251
|
Sinner MF, Ellinor PT, Meitinger T, Benjamin EJ, Kääb S. Genome-wide association studies of atrial fibrillation: past, present, and future. Cardiovasc Res 2011; 89:701-9. [PMID: 21245058 DOI: 10.1093/cvr/cvr001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genome-wide association studies (GWAS) for atrial fibrillation (AF) have identified three distinct genetic loci on chromosomes 1q21, 4q25, and 16q22 that are associated with the arrhythmia. Susceptibility loci also have been identified by GWAS for PR interval duration, a quantitative phenotype related to AF. In this review article, we have sought to summarize the latest findings for population-based genetic studies of AF, to highlight ongoing functional studies, and to explore the future directions of genetic research on AF.
Collapse
Affiliation(s)
- Moritz F Sinner
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
252
|
Fishman GI, Chugh SS, Dimarco JP, Albert CM, Anderson ME, Bonow RO, Buxton AE, Chen PS, Estes M, Jouven X, Kwong R, Lathrop DA, Mascette AM, Nerbonne JM, O'Rourke B, Page RL, Roden DM, Rosenbaum DS, Sotoodehnia N, Trayanova NA, Zheng ZJ. Sudden cardiac death prediction and prevention: report from a National Heart, Lung, and Blood Institute and Heart Rhythm Society Workshop. Circulation 2011; 122:2335-48. [PMID: 21147730 DOI: 10.1161/circulationaha.110.976092] [Citation(s) in RCA: 458] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Glenn I Fishman
- NYU School of Medicine, Division of Cardiology, 522 First Avenue, Smilow 801, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Ferrero-Miliani L, Holst AG, Pehrson S, Morling N, Bundgaard H. Strategy for clinical evaluation and screening of sudden cardiac death relatives. Fundam Clin Pharmacol 2011; 24:619-35. [PMID: 20698891 DOI: 10.1111/j.1472-8206.2010.00864.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sudden cardiac death (SCD) may be the first and final manifestation of several heart diseases. In the young, SCD is often caused by a hereditary cardiac disease. As the most frequently seen inherited cardiac diseases have an autosomal-dominant pattern of inheritance, half of the first-degree relatives are at risk of having or developing the same disease. Therefore, screening of these high-risk relatives is a rational approach to reduce the incidence of SCD. To offer family screening and counseling, the cause of death should be carefully established. Autopsy is only performed in a limited number of cases. We advocate for systematic autopsies in SCD, because positive findings are crucial for choosing the optimal screening program for the relatives. A negative autopsy makes identification of at-risk population difficult. However, this finding also provides clues to the cardiologist, because a limited number of inherited cardiac diseases associated with SCD are without any structural changes. In other cases, the autopsy may reveal noncardiac causes of death, which is also important for reassuring the relatives. However, in cases with no autopsy or negative findings, thorough clinical examinations and selective genetic screening of relatives may identify a likely diagnosis in more than 50% of affected families. There is a need for consensus regarding routine evaluation of SCD cases and the ethical and legal framework related to postmortem testing. We propose an algorithm that narrows the diagnostic possibilities in apparently healthy relatives of young SCD victims. Molecular autopsy may play an important role.
Collapse
Affiliation(s)
- Laura Ferrero-Miliani
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
254
|
Current World Literature. Curr Opin Cardiol 2011; 26:71-8. [DOI: 10.1097/hco.0b013e32834294db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
255
|
Shi G, Boerwinkle E, Morrison AC, Gu CC, Chakravarti A, Rao DC. Mining gold dust under the genome wide significance level: a two-stage approach to analysis of GWAS. Genet Epidemiol 2010; 35:111-8. [PMID: 21254218 DOI: 10.1002/gepi.20556] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 10/27/2010] [Accepted: 11/17/2010] [Indexed: 12/14/2022]
Abstract
We propose a two-stage approach to analyze genome-wide association data in order to identify a set of promising single-nucleotide polymorphisms (SNPs). In stage one, we select a list of top signals from single SNP analyses by controlling false discovery rate. In stage two, we use the least absolute shrinkage and selection operator (LASSO) regression to reduce false positives. The proposed approach was evaluated using simulated quantitative traits based on genome-wide SNP data on 8,861 Caucasian individuals from the Atherosclerosis Risk in Communities (ARIC) Study. Our first stage, targeted at controlling false negatives, yields better power than using Bonferroni-corrected significance level. The LASSO regression reduces the number of significant SNPs in stage two: it reduces false-positive SNPs and it reduces true-positive SNPs also at simulated causal loci due to linkage disequilibrium. Interestingly, the LASSO regression preserves the power from stage one, i.e., the number of causal loci detected from the LASSO regression in stage two is almost the same as in stage one, while reducing false positives further. Real data on systolic blood pressure in the ARIC study was analyzed using our two-stage approach which identified two significant SNPs, one of which was reported to be genome-significant in a meta-analysis containing a much larger sample size. On the other hand, a single SNP association scan did not yield any significant results.
Collapse
Affiliation(s)
- Gang Shi
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, Missouri 63110-1093, USA.
| | | | | | | | | | | |
Collapse
|
256
|
Schwartz PJ. Sudden cardiac death, founder populations, and mushrooms: what is the link with gold mines and modifier genes? Heart Rhythm 2010; 8:548-50. [PMID: 21193065 DOI: 10.1016/j.hrthm.2010.12.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Indexed: 11/27/2022]
|
257
|
Dina C. Of 508 mice and 40,000 humans. J Mol Cell Cardiol 2010; 50:377-9. [PMID: 21167834 DOI: 10.1016/j.yjmcc.2010.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 11/30/2010] [Accepted: 12/09/2010] [Indexed: 11/30/2022]
|
258
|
Hampel R, Schneider A, Brüske I, Zareba W, Cyrys J, Rückerl R, Breitner S, Korb H, Sunyer J, Wichmann HE, Peters A. Altered cardiac repolarization in association with air pollution and air temperature among myocardial infarction survivors. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1755-61. [PMID: 20846924 PMCID: PMC3002196 DOI: 10.1289/ehp.1001995] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 09/15/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Epidemiological studies have shown that ambient particulate matter (PM) and changes in air temperature are associated with increased cardiopulmonary events. OBJECTIVE We hypothesized that patients with previous myocardial infarction (MI) experience changes in heart rate (HR) and repolarization parameters, such as Bazett-corrected QT interval (QTc), and T-wave amplitude (Tamp), in association with increases in air pollution and temperature changes. METHODS Between May 2003 and February 2004, 67 MI survivors from the Augsburg KORA-MI registry repeatedly sent 16 sec electrocardiograms (ECGs) with a personal transmitter (Viapac) via telephone to the Philips Monitoring Center, where ECG parameters were immediately analyzed. Meteorological data and air pollutants were acquired from fixed monitoring sites on an hourly basis. Additive mixed models were used for analysis. Effect modification by patient characteristics was investigated. RESULTS The analysis of the 1,745 ECGs revealed an increased HR associated with interquartile range (IQR) increases in PM levels among participants not using beta-adrenergic receptor blockers and among those with body mass index ≥ 30 kg/m². We observed a 24- to 47-hr lagged QTc prolongation [0.5% change (95% confidence interval, 0.0-1.0%)] in association with IQR increases in levels of PM ≤ 2.5 µm in aerodynamic diameter, especially in patients with one [0.6% (0.1-1.0%)] or two [1.2% (0.4-2.1%)] minor alleles of the nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) single-nucleotide polymorphism rs2364725. Positive immediate (0-23 hr) and inverse delayed (48-71 hr up to 96-119 hr) associations were evident between PM and Tamp. We detected an inverse U-shaped association between temperature and Tamp, with a maximum Tamp at 5°C. CONCLUSIONS Increased air pollution levels and temperature changes may lead to changes in HR and repolarization parameters that may be precursors of cardiac problems.
Collapse
Affiliation(s)
- Regina Hampel
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Abstract
The drug-induced long QT syndrome is a distinct clinical entity that has evolved from an electrophysiologic curiosity to a centerpiece in drug regulation and development. This evolution reflects an increasing recognition that a rare adverse drug effect can profoundly upset the balance between benefit and risk that goes into the prescription of a drug by an individual practitioner as well as the approval of a new drug entity by a regulatory agency. This review will outline how defining the central mechanism, block of the cardiac delayed-rectifier potassium current I(Kr), has contributed to defining risk in patients and in populations. Models for studying risk, and understanding the way in which clinical risk factors modulate cardiac repolarization at the molecular level are discussed. Finally, the role of genetic variants in modulating risk is described.
Collapse
Affiliation(s)
- Prince Kannankeril
- Oates Institute for Experimental Therapeutics, Vanderbilt University School of Medicine, Nashville, TN 37232-0575, USA
| | | | | |
Collapse
|
260
|
Napolitano C, Cummings S. Genetics for the Electrophysiologist: Take Home Messages for the Clinician. Card Electrophysiol Clin 2010; 2:623-634. [PMID: 28770724 DOI: 10.1016/j.ccep.2010.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Syncope and risk of sudden death caused by ventricular tachyarrhythmia are the common manifestations of several inherited disorders. The abnormalities of the genetic makeup may directly affect proteins controlling cardiac excitability in a structurally normal heart. Other diseases manifest primarily with ventricular arrhythmias even if the genetic mutations cause structural abnormalities of the myocardium, such as arrhythmogenic right ventricular cardiomyopathy and hypertrophic cardiomyopathy. The groundbreaking discoveries that began in the 1990s and continued until the beginning of the current decade gathered fundamental knowledge about the major genes controlling cardiac excitability and conferring an increased risk of severe arrhythmias. Stemming from such knowledge is the availability of genetic diagnosis, genotype-phenotype correlation, and genotype-based risk stratification schemes. This article provides a concise description of the known genes and key mechanisms involved in the pathogenesis of inherited arrhythmias and outlines the possibilities, limitations, advantages, and potential threats of genetic testing for inherited arrhythmogenic syndromes.
Collapse
Affiliation(s)
- Carlo Napolitano
- Molecular Cardiology Laboratories, IRCCS Fondazione Salvatore Maugeri, Via Maugeri 10, 27100, Pavia, Italy; Cadiovascular Genetics, Leon Charney Division of Cardiology, New York University Medical Center, 403 East 34th Street, RIV 4th Floor, New York, NY 10016, USA
| | - Samori Cummings
- Cadiovascular Genetics, Leon Charney Division of Cardiology, New York University Medical Center, 403 East 34th Street, RIV 4th Floor, New York, NY 10016, USA
| |
Collapse
|
261
|
Denny JC, Ritchie MD, Crawford DC, Schildcrout JS, Ramirez AH, Pulley JM, Basford MA, Masys DR, Haines JL, Roden DM. Identification of genomic predictors of atrioventricular conduction: using electronic medical records as a tool for genome science. Circulation 2010; 122:2016-21. [PMID: 21041692 PMCID: PMC2991609 DOI: 10.1161/circulationaha.110.948828] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Recent genome-wide association studies in which selected community populations are used have identified genomic signals in SCN10A influencing PR duration. The extent to which this can be demonstrated in cohorts derived from electronic medical records is unknown. METHODS AND RESULTS We performed a genome-wide association study on 2334 European American patients with normal ECGs without evidence of prior heart disease from the Vanderbilt DNA databank, BioVU, which accrues subjects from routine patient care. Subjects were identified by combinations of natural language processing, laboratory queries, and billing code queries of deidentified medical record data. Subjects were 58% female, of mean (± SD) age 54 ± 15 years, and had mean PR intervals of 158 ± 18 ms. Genotyping was performed with the use of the Illumina Human660W-Quad platform. Our results identify 4 single nucleotide polymorphisms (rs6800541, rs6795970, rs6798015, rs7430477) linked to SCN10A associated with PR interval (P=5.73 × 10(-7) to 1.78 × 10(-6)). CONCLUSIONS This genome-wide association study confirms a gene heretofore not implicated in cardiac pathophysiology as a modulator of PR interval in humans. This study is one of the first replication genome-wide association studies performed with the use of an electronic medical records-derived cohort, supporting their further use for genotype-phenotype analyses.
Collapse
Affiliation(s)
- Joshua C Denny
- Office of Personalized Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0575, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Sotoodehnia N, Isaacs A, de Bakker PIW, Dörr M, Newton-Cheh C, Nolte IM, van der Harst P, Müller M, Eijgelsheim M, Alonso A, Hicks AA, Padmanabhan S, Hayward C, Smith AV, Polasek O, Giovannone S, Fu J, Magnani JW, Marciante KD, Pfeufer A, Gharib SA, Teumer A, Li M, Bis JC, Rivadeneira F, Aspelund T, Köttgen A, Johnson T, Rice K, Sie MPS, Wang YA, Klopp N, Fuchsberger C, Wild SH, Mateo Leach I, Estrada K, Völker U, Wright AF, Asselbergs FW, Qu J, Chakravarti A, Sinner MF, Kors JA, Petersmann A, Harris TB, Soliman EZ, Munroe PB, Psaty BM, Oostra BA, Cupples LA, Perz S, de Boer RA, Uitterlinden AG, Völzke H, Spector TD, Liu FY, Boerwinkle E, Dominiczak AF, Rotter JI, van Herpen G, Levy D, Wichmann HE, van Gilst WH, Witteman JCM, Kroemer HK, Kao WHL, Heckbert SR, Meitinger T, Hofman A, Campbell H, Folsom AR, van Veldhuisen DJ, Schwienbacher C, O'Donnell CJ, Volpato CB, Caulfield MJ, Connell JM, Launer L, Lu X, Franke L, Fehrmann RSN, te Meerman G, Groen HJM, Weersma RK, van den Berg LH, Wijmenga C, Ophoff RA, Navis G, Rudan I, Snieder H, Wilson JF, Pramstaller PP, Siscovick DS, Wang TJ, Gudnason V, van Duijn CM, Felix SB, Fishman GI, Jamshidi Y, Stricker BHC, et alSotoodehnia N, Isaacs A, de Bakker PIW, Dörr M, Newton-Cheh C, Nolte IM, van der Harst P, Müller M, Eijgelsheim M, Alonso A, Hicks AA, Padmanabhan S, Hayward C, Smith AV, Polasek O, Giovannone S, Fu J, Magnani JW, Marciante KD, Pfeufer A, Gharib SA, Teumer A, Li M, Bis JC, Rivadeneira F, Aspelund T, Köttgen A, Johnson T, Rice K, Sie MPS, Wang YA, Klopp N, Fuchsberger C, Wild SH, Mateo Leach I, Estrada K, Völker U, Wright AF, Asselbergs FW, Qu J, Chakravarti A, Sinner MF, Kors JA, Petersmann A, Harris TB, Soliman EZ, Munroe PB, Psaty BM, Oostra BA, Cupples LA, Perz S, de Boer RA, Uitterlinden AG, Völzke H, Spector TD, Liu FY, Boerwinkle E, Dominiczak AF, Rotter JI, van Herpen G, Levy D, Wichmann HE, van Gilst WH, Witteman JCM, Kroemer HK, Kao WHL, Heckbert SR, Meitinger T, Hofman A, Campbell H, Folsom AR, van Veldhuisen DJ, Schwienbacher C, O'Donnell CJ, Volpato CB, Caulfield MJ, Connell JM, Launer L, Lu X, Franke L, Fehrmann RSN, te Meerman G, Groen HJM, Weersma RK, van den Berg LH, Wijmenga C, Ophoff RA, Navis G, Rudan I, Snieder H, Wilson JF, Pramstaller PP, Siscovick DS, Wang TJ, Gudnason V, van Duijn CM, Felix SB, Fishman GI, Jamshidi Y, Stricker BHC, Samani NJ, Kääb S, Arking DE. Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat Genet 2010; 42:1068-76. [PMID: 21076409 PMCID: PMC3338195 DOI: 10.1038/ng.716] [Show More Authors] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 10/19/2010] [Indexed: 12/16/2022]
Abstract
QRS interval on the electrocardiogram reflects ventricular depolarization and conduction time, and is a risk factor for mortality, sudden death, and heart failure. We performed a genome-wide association meta-analysis in 40,407 European-descent individuals from 14 studies, with further genotyping in 7170 additional Europeans, and identified 22 loci associated with QRS duration (P < 5 × 10−8). These loci map in or near genes in pathways with established roles in ventricular conduction such as sodium channels, transcription factors, and calcium-handling proteins, but also point to novel biologic processes, such as kinase inhibitors and genes related to tumorigenesis. We demonstrate that SCN10A, a gene at our most significant locus, is expressed in the mouse ventricular conduction system, and treatment with a selective SCN10A blocker prolongs QRS duration. These findings extend our current knowledge of ventricular depolarization and conduction.
Collapse
Affiliation(s)
- Nona Sotoodehnia
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Abstract
Sudden cardiac death (SCD) is a leading cause of total and cardiovascular mortality, and ventricular fibrillation is the underlying arrhythmia in the majority of cases. In the young, where the incidence of SCD is low, a great proportion of SCDs occur in the context of inherited disorders such as cardiomyopathy or primary electrical disease, where a monogenic hereditary component is a strong determinant of risk. Marked advancement has been made over the past 15 years in the understanding of the genetic basis of the primary electrical disorders, and this has had an enormous impact on the management of these patients. At older ages, the great majority of SCDs occur in the context of acute myocardial ischemia and infarction. Although epidemiologic studies have shown that heritable factors also determine risk in these cases, inheritance is likely complex and multifactorial, and progress in understanding the genetic and molecular mechanisms that determine susceptibility to these arrhythmias, affecting a greater proportion of the population, has been very limited. We review the most recent insights gained into the genetic basis of both the monogenic and the more complex ventricular arrhythmias.
Collapse
Affiliation(s)
- Raha Pazoki
- Department of Clinical and Experimental Cardiology, Heart Failure Research Center, Amsterdam, The Netherlands
- Department of Clinical Epidemiology Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands
| | - Arthur A. M. Wilde
- Department of Clinical and Experimental Cardiology, Heart Failure Research Center, Amsterdam, The Netherlands
| | - Connie R. Bezzina
- Department of Clinical and Experimental Cardiology, Heart Failure Research Center, Amsterdam, The Netherlands
- Department of Experimental Cardiology, Academic Medical Center, Room L2-108-1 Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
264
|
Ramirez AH, Schildcrout JS, Blakemore DL, Masys DR, Pulley JM, Basford MA, Roden DM, Denny JC. Modulators of normal electrocardiographic intervals identified in a large electronic medical record. Heart Rhythm 2010; 8:271-7. [PMID: 21044898 DOI: 10.1016/j.hrthm.2010.10.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Traditional electrocardiographic (ECG) reference ranges were derived from studies in communities or clinical trial populations. The distribution of ECG parameters in a large population presenting to a healthcare system has not been studied. OBJECTIVE The purpose of this study was to define the contribution of age, race, gender, height, body mass index, and type 2 diabetes mellitus to normal ECG parameters in a population presenting to a healthcare system. METHODS Study subjects were obtained from the Vanderbilt Synthetic Derivative, a de-identified image of the electronic medical record (EMR), containing more than 20 years of records on 1.7 million subjects. We identified 63,177 unique subjects with an ECG that was read as "normal" by the reviewing cardiologist. Using combinations of natural language processing and laboratory and billing code queries, we identified a subset of 32,949 subjects without cardiovascular disease, interfering medications, or abnormal electrolytes. The ethnic makeup was 77% Caucasian, 13% African American, 1% Hispanic, 1% Asian, and 8% unknown. RESULTS The range that included 95% of normal PR intervals was 125-196 ms, QRS 69-103 ms, QT interval corrected with Bazett formula 365-458 ms, and heart rate 54-96 bpm. Linear regression modeling of patient characteristic effects reproduced known age and gender effects and identified novel associations with race, body mass index, and type 2 diabetes mellitus. A web-based application for patient-specific normal ranges is available online at http://biostat.mc.vanderbilt.edu/ECGPredictionInterval. CONCLUSION Analysis of a large set of EMR-derived normal ECGs reproduced known associations, found new relationships, and established patient-specific normal ranges. Such knowledge informs clinical and genetic research and may improve understanding of normal cardiac physiology.
Collapse
Affiliation(s)
- Andrea H Ramirez
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
265
|
Oka Y, Itoh H, Ding WG, Shimizu W, Makiyama T, Ohno S, Nishio Y, Sakaguchi T, Miyamoto A, Kawamura M, Matsuura H, Horie M. Atrioventricular block-induced Torsades de Pointes with clinical and molecular backgrounds similar to congenital long QT syndrome. Circ J 2010; 74:2562-71. [PMID: 20975234 DOI: 10.1253/circj.cj-10-0498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Atrioventricular block (AVB) sometimes complicates QT prolongation and torsades de pointes (TdP). METHODS AND RESULTS The clinical and genetic background of 14 AVB patients (57±21 years, 13 females) who developed QT prolongation and TdP was analyzed. Electrophysiological characteristics of mutations were analyzed using heterologous expression in Chinese hamster ovary cells, together with computer simulation models. Every patient received a pacemaker or implantable cardioverter defibrillator; 3 patients had recurrence of TdP during follow-up because of pacing failure. Among the ECG parameters, QTc interval was prolonged to 561±76ms in the presence of AVB, but shortened to 495±42ms in the absence of AVB. Genetic screening for KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 revealed four heterozygous missense mutations of KCNQ1 or KCNH2 in 4 patients (28.6%). Functional analyses showed that all mutations had loss of functions and various gating dysfunctions of I(Ks) or I(Kr). Finally, action potential simulation based on the Luo-Rudy model demonstrated that most mutant channels induced bradycardia-related early afterdepolarizations. CONCLUSIONS Incidental AVB, as a trigger of TdP, can manifest as clinical phenotypes of long QT syndrome (LQTS), and that some patients with AVB-induced TdP share a genetic background with those with congenital LQTS.
Collapse
Affiliation(s)
- Yuko Oka
- Department of Respiratory and Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Scicluna BP, Tanck MWT, Remme CA, Beekman L, Coronel R, Wilde AAM, Bezzina CR. Quantitative trait loci for electrocardiographic parameters and arrhythmia in the mouse. J Mol Cell Cardiol 2010; 50:380-9. [PMID: 20854825 DOI: 10.1016/j.yjmcc.2010.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 11/26/2022]
Abstract
Cardiac arrhythmias associated with sudden death are influenced by multiple biological pathways and are modulated by numerous genetic and environmental factors. Elevated heart rate and prolonged ECG indices of conduction and repolarization have been associated with risk of sudden death. Insight into the genetic underpinnings of these parameters thus provides an important means to the dissection of the genetic components modulating risk of sudden cardiac death. In this study we mapped quantitative trait loci (QTL) modulating heart rate, ECG indices of conduction and repolarization, and susceptibility to arrhythmia, in a conduction disease-sensitized F(2) mouse population. Heart rate, P-duration, PR-, QRS- and QT-interval were measured at baseline (n=502) and after flecainide administration (n=370) in mutant F(2) progeny (F(2)-MUT) resulting from the FVB/NJ-Scn5a1798(insD/+) X 129P2-Scn5a1798(insD/+) mouse cross. Episodes of sinus arrhythmia and ventricular tachyarrhythmia occurring post-flecainide were treated as binary traits. F(2)-MUT mice were genotyped using a genome-wide 768 single nucleotide polymorphism (SNP) panel. Interval mapping uncovered multiple QTL for ECG parameters and arrhythmia. A sex-interacting scan identified QTL displaying sex-dependency, and a two-dimensional QTL scan unmasked locus-locus (epistasis) interactions influencing ECG traits. A number of QTL coincided at specific chromosomal locations, suggesting pleiotropic effects at these loci. Through transcript profiling in myocardium from the parental mouse strains we identified genes co-localizing at the identified QTL that constitute highly relevant candidates for the observed effects. The detection of QTL influencing ECG indices and arrhythmia is an essential step towards identifying genetic networks for sudden, arrhythmic, cardiac death.
Collapse
Affiliation(s)
- Brendon P Scicluna
- Heart Failure Research Center, Department of Experimental Cardiology, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
267
|
Lu J, Hu C, Hu W, Zhang R, Wang C, Qin W, Yu W, Xiang K, Jia W. A common variant of NOS1AP is associated with QT interval duration in a Chinese population with Type 2 diabetes. Diabet Med 2010; 27:1074-9. [PMID: 20722683 PMCID: PMC2925320 DOI: 10.1111/j.1464-5491.2010.03072.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS Electrocardiographic ventricular repolarization QT parameters are independent risk factors for cardiovascular events and sudden cardiac death in diabetic patients. The aim of the study was to investigate the association of polymorphisms of the nitric oxide synthase 1 adaptor protein (NOS1AP) gene with QT interval in Chinese subjects with or without Type 2 diabetes. METHODS Three single nucleotide polymorphisms (SNPs) (rs10494366, rs12143842 and rs12029454) were genotyped in 1240 Type 2 diabetic patients (631 men and 609 women) and 1196 normal controls (433 men and 763 women). Individuals with overt diseases other than diabetes were excluded. Heart-rate corrected QT interval (QTc) was determined by standard 12-lead ECG and Bazett formula. Sex-pooled analysis and sex-specific analysis for genotype-phenotype association were both conducted. RESULTS In the diabetic group, the rs12143842 T allele was associated with a 3.87-ms (P = 0.014, empirical P = 0.039) increase in QTc duration for each additional allele copy, while rs10494366 and rs12029454 exhibited no significant association with QTc. We found no evidence of association for the three SNPs in subjects with normal glucose regulation. No significant SNP-gender and -diabetes affection interaction was observed. CONCLUSIONS The genetic variant rs12143842 in NOS1AP is associated with QT interval duration in a Chinese population with Type 2 diabetes. Future studies in different populations are needed to validate this finding and to evaluate the impact of NOS1AP variants on cardiovascular events and sudden cardiac death in diabetic patients.
Collapse
Affiliation(s)
- J Lu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Bokil NJ, Baisden JM, Radford DJ, Summers KM. Molecular genetics of long QT syndrome. Mol Genet Metab 2010; 101:1-8. [PMID: 20594883 DOI: 10.1016/j.ymgme.2010.05.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 12/19/2022]
Abstract
Long QT syndrome (LQTS) is a cardiac disorder associated with sudden death especially in young, seemingly healthy individuals. It is characterised by abnormalities of the heart beat detected as lengthening of the QT interval during cardiac repolarisation. The incidence of LQTS is given as 1 in 2000 but this may be an underestimation as many cases go undiagnosed, due to the rarity of the condition and the wide spectrum of symptoms. Presently 12 genes associated with LQTS have been identified with differing signs and symptoms, depending on the locus involved. The majority of cases have mutations in the KCNQ1 (LQT1), KCNH2 (LQT2) and SCN5A (LQT3) genes. Genetic testing is increasingly used when a clearly affected proband has been identified, to determine the nature of the mutation in that family. Unfortunately tests on probands may be uninformative, especially if the defect does not lie in the set of genes which are routinely tested. Novel mutations in these known LQTS genes and additional candidate genes are still being discovered. The functional implications of these novel mutations need to be assessed before they can be accepted as being responsible for LQTS. Known epigenetic modification affecting KCNQ1 gene expression may also be involved in phenotypic variability of LQTS. Genetic diagnosis of LQTS is thus challenging. However, where a disease associated mutation is identified, molecular diagnosis can be important in guiding therapy, in family testing and in determining the cause of sudden cardiac death. New developments in technology and understanding offer increasing hope to families with this condition.
Collapse
Affiliation(s)
- Nilesh J Bokil
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, Australia
| | | | | | | |
Collapse
|
269
|
Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, McCulloch LJ, Ferreira T, Grallert H, Amin N, Wu G, Willer CJ, Raychaudhuri S, McCarroll SA, Langenberg C, Hofmann OM, Dupuis J, Qi L, Segrè AV, van Hoek M, Navarro P, Ardlie K, Balkau B, Benediktsson R, Bennett AJ, Blagieva R, Boerwinkle E, Bonnycastle LL, Bengtsson Boström K, Bravenboer B, Bumpstead S, Burtt NP, Charpentier G, Chines PS, Cornelis M, Couper DJ, Crawford G, Doney ASF, Elliott KS, Elliott AL, Erdos MR, Fox CS, Franklin CS, Ganser M, Gieger C, Grarup N, Green T, Griffin S, Groves CJ, Guiducci C, Hadjadj S, Hassanali N, Herder C, Isomaa B, Jackson AU, Johnson PRV, Jørgensen T, Kao WHL, Klopp N, Kong A, Kraft P, Kuusisto J, Lauritzen T, Li M, Lieverse A, Lindgren CM, Lyssenko V, Marre M, Meitinger T, Midthjell K, Morken MA, Narisu N, Nilsson P, Owen KR, Payne F, Perry JRB, Petersen AK, Platou C, Proença C, Prokopenko I, Rathmann W, Rayner NW, Robertson NR, Rocheleau G, Roden M, Sampson MJ, Saxena R, Shields BM, Shrader P, Sigurdsson G, Sparsø T, Strassburger K, Stringham HM, Sun Q, Swift AJ, Thorand B, et alVoight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, McCulloch LJ, Ferreira T, Grallert H, Amin N, Wu G, Willer CJ, Raychaudhuri S, McCarroll SA, Langenberg C, Hofmann OM, Dupuis J, Qi L, Segrè AV, van Hoek M, Navarro P, Ardlie K, Balkau B, Benediktsson R, Bennett AJ, Blagieva R, Boerwinkle E, Bonnycastle LL, Bengtsson Boström K, Bravenboer B, Bumpstead S, Burtt NP, Charpentier G, Chines PS, Cornelis M, Couper DJ, Crawford G, Doney ASF, Elliott KS, Elliott AL, Erdos MR, Fox CS, Franklin CS, Ganser M, Gieger C, Grarup N, Green T, Griffin S, Groves CJ, Guiducci C, Hadjadj S, Hassanali N, Herder C, Isomaa B, Jackson AU, Johnson PRV, Jørgensen T, Kao WHL, Klopp N, Kong A, Kraft P, Kuusisto J, Lauritzen T, Li M, Lieverse A, Lindgren CM, Lyssenko V, Marre M, Meitinger T, Midthjell K, Morken MA, Narisu N, Nilsson P, Owen KR, Payne F, Perry JRB, Petersen AK, Platou C, Proença C, Prokopenko I, Rathmann W, Rayner NW, Robertson NR, Rocheleau G, Roden M, Sampson MJ, Saxena R, Shields BM, Shrader P, Sigurdsson G, Sparsø T, Strassburger K, Stringham HM, Sun Q, Swift AJ, Thorand B, Tichet J, Tuomi T, van Dam RM, van Haeften TW, van Herpt T, van Vliet-Ostaptchouk JV, Walters GB, Weedon MN, Wijmenga C, Witteman J, Bergman RN, Cauchi S, Collins FS, Gloyn AL, Gyllensten U, Hansen T, Hide WA, Hitman GA, Hofman A, Hunter DJ, Hveem K, Laakso M, Mohlke KL, Morris AD, Palmer CNA, Pramstaller PP, Rudan I, Sijbrands E, Stein LD, Tuomilehto J, Uitterlinden A, Walker M, Wareham NJ, Watanabe RM, Abecasis GR, Boehm BO, Campbell H, Daly MJ, Hattersley AT, Hu FB, Meigs JB, Pankow JS, Pedersen O, Wichmann HE, Barroso I, Florez JC, Frayling TM, Groop L, Sladek R, Thorsteinsdottir U, Wilson JF, Illig T, Froguel P, van Duijn CM, Stefansson K, Altshuler D, Boehnke M, McCarthy MI. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010; 42:579-89. [PMID: 20581827 DOI: 10.1038/ng.609] [Show More Authors] [Citation(s) in RCA: 1379] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 05/26/2010] [Indexed: 12/11/2022]
Abstract
By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P<5x10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
Collapse
Affiliation(s)
- Benjamin F Voight
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Abstract
Sudden cardiac death (SCD) is a major health problem and constitutes one of the most important unsolved challenges in the practice of forensic pathology due to the failure to determine the cause of death. Particularly, an important number of previously healthy young people who have died suddenly and unexpectedly are consequence of genetic heart disorders, either structural cardiomyopathies or arrhythmogenic abnormalities. The technological approach to analyze this type of genetically heterogeneous disorders is far from easy but nowadays the variety of chemistries and methodologies improves choice. This review offers to the reader a state of the art of the available technologies for the study of genetics of sudden cardiac death, including mutation screening approaches, genome wide association studies, and the recently developed next-generation sequencing.
Collapse
|
271
|
Paananen J, Ciszek R, Wong G. Varietas: a functional variation database portal. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2010; 2010:baq016. [PMID: 20671203 PMCID: PMC2997604 DOI: 10.1093/database/baq016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Current high-throughput technologies for investigating genomic variation in large population based samples produce data on a scale of millions of variations. Browsing through these results and identifying relevant functional variations is a major hurdle in these genome-wide association studies. In order to help researchers locate the most promising associations, we have developed a web-based database portal called Varietas. Varietas can be used for retrieving information concerning genomic variations such as single-nucleotide polymorphisms (SNPs), copy number variants and insertions/deletions, while enabling users to annotate large number of variations in a batch like manner and to find information about related genes, phenotypes and diseases. Varietas also links out to various external genomic databases, allowing users to quickly browse through a set of variations and follow the most promising leads. Varietas periodically integrates data from the major SNP and genome databases, including Ensembl genome database, NCBI dbSNP database, The Genomic Association Database and SNPedia. Database URL:http://kokki.uku.fi/bioinformatics/varietas/
Collapse
Affiliation(s)
- Jussi Paananen
- Laboratory of Functional Genomics and Bioinformatics, Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences and Biocenter Finland, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | |
Collapse
|
272
|
Melotte V, Qu X, Ongenaert M, van Criekinge W, de Bruïne AP, Baldwin HS, van Engeland M. The N-myc downstream regulated gene (NDRG) family: diverse functions, multiple applications. FASEB J 2010; 24:4153-66. [PMID: 20667976 DOI: 10.1096/fj.09-151464] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The N-myc downstream regulated gene (NDRG) family of proteins consists of 4 members, NDRG1-4, which are well conserved through evolution. The first member to be discovered and responsible for the family name was NDRG1, because its expression is repressed by the proto-oncogenes MYCN and MYC. All family members are characterized by an α/β hydrolase-fold motif; however, the precise molecular and cellular function of these family members has not been fully elucidated. Although the exact function of NDRG family members has not been clearly elucidated, emerging evidence suggests that mutations in these genes are associated with diverse neurological and electrophysiological syndromes. In addition, aberrant expression as well as tumor suppressor and oncogenic functions affecting key hallmarks of carcinogenesis such as cell proliferation, differentiation, migration, invasion, and stress response have been reported for several of the NDRG proteins. In this review, we summarize the current literature on the NDRG family members concerning their structure, origin, and tissue distribution. In addition, we review the current knowledge regarding the regulation and signaling of the NDRG family members in development and normal physiology. Finally, their role in disease and potential clinical applications (their role as detection or prognostic markers) are discussed.
Collapse
Affiliation(s)
- Veerle Melotte
- Department of Pathology, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
273
|
Sinner MF, Reinhard W, Müller M, Beckmann BM, Martens E, Perz S, Pfeufer A, Winogradow J, Stark K, Meisinger C, Wichmann HE, Peters A, Riegger GAJ, Steinbeck G, Hengstenberg C, Kääb S. Association of early repolarization pattern on ECG with risk of cardiac and all-cause mortality: a population-based prospective cohort study (MONICA/KORA). PLoS Med 2010; 7:e1000314. [PMID: 20668657 PMCID: PMC2910598 DOI: 10.1371/journal.pmed.1000314] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 06/16/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Early repolarization pattern (ERP) on electrocardiogram was associated with idiopathic ventricular fibrillation and sudden cardiac arrest in a case-control study and with cardiovascular mortality in a Finnish community-based sample. We sought to determine ERP prevalence and its association with cardiac and all-cause mortality in a large, prospective, population-based case-cohort study (Monitoring of Cardiovascular Diseases and Conditions [MONICA]/KORA [Cooperative Health Research in the Region of Augsburg]) comprised of individuals of Central-European descent. METHODS AND FINDINGS Electrocardiograms of 1,945 participants aged 35-74 y, representing a source population of 6,213 individuals, were analyzed applying a case-cohort design. Mean follow-up was 18.9 y. Cause of death was ascertained by the 9th revision of the International Classification of Disease (ICD-9) codes as documented in death certificates. ERP-attributable effects on mortality were determined by a weighted Cox proportional hazard model adjusted for covariables. Prevalence of ERP was 13.1% in our study. ERP was associated with cardiac and all-cause mortality, most pronounced in those of younger age and male sex; a clear ERP-age interaction was detected (p = 0.005). Age-stratified analyses showed hazard ratios (HRs) for cardiac mortality of 1.96 (95% confidence interval [CI] 1.05-3.68, p = 0.035) for both sexes and 2.65 (95% CI 1.21-5.83, p = 0.015) for men between 35-54 y. An inferior localization of ERP further increased ERP-attributable cardiac mortality to HRs of 3.15 (95% CI 1.58-6.28, p = 0.001) for both sexes and to 4.27 (95% CI 1.90-9.61, p<0.001) for men between 35-54 y. HRs for all-cause mortality were weaker but reached significance. CONCLUSIONS We found a high prevalence of ERP in our population-based cohort of middle-aged individuals. ERP was associated with about a 2- to 4-fold increased risk of cardiac mortality in individuals between 35 and 54 y. An inferior localization of ERP was associated with a particularly increased risk. Please see later in the article for the Editors' Summary.
Collapse
Affiliation(s)
- Moritz F. Sinner
- University Hospital Munich, Campus Grosshadern, Medical Department I, Ludwig-Maximilians University Munich, Munich, Germany
| | - Wibke Reinhard
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Martina Müller
- University Hospital Munich, Campus Grosshadern, Medical Department I, Ludwig-Maximilians University Munich, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Britt-Maria Beckmann
- University Hospital Munich, Campus Grosshadern, Medical Department I, Ludwig-Maximilians University Munich, Munich, Germany
| | - Eimo Martens
- University Hospital Munich, Campus Grosshadern, Medical Department I, Ludwig-Maximilians University Munich, Munich, Germany
| | - Siegfried Perz
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arne Pfeufer
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Janina Winogradow
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Klaus Stark
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Christa Meisinger
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - H.-Erich Wichmann
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
- Klinikum Grosshadern, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Günter A. J. Riegger
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Gerhard Steinbeck
- University Hospital Munich, Campus Grosshadern, Medical Department I, Ludwig-Maximilians University Munich, Munich, Germany
| | - Christian Hengstenberg
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Stefan Kääb
- University Hospital Munich, Campus Grosshadern, Medical Department I, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
274
|
Abstract
Adverse drug reactions are a significant public health problem that leads to mortality, hospital admissions, an increased length of stay, increasing healthcare costs, and withdrawal of drugs from market. Intensive care unit patients are particularly vulnerable and are at an elevated risk. Critical care practitioners, regulatory agencies, and the pharmaceutical industry aggressively seek biomarkers to mitigate patient risk. The rapidly expanding field of pharmacogenomics focuses on the genetic contributions to the variability in drug response. Polymorphisms may explain why some groups of patients have the expected response to pharmacotherapy whereas others experience adverse drug reactions. Historically, genetic association studies have focused on characterizing the effects of variation in drug metabolizing enzymes on pharmacokinetics. Recent work has investigated drug transporters and the variants of genes encoding drug targets, both intended and unintended, that comprise pharmacodynamics. This has led to an appreciation of the role that genetics plays in adverse drug reactions that are either predictable extensions of a drug's known therapeutic effect or idiosyncratic.This review presents the evidence for a genetic predisposition to adverse drug reactions, focusing on gene variants producing alterations in drug pharmacokinetics and pharmacodynamics in intensive care unit patients. Genetic biomarkers with the strongest associations to adverse drug reaction risk in the intensive care unit are presented along with the medications involved. Variant genotypes and phenotypes, allelic frequencies in different populations, and clinical studies are discussed. The article also presents the current recommendations for pharmacogenetic testing in clinical practice and explores the drug, patient, research study design, regulatory, and practical issues that presently limit more widespread implementation.
Collapse
|
275
|
Eijgelsheim M, Newton-Cheh C, Sotoodehnia N, de Bakker PIW, Müller M, Morrison AC, Smith AV, Isaacs A, Sanna S, Dörr M, Navarro P, Fuchsberger C, Nolte IM, de Geus EJC, Estrada K, Hwang SJ, Bis JC, Rückert IM, Alonso A, Launer LJ, Hottenga JJ, Rivadeneira F, Noseworthy PA, Rice KM, Perz S, Arking DE, Spector TD, Kors JA, Aulchenko YS, Tarasov KV, Homuth G, Wild SH, Marroni F, Gieger C, Licht CM, Prineas RJ, Hofman A, Rotter JI, Hicks AA, Ernst F, Najjar SS, Wright AF, Peters A, Fox ER, Oostra BA, Kroemer HK, Couper D, Völzke H, Campbell H, Meitinger T, Uda M, Witteman JCM, Psaty BM, Wichmann HE, Harris TB, Kääb S, Siscovick DS, Jamshidi Y, Uitterlinden AG, Folsom AR, Larson MG, Wilson JF, Penninx BW, Snieder H, Pramstaller PP, van Duijn CM, Lakatta EG, Felix SB, Gudnason V, Pfeufer A, Heckbert SR, Stricker BHC, Boerwinkle E, O'Donnell CJ. Genome-wide association analysis identifies multiple loci related to resting heart rate. Hum Mol Genet 2010; 19:3885-94. [PMID: 20639392 DOI: 10.1093/hmg/ddq303] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Higher resting heart rate is associated with increased cardiovascular disease and mortality risk. Though heritable factors play a substantial role in population variation, little is known about specific genetic determinants. This knowledge can impact clinical care by identifying novel factors that influence pathologic heart rate states, modulate heart rate through cardiac structure and function or by improving our understanding of the physiology of heart rate regulation. To identify common genetic variants associated with heart rate, we performed a meta-analysis of 15 genome-wide association studies (GWAS), including 38,991 subjects of European ancestry, estimating the association between age-, sex- and body mass-adjusted RR interval (inverse heart rate) and approximately 2.5 million markers. Results with P < 5 × 10(-8) were considered genome-wide significant. We constructed regression models with multiple markers to assess whether results at less stringent thresholds were likely to be truly associated with RR interval. We identified six novel associations with resting heart rate at six loci: 6q22 near GJA1; 14q12 near MYH7; 12p12 near SOX5, c12orf67, BCAT1, LRMP and CASC1; 6q22 near SLC35F1, PLN and c6orf204; 7q22 near SLC12A9 and UfSp1; and 11q12 near FADS1. Associations at 6q22 400 kb away from GJA1, at 14q12 MYH6 and at 1q32 near CD34 identified in previously published GWAS were confirmed. In aggregate, these variants explain approximately 0.7% of RR interval variance. A multivariant regression model including 20 variants with P < 10(-5) increased the explained variance to 1.6%, suggesting that some loci falling short of genome-wide significance are likely truly associated. Future research is warranted to elucidate underlying mechanisms that may impact clinical care.
Collapse
Affiliation(s)
- Mark Eijgelsheim
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Psaty BM, Hofman A. Genome-wide association studies and large-scale collaborations in epidemiology. Eur J Epidemiol 2010; 25:525-9. [PMID: 20623322 DOI: 10.1007/s10654-010-9487-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 06/25/2010] [Indexed: 01/11/2023]
Affiliation(s)
- Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Group Health Research Institute, Group Health Cooperative, 1730 Minor Avenue, Suite 1360, Seattle, WA 98177, USA.
| | | |
Collapse
|
277
|
Bezzina CR, Pazoki R, Bardai A, Marsman RF, de Jong JSSG, Blom MT, Scicluna BP, Jukema JW, Bindraban NR, Lichtner P, Pfeufer A, Bishopric NH, Roden DM, Meitinger T, Chugh SS, Myerburg RJ, Jouven X, Kääb S, Dekker LRC, Tan HL, Tanck MWT, Wilde AAM. Genome-wide association study identifies a susceptibility locus at 21q21 for ventricular fibrillation in acute myocardial infarction. Nat Genet 2010; 42:688-691. [PMID: 20622880 DOI: 10.1038/ng.623] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 06/15/2010] [Indexed: 11/09/2022]
Abstract
Sudden cardiac death from ventricular fibrillation during acute myocardial infarction is a leading cause of total and cardiovascular mortality. To our knowledge, we here report the first genome-wide association study for this trait, conducted in a set of 972 individuals with a first acute myocardial infarction, 515 of whom had ventricular fibrillation and 457 of whom did not, from the Arrhythmia Genetics in The Netherlands (AGNES) study. The most significant association to ventricular fibrillation was found at 21q21 (rs2824292, odds ratio = 1.78, 95% CI 1.47-2.13, P = 3.3 x 10(-10)). The association of rs2824292 with ventricular fibrillation was replicated in an independent case-control set consisting of 146 out-of-hospital cardiac arrest individuals with myocardial infarction complicated by ventricular fibrillation and 391 individuals who survived a myocardial infarction (controls) (odds ratio = 1.49, 95% CI 1.14-1.95, P = 0.004). The closest gene to this SNP is CXADR, which encodes a viral receptor previously implicated in myocarditis and dilated cardiomyopathy and which has recently been identified as a modulator of cardiac conduction. This locus has not previously been implicated in arrhythmia susceptibility.
Collapse
Affiliation(s)
- Connie R Bezzina
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Raha Pazoki
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Abdennasser Bardai
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Roos F Marsman
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jonas S S G de Jong
- Heart Failure Research Center, Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieke T Blom
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.,Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands
| | - Navin R Bindraban
- Heart Failure Research Center, Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Social Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Lichtner
- Institute of Human Genetics, Klinikum Rechts der Isar Technische Universität München, Munich, Germany
| | - Arne Pfeufer
- Institute of Human Genetics, Klinikum Rechts der Isar Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Nanette H Bishopric
- Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Dan M Roden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum Rechts der Isar Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Sumeet S Chugh
- The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert J Myerburg
- Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Xavier Jouven
- Université Paris Descartes, Assistance Publique-Hopitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Stefan Kääb
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Lukas R C Dekker
- Heart Failure Research Center, Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands
| | - Hanno L Tan
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Heart Failure Research Center, Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael W T Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Heart Failure Research Center, Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
278
|
Tomás M, Napolitano C, De Giuli L, Bloise R, Subirana I, Malovini A, Bellazzi R, Arking DE, Marban E, Chakravarti A, Spooner PM, Priori SG. Polymorphisms in the NOS1APGene Modulate QT Interval Duration and Risk of Arrhythmias in the Long QT Syndrome. J Am Coll Cardiol 2010; 55:2745-52. [DOI: 10.1016/j.jacc.2009.12.065] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/03/2009] [Accepted: 12/17/2009] [Indexed: 12/22/2022]
|
279
|
Morrison AC, Felix JF, Cupples LA, Glazer NL, Loehr LR, Dehghan A, Demissie S, Bis JC, Rosamond WD, Aulchenko YS, Wang YA, Haritunians T, Folsom AR, Rivadeneira F, Benjamin EJ, Lumley T, Couper D, Stricker BH, O'Donnell CJ, Rice KM, Chang PP, Hofman A, Levy D, Rotter JI, Fox ER, Uitterlinden AG, Wang TJ, Psaty BM, Willerson JT, van Duijn CM, Boerwinkle E, Witteman JCM, Vasan RS, Smith NL. Genomic variation associated with mortality among adults of European and African ancestry with heart failure: the cohorts for heart and aging research in genomic epidemiology consortium. CIRCULATION. CARDIOVASCULAR GENETICS 2010; 3:248-55. [PMID: 20400778 PMCID: PMC3033765 DOI: 10.1161/circgenetics.109.895995] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Prognosis and survival are significant concerns for individuals with heart failure (HF). To better understand the pathophysiology of HF prognosis, the association between 2,366,858 single-nucleotide polymorphisms (SNPs) and all-cause mortality was evaluated among individuals with incident HF from 4 community-based prospective cohorts: the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, the Framingham Heart Study, and the Rotterdam Study. METHODS AND RESULTS Participants were 2526 individuals of European ancestry and 466 individuals of African ancestry who experienced an incident HF event during follow-up in the respective cohorts. Within each study, the association between genetic variants and time to mortality among individuals with HF was assessed by Cox proportional hazards models that included adjustment for sex and age at the time of the HF event. Prospective fixed-effect meta-analyses were conducted for the 4 study populations of European ancestry (N=1645 deaths) and for the 2 populations of African ancestry (N=281 deaths). Genome-wide significance was set at P=5.0x10(-7). Meta-analytic findings among individuals of European ancestry revealed 1 genome-wide significant locus on chromosome 3p22 in an intron of CKLF-like MARVEL transmembrane domain containing 7 (CMTM7, P=3.2x10(-7)). Eight additional loci in individuals of European ancestry and 4 loci in individuals of African ancestry were identified by high-signal SNPs (P<1.0x10(-5)) but did not meet genome-wide significance. CONCLUSIONS This study identified a novel locus associated with all-cause mortality among individuals of European ancestry with HF. This finding warrants additional investigation, including replication, in other studies of HF.
Collapse
Affiliation(s)
- Alanna C Morrison
- Atherosclerosis Risk in Communities Study: University of Texas Health Science Center at Houston, Human Genetics Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Novel genes for QTc interval. How much heritability is explained, and how much is left to find? Genome Med 2010; 2:35. [PMID: 20519034 PMCID: PMC2887079 DOI: 10.1186/gm156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The corrected QT (QTc) interval is a complex quantitative trait, believed to be influenced by several genetic and environmental factors. It is a strong prognostic indicator of cardiovascular mortality in patients with and without cardiac disease. More than 700 mutations have been described in 12 genes (LQT1-LQT12) involved in congenital long QT syndrome. However, the heritability (genetic contribution) of QTc interval in the general population cannot be adequately explained by these long QT syndrome genes. In order to further investigate the genetic architecture underlying QTc interval in the general population, genome-wide association studies, in which up to one million single nucleotide polymorphisms are assayed in thousands of individuals, are now being employed and have already led to the discovery of variants in seven novel loci and five loci that are known to cause congenital long or short QT syndrome. Here we show that a combined risk score using 11 of these loci explains about 10% of the heritability of QTc. Additional discovery of both common and rare variants will yield further etiological insight and accelerate clinical applications.
Collapse
|
281
|
Abstract
The application of genomics technology to clinical cardiovascular research is producing fundamentally new insights concerning the etiology of cardiovascular disease phenotypes. Recent genome-wide association studies demonstrate clear associations between single nucleotide polymorphisms and important cardiovascular phenotypes. However, risk alleles for the single nucleotide polymorphisms in question do not explain a sufficient portion of individual risk to be useful for screening purposes. Therefore, clinicians should continue to make use of family history to augment risk stratification and emphasize established forms of prevention for their patients with, or at risk for, cardiovascular disease.
Collapse
Affiliation(s)
- David M Herrington
- Wake Forest University School of Medicine, Internal Medicine/Section on Cardiology, Winston Salem, North Carolina 27157, USA.
| |
Collapse
|
282
|
A new approach to long QT syndrome mutation detection by Sequenom MassARRAY® system. Electrophoresis 2010; 31:1648-55. [DOI: 10.1002/elps.201000022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
283
|
Milan DJ, Lubitz SA, Kääb S, Ellinor PT. Genome-wide association studies in cardiac electrophysiology: recent discoveries and implications for clinical practice. Heart Rhythm 2010; 7:1141-8. [PMID: 20423731 DOI: 10.1016/j.hrthm.2010.04.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 04/21/2010] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have been increasingly used to study the genetics of complex human diseases. Within the field of cardiac electrophysiology, this technique has been applied to conditions such as atrial fibrillation, and several electrocardiographic parameters including the QT interval. While these studies have identified multiple genomic regions associated with each trait, questions remain, including the best way to explore the pathophysiology of each association and the potential for clinical utility. This review will summarize recent genome-wide association study results within cardiac electrophysiology and discuss their broader implications in basic science and clinical medicine.
Collapse
Affiliation(s)
- David J Milan
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
284
|
Neely GG, Kuba K, Cammarato A, Isobe K, Amann S, Zhang L, Murata M, Elmén L, Gupta V, Arora S, Sarangi R, Dan D, Fujisawa S, Usami T, Xia CP, Keene AC, Alayari NN, Yamakawa H, Elling U, Berger C, Novatchkova M, Koglgruber R, Fukuda K, Nishina H, Isobe M, Pospisilik JA, Imai Y, Pfeufer A, Hicks AA, Pramstaller PP, Subramaniam S, Kimura A, Ocorr K, Bodmer R, Penninger JM. A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function. Cell 2010; 141:142-53. [PMID: 20371351 DOI: 10.1016/j.cell.2010.02.023] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 10/20/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022]
Abstract
Heart diseases are the most common causes of morbidity and death in humans. Using cardiac-specific RNAi-silencing in Drosophila, we knocked down 7061 evolutionarily conserved genes under conditions of stress. We present a first global roadmap of pathways potentially playing conserved roles in the cardiovascular system. One critical pathway identified was the CCR4-Not complex implicated in transcriptional and posttranscriptional regulatory mechanisms. Silencing of CCR4-Not components in adult Drosophila resulted in myofibrillar disarray and dilated cardiomyopathy. Heterozygous not3 knockout mice showed spontaneous impairment of cardiac contractility and increased susceptibility to heart failure. These heart defects were reversed via inhibition of HDACs, suggesting a mechanistic link to epigenetic chromatin remodeling. In humans, we show that a common NOT3 SNP correlates with altered cardiac QT intervals, a known cause of potentially lethal ventricular tachyarrhythmias. Thus, our functional genome-wide screen in Drosophila can identify candidates that directly translate into conserved mammalian genes involved in heart function.
Collapse
Affiliation(s)
- G Gregory Neely
- Institute of Molecular Biotechnology of Austrian Academy of Sciences, Dr. Bohr Gasse 3-5, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Abstract
Long QT syndrome (LQTS) is a congenital or drug-induced change in electrical activity of the heart that can lead to fatal arrhythmias. Mutations in 12 genes encoding ion channels and associated proteins are linked with congenital LQTS. With a computational systems biology approach, we found that gene products involved in LQTS formed a distinct functional neighborhood within the human interactome. Other diseases form similarly selective neighborhoods, and comparison of the LQTS neighborhood with other disease-centered neighborhoods suggested a molecular basis for associations between seemingly unrelated diseases that have increased risk of cardiac complications. By combining the LQTS neighborhood with published genome-wide association study data, we identified previously unknown single-nucleotide polymorphisms likely to affect the QT interval. We found that targets of U.S. Food and Drug Administration (FDA)-approved drugs that cause LQTS as an adverse event were enriched in the LQTS neighborhood. With the LQTS neighborhood as a classifier, we predicted drugs likely to have risks for QT effects and we validated these predictions with the FDA's Adverse Events Reporting System, illustrating how network analysis can enhance the detection of adverse drug effects associated with drugs in clinical use. Thus, the identification of disease-selective neighborhoods within the human interactome can be useful for predicting new gene variants involved in disease, explaining the complexity underlying adverse drug side effects, and predicting adverse event susceptibility for new drugs.
Collapse
Affiliation(s)
- Seth I Berger
- Department of Pharmacology and Systems Therapeutics and Systems Biology Center New York, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1215, New York, NY 10029, USA.
| | | | | |
Collapse
|
286
|
Albert CM, MacRae CA, Chasman DI, VanDenburgh M, Buring JE, Manson JE, Cook NR, Newton-Cheh C. Common variants in cardiac ion channel genes are associated with sudden cardiac death. Circ Arrhythm Electrophysiol 2010; 3:222-9. [PMID: 20400777 DOI: 10.1161/circep.110.944934] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Rare variants in cardiac ion channel genes are associated with sudden cardiac death in rare primary arrhythmic syndromes; however, it is unknown whether common variation in these same genes may contribute to sudden cardiac death risk at the population level. METHODS AND RESULTS We examined the association between 147 single nucleotide polymorphisms (SNPs) (137 tag, 5 noncoding SNPs associated with QT interval duration, and 5 nonsynonymous SNPs) in 5 cardiac ion channel genes, KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2, and sudden and/or arrhythmic death in a combined nested case-control analysis among 516 cases and 1522 matched control subjects of European ancestry enrolled in 6 prospective cohort studies. After accounting for multiple testing, 2 SNPs (rs2283222 located in intron 11 in KCNQ1 and rs11720524 located in intron 1 in SCN5A) remained significantly associated with sudden/arrhythmic death (false discovery rate=0.01 and 0.03, respectively). Each increasing copy of the major T-allele of rs2283222 or the major C-allele of rs1172052 was associated with an odds ratio of 1.36 (95% confidence interval, 1.16 to 1.60; P=0.0002) and 1.30 (95% confidence interval, 1.12 to 1.51; P=0.0005), respectively. Control for cardiovascular risk factors and/or limiting the analysis to definite sudden cardiac death did not significantly alter these relationships. CONCLUSION In this combined analysis of 6 prospective cohort studies, 2 common intronic variants in KCNQ1 and SCN5A were associated with sudden cardiac death in individuals of European ancestry. Further study in other populations and investigation into the functional abnormalities associated with noncoding variation in these genes may lead to important insights into predisposition to lethal arrhythmias.
Collapse
Affiliation(s)
- Christine M Albert
- Center for Arrhythmia Prevention, Division of Preventive Medicine, Cardiovascular Division, Channing Laboratory, and Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-1204, USA.
| | | | | | | | | | | | | | | |
Collapse
|
287
|
The year in arrhythmias—2009 Part II. Heart Rhythm 2010; 7:538-48. [DOI: 10.1016/j.hrthm.2010.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Indexed: 11/21/2022]
|
288
|
Genome-wide association study identifies GPC5 as a novel genetic locus protective against sudden cardiac arrest. PLoS One 2010; 5:e9879. [PMID: 20360844 PMCID: PMC2845611 DOI: 10.1371/journal.pone.0009879] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/04/2010] [Indexed: 11/23/2022] Open
Abstract
Background Existing studies indicate a significant genetic component for sudden cardiac arrest (SCA) and genome-wide association studies (GWAS) provide an unbiased approach for identification of novel genes. We performed a GWAS to identify genetic determinants of SCA. Methodology/Principal Findings We used a case-control design within the ongoing Oregon Sudden Unexpected Death Study (Oregon-SUDS). Cases (n = 424) were SCAs with coronary artery disease (CAD) among residents of Portland, OR (2002–07, population ∼1,000,000) and controls (n = 226) were residents with CAD, but no history of SCA. All subjects were of White-European ancestry and GWAS was performed using Affymetrix 500K/5.0 and 6.0 arrays. High signal markers were genotyped in SCA cases (n = 521) identified from the Atherosclerosis Risk in Communities Study (ARIC) and the Cardiovascular Health Study (CHS) (combined n = 19,611). No SNPs reached genome-wide significance (p<5×10−8). SNPs at 6 loci were prioritized for follow-up primarily based on significance of p<10−4 and proximity to a known gene (CSMD2, GPR37L1, LIN9, B4GALNT3, GPC5, and ZNF592). The minor allele of GPC5 (GLYPICAN 5, rs3864180) was associated with a lower risk of SCA in Oregon-SUDS, an effect that was also observed in ARIC/CHS whites (p<0.05) and blacks (p<0.04). In a combined Cox proportional hazards model analysis that adjusted for race, the minor allele exhibited a hazard ratio of 0.85 (95% CI 0.74 to 0.98; p<0.01). Conclusions/Significance A novel genetic locus for SCA, GPC5, was identified from Oregon-SUDS and successfully validated in the ARIC and CHS cohorts. Three other members of the Glypican family have been previously implicated in human disease, including cardiac conditions. The mechanism of this specific association requires further study.
Collapse
|
289
|
Abstract
It is now 5 years since the first genome-wide association studies (GWAS), published in 2005, identified a common risk allele with large effect size for age-related macular degeneration in a small sample set. Following this exciting finding, researchers have become optimistic about the prospect of the genome-wide association approach. However, most of the risk alleles identified in the subsequent GWAS for various complex diseases are common with small effect sizes (odds ratio <1.5). So far, more than 450 GWAS have been published and the associations of greater than 2000 single nucleotide polymorphisms (SNPs) or genetic loci were reported. The aim of this review paper is to give an overview of the evolving field of GWAS, discuss the progress that has been made by GWAS and some of the interesting findings, and summarize what we have learned over the past 5 years about the genetic basis of human complex diseases. This review will focus on GWAS of SNPs association for complex diseases but not studies of copy number variations.
Collapse
|
290
|
Abstract
The genetic architecture of a disease determines the epidemiological methods for its examination. Recently, Bodmer and Bonilla suggested that moderately strong, moderately rare variants contribute substantially to the genetic population attributable risk (PAR) of common diseases. In the first part of this communication, I provide a concise reconstruction of their deliberation. Variants contributing to human disease can be identified by linkage or by association tests. Risch and Merikangas analyzed the power of these tests by comparing the affected sib-pair linkage test (ASP) and the transmission disequilibrium association test (TDT). In the second part of this paper, I give an accessible reconstruction of this comparison and derive simple approximations in the low allele frequency range, directly showing that the linkage test is much more sensitive to a decrease of frequency or effect size. In the third part, I analyze a disease model whose genetic architecture is proportional to Kimura's infinite sites model. The relation between a variant's selection coefficient and its effect size in disease generation is assumed to be simple, and the number of contributing genetic variants is determined by the sum of their approximative PAR contributions. An association test (TDT) is finally applied to this disease model. For different ranges of effect size and allele frequency, I derive the minimal sample size necessary to detect at least one contributing variant. It turns out that, although the majority of contributing variants is not accessible with realistic sample sizes, a minimum of sample size may be given for moderately strong variants in the 1% frequency range.
Collapse
Affiliation(s)
- Konrad Oexle
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
291
|
Summers KM, Bokil NJ, Lu FT, Low JT, Baisden JM, Duffy D, Radford DJ. Mutations atKCNQ1and an unknown locus cause long QT syndrome in a large Australian family: Implications for genetic testing. Am J Med Genet A 2010; 152A:613-21. [DOI: 10.1002/ajmg.a.33274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
292
|
Abstract
PURPOSE OF REVIEW In this article, we will review the appropriate use of genetic testing in those patients suspected to have inherited arrhythmogenic diseases, with specific focus on the indications for testing and the expected probability of positive genotyping. RECENT FINDINGS Important advances have been made in the identification of new genes, associated mutations, and polymorphisms that modulate susceptibility of acquired arrhythmias. We will examine the most recent advances relevant to the rational application of genetic analysis, guided by genotype-phenotype correlations derived from disease and patient-specific evaluation, as well as discussing novel technologies and recently published cost-effectiveness data. SUMMARY Genetic analysis can be performed to identify the molecular substrate in those patients suspected to be affected by an inherited arrhythmogenic disease; however, the clinical usefulness of this information is often not straightforward. We hope to emphasize the concept that there is a significant difference in the impact of genetic testing within the various arrhythmogenic disorders, and the benefit of accessing genetic testing is not the same in all patients. The resultant integration between the expected yield of genetic screening and cost may allow the formation of criteria to prioritize access for those who could derive the most clinical benefit.
Collapse
|
293
|
Wieneke H, Spencker S, Svendsen JH, Martinez JG, Strohmer B, Toivonen L, Le Marec H, Garcia J, Kaup B, Soykan O, Corrado D, Siffert W. Polymorphisms associated with ventricular tachyarrhythmias: rationale, design, and endpoints of the 'diagnostic data influence on disease management and relation of genomics to ventricular tachyarrhythmias in implantable cardioverter/defibrillator patients (DISCOVERY)' study. Europace 2010; 12:424-9. [PMID: 20139118 DOI: 10.1093/europace/eup444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Implantable cardioverter-defibrillator (ICD) therapy is effective in primary and secondary prevention for patients who are at high risk of sudden cardiac death. However, the current risk stratification of patients who may benefit from this therapy is unsatisfactory. Single nucleotide polymorphisms (SNPs) are DNA sequence variations occurring when a single nucleotide in the genome differs among members of a species. A novel concept has emerged being that these common genetic variations might modify the susceptibility of a certain population to specific diseases. Thus, genetic factors may also modulate the risk for arrhythmias and sudden cardiac death, and identification of common variants could help to better identify patients at risk. The DISCOVERY study is an interventional, longitudinal, prospective, multi-centre diagnostic study that will enrol 1287 patients in approximately 80 European centres. In the genetic part of the DISCOVERY study, candidate gene polymorphisms involved in coding of the G-protein subunits will be correlated with the occurrence of ventricular arrhythmias in patients receiving an ICD for primary prevention. Furthermore, in order to search for additional sequence variants contributing to ventricular arrhythmias, a genome-wide association study will be conducted if sufficient a priori evidence can be gathered. In the second part of the study, associations of SNPs with ventricular arrhythmias will be sought and a search for potential new biological arrhythmic pathways will be investigated. As it is a diagnostic study, DISCOVERY will also investigate the impact of long-term device diagnostic data on the management of patients suffering from chronic cardiac disease as well as medical decisions made regarding their treatment.
Collapse
Affiliation(s)
- Heinrich Wieneke
- Department of Cardiology, Elisabeth-Krankenhaus Essen, Klara-Kopp-Weg 1, 45138 Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Genetic variation in SCN10A influences cardiac conduction. Nat Genet 2010; 42:149-52. [DOI: 10.1038/ng.516] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 11/20/2009] [Indexed: 12/17/2022]
|
295
|
Several common variants modulate heart rate, PR interval and QRS duration. Nat Genet 2010; 42:117-22. [PMID: 20062063 DOI: 10.1038/ng.511] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 11/20/2009] [Indexed: 12/20/2022]
Abstract
Electrocardiographic measures are indicative of the function of the cardiac conduction system. To search for sequence variants that modulate heart rate, PR interval and QRS duration in individuals of European descent, we performed a genome-wide association study in approximately 10,000 individuals and followed up the top signals in an additional approximately 10,000 individuals. We identified several genome-wide significant associations (with P < 1.6 x 10(-7)). We identified one locus for heart rate (MYH6), four for PR interval (TBX5, SCN10A, CAV1 and ARHGAP24) and four for QRS duration (TBX5, SCN10A, 6p21 and 10q21). We tested for association between these loci and subjects with selected arrhythmias in Icelandic and Norwegian case-control sample sets. We observed correlations between TBX5 and CAV1 and atrial fibrillation (P = 4.0 x 10(-5) and P = 0.00032, respectively), between TBX5 and advanced atrioventricular block (P = 0.0067), and between SCN10A and pacemaker implantation (P = 0.0029). We also replicated previously described associations with the QT interval.
Collapse
|
296
|
Pfeufer A, van Noord C, Marciante KD, Arking DE, Larson MG, Smith AV, Tarasov KV, Müller M, Sotoodehnia N, Sinner MF, Verwoert GC, Li M, Kao WHL, Köttgen A, Coresh J, Bis JC, Psaty BM, Rice K, Rotter JI, Rivadeneira F, Hofman A, Kors JA, Stricker BHC, Uitterlinden AG, van Duijn CM, Beckmann BM, Sauter W, Gieger C, Lubitz SA, Newton-Cheh C, Wang TJ, Magnani JW, Schnabel RB, Chung MK, Barnard J, Smith JD, Van Wagoner DR, Vasan RS, Aspelund T, Eiriksdottir G, Harris TB, Launer LJ, Najjar SS, Lakatta E, Schlessinger D, Uda M, Abecasis GR, Müller-Myhsok B, Ehret GB, Boerwinkle E, Chakravarti A, Soliman EZ, Lunetta KL, Perz S, Wichmann HE, Meitinger T, Levy D, Gudnason V, Ellinor PT, Sanna S, Kääb S, Witteman JCM, Alonso A, Benjamin EJ, Heckbert SR. Genome-wide association study of PR interval. Nat Genet 2010; 42:153-9. [PMID: 20062060 PMCID: PMC2850197 DOI: 10.1038/ng.517] [Citation(s) in RCA: 338] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 11/20/2009] [Indexed: 01/08/2023]
Abstract
The electrocardiographic PR interval reflects atrial and atrioventricular nodal conduction, disturbances of which increase risk of atrial fibrillation (AF). To identify underlying common genetic variation, we meta-analyzed genome-wide association results for PR interval from seven community-based studies of European-ancestry individuals in the CHARGE consortium: AGES, ARIC, CHS, FHS, KORA, Rotterdam Study, and SardiNIA (N=28,517). Statistically significant loci (P<5×10-8) were tested for association with AF (N=5,741 cases). We identified nine loci associated with PR interval. At chromosome 3p22.2, we observed two independent associations in voltage gated sodium channel genes SCN10A and SCN5A, while six loci were near cardiac developmental genes CAV1/CAV2, NKX2-5 (CSX1), SOX5, WNT11, MEIS1, and TBX5/TBX3. Another signal was at ARHGAP24, a locus without known relevance to the heart. Five of the nine loci, SCN5A, SCN10A, NKX2-5, CAV1/CAV2, and SOX5, were also associated with AF (P<0.0056). Common genetic variation, particularly in ion channel and developmental genes, contributes significantly to atrial and atrioventricular conduction and to AF risk.
Collapse
Affiliation(s)
- Arne Pfeufer
- Institute of Human Genetics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Koontz JI, Haithcock D, Cumbea V, Waldron A, Stricker K, Hughes A, Nilsson K, Sun A, Piccini JP, Kraus WE, Pitt GS, Shah SH, Hranitzky P. Rationale and design of the Duke Electrophysiology Genetic and Genomic Studies (EPGEN) biorepository. Am Heart J 2009; 158:719-25. [PMID: 19853688 DOI: 10.1016/j.ahj.2009.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 08/13/2009] [Indexed: 02/01/2023]
Abstract
BACKGROUND Disturbances in cardiac rhythm can lead to significant morbidity and mortality. Many arrhythmias are known to have a heritable component, but the degree to which genetic variation contributes to disease risk and morbidity is poorly understood. METHODS AND RESULTS The EPGEN is a prospective single-center repository that archives DNA, RNA, and protein samples obtained at the time of an electrophysiologic evaluation or intervention. To identify genes and molecular variants that are associated with risk for arrhythmic phenotypes, EPGEN uses unbiased genomic screening; candidate gene analysis; and both unbiased and targeted transcript, protein, and metabolite profiling. To date, EPGEN has successfully enrolled >1,500 subjects. The median age of the study population is 62.9 years; 35% of the subjects are female and 21% are black. To this point, the study population has been composed of patients who had undergone defibrillator (implantable cardioverter-defibrillator or cardiac resynchronization therapy defibrillator) implantation (45%), electrophysiology studies or ablation procedures (35%), and pacemaker implantation or other procedures (20%). The cohort has a high prevalence of comorbidities, including diabetes (33%), hypertension (73%), chronic kidney disease (26%), and peripheral vascular disease (13%). CONCLUSIONS We have established a biorepository and clinical database composed of patients with electrophysiologic diseases. EPGEN will seek to (1) improve risk stratification, (2) elucidate mechanisms of arrhythmogenesis, and (3) identify novel pharmacologic targets for the treatment of heart rhythm disorders.
Collapse
Affiliation(s)
- Jason I Koontz
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Tfelt-Hansen J, Winkel BG, Grunnet M, Jespersen T. Inherited cardiac diseases caused by mutations in the Nav1.5 sodium channel. J Cardiovasc Electrophysiol 2009; 21:107-15. [PMID: 19845816 DOI: 10.1111/j.1540-8167.2009.01633.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A prerequisite for a normal cardiac function is a proper generation and propagation of electrical impulses. Contraction of the heart is obtained through a delicate matched transmission of the electrical impulses. A pivotal element of the impulse propagation is the depolarizing sodium current, responsible for the initial depolarization of the cardiomyocytes. Recent research has shown that mutations in the SCN5A gene, encoding the cardiac sodium channel Nav1.5, are associated with both rare forms of ventricular arrhythmia, as well as the most frequent form of arrhythmia, atrial fibrillation (AF). In this comprehensive review, we describe the functional role of Nav1.5 and its associated proteins in propagation and depolarization both in a normal- and in a pathophysiological setting. Furthermore, several of the arrhythmogenic diseases, such as long-QT syndrome, Brugada syndrome, and AF, reported to be associated with mutations in SCN5A, are thoroughly described.
Collapse
Affiliation(s)
- Jacob Tfelt-Hansen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Copenhagen, Denmark.
| | | | | | | |
Collapse
|
299
|
Crotti L, Monti MC, Insolia R, Peljto A, Goosen A, Brink PA, Greenberg DA, Schwartz PJ, George AL. NOS1AP is a genetic modifier of the long-QT syndrome. Circulation 2009; 120:1657-63. [PMID: 19822806 DOI: 10.1161/circulationaha.109.879643] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In congenital long-QT syndrome (LQTS), a genetically heterogeneous disorder that predisposes to sudden cardiac death, genetic factors other than the primary mutation may modify the probability of life-threatening events. Recent evidence indicates that common variants in NOS1AP are associated with the QT-interval duration in the general population. METHODS AND RESULTS We tested the hypothesis that common variants in NOS1AP modify the risk of clinical manifestations and the degree of QT-interval prolongation in a South African LQTS population (500 subjects, 205 mutation carriers) segregating a founder mutation in KCNQ1 (A341V) using a family-based association analysis. NOS1AP variants were significantly associated with the occurrence of symptoms (rs4657139, P=0.019; rs16847548, P=0.003), with clinical severity, as manifested by a greater probability for cardiac arrest and sudden death (rs4657139, P=0.028; rs16847548, P=0.014), and with greater likelihood of having a QT interval in the top 40% of values among all mutation carriers (rs4657139, P=0.03; rs16847548, P=0.03). CONCLUSIONS These findings indicate that NOS1AP, a gene first identified as affecting the QTc interval in a general population, also influences sudden death risk in subjects with LQTS. The association of NOS1AP genetic variants with risk for life-threatening arrhythmias suggests that this gene is a genetic modifier of LQTS, and this knowledge may be clinically useful for risk stratification for patients with this disease, after validation in other LQTS populations.
Collapse
Affiliation(s)
- Lia Crotti
- Department of Lung, Blood, and Heart, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
300
|
GWAS or Gee Whiz, PSAS or Pshaw: elucidating the biologic and clinical significance of genetic variation in cardiovascular disease. Heart Rhythm 2009; 6:1751-3. [PMID: 19959124 DOI: 10.1016/j.hrthm.2009.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Indexed: 01/11/2023]
|