251
|
Transcriptional responses to sucrose mimic the plant-associated life style of the plant growth promoting endophyte Enterobacter sp. 638. PLoS One 2015; 10:e0115455. [PMID: 25607953 PMCID: PMC4301647 DOI: 10.1371/journal.pone.0115455] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.
Collapse
|
252
|
Üstün S, Bartetzko V, Börnke F. The Xanthomonas effector XopJ triggers a conditional hypersensitive response upon treatment of N. benthamiana leaves with salicylic acid. FRONTIERS IN PLANT SCIENCE 2015; 6:599. [PMID: 26284106 PMCID: PMC4522559 DOI: 10.3389/fpls.2015.00599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/20/2015] [Indexed: 05/09/2023]
Abstract
XopJ is a Xanthomonas type III effector protein that promotes bacterial virulence on susceptible pepper plants through the inhibition of the host cell proteasome and a resultant suppression of salicylic acid (SA) - dependent defense responses. We show here that Nicotiana benthamiana leaves transiently expressing XopJ display hypersensitive response (HR) -like symptoms when exogenously treated with SA. This apparent avirulence function of XopJ was further dependent on effector myristoylation as well as on an intact catalytic triad, suggesting a requirement of its enzymatic activity for HR-like symptom elicitation. The ability of XopJ to cause a HR-like symptom development upon SA treatment was lost upon silencing of SGT1 and NDR1, respectively, but was independent of EDS1 silencing, suggesting that XopJ is recognized by an R protein of the CC-NBS-LRR class. Furthermore, silencing of NPR1 abolished the elicitation of HR-like symptoms in XopJ expressing leaves after SA application. Measurement of the proteasome activity indicated that proteasome inhibition by XopJ was alleviated in the presence of SA, an effect that was not observed in NPR1 silenced plants. Our results suggest that XopJ - triggered HR-like symptoms are closely related to the virulence function of the effector and that XopJ follows a two-signal model in order to elicit a response in the non-host plant N. benthamiana.
Collapse
Affiliation(s)
- Suayib Üstün
- Plant Health, Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental Crops, GroßbeerenGermany
| | - Verena Bartetzko
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, ErlangenGermany
| | - Frederik Börnke
- Plant Health, Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental Crops, GroßbeerenGermany
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, ErlangenGermany
- Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
- *Correspondence: Frederik Börnke, Plant Health, Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany,
| |
Collapse
|
253
|
Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T, Manceau C, Fischer-Le Saux M, Jacques MA. Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation. FRONTIERS IN PLANT SCIENCE 2015; 6:1126. [PMID: 26734033 PMCID: PMC4686621 DOI: 10.3389/fpls.2015.01126] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/27/2015] [Indexed: 05/03/2023]
Abstract
The bacterial species Xanthomonas arboricola contains plant pathogenic and nonpathogenic strains. It includes the pathogen X. arboricola pv. juglandis, causing the bacterial blight of Juglans regia. The emergence of a new bacterial disease of J. regia in France called vertical oozing canker (VOC) was previously described and the causal agent was identified as a distinct genetic lineage within the pathovar juglandis. Symptoms on walnut leaves and fruits are similar to those of a bacterial blight but VOC includes also cankers on trunk and branches. In this work, we used comparative genomics and physiological tests to detect differences between four X. arboricola strains isolated from walnut tree: strain CFBP 2528 causing walnut blight (WB), strain CFBP 7179 causing VOC and two nonpathogenic strains, CFBP 7634 and CFBP 7651, isolated from healthy walnut buds. Whole genome sequence comparisons revealed that pathogenic strains possess a larger and wider range of mobile genetic elements than nonpathogenic strains. One pathogenic strain, CFBP 7179, possessed a specific integrative and conjugative element (ICE) of 95 kb encoding genes involved in copper resistance, transport and regulation. The type three effector repertoire was larger in pathogenic strains than in nonpathogenic strains. Moreover, CFBP 7634 strain lacked the type three secretion system encoding genes. The flagellar system appeared incomplete and nonfunctional in the pathogenic strain CFBP 2528. Differential sets of chemoreceptor and different repertoires of genes coding adhesins were identified between pathogenic and nonpathogenic strains. Besides these differences, some strain-specific differences were also observed. Altogether, this study provides valuable insights to highlight the mechanisms involved in ecology, environment perception, plant adhesion and interaction, leading to the emergence of new strains in a dynamic environment.
Collapse
Affiliation(s)
- Sophie Cesbron
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
- *Correspondence: Sophie Cesbron
| | - Martial Briand
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| | - Salwa Essakhi
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| | - Sophie Gironde
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| | - Tristan Boureau
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et SemencesAngers, France
| | - Charles Manceau
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| | | | - Marie-Agnès Jacques
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| |
Collapse
|
254
|
Üstün S, Börnke F. Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways. FRONTIERS IN PLANT SCIENCE 2014; 5:736. [PMID: 25566304 PMCID: PMC4270169 DOI: 10.3389/fpls.2014.00736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/03/2014] [Indexed: 05/26/2023]
Abstract
In eukaryotes, regulated protein turnover is required during many cellular processes, including defense against pathogens. Ubiquitination and degradation of ubiquitinated proteins via the ubiquitin-proteasome system (UPS) is the main pathway for the turnover of intracellular proteins in eukaryotes. The extensive utilization of the UPS in host cells makes it an ideal pivot for the manipulation of cellular processes by pathogens. Like many other Gram-negative bacteria, Xanthomonas species secrete a suite of type-III effector proteins (T3Es) into their host cells to promote virulence. Some of these T3Es exploit the plant UPS to interfere with immunity. This review summarizes T3E examples from the genus Xanthomonas with a proven or suggested interaction with the host UPS or UPS-like systems and also discusses the apparent paradox that arises from the presence of T3Es that inhibit the UPS in general while others rely on its activity for their function.
Collapse
Affiliation(s)
- Suayib Üstün
- Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
| | - Frederik Börnke
- Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
- Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| |
Collapse
|
255
|
Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE, Gupta RS. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie van Leeuwenhoek 2014; 107:467-85. [DOI: 10.1007/s10482-014-0344-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/28/2014] [Indexed: 01/10/2023]
|
256
|
Chakraborty S, Phu M, de Morais TP, Nascimento R, Goulart LR, Rao BJ, Asgeirsson B, Dandekar AM. The PDB database is a rich source of alpha-helical anti-microbial peptides to combat disease causing pathogens. F1000Res 2014; 3:295. [PMID: 26629331 PMCID: PMC4642847 DOI: 10.12688/f1000research.5802.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 08/06/2023] Open
Abstract
The therapeutic potential of α-helical anti-microbial peptides (AH-AMP) to combat pathogens is fast gaining prominence. Based on recently published open access software for characterizing α-helical peptides (PAGAL), we elucidate a search methodology (SCALPEL) that leverages the massive structural data pre-existing in the PDB database to obtain AH-AMPs belonging to the host proteome. We provide in vitro validation of SCALPEL on plant pathogens ( Xylella fastidiosa, Xanthomonas arboricola and Liberibacter crescens) by identifying AH-AMPs that mirror the function and properties of cecropin B, a well-studied AH-AMP. The identified peptides include a linear AH-AMP present within the existing structure of phosphoenolpyruvate carboxylase (PPC20), and an AH-AMP mimicing the properties of the two α-helices of cecropin B from chitinase (CHITI25). The minimum inhibitory concentration of these peptides are comparable to that of cecropin B, while anionic peptides used as control failed to show any inhibitory effect on these pathogens. Substitute therapies in place of conventional chemotherapies using membrane permeabilizing peptides like these might also prove effective to target cancer cells. The use of native structures from the same organism largely ensures that administration of such peptides will be better tolerated and not elicit an adverse immune response. We suggest a similar approach to target Ebola epitopes, enumerated using PAGAL recently, by selecting suitable peptides from the human proteome, especially in wake of recent reports of cationic amphiphiles inhibiting virus entry and infection.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
| | - My Phu
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | - Tâmara Prado de Morais
- Institute of Agricultural Sciences, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia, MG, Brazil
| | - Rafael Nascimento
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia, MG, Brazil
| | - Luiz Ricardo Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia, MG, Brazil
| | - Basuthkar J. Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
| | - Bjarni Asgeirsson
- Science Institute, Department of Biochemistry, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
| | - Abhaya M. Dandekar
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| |
Collapse
|
257
|
Chakraborty S, Phu M, de Morais TP, Nascimento R, Goulart LR, Rao BJ, Asgeirsson B, Dandekar AM. The PDB database is a rich source of alpha-helical anti-microbial peptides to combat disease causing pathogens. F1000Res 2014; 3:295. [PMID: 26629331 PMCID: PMC4642847 DOI: 10.12688/f1000research.5802.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 12/26/2022] Open
Abstract
The therapeutic potential of α-helical anti-microbial peptides (AH-AMP) to combat pathogens is fast gaining prominence. Based on recently published open access software for characterizing α-helical peptides (PAGAL), we elucidate a search methodology (SCALPEL) that leverages the massive structural data pre-existing in the PDB database to obtain AH-AMPs belonging to the host proteome. We provide in vitro validation of SCALPEL on plant pathogens ( Xylella fastidiosa, Xanthomonas arboricola and Liberibacter crescens) by identifying AH-AMPs that mirror the function and properties of cecropin B, a well-studied AH-AMP. The identified peptides include a linear AH-AMP present within the existing structure of phosphoenolpyruvate carboxylase (PPC20), and an AH-AMP mimicing the properties of the two α-helices of cecropin B from chitinase (CHITI25). The minimum inhibitory concentration of these peptides are comparable to that of cecropin B, while anionic peptides used as control failed to show any inhibitory effect on these pathogens. Substitute therapies in place of conventional chemotherapies using membrane permeabilizing peptides like these might also prove effective to target cancer cells. The use of native structures from the same organism could possibly ensure that administration of such peptides will be better tolerated and not elicit an adverse immune response. We suggest a similar approach to target Ebola epitopes, enumerated using PAGAL recently, by selecting suitable peptides from the human proteome, especially in wake of recent reports of cationic amphiphiles inhibiting virus entry and infection.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
| | - My Phu
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | - Tâmara Prado de Morais
- Institute of Agricultural Sciences, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia, MG, Brazil
| | - Rafael Nascimento
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia, MG, Brazil
| | - Luiz Ricardo Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia, MG, Brazil
| | - Basuthkar J. Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
| | - Bjarni Asgeirsson
- Science Institute, Department of Biochemistry, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
| | - Abhaya M. Dandekar
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| |
Collapse
|
258
|
Huang PY, Zimmerli L. Enhancing crop innate immunity: new promising trends. FRONTIERS IN PLANT SCIENCE 2014; 5:624. [PMID: 25414721 PMCID: PMC4222232 DOI: 10.3389/fpls.2014.00624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/22/2014] [Indexed: 05/23/2023]
Abstract
Plants are constantly exposed to potentially pathogenic microbes present in their surrounding environment. Due to the activation of the pattern-triggered immunity (PTI) response that largely relies on accurate detection of pathogen- or microbe-associated molecular patterns by pattern-recognition receptors (PRRs), plants are resistant to the majority of potential pathogens. However, adapted pathogens may avoid recognition or repress plant PTI and resulting diseases significantly affect crop yield worldwide. PTI provides protection against a wide range of pathogens. Reinforcement of PTI through genetic engineering may thus generate crops with broad-spectrum field resistance. In this review, new approaches based on fundamental discoveries in PTI to improve crop immunity are discussed. Notably, we highlight recent studies describing the interfamily transfer of PRRs or key regulators of PTI signaling.
Collapse
Affiliation(s)
- Pin-Yao Huang
- Department of Life Science, National Taiwan UniversityTaipei, Taiwan
- Institute of Plant Biology, National Taiwan UniversityTaipei, Taiwan
| | - Laurent Zimmerli
- Department of Life Science, National Taiwan UniversityTaipei, Taiwan
- Institute of Plant Biology, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
259
|
Tan L, Rong W, Luo H, Chen Y, He C. The Xanthomonas campestris effector protein XopDXcc8004 triggers plant disease tolerance by targeting DELLA proteins. THE NEW PHYTOLOGIST 2014; 204:595-608. [PMID: 25040905 DOI: 10.1111/nph.12918] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/29/2014] [Indexed: 05/09/2023]
Abstract
Plants protect themselves from the harmful effects of pathogens by resistance and tolerance. Disease resistance, which eliminates pathogens, can be modulated by bacterial type III effectors. Little is known about whether disease tolerance, which sustains host fitness with a given pathogen burden, is regulated by effectors. Here, we examined the effects of the Xanthomonas effector protein XopDXcc8004 on plant disease defenses by constructing knockout and complemented Xanthomonas strains, and performing inoculation studies in radish (Raphanus sativus L. var. radiculus XiaoJinZhong) and Arabidopsis plants. XopDXcc8004 suppresses disease symptoms without changing bacterial titers in infected leaves. In Arabidopsis, XopDXcc8004 delays the hormone gibberellin (GA)-mediated degradation of RGA (repressor of ga1-3), one of five DELLA proteins that repress GA signaling and promote plant tolerance under biotic and abiotic stresses. The ERF-associated amphiphilic repression (EAR) motif-containing region of XopDXcc8004 interacts with the DELLA domain of RGA and might interfere with the GA-induced binding of GID1, a GA receptor, to RGA. The EAR motif was found to be present in a number of plant transcriptional regulators. Thus, our data suggest that bacterial pathogens might have evolved effectors, which probably mimic host components, to initiate disease tolerance and enhance their survival.
Collapse
Affiliation(s)
- Leitao Tan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Wei Rong
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China
| | - Hongli Luo
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China
| | - Yinhua Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China
| | - Chaozu He
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China
| |
Collapse
|
260
|
Functional and proteomic analyses reveal that wxcB is involved in virulence, motility, detergent tolerance, and biofilm formation in Xanthomonas campestris pv. vesicatoria. Biochem Biophys Res Commun 2014; 452:389-94. [DOI: 10.1016/j.bbrc.2014.08.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/16/2014] [Indexed: 11/23/2022]
|
261
|
Ichida H, Sun X, Imanaga S, Ito Y, Yoneyama K, Kuwata S, Ohsato S. Construction and characterization of a copy number-inducible fosmid library of Xanthomonas oryzae pathovar oryzae MAFF311018. Gene 2014; 546:68-72. [PMID: 24835513 DOI: 10.1016/j.gene.2014.05.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 11/30/2022]
Abstract
A fosmid library of Xanthomonas oryzae pathovar oryzae MAFF311018 (T7174), the causative agent of bacterial blight on rice, was constructed and characterized. The average fosmid library insert size was >34kb, and 967 clones were uniquely positioned on its sequenced genome. The entire Xoo MAFF311018 genome was covered by end-sequenced clones with at least 5kb of overlap. The fosmid vector contains both the single-copy Escherichia coli fertility factor origin, which enhances fosmid stability, and the multi-copy IncPα origin, allowing amplification of copy number upon induction with l-arabinose. Real-time quantitative PCR on 12 randomly picked fosmid library clones determined that fosmid copy number increased 8- to 58-fold after 5hour induction. This library provides a new resource for complementation experiments and systematic functional studies in Xoo and related species.
Collapse
Affiliation(s)
- Hiroyuki Ichida
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Xiaoying Sun
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Suguru Imanaga
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Yasuhiro Ito
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Katsuyoshi Yoneyama
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Shigeru Kuwata
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Shuichi Ohsato
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| |
Collapse
|
262
|
The galU gene of Xanthomonas campestris pv. campestris is involved in bacterial attachment, cell motility, polysaccharide synthesis, virulence, and tolerance to various stresses. Arch Microbiol 2014; 196:729-38. [DOI: 10.1007/s00203-014-1012-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/11/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022]
|
263
|
Abstract
Xanthomonas phytopathogenic bacteria produce unique transcription activator-like effector (TALE) proteins that recognize and activate specific plant promoters through a set of tandem repeats. A unique TALE-DNA-binding code uses two polymorphic amino acids in each repeat to mediate recognition of specific nucleotides. The order of repeats determines effector’s specificity toward the cognate nucleotide sequence of the sense DNA strand. Artificially designed TALE-DNA-binding domains fused to nuclease or activation and repressor domains provide an outstanding toolbox for targeted gene editing and gene regulation in research, biotechnology and gene therapy. Gene editing with custom-designed TALE nucleases (TALENs) extends the repertoire of targeted genome modifications across a broad spectrum of organisms ranging from plants and insect to mammals.
Collapse
|
264
|
Dugé de Bernonville T, Noël LD, SanCristobal M, Danoun S, Becker A, Soreau P, Arlat M, Lauber E. Transcriptional reprogramming and phenotypical changes associated with growth ofXanthomonas campestrispv.campestrisin cabbage xylem sap. FEMS Microbiol Ecol 2014; 89:527-41. [DOI: 10.1111/1574-6941.12345] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
- Thomas Dugé de Bernonville
- Laboratoire des Interactions Plantes Micro-organismes (LIPM); UMR 441; INRA; Castanet-Tolosan France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM); UMR 2594; CNRS; Castanet-Tolosan France
| | - Laurent D. Noël
- Laboratoire des Interactions Plantes Micro-organismes (LIPM); UMR 441; INRA; Castanet-Tolosan France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM); UMR 2594; CNRS; Castanet-Tolosan France
| | - Magali SanCristobal
- UMR 1388 Génétique, Physiologie et Systèmes d'Elevage; INRA; Castanet-Tolosan France
- UMR 1388 Génétique, Physiologie et Systèmes d'Elevage; Université de Toulouse INPT ENSAT; Castanet-Tolosan France
- UMR 1388 Génétique, Physiologie et Systèmes d'Elevage; Université de Toulouse INPT ENVT; Toulouse France
| | - Saida Danoun
- Laboratoire de Recherches en Sciences Végétales (LRSV); UMR 5546; Université de Toulouse, UPS; Castanet-Tolosan France
- Laboratoire de Recherches en Sciences Végétales (LRSV); UMR 5546; CNRS; Castanet-Tolosan France
| | - Anke Becker
- Loewe Center for Synthetic Microbiology and Department of Biology; Philipps-Universität Marburg; Marburg Germany
| | - Paul Soreau
- CEA Cadarache; IBEB-SBVME; Research Group in Applied Phytotechnics; UMR 6191 CNRS-CEA; Aix-Marseille University; Saint-Paul-lez-Durance Cedex France
| | - Matthieu Arlat
- Laboratoire des Interactions Plantes Micro-organismes (LIPM); UMR 441; INRA; Castanet-Tolosan France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM); UMR 2594; CNRS; Castanet-Tolosan France
- Université de Toulouse, UPS; Toulouse France
| | - Emmanuelle Lauber
- Laboratoire des Interactions Plantes Micro-organismes (LIPM); UMR 441; INRA; Castanet-Tolosan France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM); UMR 2594; CNRS; Castanet-Tolosan France
| |
Collapse
|
265
|
Xanthan Gum Removal for 1H-NMR Analysis of the Intracellular Metabolome of the Bacteria Xanthomonas axonopodis pv. citri 306. Metabolites 2014; 4:218-31. [PMID: 24957023 PMCID: PMC4101503 DOI: 10.3390/metabo4020218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/05/2014] [Accepted: 04/11/2014] [Indexed: 11/23/2022] Open
Abstract
Xanthomonas is a genus of phytopathogenic bacteria, which produces a slimy, polysaccharide matrix known as xanthan gum, which involves, protects and helps the bacteria during host colonization. Although broadly used as a stabilizer and thickener in the cosmetic and food industries, xanthan gum can be a troubling artifact in molecular investigations due to its rheological properties. In particular, a cross-reaction between reference compounds and the xanthan gum could compromise metabolic quantification by NMR spectroscopy. Aiming at an efficient gum extraction protocol, for a 1H-NMR-based metabolic profiling study of Xanthomonas, we tested four different interventions on the broadly used methanol-chloroform extraction protocol for the intracellular metabolic contents observation. Lower limits for bacterial pellet volumes for extraction were also probed, and a strategy is illustrated with an initial analysis of X. citri’s metabolism by 1H-NMR spectroscopy.
Collapse
|
266
|
Akimoto-Tomiyama C, Furutani A, Ochiai H. Real time live imaging of phytopathogenic bacteria Xanthomonas campestris pv. campestris MAFF106712 in 'plant sweet home'. PLoS One 2014; 9:e94386. [PMID: 24736478 PMCID: PMC3988059 DOI: 10.1371/journal.pone.0094386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/14/2014] [Indexed: 11/18/2022] Open
Abstract
Xanthomonas is one of the most widespread phytobacteria, causing diseases on a variety of agricultural plants. To develop novel control techniques, knowledge of bacterial behavior inside plant cells is essential. Xanthomonas campestris pv. campestris, a vascular pathogen, is the causal agent of black rot on leaves of Brassicaceae, including Arabidopsis thaliana. Among the X. campestris pv. campestris stocks in the MAFF collection, we selected XccMAFF106712 as a model compatible pathogen for the A. thaliana reference ecotype Columbia (Col-0). Using modified green fluorescent protein (AcGFP) as a reporter, we observed real time XccMAFF106712 colonization in planta with confocal microscopy. AcGFP-expressing bacteria colonized the inside of epidermal cells and the apoplast, as well as the xylem vessels of the vasculature. In the case of the type III mutant, bacteria colonization was never detected in the xylem vessel or apoplast, though they freely enter the xylem vessel through the wound. After 9 days post inoculation with XccMAFF106712, the xylem vessel became filled with bacterial aggregates. This suggests that Xcc colonization can be divided into main four steps, (1) movement in the xylem vessel, (2) movement to the next cell, (3) adhesion to the host plant cells, and (4) formation of bacterial aggregates. The type III mutant abolished at least steps (1) and (2). Better understanding of Xcc colonization is essential for development of novel control techniques for black rot.
Collapse
Affiliation(s)
- Chiharu Akimoto-Tomiyama
- Plant-Microbe Interaction Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan
- * E-mail:
| | - Ayako Furutani
- Gene Research Center, Ibaraki University, Inashiki, Japan
| | - Hirokazu Ochiai
- Plant-Microbe Interaction Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan
| |
Collapse
|
267
|
An SQ, Allan JH, McCarthy Y, Febrer M, Dow JM, Ryan RP. The PAS domain-containing histidine kinase RpfS is a second sensor for the diffusible signal factor of Xanthomonas campestris. Mol Microbiol 2014; 92:586-97. [PMID: 24617591 PMCID: PMC4159695 DOI: 10.1111/mmi.12577] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2014] [Indexed: 11/30/2022]
Abstract
A cell–cell signalling system mediated by the fatty acid signal DSF controls the virulence of Xanthomonas campestris pv. campestris (Xcc) to plants. The synthesis and recognition of the DSF signal depends upon different Rpf proteins. DSF signal generation requires RpfF whereas signal perception and transduction depends upon the sensor RpfC and regulator RpfG. Detailed analyses of the regulatory roles of different Rpf proteins have suggested the occurrence of further sensors for DSF. Here we have used a mutagenesis approach coupled with high‐resolution transcriptional analysis to identify XC_2579 (RpfS) as a second sensor for DSF in Xcc. RpfS is a complex sensor kinase predicted to have multiple Per/Arnt/Sim (PAS) domains, a histidine kinase domain and a C‐terminal receiver (REC) domain. Isothermal calorimetry showed that DSF bound to the isolated N‐terminal PAS domain with a Kd of 1.4 μM. RpfS controlled expression of a sub‐set of genes distinct from those controlled by RpfC to include genes involved in type IV secretion and chemotaxis. Mutation of XC_2579 was associated with a reduction in virulence of Xcc to Chinese Radish when assayed by leaf spraying but not by leaf inoculation, suggesting a role for RpfS‐controlled factors in the epiphytic phase of the disease cycle.
Collapse
Affiliation(s)
- Shi-Qi An
- Division of Molecular Microbiology, Colleges of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | | | |
Collapse
|
268
|
Martínez LC, Vadyvaloo V. Mechanisms of post-transcriptional gene regulation in bacterial biofilms. Front Cell Infect Microbiol 2014; 4:38. [PMID: 24724055 PMCID: PMC3971182 DOI: 10.3389/fcimb.2014.00038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/08/2014] [Indexed: 12/19/2022] Open
Abstract
Biofilms are characterized by a dense multicellular community of microorganisms that can be formed by the attachment of bacteria to an inert surface and to each other. The development of biofilm involves the initial attachment of planktonic bacteria to a surface, followed by replication, cell-to-cell adhesion to form microcolonies, maturation, and detachment. Mature biofilms are embedded in a self-produced extracellular polymeric matrix composed primarily of bacterial-derived exopolysaccharides, specialized proteins, adhesins, and occasionally DNA. Because the synthesis and assembly of biofilm matrix components is an exceptionally complex process, the transition between its different phases requires the coordinate expression and simultaneous regulation of many genes by complex genetic networks involving all levels of gene regulation. The finely controlled intracellular level of the chemical second messenger molecule, cyclic-di-GMP is central to the post-transcriptional mechanisms governing the switch between the motile planktonic lifestyle and the sessile biofilm forming state in many bacteria. Several other post-transcriptional regulatory mechanisms are known to dictate biofilm development and assembly and these include RNA-binding proteins, small non-coding RNAs, toxin-antitoxin systems, riboswitches, and RNases. Post-transcriptional regulation is therefore a powerful molecular mechanism employed by bacteria to rapidly adjust to the changing environment and to fine tune gene expression to the developmental needs of the cell. In this review, we discuss post-transcriptional mechanisms that influence the biofilm developmental cycle in a variety of pathogenic bacteria.
Collapse
Affiliation(s)
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Animal Health, Washington State UniversityPullman, WA, USA
| |
Collapse
|
269
|
Wasukira A, Coulter M, Al-Sowayeh N, Thwaites R, Paszkiewicz K, Kubiriba J, Smith J, Grant M, Studholme DJ. Genome Sequencing of Xanthomonas vasicola Pathovar vasculorum Reveals Variation in Plasmids and Genes Encoding Lipopolysaccharide Synthesis, Type-IV Pilus and Type-III Secretion Effectors. Pathogens 2014; 3:211-37. [PMID: 25437615 PMCID: PMC4235730 DOI: 10.3390/pathogens3010211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/10/2014] [Accepted: 03/03/2014] [Indexed: 01/01/2023] Open
Abstract
Xanthomonas vasicola pathovar vasculorum (Xvv) is the bacterial agent causing gumming disease in sugarcane. Here, we compare complete genome sequences for five isolates of Xvv originating from sugarcane and one from maize. This identified two distinct types of lipopolysaccharide synthesis gene clusters among Xvv isolates: one is similar to that of Xanthomonas axonopodis pathovar citri (Xac) and is probably the ancestral type, while the other is similar to those of the sugarcane-inhabiting species, Xanthomonas sacchari. Four of six Xvv isolates harboured sequences similar to the Xac plasmid, pXAC47, and showed a distinct Type-IV pilus (T4P) sequence type, whereas the T4P locus of the other two isolates resembled that of the closely related banana pathogen, Xanthomonas campestris pathovar musacearum (Xcm). The Xvv isolate from maize has lost a gene encoding a homologue of the virulence effector, xopAF, which was present in all five of the sugarcane isolates, while xopL contained a premature stop codon in four out of six isolates. These findings shed new light on evolutionary events since the divergence of Xvv and Xcm, as well as further elucidating the relationships between the two closely related pathogens.
Collapse
Affiliation(s)
- Arthur Wasukira
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - Max Coulter
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - Noorah Al-Sowayeh
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - Richard Thwaites
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK.
| | - Konrad Paszkiewicz
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - Jerome Kubiriba
- National Crops Resources Research Institute (NaCRRI), Kampala 7084, Uganda.
| | - Julian Smith
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK.
| | - Murray Grant
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - David J Studholme
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
270
|
Characterization of the pyrophosphate-dependent 6-phosphofructokinase from Xanthomonas campestris pv. campestris. Arch Biochem Biophys 2014; 546:53-63. [DOI: 10.1016/j.abb.2014.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 01/23/2014] [Accepted: 01/26/2014] [Indexed: 01/01/2023]
|
271
|
Abendroth U, Schmidtke C, Bonas U. Small non-coding RNAs in plant-pathogenic Xanthomonas spp. RNA Biol 2014; 11:457-63. [PMID: 24667380 DOI: 10.4161/rna.28240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The genus Xanthomonas comprises a large group of plant-pathogenic bacteria. The infection and bacterial multiplication in the plant tissue depends on the type III secretion system and other virulence determinants. Recent studies revealed that bacterial virulence is also controlled at the post-transcriptional level by small non-coding RNAs (sRNAs). In this review, we highlight our current knowledge about sRNAs and RNA-binding proteins in Xanthomonas species.
Collapse
Affiliation(s)
- Ulrike Abendroth
- Dept. of Genetics; Martin-Luther-Universität Halle-Wittenberg; Halle, Germany
| | - Cornelius Schmidtke
- Dept. of Genetics; Martin-Luther-Universität Halle-Wittenberg; Halle, Germany
| | - Ulla Bonas
- Dept. of Genetics; Martin-Luther-Universität Halle-Wittenberg; Halle, Germany
| |
Collapse
|
272
|
Deng CY, Deng AH, Sun ST, Wang L, Wu J, Wu Y, Chen XY, Fang RX, Wen TY, Qian W. The periplasmic PDZ domain-containing protein Prc modulates full virulence, envelops stress responses, and directly interacts with dipeptidyl peptidase of Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:101-112. [PMID: 24200074 DOI: 10.1094/mpmi-08-13-0234-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PDZ domain-containing proteases, also known as HtrA family proteases, play important roles in bacterial cells by modulating disease pathogenesis and cell-envelope stress responses. These proteases have diverse functions through proteolysis- and nonproteolysis-dependent modes. Here, we report that the genome of the causative agent of rice bacterial blight, Xanthomonas oryzae pv. oryzae, encodes seven PDZ domain-containing proteins. Systematic inactivation of their encoding genes revealed that PXO_01122 and PXO_04290 (prc) are involved in virulence. prc encodes a putative HtrA family protease that localizes in the bacterial periplasm. Mutation of prc also resulted in susceptibility to multiple environmental stresses, including H2O2, sodium dodecylsulfate, and osmolarity stresses. Comparative subproteomic analyses showed that the amounts of 34 periplasmic proteins were lower in the prc mutant than in wild-type. These proteins were associated with proteolysis, biosynthesis of macromolecules, carbohydrate or energy metabolism, signal transduction, and protein translocation or folding. We provide in vivo and in vitro evidence demonstrating that Prc stabilizes and directly binds to one of these proteins, DppP, a dipeptidyl peptidase contributing to full virulence. Taken together, our results suggest that Prc contributes to bacterial virulence by acting as a periplasmic modulator of cell-envelope stress responses.
Collapse
|
273
|
Schatschneider S, Huber C, Neuweger H, Watt TF, Pühler A, Eisenreich W, Wittmann C, Niehaus K, Vorhölter FJ. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner–Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. ACTA ACUST UNITED AC 2014; 10:2663-76. [DOI: 10.1039/c4mb00198b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex metabolic flux pattern ofX. campestris.
Collapse
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Claudia Huber
- Lehrstuhl für Biochemie
- Center of Isotopologue Profiling
- Technische Universität München
- Garching, Germany
| | - Heiko Neuweger
- Computational Genomics
- Centrum für Biotechnology (CeBiTec)
- Universität Bielefeld
- Germany
| | - Tony Francis Watt
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Alfred Pühler
- Institut für Genomforschung und Systembiologie
- Centrum für Biotechnology (CeBiTec)
- Universität Bielefeld
- Bielefeld, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie
- Center of Isotopologue Profiling
- Technische Universität München
- Garching, Germany
| | - Christoph Wittmann
- Institut für Systembiotechnologie
- Universität des Saarlandes
- Saarbrücken, Germany
| | - Karsten Niehaus
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Frank-Jörg Vorhölter
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
- Institut für Genomforschung und Systembiologie
| |
Collapse
|
274
|
Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S. Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics 2013; 14:859. [PMID: 24314259 PMCID: PMC3878972 DOI: 10.1186/1471-2164-14-859] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/29/2013] [Indexed: 12/21/2022] Open
Abstract
Background Ralstonia solanacearum is a soil-borne beta-proteobacterium that causes bacterial wilt disease in many food crops and is a major problem for agriculture in intertropical regions. R. solanacearum is a heterogeneous species, both phenotypically and genetically, and is considered as a species complex. Pathogenicity of R. solanacearum relies on the Type III secretion system that injects Type III effector (T3E) proteins into plant cells. T3E collectively perturb host cell processes and modulate plant immunity to enable bacterial infection. Results We provide the catalogue of T3E in the R. solanacearum species complex, as well as candidates in newly sequenced strains. 94 T3E orthologous groups were defined on phylogenetic bases and ordered using a uniform nomenclature. This curated T3E catalog is available on a public website and a bioinformatic pipeline has been designed to rapidly predict T3E genes in newly sequenced strains. Systematical analyses were performed to detect lateral T3E gene transfer events and identify T3E genes under positive selection. Our analyses also pinpoint the RipF translocon proteins as major discriminating determinants among the phylogenetic lineages. Conclusions Establishment of T3E repertoires in strains representatives of the R. solanacearum biodiversity allowed determining a set of 22 T3E present in all the strains but provided no clues on host specificity determinants. The definition of a standardized nomenclature and the optimization of predictive tools will pave the way to understanding how variation of these repertoires is correlated to the diversification of this species complex and how they contribute to the different strain pathotypes.
Collapse
Affiliation(s)
- Nemo Peeters
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France.
| | | | | | | | | | | |
Collapse
|
275
|
Structural and physiological analyses of the alkanesulphonate-binding protein (SsuA) of the citrus pathogen Xanthomonas citri. PLoS One 2013; 8:e80083. [PMID: 24282519 PMCID: PMC3839906 DOI: 10.1371/journal.pone.0080083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022] Open
Abstract
Background The uptake of sulphur-containing compounds plays a pivotal role in the physiology of bacteria that live in aerobic soils where organosulfur compounds such as sulphonates and sulphate esters represent more than 95% of the available sulphur. Until now, no information has been available on the uptake of sulphonates by bacterial plant pathogens, particularly those of the Xanthomonas genus, which encompasses several pathogenic species. In the present study, we characterised the alkanesulphonate uptake system (Ssu) of Xanthomonas axonopodis pv. citri 306 strain (X. citri), the etiological agent of citrus canker. Methodology/Principal Findings A single operon-like gene cluster (ssuEDACB) that encodes both the sulphur uptake system and enzymes involved in desulphurisation was detected in the genomes of X. citri and of the closely related species. We characterised X. citri SsuA protein, a periplasmic alkanesulphonate-binding protein that, together with SsuC and SsuB, defines the alkanesulphonate uptake system. The crystal structure of SsuA bound to MOPS, MES and HEPES, which is herein described for the first time, provides evidence for the importance of a conserved dipole in sulphate group coordination, identifies specific amino acids interacting with the sulphate group and shows the presence of a rather large binding pocket that explains the rather wide range of molecules recognised by the protein. Isolation of an isogenic ssuA-knockout derivative of the X. citri 306 strain showed that disruption of alkanesulphonate uptake affects both xanthan gum production and generation of canker lesions in sweet orange leaves. Conclusions/Significance The present study unravels unique structural and functional features of the X. citri SsuA protein and provides the first experimental evidence that an ABC uptake system affects the virulence of this phytopathogen.
Collapse
|
276
|
Vandroemme J, Cottyn B, Baeyen S, De Vos P, Maes M. Draft genome sequence of Xanthomonas fragariae reveals reductive evolution and distinct virulence-related gene content. BMC Genomics 2013; 14:829. [PMID: 24274055 PMCID: PMC4046712 DOI: 10.1186/1471-2164-14-829] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 11/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xanthomonas fragariae (Xf) is a bacterial strawberry pathogen and an A2 quarantine organism on strawberry planting stock in the EU. It is taxonomically and metabolically distinct within the genus Xanthomonas, and known for its host specificity. As part of a broader pathogenicity study, the genome of a Belgian, virulent Xf strain (LMG 25863) was assembled to draft status and examined for its pathogenicity related gene content. RESULTS The Xf draft genome (4.2 Mb) was considerably smaller than most known Xanthomonas genomes (~5 Mb). Only half of the genes coding for TonB-dependent transporters and cell-wall degrading enzymes that are typically present in other Xanthomonas genomes, were found in Xf. Other missing genes/regions with a possible impact on its plant-host interaction were: i) the three loci for xylan degradation and metabolism, ii) a locus coding for a ß-ketoadipate phenolics catabolism pathway, iii) xcs, one of two Type II Secretion System coding regions in Xanthomonas, and iv) the genes coding for the glyoxylate shunt pathway. Conversely, the Xf genome revealed a high content of externally derived DNA and several uncommon, possibly virulence-related features: a Type VI Secretion System, a second Type IV Secretion System and a distinct Type III Secretion System effector repertoire comprised of multiple rare effectors and several putative new ones. CONCLUSIONS The draft genome sequence of LMG 25863 confirms the distinct phylogenetic position of Xf within the genus Xanthomonas and reveals a patchwork of both lost and newly acquired genomic features. These features may help explain the specific, mostly endophytic association of Xf with the strawberry plant.
Collapse
Affiliation(s)
- Joachim Vandroemme
- />Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit - Crop Protection, Merelbeke, Belgium
- />Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, Ghent, 9000 Belgium
| | - Bart Cottyn
- />Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit - Crop Protection, Merelbeke, Belgium
| | - Steve Baeyen
- />Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit - Crop Protection, Merelbeke, Belgium
| | - Paul De Vos
- />Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, Ghent, 9000 Belgium
| | - Martine Maes
- />Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit - Crop Protection, Merelbeke, Belgium
| |
Collapse
|
277
|
Arrieta-Ortiz ML, Rodríguez-R LM, Pérez-Quintero ÁL, Poulin L, Díaz AC, Arias Rojas N, Trujillo C, Restrepo Benavides M, Bart R, Boch J, Boureau T, Darrasse A, David P, Dugé de Bernonville T, Fontanilla P, Gagnevin L, Guérin F, Jacques MA, Lauber E, Lefeuvre P, Medina C, Medina E, Montenegro N, Muñoz Bodnar A, Noël LD, Ortiz Quiñones JF, Osorio D, Pardo C, Patil PB, Poussier S, Pruvost O, Robène-Soustrade I, Ryan RP, Tabima J, Urrego Morales OG, Vernière C, Carrere S, Verdier V, Szurek B, Restrepo S, López C, Koebnik R, Bernal A. Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. Manihotis strain CIO151. PLoS One 2013; 8:e79704. [PMID: 24278159 PMCID: PMC3838355 DOI: 10.1371/journal.pone.0079704] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/24/2013] [Indexed: 11/24/2022] Open
Abstract
Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis scheme for epidemiological surveillance of this disease.
Collapse
Affiliation(s)
- Mario L. Arrieta-Ortiz
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Luis M. Rodríguez-R
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
- Unité Mixte de Recherche Résistance des Plantes aux Bioaggresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | | | - Lucie Poulin
- Unité Mixte de Recherche Résistance des Plantes aux Bioaggresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Ana C. Díaz
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Nathalia Arias Rojas
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
- Unité Mixte de Recherche Résistance des Plantes aux Bioaggresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Cesar Trujillo
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | | | - Rebecca Bart
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Jens Boch
- Department of Genetics, Martin Luther University, Halle-Wittenberg, Germany
| | - Tristan Boureau
- Institut National de la Recherche Agronomique, UMR45 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 Quasav, PRES L'UNAM, Beaucouzé, France
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Armelle Darrasse
- Institut National de la Recherche Agronomique, UMR45 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 Quasav, PRES L'UNAM, Beaucouzé, France
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Perrine David
- Institut National de la Recherche Agronomique, UMR45 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 Quasav, PRES L'UNAM, Beaucouzé, France
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Thomas Dugé de Bernonville
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan-Microorganismes, Institut National de la Recherche Agronomique. Toulouse, France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 2594, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Paula Fontanilla
- Manihot-Biotec, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Lionel Gagnevin
- Unite Mixte de Recherche Peuplement Végétaux et Bioagresseurs en Milieu Tropical, Centre de coopération internationale en recherche agronomique pour le développement, La Réunion, France
| | - Fabien Guérin
- Unite Mixte de Recherche Peuplement Végétaux et Bioagresseurs en Milieu Tropical, Centre de coopération internationale en recherche agronomique pour le développement, La Réunion, France
| | - Marie-Agnès Jacques
- Institut National de la Recherche Agronomique, UMR45 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 Quasav, PRES L'UNAM, Beaucouzé, France
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Emmanuelle Lauber
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan-Microorganismes, Institut National de la Recherche Agronomique. Toulouse, France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 2594, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Pierre Lefeuvre
- Unite Mixte de Recherche Peuplement Végétaux et Bioagresseurs en Milieu Tropical, Centre de coopération internationale en recherche agronomique pour le développement, La Réunion, France
| | - Cesar Medina
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Edgar Medina
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Nathaly Montenegro
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Alejandra Muñoz Bodnar
- Manihot-Biotec, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Laurent D. Noël
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan-Microorganismes, Institut National de la Recherche Agronomique. Toulouse, France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 2594, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Juan F. Ortiz Quiñones
- Manihot-Biotec, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Daniela Osorio
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Carolina Pardo
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Prabhu B. Patil
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Stéphane Poussier
- Institut National de la Recherche Agronomique, UMR45 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 Quasav, PRES L'UNAM, Beaucouzé, France
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan-Microorganismes, Institut National de la Recherche Agronomique. Toulouse, France
| | - Olivier Pruvost
- Unite Mixte de Recherche Peuplement Végétaux et Bioagresseurs en Milieu Tropical, Centre de coopération internationale en recherche agronomique pour le développement, La Réunion, France
| | - Isabelle Robène-Soustrade
- Unite Mixte de Recherche Peuplement Végétaux et Bioagresseurs en Milieu Tropical, Centre de coopération internationale en recherche agronomique pour le développement, La Réunion, France
| | - Robert P. Ryan
- College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Javier Tabima
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Oscar G. Urrego Morales
- Manihot-Biotec, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Christian Vernière
- Unite Mixte de Recherche Peuplement Végétaux et Bioagresseurs en Milieu Tropical, Centre de coopération internationale en recherche agronomique pour le développement, La Réunion, France
| | - Sébastien Carrere
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan-Microorganismes, Institut National de la Recherche Agronomique. Toulouse, France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 2594, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Valérie Verdier
- Unité Mixte de Recherche Résistance des Plantes aux Bioaggresseurs, Institut de Recherche pour le Développement, Montpellier, France
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, United States of America
| | - Boris Szurek
- Unité Mixte de Recherche Résistance des Plantes aux Bioaggresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Silvia Restrepo
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Camilo López
- Manihot-Biotec, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Ralf Koebnik
- Unité Mixte de Recherche Résistance des Plantes aux Bioaggresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Adriana Bernal
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
278
|
Darrasse A, Carrère S, Barbe V, Boureau T, Arrieta-Ortiz ML, Bonneau S, Briand M, Brin C, Cociancich S, Durand K, Fouteau S, Gagnevin L, Guérin F, Guy E, Indiana A, Koebnik R, Lauber E, Munoz A, Noël LD, Pieretti I, Poussier S, Pruvost O, Robène-Soustrade I, Rott P, Royer M, Serres-Giardi L, Szurek B, van Sluys MA, Verdier V, Vernière C, Arlat M, Manceau C, Jacques MA. Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads. BMC Genomics 2013; 14:761. [PMID: 24195767 PMCID: PMC3826837 DOI: 10.1186/1471-2164-14-761] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences. RESULTS Comparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes. Notably, a deletion of 33 kbp affects flagellum biosynthesis in Xff 4834-R. The presence of a complete flagellar cluster was assessed in a collection of more than 300 strains representing different species and pathovars of Xanthomonas. Five percent of the tested strains presented a deletion in the flagellar cluster and were non-motile. Moreover, half of the Xff strains isolated from the same epidemic than 4834-R was non-motile and this ratio was conserved in the strains colonizing the next bean seed generations. CONCLUSIONS This work describes the first genome of a Xanthomonas strain pathogenic on bean and reports the existence of non-motile xanthomonads belonging to different species and pathovars. Isolation of such Xff variants from a natural epidemic may suggest that flagellar motility is not a key function for in planta fitness.
Collapse
Affiliation(s)
- Armelle Darrasse
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouzé, France
- AGROCAMPUS OUEST, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, PRES L’UNAM, F-49045, Angers, France
| | - Sébastien Carrère
- INRA, LIPM UMR 441, F-31326, Castanet-Tolosan, France
- CNRS, LIPM UMR 2594, F-31326, Castanet-Tolosan, France
| | - Valérie Barbe
- CEA, Genoscope, Centre National de Séquençage, F-91057, Evry Cedex, France
| | - Tristan Boureau
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouzé, France
- AGROCAMPUS OUEST, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, PRES L’UNAM, F-49045, Angers, France
| | - Mario L Arrieta-Ortiz
- Universidad de Los Andes, Laboratorio de Micología y Fitopatología Uniandes, Bogotá, Colombia
- current address: Department of Biology, Center for Genomics and Systems Biology, New York University, 10003, New York, NY, USA
| | - Sophie Bonneau
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouzé, France
- AGROCAMPUS OUEST, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, PRES L’UNAM, F-49045, Angers, France
| | - Martial Briand
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouzé, France
- AGROCAMPUS OUEST, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, PRES L’UNAM, F-49045, Angers, France
| | - Chrystelle Brin
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouzé, France
- AGROCAMPUS OUEST, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, PRES L’UNAM, F-49045, Angers, France
| | | | - Karine Durand
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouzé, France
- AGROCAMPUS OUEST, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, PRES L’UNAM, F-49045, Angers, France
| | - Stéphanie Fouteau
- CEA, Genoscope, Centre National de Séquençage, F-91057, Evry Cedex, France
| | - Lionel Gagnevin
- CIRAD, UMR PVBMT, F-97410, Saint-Pierre, La Réunion, France
- Université de la Réunion, UMR PVBMT, F-97715, Saint-Denis, La Réunion, France
| | - Fabien Guérin
- CIRAD, UMR PVBMT, F-97410, Saint-Pierre, La Réunion, France
- Université de la Réunion, UMR PVBMT, F-97715, Saint-Denis, La Réunion, France
| | - Endrick Guy
- INRA, LIPM UMR 441, F-31326, Castanet-Tolosan, France
- CNRS, LIPM UMR 2594, F-31326, Castanet-Tolosan, France
| | - Arnaud Indiana
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouzé, France
- AGROCAMPUS OUEST, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, PRES L’UNAM, F-49045, Angers, France
| | - Ralf Koebnik
- IRD, UMR RPB, F-34394, Montpellier Cedex 5, France
| | - Emmanuelle Lauber
- INRA, LIPM UMR 441, F-31326, Castanet-Tolosan, France
- CNRS, LIPM UMR 2594, F-31326, Castanet-Tolosan, France
| | - Alejandra Munoz
- Universidad de Los Andes, Laboratorio de Micología y Fitopatología Uniandes, Bogotá, Colombia
| | - Laurent D Noël
- INRA, LIPM UMR 441, F-31326, Castanet-Tolosan, France
- CNRS, LIPM UMR 2594, F-31326, Castanet-Tolosan, France
| | | | - Stéphane Poussier
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouzé, France
- AGROCAMPUS OUEST, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, PRES L’UNAM, F-49045, Angers, France
- Université de la Réunion, UMR PVBMT, F-97715, Saint-Denis, La Réunion, France
| | - Olivier Pruvost
- CIRAD, UMR PVBMT, F-97410, Saint-Pierre, La Réunion, France
- Université de la Réunion, UMR PVBMT, F-97715, Saint-Denis, La Réunion, France
| | - Isabelle Robène-Soustrade
- CIRAD, UMR PVBMT, F-97410, Saint-Pierre, La Réunion, France
- Université de la Réunion, UMR PVBMT, F-97715, Saint-Denis, La Réunion, France
| | - Philippe Rott
- CIRAD, UMR BGPI, F-34398, Montpellier Cedex 5, France
| | - Monique Royer
- CIRAD, UMR BGPI, F-34398, Montpellier Cedex 5, France
| | - Laurana Serres-Giardi
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouzé, France
- AGROCAMPUS OUEST, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, PRES L’UNAM, F-49045, Angers, France
| | - Boris Szurek
- IRD, UMR RPB, F-34394, Montpellier Cedex 5, France
| | | | | | - Christian Vernière
- CIRAD, UMR PVBMT, F-97410, Saint-Pierre, La Réunion, France
- Université de la Réunion, UMR PVBMT, F-97715, Saint-Denis, La Réunion, France
| | - Matthieu Arlat
- INRA, LIPM UMR 441, F-31326, Castanet-Tolosan, France
- CNRS, LIPM UMR 2594, F-31326, Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, UMR LIPM, F-31326, Castanet-Tolosan Cedex, France
| | - Charles Manceau
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouzé, France
- AGROCAMPUS OUEST, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, PRES L’UNAM, F-49045, Angers, France
- current address: ANSES, Laboratoire de Santé des végétaux, F-49044, Angers, France
| | - Marie-Agnès Jacques
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouzé, France
- AGROCAMPUS OUEST, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, PRES L’UNAM, F-49045, Angers, France
| |
Collapse
|
279
|
Hartmann N, Büttner D. The inner membrane protein HrcV from Xanthomonas spp. is involved in substrate docking during type III secretion. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1176-1189. [PMID: 23777429 DOI: 10.1094/mpmi-01-13-0019-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pathogenicity of the gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a membrane-spanning type III secretion (T3S) system, which translocates effector proteins into eukaryotic host cells. In this study, we characterized the T3S system component HrcV, which is a member of the YscV/FlhA family of inner membrane proteins. HrcV consists of eight transmembrane helices and a cytoplasmic region (HrcVC). Mutant and protein-protein interaction studies showed that HrcVC is essential for protein function and binds to T3S substrates, including the early substrate HrpB2, the pilus protein HrpE, and effector proteins. Furthermore, HrcVC interacts with itself and with components and control proteins of the T3S apparatus. The interaction of HrcVC with HrpB2, HrpE, and T3S system components depends on amino acid residues in a conserved motif, designated flagella/hypersensitive response/invasion proteins export pore (FHIPEP), which is located in a cytoplasmic loop between transmembrane helix four and five of HrcV. Mutations in the FHIPEP motif abolish HrcV function but do not affect the interaction of HrcVC with effector proteins.
Collapse
|
280
|
Huang CH, Vallad GE, Adkison H, Summers C, Margenthaler E, Schneider C, Hong J, Jones JB, Ong K, Norman DJ. A Novel Xanthomonas sp. Causes Bacterial Spot of Rose (Rosa spp.). PLANT DISEASE 2013; 97:1301-1307. [PMID: 30722131 DOI: 10.1094/pdis-09-12-0851-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A bacterial spot of rose (Rosa spp.) caused by a xanthomonad was observed in Florida and Texas. Ten representative strains collected from the two states between 2004 and 2010 were used to determine the taxonomic position of this rose pathogen. Fatty acid methyl ester analysis was performed and a nearly 2-kb 16S-23S rRNA intergenic spacer along with flanking portions of the 16S and 23S rRNA genes were sequenced for selected strains, showing that they were members of the genus Xanthomonas. Multilocus sequence typing and analysis (MLST/MLSA) and pathogenicity tests were conducted to further characterize the Xanthomonas strains. The MLSA, based on six gene fragments-fusA, gapA, gltA, gyrB, lacF, and lepA-showed that the rose strains fell into Xanthomonas axonopodis subgroup 9.2 and shared the highest similarity values (98.8 to 99.7%) with X. alfalfae subsp. citrumelonis of the subgroup. However, principal coordinate analysis grouped the rose strains into a unique cluster distinct from other members of the subgroup according to virulence phenotypes on 11 plant species belonging to five plant families (Araceae, Euphorbiaceae, Rosaceae, Rutaceae, and Solanaceae). Moreover, the rose strains were aggressive on rose and Indian Hawthorn (Rhaphiolepsis indica). On the basis of the MLSA and virulence phenotypes, the pathovar epithet rosa is proposed.
Collapse
Affiliation(s)
- Cheng-Hua Huang
- Gulf Coast Research and Education Center, University of Florida, IFAS, Wimauma 33598
| | - Gary E Vallad
- Gulf Coast Research and Education Center, University of Florida, IFAS, Wimauma 33598
| | - Heather Adkison
- Gulf Coast Research and Education Center, University of Florida, IFAS, Wimauma 33598
| | - Carly Summers
- Gulf Coast Research and Education Center, University of Florida, IFAS, Wimauma 33598
| | - Elaina Margenthaler
- Gulf Coast Research and Education Center, University of Florida, IFAS, Wimauma 33598
| | - Christina Schneider
- Gulf Coast Research and Education Center, University of Florida, IFAS, Wimauma 33598
| | - Jason Hong
- Department of Plant Pathology, University of Florida, Gainesville 32611
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville 32611
| | - Kevin Ong
- Texas Plant Disease Diagnostic Lab, Texas A&M University, College Station 77845
| | - David J Norman
- Mid-Florida Research and Education Center, University of Florida, IFAS, Apopka 32703
| |
Collapse
|
281
|
Sinha D, Gupta MK, Patel HK, Ranjan A, Sonti RV. Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae. PLoS One 2013; 8:e75867. [PMID: 24086651 PMCID: PMC3784402 DOI: 10.1371/journal.pone.0075867] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/16/2013] [Indexed: 12/12/2022] Open
Abstract
Innate immune responses are induced in plants and animals through perception of Damage Associated Molecular Patterns. These immune responses are suppressed by pathogens during infection. A number of studies have focussed on identifying functions of plant pathogenic bacteria that are involved in suppression of Pathogen Associated Molecular Pattern induced immune responses. In comparison, there is very little information on functions used by plant pathogens to suppress Damage Associated Molecular Pattern induced immune responses. Xanthomonasoryzae pv. oryzae, a gram negative bacterial pathogen of rice, secretes hydrolytic enzymes such as LipA (Lipase/Esterase) that damage rice cell walls and induce innate immune responses. Here, we show that Agrobacterium mediated transient transfer of the gene for XopN, a X. oryzae pv. oryzae type 3 secretion (T3S) system effector, results in suppression of rice innate immune responses induced by LipA. A xopN- mutant of X. oryzae pv. oryzae retains the ability to suppress these innate immune responses indicating the presence of other functionally redundant proteins. In transient transfer assays, we have assessed the ability of 15 other X. oryzae pv. oryzae T3S secreted effectors to suppress rice innate immune responses. Amongst these proteins, XopQ, XopX and XopZ are suppressors of LipA induced innate immune responses. A mutation in any one of the xopN, xopQ, xopX or xopZ genes causes partial virulence deficiency while a xopN- xopX- double mutant exhibits a greater virulence deficiency. A xopN- xopQ- xopX- xopZ- quadruple mutant of X. oryzae pv. oryzae induces callose deposition, an innate immune response, similar to a X. oryzae pv. oryzae T3S- mutant in rice leaves. Overall, these results indicate that multiple T3S secreted proteins of X. oryzae pv. oryzae can suppress cell wall damage induced rice innate immune responses.
Collapse
Affiliation(s)
- Dipanwita Sinha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Andhra Pradesh, India
| | - Mahesh Kumar Gupta
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Andhra Pradesh, India
| | - Hitendra Kumar Patel
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Andhra Pradesh, India
| | - Ashish Ranjan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Andhra Pradesh, India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Andhra Pradesh, India
- * E-mail:
| |
Collapse
|
282
|
Yuan Z, Wang L, Sun S, Wu Y, Qian W. Genetic and Proteomic Analyses of a Xanthomonas campestris pv. campestris purC Mutant Deficient in Purine Biosynthesis and Virulence. J Genet Genomics 2013; 40:473-87. [DOI: 10.1016/j.jgg.2013.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 01/12/2023]
|
283
|
Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100. J Biotechnol 2013; 167:123-34. [DOI: 10.1016/j.jbiotec.2013.01.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 11/20/2022]
|
284
|
Wichmann F, Vorhölter FJ, Hersemann L, Widmer F, Blom J, Niehaus K, Reinhard S, Conradin C, Kölliker R. The noncanonical type III secretion system of Xanthomonas translucens pv. graminis is essential for forage grass infection. MOLECULAR PLANT PATHOLOGY 2013; 14:576-88. [PMID: 23578314 PMCID: PMC6638798 DOI: 10.1111/mpp.12030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Xanthomonas translucens pv. graminis (Xtg) is a gammaproteobacterium that causes bacterial wilt on a wide range of forage grasses. To gain insight into the host-pathogen interaction and to identify the virulence factors of Xtg, we compared a draft genome sequence of one isolate (Xtg29) with other Xanthomonas spp. with sequenced genomes. The type III secretion system (T3SS) encoding a protein transport system for type III effector (T3E) proteins represents one of the most important virulence factors of Xanthomonas spp. In contrast with other Xanthomonas spp. assigned to clade 1 on the basis of phylogenetic analyses, we identified an hrp (hypersensitive response and pathogenicity) gene cluster encoding T3SS components and a representative set of 35 genes encoding putative T3Es in the genome of Xtg29. The T3SS was shown to be divergent from the hrp gene clusters of other sequenced Xanthomonas spp. Xtg mutants deficient in T3SS regulating and structural genes were constructed to clarify the role of the T3SS in forage grass colonization. Italian ryegrass infection with these mutants led to significantly reduced symptoms (P < 0.05) relative to plants infected with the wild-type strain. This showed that the T3SS is required for symptom evocation. In planta multiplication of the T3SS mutants was not impaired significantly relative to the wild-type, indicating that the T3SS is not required for survival until 14 days post-infection. This study represents the first major step to understanding the bacterial colonization strategies deployed by Xtg and may assist in the identification of resistance (R) genes in forage grasses.
Collapse
Affiliation(s)
- Fabienne Wichmann
- Agroscope Reckenholz-Tänikon Research Station ART, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
285
|
A cyclic GMP-dependent signalling pathway regulates bacterial phytopathogenesis. EMBO J 2013; 32:2430-8. [PMID: 23881098 PMCID: PMC3770947 DOI: 10.1038/emboj.2013.165] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/04/2013] [Indexed: 11/08/2022] Open
Abstract
Cyclic guanosine 3′,5′-monophosphate (cyclic GMP) is a second messenger whose role in bacterial signalling is poorly understood. A genetic screen in the plant pathogen Xanthomonas campestris (Xcc) identified that XC_0250, which encodes a protein with a class III nucleotidyl cyclase domain, is required for cyclic GMP synthesis. Purified XC_0250 was active in cyclic GMP synthesis in vitro. The linked gene XC_0249 encodes a protein with a cyclic mononucleotide-binding (cNMP) domain and a GGDEF diguanylate cyclase domain. The activity of XC_0249 in cyclic di-GMP synthesis was enhanced by addition of cyclic GMP. The isolated cNMP domain of XC_0249 bound cyclic GMP and a structure–function analysis, directed by determination of the crystal structure of the holo-complex, demonstrated the site of cyclic GMP binding that modulates cyclic di-GMP synthesis. Mutation of either XC_0250 or XC_0249 led to a reduced virulence to plants and reduced biofilm formation in vitro. These findings describe a regulatory pathway in which cyclic GMP regulates virulence and biofilm formation through interaction with a novel effector that directly links cyclic GMP and cyclic di-GMP signalling. In the plant pathogen X. campestris, the second messenger cGMP controls bacterial virulence and biofilm formation through direct regulation of XC_0249, a novel diguanylate cyclase that synthesises the signalling molecule cyclic di-GMP.
Collapse
|
286
|
Pérez-Quintero AL, Rodriguez-R LM, Dereeper A, López C, Koebnik R, Szurek B, Cunnac S. An improved method for TAL effectors DNA-binding sites prediction reveals functional convergence in TAL repertoires of Xanthomonas oryzae strains. PLoS One 2013; 8:e68464. [PMID: 23869221 PMCID: PMC3711819 DOI: 10.1371/journal.pone.0068464] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/30/2013] [Indexed: 11/19/2022] Open
Abstract
Transcription Activators-Like Effectors (TALEs) belong to a family of virulence proteins from the Xanthomonas genus of bacterial plant pathogens that are translocated into the plant cell. In the nucleus, TALEs act as transcription factors inducing the expression of susceptibility genes. A code for TALE-DNA binding specificity and high-resolution three-dimensional structures of TALE-DNA complexes were recently reported. Accurate prediction of TAL Effector Binding Elements (EBEs) is essential to elucidate the biological functions of the many sequenced TALEs as well as for robust design of artificial TALE DNA-binding domains in biotechnological applications. In this work a program with improved EBE prediction performances was developed using an updated specificity matrix and a position weight correction function to account for the matching pattern observed in a validation set of TALE-DNA interactions. To gain a systems perspective on the large TALE repertoires from X. oryzae strains, this program was used to predict rice gene targets for 99 sequenced family members. Integrating predictions and available expression data in a TALE-gene network revealed multiple candidate transcriptional targets for many TALEs as well as several possible instances of functional convergence among TALEs.
Collapse
Affiliation(s)
- Alvaro L. Pérez-Quintero
- UMR 186 Résistance des Plantes aux Bioagresseurs, Institut de Recherche pour le Développement, Montpellier, France
- Biology Department, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Luis M. Rodriguez-R
- UMR 186 Résistance des Plantes aux Bioagresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Alexis Dereeper
- UMR 186 Résistance des Plantes aux Bioagresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Camilo López
- Biology Department, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Ralf Koebnik
- UMR 186 Résistance des Plantes aux Bioagresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Boris Szurek
- UMR 186 Résistance des Plantes aux Bioagresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Sebastien Cunnac
- UMR 186 Résistance des Plantes aux Bioagresseurs, Institut de Recherche pour le Développement, Montpellier, France
- * E-mail: .
| |
Collapse
|
287
|
Dynamic protein phosphorylation during the growth of Xanthomonas campestris pv. campestris B100 revealed by a gel-based proteomics approach. J Biotechnol 2013; 167:111-22. [PMID: 23792782 DOI: 10.1016/j.jbiotec.2013.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/07/2013] [Accepted: 06/12/2013] [Indexed: 12/29/2022]
Abstract
Xanthomonas campestris pv. campestris (Xcc) synthesizes huge amounts of the exopolysaccharide xanthan and is a plant pathogen affecting Brassicaceae, among them the model plant Arabidopsis thaliana. Xanthan is produced as a thickening agent at industrial scale by fermentation of Xcc. In an approach based on 2D gel electrophoresis, protein samples from different growth phases were characterized to initialize analysis of the Xanthomonas phosphoproteome. The 2D gels were stained with Pro-Q Diamond phosphoprotein stain to identify putatively phosphorylated proteins. Spots of putatively phosphorylated proteins were excised from the gel and analyzed by mass spectrometry. Three proteins were confirmed to be phosphorylated, the phosphoglucomutase/phosphomannomutase XanA that is important for xanthan and lipopolysaccharide biosynthesis, the phosphoenolpyruvate synthase PspA that is involved in gluconeogenesis, and an anti-sigma factor antagonist RsbR that was so far uncharacterized in xanthomonads. The growth phase in which the samples were collected had an influence on protein phosphorylation in Xcc, particular distinct in case of RsbR, which was phosphorylated during the transition from the late exponential growth phase to the stationary phase.
Collapse
|
288
|
Natural genetic variation of Xanthomonas campestris pv. campestris pathogenicity on arabidopsis revealed by association and reverse genetics. mBio 2013. [PMID: 23736288 DOI: 10.1128/mbio.00538-12.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT The pathogenic bacterium Xanthomonas campestris pv. campestris, the causal agent of black rot of Brassicaceae, manipulates the physiology and the innate immunity of its hosts. Association genetic and reverse-genetic analyses of a world panel of 45 X. campestris pv. campestris strains were used to gain understanding of the genetic basis of the bacterium's pathogenicity to Arabidopsis thaliana. We found that the compositions of the minimal predicted type III secretome varied extensively, with 18 to 28 proteins per strain. There were clear differences in aggressiveness of those X. campestris pv. campestris strains on two Arabidopsis natural accessions. We identified 3 effector genes (xopAC, xopJ5, and xopAL2) and 67 amplified fragment length polymorphism (AFLP) markers that were associated with variations in disease symptoms. The nature and distribution of the AFLP markers remain to be determined, but we observed a low linkage disequilibrium level between predicted effectors and other significant markers, suggesting that additional genetic factors make a meaningful contribution to pathogenicity. Mutagenesis of type III effectors in X. campestris pv. campestris confirmed that xopAC functions as both a virulence and an avirulence gene in Arabidopsis and that xopAM functions as a second avirulence gene on plants of the Col-0 ecotype. However, we did not detect the effect of any other effector in the X. campestris pv. campestris 8004 strain, likely due to other genetic background effects. These results highlight the complex genetic basis of pathogenicity at the pathovar level and encourage us to challenge the agronomical relevance of some virulence determinants identified solely in model strains. IMPORTANCE The identification and understanding of the genetic determinants of bacterial virulence are essential to be able to design efficient protection strategies for infected plants. The recent availability of genomic resources for a limited number of pathogen isolates and host genotypes has strongly biased our research toward genotype-specific approaches. Indeed, these do not consider the natural variation in both pathogens and hosts, so their applied relevance should be challenged. In our study, we exploited the genetic diversity of Xanthomonas campestris pv. campestris, the causal agent of black rot on Brassicaceae (e.g., cabbage), to mine for pathogenicity determinants. This work evidenced the contribution of known and unknown loci to pathogenicity relevant at the pathovar level and identified these virulence determinants as prime targets for breeding resistance to X. campestris pv. campestris in Brassicaceae.
Collapse
|
289
|
Natural genetic variation of Xanthomonas campestris pv. campestris pathogenicity on arabidopsis revealed by association and reverse genetics. mBio 2013; 4:e00538-12. [PMID: 23736288 PMCID: PMC3685212 DOI: 10.1128/mbio.00538-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT The pathogenic bacterium Xanthomonas campestris pv. campestris, the causal agent of black rot of Brassicaceae, manipulates the physiology and the innate immunity of its hosts. Association genetic and reverse-genetic analyses of a world panel of 45 X. campestris pv. campestris strains were used to gain understanding of the genetic basis of the bacterium's pathogenicity to Arabidopsis thaliana. We found that the compositions of the minimal predicted type III secretome varied extensively, with 18 to 28 proteins per strain. There were clear differences in aggressiveness of those X. campestris pv. campestris strains on two Arabidopsis natural accessions. We identified 3 effector genes (xopAC, xopJ5, and xopAL2) and 67 amplified fragment length polymorphism (AFLP) markers that were associated with variations in disease symptoms. The nature and distribution of the AFLP markers remain to be determined, but we observed a low linkage disequilibrium level between predicted effectors and other significant markers, suggesting that additional genetic factors make a meaningful contribution to pathogenicity. Mutagenesis of type III effectors in X. campestris pv. campestris confirmed that xopAC functions as both a virulence and an avirulence gene in Arabidopsis and that xopAM functions as a second avirulence gene on plants of the Col-0 ecotype. However, we did not detect the effect of any other effector in the X. campestris pv. campestris 8004 strain, likely due to other genetic background effects. These results highlight the complex genetic basis of pathogenicity at the pathovar level and encourage us to challenge the agronomical relevance of some virulence determinants identified solely in model strains. IMPORTANCE The identification and understanding of the genetic determinants of bacterial virulence are essential to be able to design efficient protection strategies for infected plants. The recent availability of genomic resources for a limited number of pathogen isolates and host genotypes has strongly biased our research toward genotype-specific approaches. Indeed, these do not consider the natural variation in both pathogens and hosts, so their applied relevance should be challenged. In our study, we exploited the genetic diversity of Xanthomonas campestris pv. campestris, the causal agent of black rot on Brassicaceae (e.g., cabbage), to mine for pathogenicity determinants. This work evidenced the contribution of known and unknown loci to pathogenicity relevant at the pathovar level and identified these virulence determinants as prime targets for breeding resistance to X. campestris pv. campestris in Brassicaceae.
Collapse
|
290
|
Vorhölter FJ. RNA-Seq facilitates a new perspective on signal transduction and gene regulation in important plant pathogens. Mol Microbiol 2013; 88:1041-6. [PMID: 23659691 DOI: 10.1111/mmi.12259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2013] [Indexed: 02/04/2023]
Abstract
RNA-Seq is opening new doors for the functional understanding of microorganisms. Advances in RNA-Seq technology are allowing investigators to focus their studies on specific functional questions. An interesting example is presented by An et al. (2013) in this issue of Molecular Microbiology. New genes were identified for proteins and ncRNAs when the authors concentrated on the role of the rpf genes, which code for key components of a signal transduction hub in the plant pathogen Xanthomonas campestris pv. campestris. Although rpf gene products were already known to be involved in controlling transcription of many genes, including those encoding several important virulence factors, novel and unexpected properties of this signal transduction system emerged from the RNA-Seq analysis. In addition to identifying new target genes influenced by the rpf genes, the study found that the regulons of RpfC and RpfG, the sensor and response regulator of the master two-component regulatory system, only partially overlapped, indicating that the Rpf signalling system is even more complex than previously appreciated.
Collapse
|
291
|
Li W, Rokni-Zadeh H, De Vleeschouwer M, Ghequire MGK, Sinnaeve D, Xie GL, Rozenski J, Madder A, Martins JC, De Mot R. The antimicrobial compound xantholysin defines a new group of Pseudomonas cyclic lipopeptides. PLoS One 2013; 8:e62946. [PMID: 23690965 PMCID: PMC3656897 DOI: 10.1371/journal.pone.0062946] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/27/2013] [Indexed: 12/17/2022] Open
Abstract
The rhizosphere isolate Pseudomonas putida BW11M1 produces a mixture of cyclic lipopeptide congeners, designated xantholysins. Properties of the major compound xantholysin A, shared with several other Pseudomonas lipopeptides, include antifungal activity and toxicity to Gram-positive bacteria, a supportive role in biofilm formation, and facilitation of surface colonization through swarming. Atypical is the lipopeptide’s capacity to inhibit some Gram-negative bacteria, including several xanthomonads. The lipotetradecadepsipeptides are assembled by XtlA, XtlB and XtlC, three co-linearly operating non-ribosomal peptide synthetases (NRPSs) displaying similarity in modular architecture with the entolysin-producing enzymes of the entomopathogenic Pseudomonas entomophila L48. A shifted serine-incorporating unit in the eight-module enzyme XtlB elongating the central peptide moiety not only generates an amino acid sequence differing at several equivalent positions from entolysin, but also directs xantholysin’s macrocyclization into an octacyclic structure, distinct from the pentacyclic closure in entolysin. Relaxed fatty acid specificity during lipoinitiation by XtlA (acylation with 3-hydroxydodec-5-enoate instead of 3-hydroxydecanoate) and for incorporation of the ultimate amino acid by XtlC (valine instead of isoleucine) account for the production of the minor structural variants xantholysin C and B, respectively. Remarkably, the genetic backbones of the xantholysin and entolysin NRPS systems also bear pronounced phylogenetic similarity to those of the P. putida strains PCL1445 and RW10S2, albeit generating the seemingly structurally unrelated cyclic lipopeptides putisolvin (undecapeptide containing a cyclotetrapeptide) and WLIP (nonapeptide containing a cycloheptapeptide), respectively. This similarity includes the linked genes encoding the cognate LuxR-family regulator and tripartite export system components in addition to individual modules of the NRPS enzymes, and probably reflects a common evolutionary origin. Phylogenetic scrutiny of the modules used for selective amino acid activation by these synthetases indicates that bacteria such as pseudomonads recruit and reshuffle individual biosynthetic units and blocks thereof to engineer reorganized or novel NRPS assembly lines for diversified synthesis of lipopeptides.
Collapse
Affiliation(s)
- Wen Li
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, University of Leuven, Heverlee-Leuven, Belgium
| | - Hassan Rokni-Zadeh
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, University of Leuven, Heverlee-Leuven, Belgium
| | - Matthias De Vleeschouwer
- NMR and Structure Analysis Unit, Department of Organic Chemistry, Ghent University, Gent, Belgium
- Organic and Biomimetic Chemistry Research Group, Department of Organic Chemistry, Ghent University, Gent, Belgium
| | - Maarten G. K. Ghequire
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, University of Leuven, Heverlee-Leuven, Belgium
| | - Davy Sinnaeve
- NMR and Structure Analysis Unit, Department of Organic Chemistry, Ghent University, Gent, Belgium
| | - Guan-Lin Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jef Rozenski
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic Chemistry, Ghent University, Gent, Belgium
| | - José C. Martins
- NMR and Structure Analysis Unit, Department of Organic Chemistry, Ghent University, Gent, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, University of Leuven, Heverlee-Leuven, Belgium
- * E-mail:
| |
Collapse
|
292
|
Déjean G, Blanvillain-Baufumé S, Boulanger A, Darrasse A, de Bernonville TD, Girard AL, Carrére S, Jamet S, Zischek C, Lautier M, Solé M, Büttner D, Jacques MA, Lauber E, Arlat M. The xylan utilization system of the plant pathogen Xanthomonas campestris pv campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts. THE NEW PHYTOLOGIST 2013; 198:899-915. [PMID: 23442088 DOI: 10.1111/nph.12187] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/09/2013] [Indexed: 06/01/2023]
Abstract
Xylan is a major structural component of plant cell wall and the second most abundant plant polysaccharide in nature. Here, by combining genomic and functional analyses, we provide a comprehensive picture of xylan utilization by Xanthomonas campestris pv campestris (Xcc) and highlight its role in the adaptation of this epiphytic phytopathogen to the phyllosphere. The xylanolytic activity of Xcc depends on xylan-deconstruction enzymes but also on transporters, including two TonB-dependent outer membrane transporters (TBDTs) which belong to operons necessary for efficient growth in the presence of xylo-oligosaccharides and for optimal survival on plant leaves. Genes of this xylan utilization system are specifically induced by xylo-oligosaccharides and repressed by a LacI-family regulator named XylR. Part of the xylanolytic machinery of Xcc, including TBDT genes, displays a high degree of conservation with the xylose-regulon of the oligotrophic aquatic bacterium Caulobacter crescentus. Moreover, it shares common features, including the presence of TBDTs, with the xylan utilization systems of Bacteroides ovatus and Prevotella bryantii, two gut symbionts. These similarities and our results support an important role for TBDTs and xylan utilization systems for bacterial adaptation in the phyllosphere, oligotrophic environments and animal guts.
Collapse
Affiliation(s)
- Guillaume Déjean
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Servane Blanvillain-Baufumé
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Alice Boulanger
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Armelle Darrasse
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences (IRHS), 42 rue Georges Morel, 49071, Beaucouzé CEDEX 01, France
| | - Thomas Dugé de Bernonville
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Anne-Laure Girard
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences (IRHS), 42 rue Georges Morel, 49071, Beaucouzé CEDEX 01, France
| | - Sébastien Carrére
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Stevie Jamet
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Claudine Zischek
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Martine Lautier
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Magali Solé
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität Halle-Wittenberg, D-06099, Halle (Saale), Germany
| | - Daniela Büttner
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität Halle-Wittenberg, D-06099, Halle (Saale), Germany
| | - Marie-Agnès Jacques
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences (IRHS), 42 rue Georges Morel, 49071, Beaucouzé CEDEX 01, France
| | - Emmanuelle Lauber
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Matthieu Arlat
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
293
|
An SQ, Febrer M, McCarthy Y, Tang DJ, Clissold L, Kaithakottil G, Swarbreck D, Tang JL, Rogers J, Dow JM, Ryan RP. High-resolution transcriptional analysis of the regulatory influence of cell-to-cell signalling reveals novel genes that contribute to Xanthomonas phytopathogenesis. Mol Microbiol 2013; 88:1058-69. [PMID: 23617851 PMCID: PMC3744752 DOI: 10.1111/mmi.12229] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2013] [Indexed: 01/14/2023]
Abstract
The bacterium Xanthomonas campestris is an economically important pathogen of many crop species and a model for the study of bacterial phytopathogenesis. In X. campestris, a regulatory system mediated by the signal molecule DSF controls virulence to plants. The synthesis and recognition of the DSF signal depends upon different Rpf proteins. DSF signal generation requires RpfF whereas signal perception and transduction depends upon a system comprising the sensor RpfC and regulator RpfG. Here we have addressed the action and role of Rpf/DSF signalling in phytopathogenesis by high-resolution transcriptional analysis coupled to functional genomics. We detected transcripts for many genes that were unidentified by previous computational analysis of the genome sequence. Novel transcribed regions included intergenic transcripts predicted as coding or non-coding as well as those that were antisense to coding sequences. In total, mutation of rpfF, rpfG and rpfC led to alteration in transcript levels (more than fourfold) of approximately 480 genes. The regulatory influence of RpfF and RpfC demonstrated considerable overlap. Contrary to expectation, the regulatory influence of RpfC and RpfG had limited overlap, indicating complexities of the Rpf signalling system. Importantly, functional analysis revealed over 160 new virulence factors within the group of Rpf-regulated genes.
Collapse
Affiliation(s)
- Shi-Qi An
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Huang TP, Lu KM, Chen YH. A novel two-component response regulator links rpf with biofilm formation and virulence of Xanthomonas axonopodis pv. citri. PLoS One 2013; 8:e62824. [PMID: 23626857 PMCID: PMC3633832 DOI: 10.1371/journal.pone.0062824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
Citrus bacterial canker caused by Xanthomonas axonopodis pv. citri is a serious disease that impacts citrus production worldwide, and X. axonopodis pv. citri is listed as a quarantine pest in certain countries. Biofilm formation is important for the successful development of a pathogenic relationship between various bacteria and their host(s). To understand the mechanisms of biofilm formation by X. axonopodis pv. citri strain XW19, the strain was subjected to transposon mutagenesis. One mutant with a mutation in a two-component response regulator gene that was deficient in biofilm formation on a polystyrene microplate was selected for further study. The protein was designated as BfdR for biofilm formation defective regulator. BfdR from strain XW19 shares 100% amino acid sequence identity with XAC1284 of X. axonopodis pv. citri strain 306 and 30-100% identity with two-component response regulators in various pathogens and environmental microorganisms. The bfdR mutant strain exhibited significantly decreased biofilm formation on the leaf surfaces of Mexican lime compared with the wild type strain. The bfdR mutant was also compromised in its ability to cause canker lesions. The wild-type phenotype was restored by providing pbfdR in trans in the bfdR mutant. Our data indicated that BfdR did not regulate the production of virulence-related extracellular enzymes including amylase, lipase, protease, and lecithinase or the expression of hrpG, rfbC, and katE; however, BfdR controlled the expression of rpfF in XVM2 medium, which mimics cytoplasmic fluids in planta. In conclusion, biofilm formation on leaf surfaces of citrus is important for canker development in X. axonopodis pv. citri XW19. The process is controlled by the two-component response regulator BfdR via regulation of rpfF, which is required for the biosynthesis of a diffusible signal factor.
Collapse
Affiliation(s)
- Tzu-Pi Huang
- Department of Plant Pathology, National Chung-Hsing University, Taichung, Taiwan.
| | | | | |
Collapse
|
295
|
González JF, Myers MP, Venturi V. The inter-kingdom solo OryR regulator of Xanthomonas oryzae is important for motility. MOLECULAR PLANT PATHOLOGY 2013; 14:211-21. [PMID: 23083431 PMCID: PMC6638885 DOI: 10.1111/j.1364-3703.2012.00843.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The LuxR-type transcriptional regulator OryR of the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo) is a member of a subgroup of regulators found in plant-associated bacteria that are known to respond to plant signals. OryR has been shown previously to positively regulate the neighbouring pip gene and to be important for rice virulence. The role of this inter-kingdom signalling regulator was investigated through a genome-wide transcriptome analysis. OryR was found to positively regulate 220 genes, whereas 110 were down-regulated. A significant over-representation of movement-related genes among the positively regulated ones was found, including 30 flagellar genes, accounting for 14% of the up-regulated genes above the two-fold cut-off value. In Xoo, both swimming and swarming respond to rice macerate and OryR plays a role in the induction of both of these types of motility under these conditions. In this study, we have also shown that the flagellar regulator flhF contains a lux box-like element in its promoter region, similar to the oryR-regulated neighbouring pip gene; via the use of a transcriptional fusion reporter, it was shown that flhF is regulated by OryR. Finally, the role of OryR in motility was also demonstrated by the significant reduction in flagellin content in the oryR Xoo mutant with respect to the wild-type, as observed by in planta proteomics studies.
Collapse
Affiliation(s)
- Juan F González
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | |
Collapse
|
296
|
Naushad HS, Gupta RS. Phylogenomics and molecular signatures for species from the plant pathogen-containing order xanthomonadales. PLoS One 2013; 8:e55216. [PMID: 23408961 PMCID: PMC3568101 DOI: 10.1371/journal.pone.0055216] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 12/19/2012] [Indexed: 01/31/2023] Open
Abstract
The species from the order Xanthomonadales, which harbors many important plant pathogens and some human pathogens, are currently distinguished primarily on the basis of their branching in the 16S rRNA tree. No molecular or biochemical characteristic is known that is specific for these bacteria. Phylogenetic and comparative analyses were conducted on 26 sequenced Xanthomonadales genomes to delineate their branching order and to identify molecular signatures consisting of conserved signature indels (CSIs) in protein sequences that are specific for these bacteria. In a phylogenetic tree based upon sequences for 28 proteins, Xanthomonadales species formed a strongly supported clade with Rhodanobacter sp. 2APBS1 as its deepest branch. Comparative analyses of protein sequences have identified 13 CSIs in widely distributed proteins such as GlnRS, TypA, MscL, LysRS, LipA, Tgt, LpxA, TolQ, ParE, PolA and TyrB that are unique to all species/strains from this order, but not found in any other bacteria. Fifteen additional CSIs in proteins (viz. CoxD, DnaE, PolA, SucA, AsnB, RecA, PyrG, LigA, MutS and TrmD) are uniquely shared by different Xanthomonadales except Rhodanobacter and in a few cases by Pseudoxanthomonas species, providing further support for the deep branching of these two genera. Five other CSIs are commonly shared by Xanthomonadales and 1–3 species from the orders Chromatiales, Methylococcales and Cardiobacteriales suggesting that these deep branching orders of Gammaproteobacteria might be specifically related. Lastly, 7 CSIs in ValRS, CarB, PyrE, GlyS, RnhB, MinD and X001065 are commonly shared by Xanthomonadales and a limited number of Beta- or Gamma-proteobacteria. Our analysis indicates that these CSIs have likely originated independently and they are not due to lateral gene transfers. The Xanthomonadales-specific CSIs reported here provide novel molecular markers for the identification of these important plant and human pathogens and also as potential targets for development of drugs/agents that specifically target these bacteria.
Collapse
Affiliation(s)
- Hafiz Sohail Naushad
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
297
|
Qian G, Liu C, Wu G, Yin F, Zhao Y, Zhou Y, Zhang Y, Song Z, Fan J, Hu B, Liu F. AsnB, regulated by diffusible signal factor and global regulator Clp, is involved in aspartate metabolism, resistance to oxidative stress and virulence in Xanthomonas oryzae pv. oryzicola. MOLECULAR PLANT PATHOLOGY 2013; 14:145-57. [PMID: 23157387 PMCID: PMC6638903 DOI: 10.1111/j.1364-3703.2012.00838.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak in rice, which is a destructive disease worldwide. Xoc virulence factors are regulated by diffusible signal factor (DSF) and the global regulator Clp. In this study, we have demonstrated that asnB (XOC_3054), encoding an asparagine synthetase, is a novel virulence-related gene regulated by both DSF and Clp in Xoc. A sequence analysis revealed that AsnB is highly conserved in Xanthomonas. An asnB mutation in Xoc dramatically impaired pathogen virulence and growth rate in host rice, but did not affect the ability to trigger the hypersensitive response in nonhost (plant) tobacco. Compared with the wild-type strain, the asnB deletion mutant was unable to grow in basic MMX (-) medium (a minimal medium without ammonium sulphate as the nitrogen source) with or without 10 tested nitrogen sources, except asparagine. The disruption of asnB impaired pathogen resistance to oxidative stress and reduced the transcriptional expression of oxyR, katA and katG, which encode three important proteins responsible for hydrogen peroxide (H(2)O(2)) sensing and detoxification in Xanthomonas in the presence of H(2)O(2), and nine important known Xoc virulence-related genes in plant cell-mimicking medium. Furthermore, the asnB mutation did not affect extracellular protease activity, extracellular polysaccharide production, motility or chemotaxis. Taken together, our results demonstrate the role of asnB in Xanthomonas for the first time.
Collapse
Affiliation(s)
- Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Identification of non-TAL effectors in Xanthomonas oryzae pv. oryzae Chinese strain 13751 and analysis of their role in the bacterial virulence. World J Microbiol Biotechnol 2013; 29:733-44. [PMID: 23296915 DOI: 10.1007/s11274-012-1229-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/02/2012] [Indexed: 11/27/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice bacterial leaf blight, one of the most important rice bacterial diseases in China and many other countries. The upstream portions of 41 candidate genes encoding non-transcription activator-like effectors of Xoo Chinese strain 13751 were fused with the coding sequence of AvrBs159-445 in a broad host-range vector. The constructed plasmids were respectively introduced into Xoo strain 13751 and avrBs1 deletion mutant of X. campestris pv. campestris strain 8004 by tri-parental conjugation. The resultant transconjugants were respectively tested for hypersensitive response (HR) elicitation on pepper ECW-10R. Nine strains were able to elicit HR on pepper, indicating that the nine genes (XOO0037, XOO0103, XOO0110, XOO0315, XOO1488, XOO2875, XOO3150, XOO3222 and XOO4134) encoded effectors. Among them, xopAE 13751 (XOO0110), expressed in Xoo strain 13751 growing in rice leaves, was a new experimentally confirmed effector gene. XopAE13751 contains 11 leucine rich repeats. Furthermore, mutants for the nine effector genes were created in Xoo strain 13751 and subsequently tested for virulence in rice. As a result, only the xopR 13751 (XOO4134) deletion mutant GXMxopR showed a significant reduction in virulence in hybrid rice cv. Teyou63 compared to the wild type. However, the growth of GXMxopR in host plant rice was not affected. These results indicated that xopR 13751 was required for full virulence of Xoo strain 13751 by inducing rice disease tolerance.
Collapse
|
299
|
Molecular characterization and ultrastructure of a new amoeba endoparasite belonging to the Stenotrophomonas maltophilia complex. Exp Parasitol 2013; 133:383-90. [PMID: 23298539 DOI: 10.1016/j.exppara.2012.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/20/2012] [Accepted: 12/23/2012] [Indexed: 11/23/2022]
Abstract
Naegleria and Acanthamoeba spp. were recovered from biofilm of a flushing cistern in a lavatory and both were found to be infected by rod-shaped bacteria enclosed within a vacuole. These intracellular bacteria behave like parasites, causing lysis of host amoebae. The bacteria proved unculturable on bacteriological media, and but could be maintained as endocytobionts within Acanthamoeba on agar plates. A marked differential host preference was observed in co-culture assays with various strains of amoebae. Molecular phylogenetic analyses performed on almost complete 16S rDNA sequences showed that the bacteria emerged as an atypical rapidly-evolving strain within the Stenotrophomonas maltophilia complex (Gamma-Proteobacteria, Xanthomonadales).
Collapse
|
300
|
Vicente JG, Holub EB. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. MOLECULAR PLANT PATHOLOGY 2013; 14:2-18. [PMID: 23051837 PMCID: PMC6638727 DOI: 10.1111/j.1364-3703.2012.00833.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
BACKGROUND Xanthomonas campestris pv. campestris (Xcc) (Pammel) Dowson is a Gram-negative bacterium that causes black rot, the most important disease of vegetable brassica crops worldwide. Intensive molecular investigation of Xcc is gaining momentum and several whole genome sequences are available. TAXONOMY Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadacea; Genus Xanthomonas; Species X. campestris. HOST RANGE AND SYMPTOMS Xcc can cause disease in a large number of species of Brassicaceae (ex-Cruciferae), including economically important vegetable Brassica crops and a number of other cruciferous crops, ornamentals and weeds, including the model plant Arabidopsis thaliana. Black rot is a systemic vascular disease. Typical disease symptoms include V-shaped yellow lesions starting from the leaf margins and blackening of the veins. RACE STRUCTURE, PATHOGENESIS AND EPIDEMIOLOGY Collections of Xcc isolates have been differentiated into physiological races based on the response of several brassica species lines. Black rot is a seed-borne disease. The disease is favoured by warm, humid conditions and can spread rapidly from rain dispersal and irrigation water. DISEASE CONTROL The control of black rot is difficult and relies on the use of pathogen-free planting material and the elimination of other potential inoculum sources (infected crop debris and cruciferous weeds). Major gene resistance is very rare in B. oleracea (brassica C genome). Resistance is more readily available in other species, including potentially useful sources of broad-spectrum resistance in B. rapa and B. carinata (A and BC genomes, respectively) and in the wild relative A. thaliana. GENOME The reference genomes of three isolates have been released. The genome consists of a single chromosome of approximately 5 100 000 bp, with a GC content of approximately 65% and an average predicted number of coding DNA sequences (CDS) of 4308. IMPORTANT GENES IDENTIFIED Three different secretion systems have been identified and studied in Xcc. The gene clusters xps and xcs encode a type II secretion system and xps genes have been linked to pathogenicity. The role of the type IV secretion system in pathogenicity is still uncertain. The hrp gene cluster encodes a type III secretion system that is associated with pathogenicity. An inventory of candidate effector genes has been assembled based on homology with known effectors. A range of other genes have been associated with virulence and pathogenicity, including the rpf, gum and wxc genes involved in the regulation of the synthesis of extracellular degrading enzymes, xanthan gum and lipopolysaccharides. USEFUL WEBSITE http://www.xanthomonas.org/
Collapse
Affiliation(s)
- Joana G Vicente
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
| | | |
Collapse
|