251
|
Lake BB, Sokol SY. Strabismus regulates asymmetric cell divisions and cell fate determination in the mouse brain. ACTA ACUST UNITED AC 2009; 185:59-66. [PMID: 19332887 PMCID: PMC2700512 DOI: 10.1083/jcb.200807073] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The planar cell polarity (PCP) pathway organizes the cytoskeleton and polarizes cells within embryonic tissue. We investigate the relationship between PCP signaling and cell fate determination during asymmetric division of neural progenitors (NPs) in mouse embryos. The cortex of Lp/Lp (Loop-tail) mice deficient in the essential PCP mediator Vangl2, homologue of Drosophila melanogaster Strabismus (Stbm), revealed precocious differentiation of neural progenitors into early-born neurons at the expense of late-born neurons and glia. Although Lp/Lp NPs were easily maintained in vitro, they showed premature differentiation and loss of asymmetric distribution of Leu-Gly-Asn–enriched protein (LGN)/partner of inscuteable (Pins), a regulator of mitotic spindle orientation. Furthermore, we observed a decreased frequency in asymmetric distribution of the LGN target nuclear mitotic apparatus protein (NuMa) in Lp/Lp cortical progenitors in vivo. This was accompanied by an increase in the number of vertical cleavage planes typically associated with equal daughter cell identities. These findings suggest that Stbm/Vangl2 functions to maintain cortical progenitors and regulates mitotic spindle orientation during asymmetric divisions in the vertebrate brain.
Collapse
Affiliation(s)
- Blue B Lake
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
252
|
Schwamborn JC, Berezikov E, Knoblich JA. The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 2009; 136:913-25. [PMID: 19269368 DOI: 10.1016/j.cell.2008.12.024] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 08/22/2008] [Accepted: 12/10/2008] [Indexed: 02/07/2023]
Abstract
In the mouse neocortex, neural progenitor cells generate both differentiating neurons and daughter cells that maintain progenitor fate. Here, we show that the TRIM-NHL protein TRIM32 regulates protein degradation and microRNA activity to control the balance between those two daughter cell types. In both horizontally and vertically dividing progenitors, TRIM32 becomes polarized in mitosis and is concentrated in one of the two daughter cells. TRIM32 overexpression induces neuronal differentiation while inhibition of TRIM32 causes both daughter cells to retain progenitor cell fate. TRIM32 ubiquitinates and degrades the transcription factor c-Myc but also binds Argonaute-1 and thereby increases the activity of specific microRNAs. We show that Let-7 is one of the TRIM32 targets and is required and sufficient for neuronal differentiation. TRIM32 is the mouse ortholog of Drosophila Brat and Mei-P26 and might be part of a protein family that regulates the balance between differentiation and proliferation in stem cell lineages.
Collapse
Affiliation(s)
- Jens C Schwamborn
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | | | |
Collapse
|
253
|
De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 2009; 135:3911-21. [PMID: 18997113 DOI: 10.1242/dev.025080] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurogenesis during the development of the mammalian cerebral cortex involves a switch of neural stem and progenitor cells from proliferation to differentiation. To explore the possible role of microRNAs (miRNAs) in this process, we conditionally ablated Dicer in the developing mouse neocortex using Emx1-Cre, which is specifically expressed in the dorsal telencephalon as early as embryonic day (E) 9.5. Dicer ablation in neuroepithelial cells, which are the primary neural stem and progenitor cells, and in the neurons derived from them, was evident from E10.5 onwards, as ascertained by the depletion of the normally abundant miRNAs miR-9 and miR-124. Dicer ablation resulted in massive hypotrophy of the postnatal cortex and death of the mice shortly after weaning. Analysis of the cytoarchitecture of the Dicer-ablated cortex revealed a marked reduction in radial thickness starting at E13.5, and defective cortical layering postnatally. Whereas the former was due to neuronal apoptosis starting at E12.5, which was the earliest detectable phenotype, the latter reflected dramatic impairment of neuronal differentiation. Remarkably, the primary target cells of Dicer ablation, the neuroepithelial cells, and the neurogenic progenitors derived from them, were unaffected by miRNA depletion with regard to cell cycle progression, cell division, differentiation and viability during the early stage of neurogenesis, and only underwent apoptosis starting at E14.5. Our results support the emerging concept that progenitors are less dependent on miRNAs than their differentiated progeny, and raise interesting perspectives as to the expansion of somatic stem cells.
Collapse
Affiliation(s)
- Davide De Pietri Tonelli
- Max-Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
254
|
Jolly LA, Taylor V, Wood SA. USP9X enhances the polarity and self-renewal of embryonic stem cell-derived neural progenitors. Mol Biol Cell 2009; 20:2015-29. [PMID: 19176755 DOI: 10.1091/mbc.e08-06-0596] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The substrate-specific deubiquitylating enzyme USP9X is a putative "stemness" gene expressed in many progenitor cell populations. To test its function in embryonic stem cell-derived neural progenitor/stem cells, we expressed USP9X from a Nestin promoter. Elevated USP9X levels resulted in two phenomena. First, it produced a dramatically altered cellular architecture wherein the majority (>80%) of neural progenitors was arranged into radial clusters. These progenitors expressed markers of radial glial cells and were highly polarized with adherens junction proteins (N-cadherin, beta-catenin, and AF-6) and apical markers (Prominin1, atypical protein kinase C-zeta) as well as Notch, Numb, and USP9X itself, concentrated at the center. The cluster centers were also devoid of nuclei and so resembled the apical end-feet of radial progenitors in the neural tube. Second, USP9X overexpression caused a fivefold increase in the number of radial progenitors and neurons, in the absence of exogenous growth factors. 5-Bromo-2'-deoxyuridine labeling, as well as the examination of the brain lipid-binding protein:betaIII-tubulin ratio, indicated that nestin-USP9X enhanced the self-renewal of radial progenitors but did not block their subsequent differentiation to neurons and astrocytes. nestin-USP9X radial progenitors reformed clusters after passage as single cells, whereas control cells did not, suggesting it aids the establishment of polarity. We propose that USP9X-induced polarization of these neural progenitors results in their radial arrangement, which provides an environment conducive for self-renewal.
Collapse
Affiliation(s)
- Lachlan A Jolly
- Child Health Research Institute, North Adelaide, South Australia 5006, Australia
| | | | | |
Collapse
|
255
|
Ochiai W, Nakatani S, Takahara T, Kainuma M, Masaoka M, Minobe S, Namihira M, Nakashima K, Sakakibara A, Ogawa M, Miyata T. Periventricular notch activation and asymmetric Ngn2 and Tbr2 expression in pair-generated neocortical daughter cells. Mol Cell Neurosci 2008; 40:225-33. [PMID: 19059340 DOI: 10.1016/j.mcn.2008.10.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 10/16/2008] [Accepted: 10/21/2008] [Indexed: 02/06/2023] Open
Abstract
To understand the cellular and molecular mechanisms regulating cytogenesis within the neocortical ventricular zone, we examined at high resolution the spatiotemporal expression patterns of Ngn2 and Tbr2. Individually DiI-labeled daughter cells were tracked from their birth in slice cultures and immunostained for Ngn2 and Tbr2. Both proteins were initially absent from daughter cells during the first 2 h. Ngn2 expression was then initiated asymmetrically in one of the daughter cells, with a bias towards the apical cell, followed by a similar pattern of expression for Tbr2, which we found to be a direct target of Ngn2. How this asymmetric Ngn2 expression is achieved is unclear, but gamma-secretase inhibition at the birth of daughter cells resulted in premature Ngn2 expression, suggesting that Notch signaling in nascent daughter cells suppresses a Ngn2-Tbr2 cascade. Many of the nascent cells exhibited pin-like morphology with a short ventricular process, suggesting periventricular presentation of Notch ligands to these cells.
Collapse
Affiliation(s)
- Wataru Ochiai
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 2008; 60:56-69. [PMID: 18940588 DOI: 10.1016/j.neuron.2008.09.028] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/23/2008] [Accepted: 09/23/2008] [Indexed: 11/20/2022]
Abstract
T-brain gene-2 (Tbr2) is specifically expressed in the intermediate (basal) progenitor cells (IPCs) of the developing cerebral cortex; however, its function in this biological context has so far been overlooked due to the early lethality of Tbr2 mutant embryos. Conditional ablation of Tbr2 in the developing forebrain resulted in the loss of IPCs and their differentiated progeny in mutant cortex. Intriguingly, early loss of IPCs led to a decrease in cortical surface expansion and thickness with a neuronal reduction observed in all cortical layers. These findings suggest that IPC progeny contribute to the correct morphogenesis of each cortical layer. Our observations were confirmed by tracing Tbr2+ IPC cell fate using Tbr2::GFP transgenic mice. Finally, we demonstrated that misexpression of Tbr2 is sufficient to induce IPC identity in ventricular radial glial cells (RGCs). Together, these findings identify Tbr2 as a critical factor for the specification of IPCs during corticogenesis.
Collapse
|
257
|
Farkas LM, Huttner WB. The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr Opin Cell Biol 2008; 20:707-15. [PMID: 18930817 DOI: 10.1016/j.ceb.2008.09.008] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 09/23/2008] [Indexed: 12/24/2022]
Abstract
The switch of neural stem and progenitor cells from proliferation to differentiation during development is a crucial determinant of brain size. This switch is intimately linked to the architecture of the two principal classes of neural stem and progenitor cells, the apical (neuroepithelial, radial glial) and basal (intermediate) progenitors, which in turn is crucial for their symmetric versus asymmetric divisions. Focusing on the developing rodent neocortex, we discuss here recent advances in understanding the cell biology of apical and basal progenitors, place key regulatory molecules into subcellular context, and highlight their roles in the control of proliferation versus differentiation.
Collapse
Affiliation(s)
- Lilla M Farkas
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | | |
Collapse
|
258
|
Fish JL, Dehay C, Kennedy H, Huttner WB. Making bigger brains-the evolution of neural-progenitor-cell division. J Cell Sci 2008; 121:2783-93. [PMID: 18716282 DOI: 10.1242/jcs.023465] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Relative brain size differs markedly between species. This variation might ultimately result from differences in the cell biology of neural progenitors, which might underlie their different proliferative potential. On the basis of the cell-biological properties of neural progenitors of animals of varying brain size and complexity (namely, Drosophila melanogaster, rodents and primates), we hypothesize that the evolution of four related cell-biological features has contributed to increases in neuron number. Three of these features-the pseudostratification of the progenitor layer, the loss of (Inscuteable-mediated) mitotic-spindle rotation and the evolution of proteins (such as Aspm) that maintain the precision of symmetric progenitor division-affect the mode of cell division in the apically dividing progenitors of the ventricular zone. The fourth feature, however, concerns the evolution of the basally dividing progenitors of the subventricular zone. In rodents, these basal (or intermediate) progenitors lack cell polarity, whereas in primates a subpopulation of radial, presumably polarized, progenitors has evolved (outer-subventricular-zone progenitors). These cells undergo basal mitoses and are thought to retain epithelial characteristics. We propose the epithelial-progenitor hypothesis, which argues that evolutionary changes that promote the maintenance of epithelial features in neural progenitors, including outer-subventricular-zone progenitors, have been instrumental in the expansion of the cerebral cortex in primates.
Collapse
Affiliation(s)
- Jennifer L Fish
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.
| | | | | | | |
Collapse
|
259
|
Kosodo Y, Toida K, Dubreuil V, Alexandre P, Schenk J, Kiyokage E, Attardo A, Mora-Bermúdez F, Arii T, Clarke JDW, Huttner WB. Cytokinesis of neuroepithelial cells can divide their basal process before anaphase. EMBO J 2008; 27:3151-63. [PMID: 18971946 DOI: 10.1038/emboj.2008.227] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 10/02/2008] [Indexed: 11/09/2022] Open
Abstract
Neuroepithelial (NE) cells, the primary stem and progenitor cells of the vertebrate central nervous system, are highly polarized and elongated. They retain a basal process extending to the basal lamina, while undergoing mitosis at the apical side of the ventricular zone. By studying NE cells in the embryonic mouse, chick and zebrafish central nervous system using confocal microscopy, electron microscopy and time-lapse imaging, we show here that the basal process of these cells can split during M phase. Splitting occurred in the basal-to-apical direction and was followed by inheritance of the processes by either one or both daughter cells. A cluster of anillin, an essential component of the cytokinesis machinery, appeared at the distal end of the basal process in prophase and was found to colocalize with F-actin at bifurcation sites, in both proliferative and neurogenic NE cells. GFP-anillin in the basal process moved apically to the cell body prior to anaphase onset, followed by basal-to-apical ingression of the cleavage furrow in telophase. The splitting of the basal process of M-phase NE cells has implications for cleavage plane orientation and the relationship between mitosis and cytokinesis.
Collapse
Affiliation(s)
- Yoichi Kosodo
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 2008; 3:265-78. [PMID: 18786414 DOI: 10.1016/j.stem.2008.07.004] [Citation(s) in RCA: 806] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 06/04/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
Abstract
Neural stem cells (NSCs, B1 cells) are retained in the walls of the adult lateral ventricles but, unlike embryonic NSCs, are displaced from the ventricular zone (VZ) into the subventricular zone (SVZ) by ependymal cells. Apical and basal compartments, which in embryonic NSCs play essential roles in self-renewal and differentiation, are not evident in adult NSCs. Here we show that SVZ B1 cells in adult mice extend a minute apical ending to directly contact the ventricle and a long basal process ending on blood vessels. A closer look at the ventricular surface reveals a striking pinwheel organization specific to regions of adult neurogenesis. The pinwheel's core contains the apical endings of B1 cells and in its periphery two types of ependymal cells: multiciliated (E1) and a type (E2) characterized by only two cilia and extraordinarily complex basal bodies. These results reveal that adult NSCs retain fundamental epithelial properties, including apical and basal compartmentalization, significantly reshaping our understanding of this adult neurogenic niche.
Collapse
Affiliation(s)
- Zaman Mirzadeh
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
261
|
Farkas LM, Haffner C, Giger T, Khaitovich P, Nowick K, Birchmeier C, Pääbo S, Huttner WB. Insulinoma-Associated 1 Has a Panneurogenic Role and Promotes the Generation and Expansion of Basal Progenitors in the Developing Mouse Neocortex. Neuron 2008; 60:40-55. [DOI: 10.1016/j.neuron.2008.09.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 07/07/2008] [Accepted: 09/05/2008] [Indexed: 02/04/2023]
|
262
|
Okano H, Sawamoto K. Neural stem cells: involvement in adult neurogenesis and CNS repair. Philos Trans R Soc Lond B Biol Sci 2008; 363:2111-22. [PMID: 18339601 DOI: 10.1098/rstb.2008.2264] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent advances in stem cell research, including the selective expansion of neural stem cells (NSCs) in vitro, the induction of particular neural cells from embryonic stem cells in vitro, the identification of NSCs or NSC-like cells in the adult brain and the detection of neurogenesis in the adult brain (adult neurogenesis), have laid the groundwork for the development of novel therapies aimed at inducing regeneration in the damaged central nervous system (CNS). There are two major strategies for inducing regeneration in the damaged CNS: (i) activation of the endogenous regenerative capacity and (ii) cell transplantation therapy. In this review, we summarize the recent findings from our group and others on NSCs, with respect to their role in insult-induced neurogenesis (activation of adult NSCs, proliferation of transit-amplifying cells, migration of neuroblasts and survival and maturation of the newborn neurons), and implications for therapeutic interventions, together with tactics for using cell transplantation therapy to treat the damaged CNS.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | |
Collapse
|
263
|
Fonseca AV, Bauer N, Corbeil D. The stem cell marker CD133 meets the endosomal compartment – New insights into the cell division of hematopoietic stem cells. Blood Cells Mol Dis 2008; 41:194-5. [DOI: 10.1016/j.bcmd.2008.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 04/11/2008] [Accepted: 04/15/2008] [Indexed: 12/28/2022]
|
264
|
Gleason D, Fallon JH, Guerra M, Liu JC, Bryant PJ. Ependymal stem cells divide asymmetrically and transfer progeny into the subventricular zone when activated by injury. Neuroscience 2008; 156:81-8. [PMID: 18682279 DOI: 10.1016/j.neuroscience.2008.06.065] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/19/2008] [Accepted: 06/27/2008] [Indexed: 01/19/2023]
Abstract
Evidence is presented to show that cells of the ependymal layer surrounding the ventricles of the mammalian (rat) forebrain act as neural stem cells (NSCs), and that these cells can be activated to divide by a combination of injury and growth factor stimulation. Several markers of asymmetric cell division (ACD), a characteristic of true stem cells, are expressed asymmetrically in the ependymal layer but not in the underlying subventricular zone (SVZ), and when the brain is treated with a combination of local 6-hydroxydopamine (6-OHDA) with systemic delivery of transforming growth factor-alpha (TGFalpha), ependymal cells divide asymmetrically and transfer progeny into the SVZ. The SVZ cells then divide as transit amplifying cells (TACs) and their progeny enter a differentiation pathway. The stem cells in the ependymal layer may have been missed in many previous studies because they are usually quiescent and divide only in response to strong stimuli.
Collapse
Affiliation(s)
- D Gleason
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA.
| | | | | | | | | |
Collapse
|
265
|
Attardo A, Calegari F, Haubensak W, Wilsch-Bräuninger M, Huttner WB. Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny. PLoS One 2008; 3:e2388. [PMID: 18545663 PMCID: PMC2398773 DOI: 10.1371/journal.pone.0002388] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Accepted: 04/29/2008] [Indexed: 12/14/2022] Open
Abstract
The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors.
Collapse
Affiliation(s)
- Alessio Attardo
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Federico Calegari
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wulf Haubensak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
266
|
Zhong W, Chia W. Neurogenesis and asymmetric cell division. Curr Opin Neurobiol 2008; 18:4-11. [PMID: 18513950 DOI: 10.1016/j.conb.2008.05.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/25/2008] [Accepted: 05/08/2008] [Indexed: 12/27/2022]
Abstract
The astonishing cellular diversity in the central nervous system (CNS) arises from neural progenitors which can undergo different modes of symmetric and asymmetric divisions to self-renew as well as produce differentiated neuronal and glial progeny. Drosophila CNS neural progenitor cells, neuroblasts, have been utilised as a model to stimulate the understanding of the processes of asymmetric division, generation of neuronal lineages and, more recently, stem cell biology in vertebrates. Here we review some recent developments involving Drosophila and mammalian neural progenitor cells, highlighting some similarities and differences in the mechanisms that regulate their divisions during neurogenesis.
Collapse
Affiliation(s)
- Weimin Zhong
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| | | |
Collapse
|
267
|
The determination of projection neuron identity in the developing cerebral cortex. Curr Opin Neurobiol 2008; 18:28-35. [PMID: 18508260 DOI: 10.1016/j.conb.2008.05.006] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 04/28/2008] [Accepted: 05/08/2008] [Indexed: 11/22/2022]
Abstract
Here we review the mechanisms that determine projection neuron identity during cortical development. Pyramidal neurons in the mammalian cerebral cortex can be classified into two major classes: corticocortical projection neurons, which are concentrated in the upper layers of the cortex, and subcortical projection neurons, which are found in the deep layers. Early progenitor cells in the ventricular zone produce deep layer neurons that express transcription factors including Sox5, Fezf2, and Ctip2, which play important roles in the specification of subcortically projecting axons. Upper layer neurons are produced from progenitors in the subventricular zone, and the expression of Satb2 in these differentiating neurons is required for the formation of axonal projections that connect the two cerebral hemispheres. The Fezf2/Ctip2 and Satb2 pathways appear to be mutually repressive, thus ensuring that individual neurons adopt either a subcortical or callosal projection neuron identity at early times during development. The molecular mechanisms by which Satb2 regulates gene expression involves long-term epigenetic changes in chromatin configuration, which may enable cell fate decisions to be maintained during development.
Collapse
|
268
|
Pawlisz AS, Mutch C, Wynshaw-Boris A, Chenn A, Walsh CA, Feng Y. Lis1-Nde1-dependent neuronal fate control determines cerebral cortical size and lamination. Hum Mol Genet 2008; 17:2441-55. [PMID: 18469343 PMCID: PMC2486443 DOI: 10.1093/hmg/ddn144] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neurons in the cerebral cortex originate predominantly from asymmetrical divisions of polarized radial glial or neuroepithelial cells. Fate control of neural progenitors through regulating cell division asymmetry determines the final cortical neuronal number and organization. Haploinsufficiency of human LIS1 results in type I lissencephaly (smooth brain) with severely reduced surface area and laminar organization of the cerebral cortex. Here we show that LIS1 and its binding protein Nde1 (mNudE) regulate the fate of radial glial progenitors collaboratively. Mice with an allelic series of Lis1 and Nde1 double mutations displayed a striking dose-dependent size reduction and de-lamination of the cerebral cortex. The neocortex of the Lis1–Nde1 double mutant mice showed over 80% reduction in surface area and inverted neuronal layers. Dramatically increased neuronal differentiation at the onset of corticogenesis in the mutant led to overproduction and abnormal development of earliest-born preplate neurons and Cajal–Retzius cells at the expense of progenitors. While both Lis1 and Nde1 are known to regulate the mitotic spindle orientation, only a moderate alteration in mitotic cleavage orientation was detected in the Lis1–Nde1 double deficient progenitors. Instead, a striking change in the morphology of metaphase progenitors with reduced apical attachment to the ventricular surface and weakened lateral contacts to neighboring cells appear to hinder the accurate control of cell division asymmetry and underlie the dramatically increased neuronal differentiation. Our data suggest that maintaining the shape and cell–cell interactions of radial glial neuroepithelial progenitors by the Lis1–Nde1 complex is essential for their self renewal during the early phase of corticogenesis.
Collapse
Affiliation(s)
- Ashley S Pawlisz
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
269
|
Noctor SC, Martínez-Cerdeño V, Kriegstein AR. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 2008; 508:28-44. [PMID: 18288691 PMCID: PMC2635107 DOI: 10.1002/cne.21669] [Citation(s) in RCA: 291] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neocortical precursor cells undergo symmetric and asymmetric divisions while producing large numbers of diverse cortical cell types. In Drosophila, cleavage plane orientation dictates the inheritance of fate-determinants and the symmetry of newborn daughter cells during neuroblast cell divisions. One model for predicting daughter cell fate in the mammalian neocortex is also based on cleavage plane orientation. Precursor cell divisions with a cleavage plane orientation that is perpendicular with respect to the ventricular surface (vertical) are predicted to be symmetric, while divisions with a cleavage plane orientation that is parallel to the surface (horizontal) are predicted to be asymmetric neurogenic divisions. However, analysis of cleavage plane orientation at the ventricle suggests that the number of predicted neurogenic divisions might be insufficient to produce large amounts of cortical neurons. To understand factors that correlate with the symmetry of cell divisions, we examined rat neocortical precursor cells in situ through real-time imaging, marker analysis, and electrophysiological recordings. We find that cleavage plane orientation is more closely associated with precursor cell type than with daughter cell fate, as commonly thought. Radial glia cells in the VZ primarily divide with a vertical orientation throughout cortical development and undergo symmetric or asymmetric self-renewing divisions depending on the stage of development. In contrast, most intermediate progenitor cells divide in the subventricular zone with a horizontal orientation and produce symmetric daughter cells. We propose a model for predicting daughter cell fate that considers precursor cell type, stage of development, and the planar segregation of fate determinants.
Collapse
Affiliation(s)
- Stephen C Noctor
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143, USA.
| | | | | |
Collapse
|
270
|
Srinivasan K, Roosa J, Olsen O, Lee SH, Bredt DS, McConnell SK. MALS-3 regulates polarity and early neurogenesis in the developing cerebral cortex. Development 2008; 135:1781-90. [PMID: 18403412 DOI: 10.1242/dev.013847] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apicobasal polarity plays an important role in regulating asymmetric cell divisions by neural progenitor cells (NPCs) in invertebrates, but the role of polarity in mammalian NPCs is poorly understood. Here, we characterize the function of the PDZ domain protein MALS-3 in the developing cerebral cortex. We find that MALS-3 is localized to the apical domain of NPCs. Mice lacking all three MALS genes fail to localize the polarity proteins PATJ and PALS1 apically in NPCs, whereas the formation and maintenance of adherens junctions appears normal. In the absence of MALS proteins, early NPCs progressed more slowly through the cell cycle, and their daughter cells were more likely to exit the cell cycle and differentiate into neurons. Interestingly, these effects were transient; NPCs recovered normal cell cycle properties during late neurogenesis. Experiments in which MALS-3 was targeted to the entire membrane resulted in a breakdown of apicobasal polarity, loss of adherens junctions, and a slowing of the cell cycle. Our results suggest that MALS-3 plays a role in maintaining apicobasal polarity and is required for normal neurogenesis in the developing cortex.
Collapse
Affiliation(s)
- Karpagam Srinivasan
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
271
|
Abstract
Stem cells are captivating because they have the potential to make multiple cell types yet maintain their undifferentiated state. Recent studies of Drosophila and mammalian neural stem cells have shed light on how stem cells regulate self-renewal versus differentiation and have revealed the proteins, processes and pathways that all converge to regulate neural progenitor self-renewal. If we can better understand how stem cells balance self-renewal versus differentiation, we will significantly advance our knowledge of embryogenesis, cancer biology and brain evolution, as well as the use of stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Chris Q Doe
- Howard Hughes Medical Institute, Institute of Neuroscience, Institute of Molecular Biology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
272
|
Yingling J, Youn YH, Darling D, Toyo-Oka K, Pramparo T, Hirotsune S, Wynshaw-Boris A. Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell 2008; 132:474-86. [PMID: 18267077 DOI: 10.1016/j.cell.2008.01.026] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 11/15/2007] [Accepted: 01/03/2008] [Indexed: 11/19/2022]
Abstract
Mitotic spindle orientation and plane of cleavage in mammals is a determinant of whether division yields progenitor expansion and/or birth of new neurons during radial glial progenitor cell (RGPC) neurogenesis, but its role earlier in neuroepithelial stem cells is poorly understood. Here we report that Lis1 is essential for precise control of mitotic spindle orientation in both neuroepithelial stem cells and radial glial progenitor cells. Controlled gene deletion of Lis1 in vivo in neuroepithelial stem cells, where cleavage is uniformly vertical and symmetrical, provokes rapid apoptosis of those cells, while radial glial progenitors are less affected. Impaired cortical microtubule capture via loss of cortical dynein causes astral and cortical microtubules to be greatly reduced in Lis1-deficient cells. Increased expression of the LIS/dynein binding partner NDEL1 restores cortical microtubule and dynein localization in Lis1-deficient cells. Thus, control of symmetric division, essential for neuroepithelial stem cell proliferation, is mediated through spindle orientation determined via LIS1/NDEL1/dynein-mediated cortical microtubule capture.
Collapse
Affiliation(s)
- Jessica Yingling
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92098-0627, USA
| | | | | | | | | | | | | |
Collapse
|
273
|
Abstract
Stem cells self-renew but also give rise to daughter cells that are committed to lineage-specific differentiation. To achieve this remarkable task, they can undergo an intrinsically asymmetric cell division whereby they segregate cell fate determinants into only one of the two daughter cells. Alternatively, they can orient their division plane so that only one of the two daughter cells maintains contact with the niche and stem cell identity. These distinct pathways have been elucidated mostly in Drosophila. Although the molecules involved are highly conserved in vertebrates, the way they act is tissue specific and sometimes very different from invertebrates.
Collapse
Affiliation(s)
- Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
274
|
Nishizawa Y, Imafuku H, Saito K, Kanda R, Kimura M, Minobe S, Miyazaki F, Kawakatsu S, Masaoka M, Ogawa M, Miyata T. Survey of the morphogenetic dynamics of the ventricular surface of the developing mouse neocortex. Dev Dyn 2008; 236:3061-70. [PMID: 17948308 DOI: 10.1002/dvdy.21351] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To understand the morphogenetic dynamics of the inner surface of the embryonic pallial (neocortical) wall, we immunohistochemically surveyed the cellular endfeet facing the lateral ventricle and found that the average endfoot area was minimal at embryonic day (E)12 in mice. This endfoot narrowing at E12 may represent a change in the mode of cell production at the surface from a purely proliferative mode that retains all daughter cells to a more differentiation-directed mode that allows some daughter cells to leave the surface. The apices of cells undergoing mitosis were 1.5-3.9 times larger than the overall cell apices and 6.7-8.7 times smaller than the cross-sectional area of mitotic somata. En face time-lapse monitoring of each endfoot permitted observation of its cell cycle-dependent size changes, division, and relationships with neighboring endfeet. Planar divisions oriented along the lateral-medial axis were less abundant than those oriented along the rostral-caudal axis at E10 and E11, but basal body distribution in each endfoot was random.
Collapse
Affiliation(s)
- Yuji Nishizawa
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Expression of the "stem cell marker" CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 2008; 8:48. [PMID: 18261235 PMCID: PMC2268945 DOI: 10.1186/1471-2407-8-48] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 02/08/2008] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND It has been suggested that a small population of cells with unique self-renewal properties and malignant potential exists in solid tumors. Such "cancer stem cells" have been isolated by flow cytometry, followed by xenograft studies of their tumor-initiating properties. A frequently used sorting marker in these experiments is the cell surface protein CD133 (prominin-1). The aim of this work was to examine the distribution of CD133 in pancreatic exocrine cancer. METHODS Fifty-one cases of pancreatic ductal adenocarcinomas were clinically and histopathologically evaluated, and immunohistochemically investigated for expression of CD133, cytokeratin 19 and chromogranin A. The results were interpreted on the background of CD133 expression in normal pancreas and other normal and malignant human tissues. RESULTS CD133 positivity could not be related to a specific embryonic layer of organ origin and was seen mainly at the apical/endoluminal surface of non-squamous, glandular epithelia and of malignant cells in ductal arrangement. Cytoplasmic CD133 staining was observed in some non-epithelial malignancies. In the pancreas, we found CD133 expressed on the apical membrane of ductal cells. In a small subset of ductal cells and in cells in centroacinar position, we also observed expression in the cytoplasm. Pancreatic ductal adenocarcinomas showed a varying degree of apical cell surface CD133 expression, and cytoplasmic staining in a few tumor cells was noted. There was no correlation between the level of CD133 expression and patient survival. CONCLUSION Neither in the pancreas nor in the other investigated organs can CD133 membrane expression alone be a criterion for "stemness". However, there was an interesting difference in subcellular localization with a minor cell population in normal and malignant pancreatic tissue showing cytoplasmic expression. Moreover, since CD133 was expressed in shed ductal cells of pancreatic tumors and was found on the surface of tumor cells in vessels, this molecule may have a potential as clinical marker in patients suffering from pancreatic cancer.
Collapse
|
276
|
Abstract
Stem cells present a vast, new terrain of cell biology. A central question in stem cell research is how stem cells achieve asymmetric divisions to replicate themselves while producing differentiated daughter cells. This hallmark of stem cells is manifested either strictly during each mitosis or loosely among several divisions. Current research has revealed the crucial roles of niche signaling, intrinsic cell polarity, subcellular localization mechanism, asymmetric centrosomes and spindles, as well as cell cycle regulators in establishing self-renewing asymmetry during stem cell division. Much of this progress has benefited from studies in model stem cell systems such as Drosophila melanogaster neuroblasts and germline stem cells and mammalian skin stem cells. Further investigations of these questions in diverse types of stem cells will significantly advance our knowledge of cell biology and allow us to effectively harness stem cells for therapeutic applications.
Collapse
Affiliation(s)
- Haifan Lin
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
277
|
DANIELE LAURENL, ADAMS RALFH, DURANTE DIANEE, PUGH EDWARDN, PHILP NANCYJ. Novel distribution of junctional adhesion molecule-C in the neural retina and retinal pigment epithelium. J Comp Neurol 2008; 505:166-76. [PMID: 17853450 PMCID: PMC3144860 DOI: 10.1002/cne.21489] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Junction adhesion molecules-A, -B, and -C (Jams) are cell surface glycoproteins that have been shown to play an important role in the assembly and maintenance of tight junctions and in the establishment of epithelial cell polarity. Recent studies reported that Jam-C mRNA was increased threefold in the all-cone retina of the Nrl(-/-) mouse, suggesting that Jam-C is required for maturation and polarization of cone photoreceptors cells. We examined the expression of Jams in the mouse retina by using confocal immunofluorescence localization. Jam-C was detected in tight junctions of retinal pigment epithelium (RPE) and at the outer limiting membrane (OLM) in the specialized adherens junctions between Müller and photoreceptor cells. Additionally, Jam-C labeling was observed in the long apical processes of Müller and RPE cells that extend between the inner segments and outer segments of photoreceptors, respectively. Jam-B was also detected at the OLM. In the developing retina, Jam-B and -C were detected at the apical junctions of embryonic retinal neuroepithelia, suggesting a role for Jams in retinogenesis. In eyes from Jam-C(-/-) mice, retinal lamination, polarity, and photoreceptor morphology appeared normal. Although Jam-A was not detected at the OLM in wild-type retinas, it was present at the OLM in retinas of Jam-C(-/-) mice. These findings indicate that up-regulation of Jam-A in the retina compensates for the loss of Jam-C. The nonclassical distribution of Jam-C in the apical membranes of Müller cells and RPE suggests that Jam-C has a novel function in the retina.
Collapse
Affiliation(s)
- LAUREN L. DANIELE
- F.M. Kirby Center for Molecular Ophthalmology, Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - RALF H. ADAMS
- Vascular Development Laboratory, Cancer Research UK London Research Institute, London WC2A3PX, United Kingdom
| | - DIANE E. DURANTE
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - EDWARD N. PUGH
- F.M. Kirby Center for Molecular Ophthalmology, Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - NANCY J. PHILP
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Correspondence to: Nancy J. Philp, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107.
| |
Collapse
|
278
|
Costa MR, Wen G, Lepier A, Schroeder T, Götz M. Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development 2008; 135:11-22. [DOI: 10.1242/dev.009951] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The size of brain regions depends on the balance between proliferation and differentiation. During development of the mouse cerebral cortex, ventricular zone (VZ) progenitors, neuroepithelial and radial glial cells, enlarge the progenitor pool by proliferative divisions, while basal progenitors located in the subventricular zone (SVZ) mostly divide in a differentiative mode generating two neurons. These differences correlate to the existence of an apico-basal polarity in VZ, but not SVZ, progenitors. Only VZ progenitors possess an apical membrane domain at which proteins of the Par complex are strongly enriched. We describe a prominent decrease in the amount of Par-complex proteins at the apical surface during cortical development and examine the role of these proteins by gain- and loss-of-function experiments. Par3 (Pard3) loss-of-function led to premature cell cycle exit, reflected in reduced clone size in vitro and the restriction of the progeny to the lower cortical layers in vivo. By contrast, Par3 or Par6 (Pard6α)overexpression promoted the generation of Pax6+ self-renewing progenitors in vitro and in vivo and increased the clonal progeny of single progenitors in vitro. Time-lapse video microscopy revealed that a change in the mode of cell division, rather than an alteration of the cell cycle length, causes the Par-complex-mediated increase in progenitors. Taken together, our data demonstrate a key role for the apically located Par-complex proteins in promoting self-renewing progenitor cell divisions at the expense of neurogenic differentiation in the developing cerebral cortex.
Collapse
Affiliation(s)
- Marcos R. Costa
- GSF-National Research Institute for Environment and Health, Institute for Stem Cell Research, Ingolstädter Landstr. 1, 85764 Neuherberg/Munich,Germany
| | - Gaiping Wen
- GSF-National Research Institute for Environment and Health, Institute for Stem Cell Research, Ingolstädter Landstr. 1, 85764 Neuherberg/Munich,Germany
| | - Alexandra Lepier
- Physiological Genomics, University of Munich, Schillerstr. 46, 80639 Munich,Germany
| | - Timm Schroeder
- GSF-National Research Institute for Environment and Health, Institute for Stem Cell Research, Ingolstädter Landstr. 1, 85764 Neuherberg/Munich,Germany
| | - Magdalena Götz
- GSF-National Research Institute for Environment and Health, Institute for Stem Cell Research, Ingolstädter Landstr. 1, 85764 Neuherberg/Munich,Germany
- Physiological Genomics, University of Munich, Schillerstr. 46, 80639 Munich,Germany
| |
Collapse
|
279
|
Instructive role of aPKCzeta subcellular localization in the assembly of adherens junctions in neural progenitors. Proc Natl Acad Sci U S A 2007; 105:335-40. [PMID: 18162555 DOI: 10.1073/pnas.0705713105] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the neurogenic phase of CNS development, the proliferating progenitors are found medially within the neuroepithelium. The adherens junctions on the apical membrane of proliferating neural progenitors allow for cell-cell adhesion and medial stratification. In contrast, differentiating neuronal precursors delaminate and migrate laterally, establishing the laminar layers. Apical adherens junctions also establish the apical-basal polarity in neural progenitors, which in turn is postulated to lead to asymmetric inheritance of cell fate determinants during neurogenic divisions. The signaling pathways and cellular mechanisms that regulate the assembly and asymmetric localization of adherens junctions in neural progenitors remain elusive. Here we show that atypical PKCzeta/lambda (aPKCzeta/lambda) localizes at the apical membrane of proliferating neural stem cells, but not postmitotic neuronal precursors, in the developing chicken neural tube. This precise subcellular compartmentalization of the kinase activity provides an instructive signal for apical assembly of adherens junctions in a PI3K, Rac/Cdc42 signaling-dependent pathway. Apical aPKCzeta coordinates neural stem cell proliferation and the overall stratification of cell types within the neural tube.
Collapse
|
280
|
Bauer N, Fonseca AV, Florek M, Freund D, Jászai J, Bornhäuser M, Fargeas CA, Corbeil D. New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133). Cells Tissues Organs 2007; 188:127-38. [PMID: 18160824 DOI: 10.1159/000112847] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prominin-1 (alias CD133) has received considerable interest because of its expression by several stem and progenitor cells originating from various sources, including the neural and hematopoietic systems. As a cell surface marker, prominin-1 is now used for somatic stem cell isolation. Its expression in cancer stem cells has broadened its clinical value, as it might be useful to outline new prospects for more effective cancer therapies by targeting tumor-initiating cells. Cell biological studies of this molecule have demonstrated that it is specifically concentrated in various membrane structures that protrude from the planar areas of the plasmalemma. Prominin-1 binds to the plasma membrane cholesterol and is associated with a particular membrane microdomain in a cholesterol-dependent manner. Although its physiological function is not yet determined, it is becoming clear that this cell surface protein, as a unique marker of both plasma membrane protrusions and membrane microdomains, might reveal new aspects of the cell biology of rare stem and cancer stem cells. The aim of this review is to outline the recent discoveries regarding the dynamic reorganization of the plasma membrane of rare CD133+ hematopoietic progenitor cells during cell migration and division.
Collapse
Affiliation(s)
- Nicola Bauer
- Tissue Engineering Laboratories, Biotec, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
281
|
Lathia JD, Patton B, Eckley DM, Magnus T, Mughal MR, Sasaki T, Caldwell MA, Rao MS, Mattson MP, ffrench-Constant C. Patterns of laminins and integrins in the embryonic ventricular zone of the CNS. J Comp Neurol 2007; 505:630-43. [DOI: 10.1002/cne.21520] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
282
|
Konno D, Shioi G, Shitamukai A, Mori A, Kiyonari H, Miyata T, Matsuzaki F. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol 2007; 10:93-101. [PMID: 18084280 DOI: 10.1038/ncb1673] [Citation(s) in RCA: 389] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 11/30/2007] [Indexed: 01/08/2023]
Abstract
During mammalian development, neuroepithelial cells function as mitotic progenitors, which self-renew and generate neurons. Although spindle orientation is important for such polarized cells to undergo symmetric or asymmetric divisions, its role in mammalian neurogenesis remains unclear. Here we show that control of spindle orientation is essential in maintaining the population of neuroepithelial cells, but dispensable for the decision to either proliferate or differentiate. Knocking out LGN, (the G protein regulator), randomized the orientation of normally planar neuroepithelial divisions. The resultant loss of the apical membrane from daughter cells frequently converted them into abnormally localized progenitors without affecting neuronal production rate. Furthermore, overexpression of Inscuteable to induce vertical neuroepithelial divisions shifted the fate of daughter cells. Our results suggest that planar mitosis ensures the self-renewal of neuroepithelial progenitors by one daughter inheriting both apical and basal compartments during neurogenesis.
Collapse
Affiliation(s)
- Daijiro Konno
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN, and CREST, Japan Science and Technology Corporation, RIKEN, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe 650-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
283
|
Ossipova O, Tabler J, Green JBA, Sokol SY. PAR1 specifies ciliated cells in vertebrate ectoderm downstream of aPKC. Development 2007; 134:4297-306. [PMID: 17993468 PMCID: PMC2170474 DOI: 10.1242/dev.009282] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Partitioning-defective 1 (PAR1) and atypical protein kinase C (aPKC) are conserved serine/threonine protein kinases implicated in the establishment of cell polarity in many species from yeast to humans. Here we investigate the roles of these protein kinases in cell fate determination in Xenopus epidermis. Early asymmetric cell divisions at blastula and gastrula stages give rise to the superficial (apical) and the deep (basal) cell layers of epidermal ectoderm. These two layers consist of cells with different intrinsic developmental potential, including superficial epidermal cells and deep ciliated cells. Our gain- and loss-of-function studies demonstrate that aPKC inhibits ciliated cell differentiation in Xenopus ectoderm and promotes superficial cell fates. We find that the crucial molecular substrate for aPKC is PAR1, which is localized in a complementary domain in superficial ectoderm cells. We show that PAR1 acts downstream of aPKC and is sufficient to stimulate ciliated cell differentiation and inhibit superficial epidermal cell fates. Our results suggest that aPKC and PAR1 function sequentially in a conserved molecular pathway that links apical-basal cell polarity to Notch signaling and cell fate determination. The observed patterning mechanism may operate in a wide range of epithelial tissues in many species.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, Box 1020, New York, NY 10029, USA
| | - Jacqui Tabler
- Department of Craniofacial Development, Kings College, London SE1 9RT, UK
| | - Jeremy B. A. Green
- Department of Craniofacial Development, Kings College, London SE1 9RT, UK
| | - Sergei Y. Sokol
- Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, Box 1020, New York, NY 10029, USA
| |
Collapse
|
284
|
Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat Neurosci 2007; 10:1440-8. [PMID: 17934458 DOI: 10.1038/nn1984] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 08/24/2007] [Indexed: 11/08/2022]
Abstract
The spatio-temporal regulation of symmetrical as opposed to asymmetric cell divisions directs the fate and location of cells in the developing CNS. In invertebrates, G-protein regulators control spindle orientation in asymmetric divisions, which generate progeny with different identities. We investigated the role of the G-protein regulator LGN (also called Gpsm2) in spindle orientation and cell-fate determination in the spinal cord neuroepithelium of the developing chick embryo. We show that LGN is located at the cell cortex and spindle poles of neural progenitors, and that it regulates spindle movements and orientation. LGN promotes planar divisions in the early spinal cord. Interfering with LGN function randomizes the plane of division. Notably, this does not affect cell fate, but frequently leads one daughter of proliferative symmetric divisions to exit the neuroepithelium prematurely and to proliferate aberrantly in the mantle zone. Hence, tight control of planar spindle orientation maintains neural progenitors in the neuroepithelium, and regulates the proper development of the nervous system.
Collapse
|
285
|
Baye LM, Link BA. Interkinetic nuclear migration and the selection of neurogenic cell divisions during vertebrate retinogenesis. J Neurosci 2007; 27:10143-52. [PMID: 17881520 PMCID: PMC6672676 DOI: 10.1523/jneurosci.2754-07.2007] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During retinal development, neuroepithelial progenitor cells divide in either a symmetric proliferative mode, in which both daughter cells remain mitotic, or in a neurogenic mode, in which at least one daughter cell exits the cell cycle and differentiates as a neuron. Although the cellular mechanisms of neurogenesis remain unknown, heterogeneity in cell behaviors has been postulated to influence this cell fate. In this study, we analyze interkinetic nuclear migration, the apical-basal movement of nuclei in phase with the cell cycle, and the relationship of this cell behavior to neurogenesis. Using time-lapse imaging in zebrafish, we show that various parameters of interkinetic nuclear migration are significantly heterogeneous among retinal neuroepithelial cells. We provide direct evidence that neurogenic progenitors have greater basal nuclei migrations during the last cell cycle preceding a terminal mitosis. In addition, we show that atypical protein kinase C (aPKC)-mediated cell polarity is essential for the relationship between nuclear position and neurogenesis. Loss of aPKC also resulted in increased proliferative cell divisions and reduced retinal neurogenesis. Our data support a novel model for neurogenesis, in which interkinetic nuclear migration differentially positions nuclei in neuroepithelial cells and therefore influences selection of progenitors for cell cycle exit based on apical-basal polarized signals.
Collapse
Affiliation(s)
- Lisa M. Baye
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Brian A. Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
286
|
Malatesta P, Appolloni I, Calzolari F. Radial glia and neural stem cells. Cell Tissue Res 2007; 331:165-78. [PMID: 17846796 DOI: 10.1007/s00441-007-0481-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 07/17/2007] [Indexed: 01/19/2023]
Abstract
During the last decade, the role of radial glia has been radically revisited. Rather than being considered a mere structural component serving to guide newborn neurons towards their final destinations, radial glia is now known to be the main source of neurons in several regions of the central nervous system, notably in the cerebral cortex. Radial glial cells differentiate from neuroepithelial progenitors at the beginning of neurogenesis and share with their ancestors the bipolar shape and the expression of some molecular markers. Radial glia, however, can be distinguished from neuroepithelial progenitors by the expression of astroglial markers. Clonal analyses showed that radial glia is a heterogeneous population, comprising both pluripotent and different lineage-restricted neural progenitors. At late-embryonic and postnatal stages, radial glial cells give rise to the neural stem cells responsible for adult neurogenesis. Embryonic pluripotent radial glia and adult neural stem cells may be clonally linked, thus representing a lineage displaying stem cell features in both the developing and mature central nervous system.
Collapse
Affiliation(s)
- Paolo Malatesta
- Dipartimento di Oncologia, Biologia e Genetica, Università degli Studi di Genova, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| | | | | |
Collapse
|
287
|
Abstract
The spatio-temporal timing of the last round of mitosis, followed by the migration of neuroblasts to the cortical plate leads to the formation of the six-layered cortex that is subdivided into functionally defined cortical areas. Whereas many of the cellular and molecular mechanisms have been established in rodents, there are a number of unique features that require further elucidation in primates. Recent findings both in rodents and in primates indicate that regulation of the cell cycle, specifically of the G1 phase has a crucial role in controlling area-specific rates of neuron production and the generation of cytoarchitectonic maps.
Collapse
Affiliation(s)
- Colette Dehay
- INSERM, U846, 18 Avenue Doyen Lépine, 69675 Bron Cedex, France.
| | | |
Collapse
|
288
|
Ho AD, Wagner W. The beauty of asymmetry: asymmetric divisions and self-renewal in the haematopoietic system. Curr Opin Hematol 2007; 14:330-6. [PMID: 17534157 DOI: 10.1097/moh.0b013e3281900f12] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The hallmark of stem cells is their dual abilities to self-renew and to differentiate into multiple lineages. To fulfill these functions they must undergo asymmetric division. A central question in developmental biology is how can a single cell divide to produce two progeny cells that adopt different fates? We provided evidence of the significance of asymmetric division in human haematopoietic stem cells. RECENT FINDINGS By monitoring the symmetry of divisions of haematopoietic stem cells and following their subsequent developmental potentials at the single cell level, we established a relationship between divisional kinetics and self-renewal capacity. Direct cell-cell contact with cellular determinants in the niche has been shown to play an essential role in maintaining stemness. The creation of in-vitro models for the niche, such as human mesenchymal stromal cells, has provided a controlled laboratory environment in which the relative significance of chemokines and adhesion molecules can be studied. SUMMARY Identification of the molecular interactions between stem cells and their niche has led to an understanding of the mechanisms that control the self-renewal of stem cells. Ultimately, molecular signals triggered by adhesion and junction complexes are responsible for the adoption of specific cell fate.
Collapse
Affiliation(s)
- Anthony D Ho
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
289
|
Rasin MR, Gazula VR, Breunig JJ, Kwan KY, Johnson MB, Liu-Chen S, Li HS, Jan LY, Jan YN, Rakic P, Sestan N. Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat Neurosci 2007; 10:819-27. [PMID: 17589506 DOI: 10.1038/nn1924] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 05/17/2007] [Indexed: 12/23/2022]
Abstract
The polarity and adhesion of radial glial cells (RGCs), which function as progenitors and migrational guides for neurons, are critical for morphogenesis of the cerebral cortex. These characteristics largely depend on cadherin-based adherens junctions, which anchor apical end-feet of adjacent RGCs to each other at the ventricular surface. Here, we show that mouse numb and numb-like are required for maintaining radial glial adherens junctions. Numb accumulates in the apical end-feet, where it localizes to adherens junction-associated vesicles and interacts with cadherins. Numb and Numbl inactivation in RGCs decreases proper basolateral insertion of cadherins and disrupts adherens junctions and polarity, leading to progenitor dispersion and disorganized cortical lamination. Conversely, overexpression of Numb prolongs RGC polarization, in a cadherin-dependent manner, beyond the normal neurogenic period. Thus, by regulating RGC adhesion and polarity, Numb and Numbl are required for the tissue architecture of neurogenic niches and the cerebral cortex.
Collapse
Affiliation(s)
- Mladen-Roko Rasin
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Wakamatsu Y, Nakamura N, Lee JA, Cole GJ, Osumi N. Transitin, a nestin-like intermediate filament protein, mediates cortical localization and the lateral transport of Numb in mitotic avian neuroepithelial cells. Development 2007; 134:2425-33. [PMID: 17522158 DOI: 10.1242/dev.02862] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuroepithelium is an apicobasally polarized tissue that contains neural stem cells and gives rise to neurons and glial cells of the central nervous system. The cleavage orientation of neural stem cells is thought to be important for asymmetric segregation of fate-determinants, such as Numb. Here, we show that an intermediate filament protein, transitin, colocalizes with Numb in the cell cortex of mitotic neuroepithelial cells, and that transitin anchors Numb via a physical interaction. Detailed immunohistological and time-lapse analyses reveal that basal Numb-transitin complexes shift laterally during mitosis, allowing asymmetric segregation of Numb-transitin to one of the daughter cells, even when the cell cleavage plane is perpendicular to the ventricular surface. In addition, RNA interference (RNAi) knockdown of the transitin gene reveals its involvement in neurogenesis. These results indicate that transitin has important roles in determining the intracellular localization of Numb, which regulates neurogenesis in the developing nervous system of avian embryos.
Collapse
Affiliation(s)
- Yoshio Wakamatsu
- Department of Developmental Neurobiology, Tohoku University, Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | |
Collapse
|
291
|
Noles SR, Chenn A. Cadherin inhibition of beta-catenin signaling regulates the proliferation and differentiation of neural precursor cells. Mol Cell Neurosci 2007; 35:549-58. [PMID: 17553695 DOI: 10.1016/j.mcn.2007.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/24/2007] [Accepted: 04/30/2007] [Indexed: 12/26/2022] Open
Abstract
The generation and differentiation of neurons during development requires coordination of intercellular interactions with spatio-temporal changes in gene expression. To examine the role of adhesion in cerebral cortical development, we overexpressed full-length cadherin and dominant-negative truncated cadherin in mouse cortical precursors. Full-length cadherin allowed for the maintenance of cell contact between daughter cells following cell division while dominant-negative cadherin decreased cell contact. Paradoxically, both cadherin isoforms inhibited precursor proliferation, induced premature neuronal differentiation, and inhibited beta-catenin dependent signaling. Furthermore, alteration of cadherin or beta-catenin function led to additional changes in precursor identity and division symmetry as demonstrated by altered expression of the radial glial marker, Pax6, and the intermediate precursor marker, Tbr2. Moreover, clonal analysis demonstrated asymmetric distribution of Tbr2 following precursor mitosis. Together, these results show that cadherins affect neural precursor fate determination through a cell-autonomous regulation of catenin signaling distinct from cadherin adhesive function.
Collapse
Affiliation(s)
- Stephanie R Noles
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | |
Collapse
|
292
|
Wilcock AC, Swedlow JR, Storey KG. Mitotic spindle orientation distinguishes stem cell and terminal modes of neuron production in the early spinal cord. Development 2007; 134:1943-54. [PMID: 17470968 PMCID: PMC7116174 DOI: 10.1242/dev.002519] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite great insight into the molecular mechanisms that specify neuronal cell type in the spinal cord, cell behaviour underlying neuron production in this tissue is largely unknown. In other neuroepithelia, divisions with a perpendicular cleavage plane at the apical surface generate symmetrical cell fates, whereas a parallel cleavage plane generates asymmetric daughters, a neuron and a progenitor in a stem cell mode, and has been linked to the acquisition of neuron-generating ability. Using a novel long-term imaging assay, we have monitored single cells in chick spinal cord as they transit mitosis and daughter cells become neurons or divide again. We reveal new morphologies accompanying neuron birth and show that neurons are generated concurrently by asymmetric and terminal symmetric divisions. Strikingly, divisions that generate two progenitors or a progenitor and a neuron both exhibit a wide range of cleavage plane orientations and only divisions that produce two neurons have an exclusively perpendicular orientation. Neuron-generating progenitors are also distinguished by lengthening cell cycle times, a finding supported by cell cycle acceleration on exposure to fibroblast growth factor (FGF), an inhibitor of neuronal differentiation. This study provides a novel, dynamic view of spinal cord neurogenesis and supports a model in which cleavage plane orientation/mitotic spindle position does not assign neuron-generating ability, but functions subsequent to this step to distinguish stem cell and terminal modes of neuron production.
Collapse
Affiliation(s)
- Arwen C. Wilcock
- Divisions of Cell and Developmental Biology and Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
- Divisions of Gene Regulation and Expression, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jason R. Swedlow
- Divisions of Gene Regulation and Expression, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kate G. Storey
- Divisions of Cell and Developmental Biology and Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
293
|
Miyata T. Morphology and mechanics of daughter cells "delaminating" from the ventricular zone of the developing neocortex. Cell Adh Migr 2007; 1:99-101. [PMID: 19262086 DOI: 10.4161/cam.1.2.4347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During the development of the murine neocortex, time-lapse imaging and microsurgical experiments demonstrate that distinct mechanical forces may be acting on the migration of delaminating daughter cells. Bipolar daughter cells transform into a unipolar morphology as they detach from the inner ventricular surface along the embryonic cerebral wall. Twisting and stretching of their distally remaining pial process establishes a spring-like mechanism that efficiently pulls the soma of these transforming cells to the outer pial surface. The significance of this physical contraction observed in transforming bipolar cells is highlighted when compared to the migration of pin-like daughter cells that lack a pial process. While bipolar and pin-like cells each initially appear epithelial with a ventricular process integrated into the adherence junction meshwork at the ventricular surface, the pin-like cells instead show a transient adventricular somal movement. Consequently, pin-like cells exit from the ventricular zone much more slowly than bipolar cells. Thus, these contrasting movements of daughter cells suggest that differential pulling forces may act separately on their pial and ventricular processes as they delaminate from the telencephalic germinal zone.
Collapse
Affiliation(s)
- Takaki Miyata
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
294
|
Abstract
The study of human brain tumors has characteristically emphasized the molecular and cellular analysis of the bulk tumor. There is increasing evidence in brain tumors and other malignancies that the tumor clone is functionally heterogeneous, however, existing in a cellular hierarchy based on small subpopulations of stem cells. These concepts were first definitively demonstrated in human acute myelogenous leukemia, in which regeneration of a diversely heterogeneous human leukemia cell population in a xenograft mouse model occurred only after injection of a rare relatively homogeneous population of leukemic cells that expressed hematopoietic stem cell markers. Recently, through advances in understanding of normal neural stem cell biology, the use of techniques for cell purification by flow cytometry, and the development of cell functional assays in vivo, the time was made ripe for several groups to characterize brain tumor stem cells (BTSCs). The BTSC resides in the cell fraction expressing the neural precursor cell surface marker CD133.
Collapse
Affiliation(s)
- Sheila Singh
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Suite 1503, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | |
Collapse
|
295
|
Dubreuil V, Marzesco AM, Corbeil D, Huttner WB, Wilsch-Bräuninger M. Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. ACTA ACUST UNITED AC 2007; 176:483-95. [PMID: 17283184 PMCID: PMC2063983 DOI: 10.1083/jcb.200608137] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expansion of the neocortex requires symmetric divisions of neuroepithelial cells, the primary progenitor cells of the developing mammalian central nervous system. Symmetrically dividing neuroepithelial cells are known to form a midbody at their apical (rather than lateral) surface. We show that apical midbodies of neuroepithelial cells concentrate prominin-1 (CD133), a somatic stem cell marker and defining constituent of a specific plasma membrane microdomain. Moreover, these apical midbodies are released, as a whole or in part, into the extracellular space, yielding the prominin-1–enriched membrane particles found in the neural tube fluid. The primary cilium of neuroepithelial cells also concentrates prominin-1 and appears to be a second source of the prominin-1–bearing extracellular membrane particles. Our data reveal novel origins of extracellular membrane traffic that enable neural stem and progenitor cells to avoid the asymmetric inheritance of the midbody observed for other cells and, by releasing a stem cell membrane microdomain, to potentially influence the balance of their proliferation versus differentiation.
Collapse
Affiliation(s)
- Véronique Dubreuil
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
296
|
Abstract
The mitotic spindle is the cellular scaffold that facilitates proper segregation of genetic material during cell division. Far from being static, the spindle is a dynamically regulated tool that can alter its size, shape and position during mitosis. Work in both insect and vertebrate systems has shown that regulation of this structure involves an array of highly conserved proteins. Moreover, it is now clear that tight regulation of the spindle during the process of neurogenesis is paramount to proper cell division and generation of the nervous system as a whole.
Collapse
Affiliation(s)
- Joshua J Buchman
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Cambridge, Massachusetts, USA
| | | |
Collapse
|
297
|
Miyata T. Asymmetric cell division during brain morphogenesis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 45:121-42. [PMID: 17585499 DOI: 10.1007/978-3-540-69161-7_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The division patterns of neural progenitor cells in developing vertebrate brains have traditionally been classified into three types: (i) "symmetric" divisions producing two progenitor cells (P/P division), (ii) "symmetric" divisions producing two neurons (N/N division), and (iii) "asymmetric" divisions producing one progenitor cell and one neuron (P/N division). Many studies examining the mechanism(s) regulating P/N divisions have focused on mitotic cleavage orientation and the possible uneven distribution of cell-fate determining molecules such as Numb. Although these two factors may intrinsically determine daughter cell fate arising from M-phase progenitor cells, no unified explanations have yet to be put forth incorporating all available data. In this review, I will discuss recent advances in techniques allowing the more detailed monitoring of daughter cell behavior in a heterogeneously pseudostratified neuroepithelium that demonstrate previously unrecognized asymmetries in P/P divisions. Careful observations of daughter cell behavior suggest that, immediately after their birth at the apical surface of the neuroepithelium, generated cells may not yet be fate committed but rather integrate extrinsic and intrinsic signals during GI phase before continuing down a developmental pathway.
Collapse
Affiliation(s)
- Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi 466-8550, Japan.
| |
Collapse
|
298
|
Lathia JD, Rao MS, Mattson MP, ffrench-Constant C. The microenvironment of the embryonic neural stem cell: Lessons from adult niches? Dev Dyn 2007; 236:3267-82. [DOI: 10.1002/dvdy.21319] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
299
|
Woodhead GJ, Mutch CA, Olson EC, Chenn A. Cell-autonomous beta-catenin signaling regulates cortical precursor proliferation. J Neurosci 2006; 26:12620-30. [PMID: 17135424 PMCID: PMC2867669 DOI: 10.1523/jneurosci.3180-06.2006] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Overexpression of beta-catenin, a protein that functions in both cell adhesion and signaling, causes expansion of the cerebral cortical precursor population and cortical surface area enlargement. Here, we find that focal elimination of beta-catenin from cortical neural precursors in vivo causes premature neuronal differentiation. Precursors within the cerebral cortical ventricular zone exhibit robust beta-catenin-mediated transcriptional activation, which is downregulated as cells exit the ventricular zone. Targeted inhibition of beta-catenin signaling during embryonic development causes cortical precursor cells to prematurely exit the cell cycle, differentiate into neurons, and migrate to the cortical plate. These results show that beta-catenin-mediated transcriptional activation functions in the decision of cortical ventricular zone precursors to proliferate or differentiate during development, and suggest that the cell-autonomous signaling activity of beta-catenin can control the production of cortical neurons and thus regulate cerebral cortical size.
Collapse
Affiliation(s)
- Gregory J. Woodhead
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Christopher A. Mutch
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Eric C. Olson
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Anjen Chenn
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
300
|
Haubst N, Georges-Labouesse E, De Arcangelis A, Mayer U, Götz M. Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes. Development 2006; 133:3245-54. [PMID: 16873583 DOI: 10.1242/dev.02486] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Radial glial cells have been shown to act as neuronal precursors in the developing cortex and to maintain their radial processes attached to the basement membrane (BM) during cell division. Here, we examined a potential role of direct signalling from the BM to radial glial cells in three mouse mutants where radial glia attachment to the BM is disrupted. This is the case if the nidogen-binding site of the laminin gamma1 chain is mutated, in the absence of alpha6 integrin or of perlecan, an essential BM component. Surprisingly, cortical radial glial cells lacking contact to the BM were not affected in their proliferation, interkinetic nuclear migration, orientation of cell division and neurogenesis. Only a small subset of precursors was located ectopically within the cortical parenchyma. Notably, however, neuronal subtype composition was severely disturbed at late developmental stages (E18) in the cortex of the laminin gamma1III4-/- mice. Thus, although BM attachment seems dispensable for precursor cells, an intact BM is required for adequate neuronal composition of the cerebral cortex.
Collapse
Affiliation(s)
- Nicole Haubst
- Institute for Stem Cell Research, GSF, National Research Center for Environment and Health, Ingolstädter Landstr.1, D-85764 Neuherberg/Munich, Germany
| | | | | | | | | |
Collapse
|