer medicine-are hotly debated. In parallel, considerable advances in neighboring fields are occurring rapidly, including the recent progress of "immuno-oncology" and the fundamental impact it is having on our understanding and the clinical treatment of the group of diseases collectively known as cancer. Herein, we (i) revisit how cancer is commonly treated in the clinic and how this relates to nanomedicine; (ii) examine the ongoing debate on the relevance of the EPR effect and tumor targeting; (iii) highlight ways to improve the next-generation of nanomedicines; and (iv) discuss the emerging concept of working with (and not against) biology. While discussing these controversies, challenges, emerging concepts, and opportunities, we explore new directions for the field of cancer nanomedicine.
Collapse
Affiliation(s)
- Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Kristofer J Thurecht
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The Australian Institute for Bioengineering and Nanotechnology and The Centre for Advanced Imaging, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Michael Michael
- Division of Cancer Medicine, Peter MacCallum Cancer Centre , Melbourne, Victoria 3000, Australia
- The Peter MacCallum Department of Oncology, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University , Melbourne, Victoria 3084, Australia
- Department of Molecular Imaging and Therapy, Austin Hospital , Heidelberg, Victoria 3084, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
293
|
Wolfram J, Nizzero S, Liu H, Li F, Zhang G, Li Z, Shen H, Blanco E, Ferrari M. A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Sci Rep 2017; 7:13738. [PMID: 29062065 PMCID: PMC5653759 DOI: 10.1038/s41598-017-14221-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/06/2017] [Indexed: 11/09/2022] Open
Abstract
Site-specific localization is critical for improving the therapeutic efficacy and safety of drugs. Nanoparticles have emerged as promising tools for localized drug delivery. However, over 90% of systemically injected nanocarriers typically accumulate in the liver and spleen due to resident macrophages that form the mononuclear phagocyte system. In this study, the clinically approved antimalarial agent chloroquine was shown to reduce nanoparticle uptake in macrophages by suppressing endocytosis. Pretreatment of mice with a clinically relevant dose of chloroquine substantially decreased the accumulation of liposomes and silicon particles in the mononuclear phagocyte system and improved tumoritropic and organotropic delivery. The novel use of chloroquine as a macrophage-preconditioning agent presents a straightforward approach for addressing a major barrier in nanomedicine. Moreover, this priming strategy has broad applicability for improving the biodistribution and performance of particulate delivery systems. Ultimately, this study defines a paradigm for the combined use of macrophage-modulating agents with nanotherapeutics for improved site-specific delivery.
Collapse
Affiliation(s)
- Joy Wolfram
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Transplantation, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Sara Nizzero
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Applied Physics Graduate Program, Rice University, Houston, TX, 77005, USA
| | - Haoran Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Feng Li
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Guodong Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Zheng Li
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Medicine, Weill Cornell Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
294
|
Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials 2017; 156:217-237. [PMID: 29207323 DOI: 10.1016/j.biomaterials.2017.10.024] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Despite rapid advancements in the field of nanotechnology, there is mounting frustration in the scientific community regarding the translational impact of nanomedicine. Modest therapeutic performance of FDA-approved nanomedicines combined with multiple disappointing clinical trials (such as phase III HEAT trial) have raised questions about the future of nanomedicine. Encouraging breakthroughs, however, have been made in the last few years towards the development of new classes of nanoparticles that can respond to tumor microenvironmental conditions and successfully deliver therapeutic agents to cancer cells. Concurrently, a great deal of effort has also been devoted to alter various parameters of tumor pathophysiology to pre-treat tumors before nanoparticles are administered. Such 'priming' treatments improve access of the systemically administered agents to the tumor and promote drug penetration into the deeper layers of tumor tissue. This review will highlight recent advances in cancer nanomedicine exploiting both nanoparticle design and tumor microenvironment modification; and provide a critical perspective on the future development of nanomedicine delivery in oncology.
Collapse
|
295
|
Li TF, Li K, Wang C, Liu X, Wen Y, Xu YH, Zhang Q, Zhao QY, Shao M, Li YZ, Han M, Komatsu N, Zhao L, Chen X. Harnessing the cross-talk between tumor cells and tumor-associated macrophages with a nano-drug for modulation of glioblastoma immune microenvironment. J Control Release 2017; 268:128-146. [PMID: 29051064 DOI: 10.1016/j.jconrel.2017.10.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/03/2017] [Accepted: 10/14/2017] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is the most frequent and malignant brain tumor with a high mortality rate. The presence of a large population of macrophages (Mφ) in the tumor microenvironment is a prominent feature of GBM and these so-called tumor-associated Mφ (TAM) closely interact with the GBM cells to promote the survival, progression and therapy resistance of the GBM. Various therapeutic strategies have been devised either targeting the GBM cells or the TAM but few have addressed the cross-talks between the two cell populations. The present study was carried out to explore the possibility of exploiting the cross-talks between the GBM cells (GC) and TAM for modulation of the GBM microenvironment through using Nano-DOX, a drug composite based on nanodiamonds bearing doxorubicin. In the in vitro work on human cell models, Nano-DOX-loaded TAM were first shown to be viable and able to infiltrate three-dimensional GC spheroids and release cargo drug therein. GC were then demonstrated to encourage Nano-DOX-loaded TAM to unload Nano-DOX back into GC which consequently emitted damage-associated molecular patterns (DAMPs) that are powerful immunostimulatory agents as well as indicators of cell damage. Nano-DOX was next proven to be a more potent inducer of GC DAMPs emission than doxorubicin. As a result, Nano-DOX-damaged GC exhibited an enhanced ability to attract both TAM and Nano-DOX-loaded TAM. Most remarkably, Nano-DOX-damaged GC reprogrammed the TAM from a pro-GBM phenotype to an anti-GBM phenotype that suppressed GC growth. Finally, the in vivo relevance of the in vitro findings was tested in animal study. Mice bearing orthotopic human GBM xenografts were intravenously injected with Nano-DOX-loaded mouse TAM which were found releasing drug in the GBM xenografts 24h after injection. GC damage was evidenced by the induction of DAMPs emission within the xenografts and a shift of TAM phenotype was detected as well. Taken together, our results demonstrate a novel way with therapeutic potential to harness the cross-talk between GBM cells and TAM for modulation of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Tong-Fei Li
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Ke Li
- Center for Lab Teaching, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Chao Wang
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Xin Liu
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yu Wen
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yong-Hong Xu
- Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Quan Zhang
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Qiu-Ya Zhao
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Ming Shao
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yan-Ze Li
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Min Han
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Li Zhao
- School of Radiation Medicine and Protection (SRMP), School of Radiation and Multidisciplinary Sciences (RAD-X), Medical College, Soochow University, Suzhou 215123, China.
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
296
|
Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat Commun 2017; 8:777. [PMID: 28974673 PMCID: PMC5626760 DOI: 10.1038/s41467-017-00600-w] [Citation(s) in RCA: 490] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/11/2017] [Indexed: 01/27/2023] Open
Abstract
In vitro incubation of nanomaterials with plasma offer insights on biological interactions, but cannot fully explain the in vivo fate of nanomaterials. Here, we use a library of polymer nanoparticles to show how physicochemical characteristics influence blood circulation and early distribution. For particles with different diameters, surface hydrophilicity appears to mediate early clearance. Densities above a critical value of approximately 20 poly(ethylene glycol) chains (MW 5 kDa) per 100 nm2 prolong circulation times, irrespective of size. In knockout mice, clearance mechanisms are identified for nanoparticles with low and high steric protection. Studies in animals deficient in the C3 protein showed that complement activation could not explain differences in the clearance of nanoparticles. In nanoparticles with low poly(ethylene glycol) coverage, adsorption of apolipoproteins can prolong circulation times. In parallel, the low-density-lipoprotein receptor plays a predominant role in the clearance of nanoparticles, irrespective of poly(ethylene glycol) density. These results further our understanding of nanopharmacology. Understanding the interaction between nanoparticles and biomolecules is crucial for improving current drug-delivery systems. Here, the authors shed light on the essential role of the surface and other physicochemical properties of a library of nanoparticles on their in vivo pharmacokinetics.
Collapse
|
297
|
Zia Q, Mohammad O, Rauf MA, Khan W, Zubair S. Biomimetically engineered Amphotericin B nano-aggregates circumvent toxicity constraints and treat systemic fungal infection in experimental animals. Sci Rep 2017; 7:11873. [PMID: 28928478 PMCID: PMC5605718 DOI: 10.1038/s41598-017-11847-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 08/15/2017] [Indexed: 12/30/2022] Open
Abstract
Biomimetic synthesis of nanoparticles offers a convenient and bio friendly approach to fabricate complex structures with sub-nanometer precision from simple precursor components. In the present study, we have synthesized nanoparticles of Amphotericin B (AmB), a potent antifungal agent, using Aloe vera leaf extract. The synthesis of AmB nano-assemblies (AmB-NAs) was established employing spectro-photometric and electron microscopic studies, while their crystalline nature was established by X-ray diffraction. AmB-nano-formulation showed much higher stability in both phosphate buffer saline and serum and exhibit sustained release of parent drug over an extended time period. The as-synthesized AmB-NA possessed significantly less haemolysis as well as nephrotoxicity in the host at par with Ambisome®, a liposomized AmB formulation. Interestingly, the AmB-NAs were more effective in killing various fungal pathogens including Candida spp. and evoked less drug related toxic manifestations in the host as compared to free form of the drug. The data of the present study suggest that biomimetically synthesized AmB-NA circumvent toxicity issues and offer a promising approach to eliminate systemic fungal infections in Balb/C mice.
Collapse
Affiliation(s)
- Qamar Zia
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Owais Mohammad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Ahmar Rauf
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Wasi Khan
- Department of Applied Physics, Aligarh Muslim University, Aligarh, India
| | - Swaleha Zubair
- Women's College, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
298
|
Chemotherapy-Induced Macrophage Infiltration into Tumors Enhances Nanographene-Based Photodynamic Therapy. Cancer Res 2017; 77:6021-6032. [DOI: 10.1158/0008-5472.can-17-1655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/16/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
|
299
|
Mo J, Wang L, Huang X, Lu B, Zou C, Wei L, Chu J, Eggers PK, Chen S, Raston CL, Wu J, Lim LY, Zhao W. Multifunctional nanoparticles for co-delivery of paclitaxel and carboplatin against ovarian cancer by inactivating the JMJD3-HER2 axis. NANOSCALE 2017; 9:13142-13152. [PMID: 28849826 DOI: 10.1039/c7nr04473a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ovarian cancer (OC) is the most lethal gynecologic cancer. Survival statistics have show no significant developments over the last three decades, highlighting the fact that current therapeutic strategies require substantial improvements. In this study, we designed a novel folic acid-PEG-conjugated p-phosphonated calix[4]arene nanoparticle (Fp-PCN) for the simultaneous delivery of paclitaxel (PAC) and carboplatin (CAR) at an optimal ratio (5 : 1, mol : mol) to utilize their potential synergistic effect against OC cells. The Fp-PCNs loaded with PAC and CAR (Fp-PCNPAC+CAR) resulted in a remarkable efficacy in the suppression of OC, both in vitro and in vivo. Compared to free drugs, Fp-PCNPAC+CAR showed stronger apoptosis induction as well as invasion and self-renewal capacity suppression in SKOV-3 cells. The molecular mechanism to address the synergism is that Fp-PCNPAC+CAR downregulated JMJD3 expression to modulate the H3K27me3 epigenetic mark of the promoters of HER2 and MYCN. Furthermore, the expressions of JMJD3 and HER2 were significantly associated with poor outcomes for ovarian patients. Our study demonstrates that co-delivery of PAC and CAR can be achieved with the Fp-PCNs, and reveals a previously unrecognized and unexpected role of the JMJD3-HER2 signaling axis in PAC and CAR treatment of OC.
Collapse
Affiliation(s)
- Jingxin Mo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| | - Li Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiaojia Huang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| | - Bing Lu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| | - Changye Zou
- Musculoskeletal Oncology Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lili Wei
- Pharmacy, the Affiliated Hospital of Guilin Medical University, China
| | - Junjun Chu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| | - Paul K Eggers
- School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Shen Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| | - Colin L Raston
- Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, P. R. China.
| | - Lee Yong Lim
- Pharmacy, School of Allied Health, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Wei Zhao
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
300
|
Tsvetkova Y, Beztsinna N, Baues M, Klein D, Rix A, Golombek SK, Al Rawashdeh W, Gremse F, Barz M, Koynov K, Banala S, Lederle W, Lammers T, Kiessling F. Balancing Passive and Active Targeting to Different Tumor Compartments Using Riboflavin-Functionalized Polymeric Nanocarriers. NANO LETTERS 2017; 17:4665-4674. [PMID: 28715227 DOI: 10.1021/acs.nanolett.7b01171] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Riboflavin transporters (RFTs) and the riboflavin carrier protein (RCP) are highly upregulated in many tumor cells, tumor stem cells, and tumor neovasculature, which makes them attractive targets for nanomedicines. Addressing cells in different tumor compartments requires drug carriers, which are not only able to accumulate via the EPR effect but also to extravasate, target specific cell populations, and get internalized by cells. Reasoning that antibodies are among the most efficient targeting systems developed by nature, we consider their size (∼10-15 nm) to be ideal for balancing passive and active tumor targeting. Therefore, small, short-circulating (10 kDa, ∼7 nm, t1/2 ∼ 1 h) and larger, longer-circulating (40 kDa, ∼13 nm, t1/2 ∼ 13 h) riboflavin-targeted branched PEG polymers were synthesized, and their biodistribution and target site accumulation were evaluated in mice bearing angiogenic squamous cell carcinoma (A431) and desmoplastic prostate cancer (PC3) xenografts. The tumor accumulation of the 10 kDa PEG was characterized by rapid intercompartmental exchange and significantly improved upon active targeting with riboflavin (RF). The 40 kDa PEG accumulated in tumors four times more efficiently than the small polymer, but its accumulation did not profit from active RF-targeting. However, RF-targeting enhanced the cellular internalization in both tumor models and for both polymer sizes. Interestingly, the nanocarriers' cell-uptake in tumors was not directly correlated with the extent of accumulation. For example, in both tumor models the small RF-PEG accumulated much less strongly than the large passively targeted PEG but showed significantly higher intracellular amounts 24 h after iv administration. Additionally, the size of the polymer determined its preferential uptake by different tumor cell compartments: the 10 kDa RF-PEGs most efficiently targeted cancer cells, whereas the highest uptake of the 40 kDa RF-PEGs was observed in tumor-associated macrophages. These findings imply that drug carriers with sizes in the range of therapeutic antibodies show balanced properties with respect to passive accumulation, tissue penetration, and active targeting. Besides highlighting the potential of RF-mediated (cancer) cell targeting, we show that strong tumor accumulation does not automatically mean high cellular uptake and that the nanocarriers' size plays a critical role in cell- and compartment-specific drug targeting.
Collapse
Affiliation(s)
- Yoanna Tsvetkova
- Institute for Experimental Molecular Imaging, University Hospital and Helmholtz Institute for Biomedical Engineering, RWTH Aachen , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Nataliia Beztsinna
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN UMR 5248, Bordeaux University , 33608 Pessac, France
- Department of Pharmaceutics, UIPS, Utrecht University , Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Maike Baues
- Institute for Experimental Molecular Imaging, University Hospital and Helmholtz Institute for Biomedical Engineering, RWTH Aachen , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Dionne Klein
- Institute for Experimental Molecular Imaging, University Hospital and Helmholtz Institute for Biomedical Engineering, RWTH Aachen , Pauwelsstrasse 30, 52074 Aachen, Germany
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging, University Hospital and Helmholtz Institute for Biomedical Engineering, RWTH Aachen , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Susanne K Golombek
- Institute for Experimental Molecular Imaging, University Hospital and Helmholtz Institute for Biomedical Engineering, RWTH Aachen , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Wa'el Al Rawashdeh
- Institute for Experimental Molecular Imaging, University Hospital and Helmholtz Institute for Biomedical Engineering, RWTH Aachen , Pauwelsstrasse 30, 52074 Aachen, Germany
- Miltenyi Biotec GmbH, Friedrich-Ebert-Strasse 68, 51429 Bergisch Gladbach, Germany
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, University Hospital and Helmholtz Institute for Biomedical Engineering, RWTH Aachen , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz , Duesbergweg 10-14, 55099 Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Srinivas Banala
- Institute for Experimental Molecular Imaging, University Hospital and Helmholtz Institute for Biomedical Engineering, RWTH Aachen , Pauwelsstrasse 30, 52074 Aachen, Germany
- Institute of Organic Chemistry, RWTH Aachen , Landoltweg 1, 52074 Aachen, Germany
| | - Wiltrud Lederle
- Institute for Experimental Molecular Imaging, University Hospital and Helmholtz Institute for Biomedical Engineering, RWTH Aachen , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Hospital and Helmholtz Institute for Biomedical Engineering, RWTH Aachen , Pauwelsstrasse 30, 52074 Aachen, Germany
- Department of Targeted Therapeutics, University of Twente , P.O. Box 217, 750 AE Enschede, The Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital and Helmholtz Institute for Biomedical Engineering, RWTH Aachen , Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|