251
|
|
252
|
Mir IA, Das K, Akhter T, Ranjan R, Patel R, Bohidar HB. Eco-friendly synthesis of CuInS2 and CuInS2@ZnS quantum dots and their effect on enzyme activity of lysozyme. RSC Adv 2018; 8:30589-30599. [PMID: 35546847 PMCID: PMC9085571 DOI: 10.1039/c8ra04866e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/02/2018] [Indexed: 11/27/2022] Open
Abstract
We report on the green and facile aqueous microwave synthesis of glutathione (GSH) stabilized luminescent CuInS2 (CIS, size = 2.9 nm) and CuInS2@ZnS core–shell (CIS@ZnS, size = 3.5 nm) quantum dots (QDs). The core–shell nanostructures exhibited excellent photo- and water/buffer stability, a long photoluminescence (PL) lifetime (463 ns) and high PL quantum yield (PLQY = 26%). We have evaluated the comparative enzyme kinetics of these hydrophilic QDs by interacting them with the model enzyme lysozyme, which was probed by static and synchronous fluorescence spectroscopy. The quantification of the QD–lysozyme binding isotherm, exchange rate, and critical flocculation concentration was carried out. The core–shell QDs exhibited higher binding with lysozyme yielding a binding constant of K = 5.04 × 109 L mol−1 compared to the core-only structures (K = 6.16 × 107 L mol−1), and the main cause of binding was identified as being due to hydrophobic forces. In addition to the enzyme activity being dose dependent, it was also found that core–shell structures caused an enhancement in activity. Since binary QDs like CdSe also show a change in the lysozyme enzyme activity, therefore, a clear differential between binary and ternary QDs was required to be established which clearly revealed the relevance of surface chemistry on the QD–lysozyme interaction. Eco-friendly synthesis of CIS and CIS@ZnS quantum dots was carried out, and their interaction with lysozyme revealed spontaneous and hydrophobic binding. Lysozyme helicity and enzymatic activity increased upon complexation.![]()
Collapse
Affiliation(s)
- Irshad Ahmad Mir
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi
- India
| | - Kishan Das
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi
- India
| | | | - Rahul Ranjan
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi
- India
| | - Rajan Patel
- Centre for Interdisciplinary Research in Basic Sciences
- Jamia Millia Islamia
- New Delhi
- India
| | - H. B. Bohidar
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi
- India
- Special Center for Nanosciences
| |
Collapse
|
253
|
Zaak H, Sassi M, Fernandez-Lafuente R. A new heterofunctional amino-vinyl sulfone support to immobilize enzymes: Application to the stabilization of β-galactosidase from A spergillus oryzae. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
254
|
Song J, Shen H, Yang Y, Zhou Z, Su P, Yang Y. Multifunctional magnetic particles for effective suppression of non-specific adsorption and coimmobilization of multiple enzymes by DNA directed immobilization. J Mater Chem B 2018; 6:5718-5728. [DOI: 10.1039/c8tb01842a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zwitterion-functionalized magnetic particles can efficiently suppress non-specific adsorption of enzymes and can be used for coimmobilization of multienzymes by DNA directed immobilization.
Collapse
Affiliation(s)
- Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Hao Shen
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ye Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Zixin Zhou
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
255
|
One-pot fabrication of chitin-shellac composite microspheres for efficient enzyme immobilization. J Biotechnol 2018; 266:1-8. [DOI: 10.1016/j.jbiotec.2017.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/26/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
|
256
|
Song J, Lei T, Yang Y, Wu N, Su P, Yang Y. Attachment of enzymes to hydrophilic magnetic nanoparticles through DNA-directed immobilization with enhanced stability and catalytic activity. NEW J CHEM 2018. [DOI: 10.1039/c8nj00426a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient enzyme immobilization strategy based on DNA directed immobilization on hydrophilic polydopamine (PDA) modified magnetic nanoparticles was developed in this study.
Collapse
Affiliation(s)
- Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ting Lei
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ye Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Nan Wu
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
257
|
Song Y, Gao J, He Y, Zhou L, Ma L, Huang Z, Jiang Y. Preparation of a Flowerlike Nanobiocatalyst System via Biomimetic Mineralization of Cobalt Phosphate with Enzyme. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03809] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yang Song
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Jing Gao
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Ying He
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Liya Zhou
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Li Ma
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Zhihong Huang
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Yanjun Jiang
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| |
Collapse
|
258
|
The application of magnetically modified bacterial cellulose for immobilization of laccase. Int J Biol Macromol 2017; 108:462-470. [PMID: 29223754 DOI: 10.1016/j.ijbiomac.2017.12.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/25/2017] [Accepted: 12/05/2017] [Indexed: 11/20/2022]
Abstract
The usefulness of bacterial cellulose (BC), obtained from the cultures of Komagataeibacter xylinus exposed to rotating magnetic field (RMF), as a carrier for laccase immobilization was investigated in this study. It was found that the highest yield of laccase immobilization (>70%) was achieved in pH of 4.0 and this value was optimal in the case of both types of cellulose carriers applied. The pH equals 4.0 was also the optimal one with regard to immobilized enzymes' activity, while in case of free laccase, optimal pH value was 3.0. Process of immobilization had an impact on enzyme's optimal temperatures: while free laccase and laccase bound to RMF-unexposed cellulose was the most effective at 60°C, optimal activity of enzyme immobilized on RMF-exposed carrier was reached at 70°C. Laccase immobilized on both type of carriers had also better thermal stability at 70°C compared to free laccase. After 8 cycles of use, laccase immobilized on RMF-exposed BC remained more active than laccase immobilized on RMF-unexposed BC (65% vs. 50% of initial activity, respectively). Our results indicate that RMF-modified BC may be successfully used as a carrier for the laccase immobilization.
Collapse
|
259
|
Califano V, Bloisi F, Perretta G, Aronne A, Ausanio G, Costantini A, Vicari L. Frozen Microemulsions for MAPLE Immobilization of Lipase. Molecules 2017; 22:molecules22122153. [PMID: 29206163 PMCID: PMC6149894 DOI: 10.3390/molecules22122153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 11/16/2022] Open
Abstract
Candida rugosa lipase (CRL) was deposited by matrix assisted pulsed laser evaporation (MAPLE) in order to immobilize the enzyme with a preserved native conformation, which ensures its catalytic functionality. For this purpose, the composition of the MAPLE target was optimized by adding the oil phase pentane to a water solution of the amino acid 3-(3,4-dihydroxyphenyl)-2-methyl-l-alanine (m-DOPA), giving a target formed by a frozen water-lipase-pentane microemulsion. Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) were used to investigate the structure of MAPLE deposited lipase films. FTIR deconvolution of amide I band indicated a reduction of unfolding and aggregation, i.e., a better preserved lipase secondary structure in the sample deposited from the frozen microemulsion target. AFM images highlighted the absence of big aggregates on the surface of the sample. The functionality of the immobilized enzyme to promote transesterification was determined by thin layer chromatography, resulting in a modified specificity.
Collapse
Affiliation(s)
| | - Francesco Bloisi
- CNR-SPIN and Department of Physics "Ettore Pancini", University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy.
| | | | - Antonio Aronne
- Department of Chemical Engineering, Materials and Industrial Production, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy.
| | - Giovanni Ausanio
- CNR-SPIN and Department of Physics "Ettore Pancini", University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy.
| | - Aniello Costantini
- Department of Chemical Engineering, Materials and Industrial Production, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy.
| | - Luciano Vicari
- CNR-SPIN and Department of Physics "Ettore Pancini", University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy.
| |
Collapse
|
260
|
Yadavalli NS, Borodinov N, Choudhury CK, Quiñones-Ruiz T, Laradji AM, Tu S, Lednev IK, Kuksenok O, Luzinov I, Minko S. Thermal Stabilization of Enzymes with Molecular Brushes. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03138] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nataraja S. Yadavalli
- Nanostructured
Materials Laboratory, The University of Georgia, Athens, Georgia 30602, United States
| | - Nikolay Borodinov
- Department
of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Chandan K. Choudhury
- Department
of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Tatiana Quiñones-Ruiz
- Department
of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Amine M. Laradji
- Nanostructured
Materials Laboratory, The University of Georgia, Athens, Georgia 30602, United States
| | - Sidong Tu
- Department
of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Igor K. Lednev
- Department
of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Olga Kuksenok
- Department
of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Igor Luzinov
- Department
of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sergiy Minko
- Nanostructured
Materials Laboratory, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
261
|
Improved stability of immobilized lipases via modification with polyethylenimine and glutaraldehyde. Enzyme Microb Technol 2017; 106:67-74. [DOI: 10.1016/j.enzmictec.2017.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 01/11/2023]
|
262
|
Kahar UM, Chan KG, Sani MH, Mohd Noh NI, Goh KM. Effects of single and co-immobilization on the product specificity of type I pullulanase from Anoxybacillus sp. SK3-4. Int J Biol Macromol 2017; 104:322-332. [DOI: 10.1016/j.ijbiomac.2017.06.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/03/2017] [Accepted: 06/09/2017] [Indexed: 11/26/2022]
|
263
|
Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate. Carbohydr Polym 2017; 176:281-292. [DOI: 10.1016/j.carbpol.2017.08.097] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/25/2017] [Accepted: 08/19/2017] [Indexed: 01/17/2023]
|
264
|
Li Z, Xia H, Li S, Pang J, Zhu W, Jiang Y. In situ hybridization of enzymes and their metal-organic framework analogues with enhanced activity and stability by biomimetic mineralisation. NANOSCALE 2017; 9:15298-15302. [PMID: 28991303 DOI: 10.1039/c7nr06315f] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
By incorporating Cytochrome c (peroxidase, Cyt c) into a skeleton of its corresponding synthetic MOF analogue (peroxidase mimic, CuBDC), approximately 12-fold catalytic efficiency (kcat/KM) enhancement is observed compared to free Cyt c. Meanwhile, the shield endowed by CuBDC prevents encapsulated enzymes from deactivation by trypsin digestion, thermal treatment and long-term storage in vitro. This concept of combining enzymes and their MOF mimics with enhanced enzymatic activity and stability may provide new insights into the design of highly active, stable enzyme-MOF composite catalysts and holds promise for applications in biocatalysis, biosensing and drug delivery systems.
Collapse
Affiliation(s)
- Zhixian Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | | | |
Collapse
|
265
|
Coimmobilization of enzymes in bilayers using pei as a glue to reuse the most stable enzyme: Preventing pei release during inactivated enzyme desorption. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.06.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
266
|
Harati J, Ranaei Siadat SO, Taghavian H, Kaboli S, Khorshidi S. Improvement in biochemical characteristics of glycosylated phytase through immobilization on nanofibers. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
267
|
Bahrami A, Vincent T, Garnier A, Larachi F, Boukouvalas J, Iliuta MC. Noncovalent Immobilization of Optimized Bacterial Cytochrome P450 BM3 on Functionalized Magnetic Nanoparticles. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Atieh Bahrami
- Department
of Chemical Engineering, Laval University, Québec, Canada, G1V 0A6
| | - Thierry Vincent
- Department
of Chemical Engineering, Laval University, Québec, Canada, G1V 0A6
| | - Alain Garnier
- Department
of Chemical Engineering, Laval University, Québec, Canada, G1V 0A6
| | - Faiçal Larachi
- Department
of Chemical Engineering, Laval University, Québec, Canada, G1V 0A6
| | - John Boukouvalas
- Department
of Chemistry, Laval University, Québec, Canada, G1V 0A6
| | - Maria C. Iliuta
- Department
of Chemical Engineering, Laval University, Québec, Canada, G1V 0A6
| |
Collapse
|
268
|
Pereira MG, Velasco-Lozano S, Moreno-Perez S, Polizeli AM, Heinen PR, Facchini FDA, Vici AC, Cereia M, Pessela BC, Fernandez-Lorente G, Guisan JM, Jorge JA, Polizeli MDLTM. Different Covalent Immobilizations Modulate Lipase Activities of Hypocrea pseudokoningii. Molecules 2017; 22:molecules22091448. [PMID: 28869529 PMCID: PMC6151390 DOI: 10.3390/molecules22091448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/29/2017] [Indexed: 01/23/2023] Open
Abstract
Enzyme immobilization can promote several advantages for their industrial application. In this work, a lipase from Hypocrea pseudokoningii was efficiently linked to four chemical supports: agarose activated with cyanogen bromide (CNBr), glyoxyl-agarose (GX), MANAE-agarose activated with glutaraldehyde (GA) and GA-crosslinked with glutaraldehyde. Results showed a more stable lipase with both the GA-crosslinked and GA derivatives, compared to the control (CNBr), at 50 °C, 60 °C and 70 °C. Moreover, all derivatives were stabilized when incubated with organic solvents at 50%, such as ethanol, methanol, n-propanol and cyclohexane. Furthermore, lipase was highly activated (4-fold) in the presence of cyclohexane. GA-crosslinked and GA derivatives were more stable than the CNBr one in the presence of organic solvents. All derivatives were able to hydrolyze sardine, açaí (Euterpe oleracea), cotton seed and grape seed oils. However, during the hydrolysis of sardine oil, GX derivative showed to be 2.3-fold more selectivity (eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) ratio) than the control. Additionally, the types of immobilization interfered with the lipase enantiomeric preference. Unlike the control, the other three derivatives preferably hydrolyzed the R-isomer of 2-hydroxy-4-phenylbutanoic acid ethyl ester and the S-isomer of 1-phenylethanol acetate racemic mixtures. On the other hand, GX and CNBr derivatives preferably hydrolyzed the S-isomer of butyryl-2-phenylacetic acid racemic mixture while the GA and GA-crosslink derivatives preferably hydrolyzed the R-isomer. However, all derivatives, including the control, preferably hydrolyzed the methyl mandelate S-isomer. Moreover, the derivatives could be used for eight consecutive cycles retaining more than 50% of their residual activity. This work shows the importance of immobilization as a tool to increase the lipase stability to temperature and organic solvents, thus enabling the possibility of their application at large scale processes.
Collapse
Affiliation(s)
- Marita G Pereira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto-SP 14040-901, Brazil.
| | - Susana Velasco-Lozano
- Heterogeneous Biocatalysis Group, CIC Biomagune, Parque Tecnológico de San Sebastián Edificio Empresarial "C", Paseo Miramón 182, 20009 Donostia-San Sebastián Guipúzcoa, Spain.
| | - Sonia Moreno-Perez
- Departamento de Biotecnología y Microbiología de los Alimentos, Instituto de Ciências de la Alimentación, CIAL-CSIC, Calle Nicolás Cabrera 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Aline M Polizeli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto-SP 14040-901, Brazil.
| | - Paulo R Heinen
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP 14040-900, Brazil.
| | - Fernanda D A Facchini
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP 14040-900, Brazil.
| | - Ana C Vici
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto-SP 14040-901, Brazil.
| | - Mariana Cereia
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto-SP 14040-901, Brazil.
| | - Benevides C Pessela
- Departamento de Biotecnología y Microbiología de los Alimentos, Instituto de Ciências de la Alimentación, CIAL-CSIC, Calle Nicolás Cabrera 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Gloria Fernandez-Lorente
- Departamento de Biotecnología y Microbiología de los Alimentos, Instituto de Ciências de la Alimentación, CIAL-CSIC, Calle Nicolás Cabrera 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Jose M Guisan
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - João A Jorge
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto-SP 14040-901, Brazil.
| | - Maria de Lourdes T M Polizeli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto-SP 14040-901, Brazil.
| |
Collapse
|
269
|
Bezerra RM, Neto DMA, Galvão WS, Rios NS, Carvalho ACLDM, Correa MA, Bohn F, Fernandez-Lafuente R, Fechine PB, de Mattos MC, dos Santos JC, Gonçalves LR. Design of a lipase-nano particle biocatalysts and its use in the kinetic resolution of medicament precursors. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.05.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
270
|
Auriemma F, De Rosa C, Malafronte A, Di Girolamo R, Santillo C, Gerelli Y, Fragneto G, Barker R, Pavone V, Maglio O, Lombardi A. Nano-in-Nano Approach for Enzyme Immobilization Based on Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29318-29327. [PMID: 28809474 DOI: 10.1021/acsami.7b08959] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We set up a facile approach for fabrication of supports with tailored nanoporosity for immobilization of enzymes. To this aim block copolymers (BCPs) self-assembly has been used to prepare nanostructured thin films with well-defined architecture containing pores of tailorable size delimited by walls with tailorable degree of hydrophilicity. In particular, we employed a mixture of polystyrene-block-poly(l-lactide) (PS-PLLA) and polystyrene-block-poly(ethylene oxide) (PS-PEO) diblock copolymers to generate thin films with a lamellar morphology consisting of PS lamellar domains alternating with mixed PEO/PLLA blocks lamellar domains. Selective basic hydrolysis of the PLLA blocks generates thin films, patterned with nanometric channels containing hydrophilic PEO chains pending from PS walls. The shape and size of the channels and the degree of hydrophilicity of the pores depend on the relative length of the blocks, the molecular mass of the BCPs, and the composition of the mixture. The strength of our approach is demonstrated in the case of physical adsorption of the hemoprotein peroxidase from horseradish (HRP) using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) with H2O2 as substrate. The large surface area, the tailored pore sizes, and the functionalization with hydrophilic PEO blocks make the designed nanostructured materials suitable supports for the nanoconfinement of HRP biomolecules endowed with high catalytic performance, no mass-transfer limitations, and long-term stability.
Collapse
Affiliation(s)
- Finizia Auriemma
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II , Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Claudio De Rosa
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II , Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Anna Malafronte
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II , Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Rocco Di Girolamo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II , Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Chiara Santillo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II , Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Yuri Gerelli
- Partnership for Soft Condensed Matter, Institut Laue-Langevin , 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Giovanna Fragneto
- Partnership for Soft Condensed Matter, Institut Laue-Langevin , 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Robert Barker
- Partnership for Soft Condensed Matter, Institut Laue-Langevin , 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Vincenzo Pavone
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II , Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Ornella Maglio
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II , Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
- Dipartimento di Biologia, IBB-CNR , via Mezzocannone, 16, 80134 Napoli, Italy
| | - Angela Lombardi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II , Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| |
Collapse
|
271
|
Exploiting the Versatility of Aminated Supports Activated with Glutaraldehyde to Immobilize β-galactosidase from Aspergillus oryzae. Catalysts 2017. [DOI: 10.3390/catal7090250] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
272
|
Ultrasound assisted intensification of enzyme activity and its properties: a mini-review. World J Microbiol Biotechnol 2017; 33:170. [PMID: 28831716 DOI: 10.1007/s11274-017-2322-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/15/2017] [Indexed: 12/21/2022]
Abstract
Over the last decade, ultrasound technique has emerged as the potential technology which shows large applications in food and biotechnology processes. Earlier, ultrasound has been employed as a method of enzyme inactivation but recently, it has been found that ultrasound does not inactivate all enzymes, particularly, under mild conditions. It has been shown that the use of ultrasonic treatment at appropriate frequencies and intensity levels can lead to enhanced enzyme activity due to favourable conformational changes in protein molecules without altering its structural integrity. The present review article gives an overview of influence of ultrasound irradiation parameters (intensity, duty cycle and frequency) and enzyme related factors (enzyme concentration, temperature and pH) on the catalytic activity of enzyme during ultrasound treatment. Also, it includes the effect of ultrasound on thermal kinetic parameters and Michaelis-Menten kinetic parameters (km and Vmax) of enzymes. Further, in this review, the physical and chemical effects of ultrasound on enzyme have been correlated with thermodynamic parameters (enthalpy and entropy). Various techniques used for investigating the conformation changes in enzyme after sonication have been highlighted. At the end, different techniques of immobilization for ultrasound treated enzyme have been summarized.
Collapse
|
273
|
Hoffmann C, Pinelo M, Woodley JM, Daugaard AE. Development of a thiol-ene based screening platform for enzyme immobilization demonstrated using horseradish peroxidase. Biotechnol Prog 2017; 33:1267-1277. [DOI: 10.1002/btpr.2526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/07/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Christian Hoffmann
- Dept. of Chemical and Biochemical Engineering, Danish Polymer Centre; Technical University of Denmark; Søltofts Plads Building 229, 2800 Kgs, Lyngby Denmark
| | - Manuel Pinelo
- Dept. of Chemical and Biochemical Engineering, Center for BioProcess Engineering; Technical University of Denmark; Søltofts Plads Building 229, 2800 Kgs, Lyngby Denmark
| | - John M. Woodley
- Dept. of Chemical and Biochemical Engineering, Process and Systems Engineering Center (PROSYS); Technical University of Denmark; Søltofts Plads Building 229, 2800 Kgs., Lyngby Denmark
| | - Anders E. Daugaard
- Dept. of Chemical and Biochemical Engineering, Danish Polymer Centre; Technical University of Denmark; Søltofts Plads Building 229, 2800 Kgs, Lyngby Denmark
| |
Collapse
|
274
|
Schroeder MM, Wang Q, Badieyan S, Chen Z, Marsh ENG. Effect of Surface Crowding and Surface Hydrophilicity on the Activity, Stability and Molecular Orientation of a Covalently Tethered Enzyme. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7152-7159. [PMID: 28654290 DOI: 10.1021/acs.langmuir.7b00646] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have investigated two surface properties that are generally thought to have an important influence of enzyme activity and stability: surface hydrophobicity and surface crowding. Here two variants of an engineered bacterial nitro-reductase were covalently tethered to orient the protein's pseudo-2-fold symmetry axis either parallel or perpendicular to the surface. The surface hydrophobicity was systematically varied by changing the ratio of methyl- to hydroxyl-groups displayed on the SAM surface, and the effects on enzyme activity, thermal stability, and structure investigated. Increasing surface hydrophobicity progressively decreased enzyme activity, but had no effect on thermal stability. Surface-sensitive sum frequency generation and attenuated total reflectance Fourier transform IR spectroscopies indicated that the enzyme is not denatured by the more hydrophobic surface, but is more likely trapped in less active conformations by transient hydrophobic interactions. In contrast, increasing enzyme surface concentration increased the specific activity of the parallel oriented enzyme, but had no effect on the activity of the perpendicularly oriented enzyme, suggesting that crowding effects are highly context dependent.
Collapse
Affiliation(s)
- McKenna M Schroeder
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Qiuming Wang
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Somayesadat Badieyan
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
- Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
275
|
Ryazantsev SV, Feldman VI, Khriachtchev L. Conformational Switching of HOCO Radical: Selective Vibrational Excitation and Hydrogen-Atom Tunneling. J Am Chem Soc 2017. [DOI: 10.1021/jacs.7b02605] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sergey V. Ryazantsev
- Department
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Department
of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FIN-00014, Finland
| | - Vladimir I. Feldman
- Department
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Leonid Khriachtchev
- Department
of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FIN-00014, Finland
| |
Collapse
|
276
|
Siar EH, Zaak H, Kornecki JF, Zidoune MN, Barbosa O, Fernandez-Lafuente R. Stabilization of ficin extract by immobilization on glyoxyl agarose. Preliminary characterization of the biocatalyst performance in hydrolysis of proteins. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
277
|
Akers PW, Dingley AJ, Swift S, Nelson ARJ, Martin J, McGillivray DJ. Using Neutron Reflectometry to Characterize Antimicrobial Protein Surface Coatings. J Phys Chem B 2017; 121:5908-5916. [DOI: 10.1021/acs.jpcb.7b02886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter W. Akers
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew J. Dingley
- Institute of Complex
Systems: Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Simon Swift
- Department
of Molecular Medicine and Pathology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew R. J. Nelson
- Australian
Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, New South
Wales 2232, Australia
| | - Julie Martin
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Duncan J. McGillivray
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
278
|
Ward JW, Smith HL, Zeidell A, Diemer PJ, Baker SR, Lee H, Payne MM, Anthony JE, Guthold M, Jurchescu OD. Solution-Processed Organic and Halide Perovskite Transistors on Hydrophobic Surfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18120-18126. [PMID: 28485580 DOI: 10.1021/acsami.7b03232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Solution-processable electronic devices are highly desirable due to their low cost and compatibility with flexible substrates. However, they are often challenging to fabricate due to the hydrophobic nature of the surfaces of the constituent layers. Here, we use a protein solution to modify the surface properties and to improve the wettability of the fluoropolymer dielectric Cytop. The engineered hydrophilic surface is successfully incorporated in bottom-gate solution-deposited organic field-effect transistors (OFETs) and hybrid organic-inorganic trihalide perovskite field-effect transistors (HTP-FETs) fabricated on flexible substrates. Our analysis of the density of trapping states at the semiconductor-dielectric interface suggests that the increase in the trap density as a result of the chemical treatment is minimal. As a result, the devices exhibit good charge carrier mobilities, near-zero threshold voltages, and low electrical hysteresis.
Collapse
Affiliation(s)
- Jeremy W Ward
- Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27109, United States
- Materials and Manufacturing Directorate, Air Force Research Laboratory , WPAFB, Ohio 45433, United States
| | - Hannah L Smith
- Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27109, United States
- Department of Electrical Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Andrew Zeidell
- Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| | - Peter J Diemer
- Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| | - Stephen R Baker
- Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| | - Hyunsu Lee
- Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| | - Marcia M Payne
- Department of Chemistry, University of Kentucky , Lexington, Kentucky 40506, United States
| | - John E Anthony
- Department of Chemistry, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Martin Guthold
- Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| | - Oana D Jurchescu
- Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
279
|
Cui J, Tan Z, Han P, Zhong C, Jia S. Enzyme Shielding in a Large Mesoporous Hollow Silica Shell for Improved Recycling and Stability Based on CaCO 3 Microtemplates and Biomimetic Silicification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3883-3890. [PMID: 28452473 DOI: 10.1021/acs.jafc.7b00672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a novel "anchor-shield" approach for synthesizing a yolk-shell-structured biocatalytic system that consists of a phenylalanine ammonia lyase (PAL) protein particle core and a hollow silica shell with large mesopores by a combination of CaCO3 microtemplates and biomimetic silicification. The method is established upon filling porous CaCO3 cores with PAL via co-precipitation, controlled self-assembly and polycondensation of silanes, cross-link of the PAL molecules, and subsequent CaCO3 dissolution. During this process, the self-assembled layer of cetyltrimethylammonium bromide served as a structure-directing agent of the mesostructure and directed the overgrowth of the mesostructured silica on the external surface of PAL/CaCO3 hybrid microspheres; after CaCO3 dissolution, the cross-linked PAL particles were encapsulated in the hollow silica shell. The hollow silica shell around the enzyme particles provided a "shield" to protect from biological, thermal, and chemical degradation for the enzyme. As a result, the recycling of the PAL enzyme was improved remarkably in comparison to adsorbed PAL on CaCO3. PAL particles with a hollow silica shell still retained 60% of their original activity after 13 cycles, whereas adsorbed PAL on CaCO3 microparticles lost activity after 7 cycles. Moreover, immobilized PAL exhibited higher stability against a proteolytic agent, denaturants, heat, and extreme pH than adsorbed PAL on CaCO3 microparticles. These results demonstrated that the "anchor-shield" approach is an efficient method to obtain a stable and recycled biocatalyst with a yolk-shell structure.
Collapse
Affiliation(s)
- Jiandong Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, People's Republic of China
- Research Center for Fermentation Engineering of Hebei, College of Bioscience and Bioengineering, Hebei University of Science and Technology , 26 Yuxiang Street, Shijiazhang, Hebei 050000, People's Republic of China
| | - Zhilei Tan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, People's Republic of China
| | - Peipei Han
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, People's Republic of China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, People's Republic of China
| | - Shiru Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, People's Republic of China
| |
Collapse
|
280
|
Karamitros CS, Labrou NE. Preserving enzymatic activity and enhancing biochemical stability of glutathione transferase by soluble additives under free and tethered conditions. Biotechnol Appl Biochem 2017; 64:754-764. [DOI: 10.1002/bab.1535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/16/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Christos S. Karamitros
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development; Agricultural University of Athens; Athens Greece
| | - Nikolaos E. Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development; Agricultural University of Athens; Athens Greece
| |
Collapse
|
281
|
Rashid Choudhry A, Mushtaq M, Adnan A, Syed Q. Response surface methodology-based optimization of glucose acylation bio-catalyzed by immobilized lipase. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1320991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Muhammad Mushtaq
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Ahmad Adnan
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Quratulain Syed
- Pakistan Council of Science and Industrial Research (PCSIR), Lahore, Pakistan
| |
Collapse
|
282
|
A molecular dynamics study on the adsorption of a mussel protein on two different films: Polymer film and a SAM. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
283
|
Zaak H, Siar EH, Kornecki JF, Fernandez-Lopez L, Pedrero SG, Virgen-Ortíz JJ, Fernandez-Lafuente R. Effect of immobilization rate and enzyme crowding on enzyme stability under different conditions. The case of lipase from Thermomyces lanuginosus immobilized on octyl agarose beads. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.02.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
284
|
Cui J, Zhao Y, Tan Z, Zhong C, Han P, Jia S. Mesoporous phenylalanine ammonia lyase microspheres with improved stability through calcium carbonate templating. Int J Biol Macromol 2017; 98:887-896. [DOI: 10.1016/j.ijbiomac.2017.02.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/12/2017] [Accepted: 02/15/2017] [Indexed: 11/26/2022]
|
285
|
Development of an enzymatic reactor applying spontaneously adsorbed trypsin on the surface of a PDMS microfluidic device. Anal Bioanal Chem 2017; 409:3573-3585. [DOI: 10.1007/s00216-017-0295-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
|
286
|
Belafriekh A, Secundo F, Serra S, Djeghaba Z. Enantioselective enzymatic resolution of racemic alcohols by lipases in green organic solvents. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
287
|
Effect of protein load on stability of immobilized enzymes. Enzyme Microb Technol 2017; 98:18-25. [DOI: 10.1016/j.enzmictec.2016.12.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/24/2022]
|
288
|
Wang H, Akcora P. Confinement effect on the structure and elasticity of proteins interfacing polymers. SOFT MATTER 2017; 13:1561-1568. [PMID: 28127605 DOI: 10.1039/c6sm02179d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ordered nanostructured surfaces provide confined environments that allow functionalization of proteins. Here, we used the nanopores of poly(methyl methacrylate) films to attach fibrinogen and lysozyme, and discussed the changes in proteins' structures and elasticity upon confinement. Fourier-transform infrared spectroscopic analysis of protein secondary structures reveals that fibrinogen undergoes less structural change and behaves less stiff when the pore size is close to the protein size. Lysozyme, on the other hand, retains its native-like structure, however, it exhibits the highest modulus in 15 nm pores due to the lower macromolecular crowding effect the protein faces compared to lysozyme within larger pores. These findings manifest the effect of confinement and crowding on the conformation and elasticity of different shaped proteins tethered on surfaces.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey 07030, USA.
| | - Pinar Akcora
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey 07030, USA.
| |
Collapse
|
289
|
Abstract
Encapsulation of proteins in nanoparticles (NPs) can greatly improve the properties of proteins such as their stability against denaturation and degradation by proteases, and branches out the applications of natural proteins from their intrinsic localizations and functions in living organisms for biomedical and industrial applications. We recently developed several methods to armor proteins in NPs with sizes from nanometers up to >100nm, batch by batch or one by one, covalently or noncovalently, for a wide range of applications from biocatalysis to bioimaging and drug delivery. In this chapter, we provide detailed protocols on these methods. Key steps of specific protocols are explained with particular examples to help other laboratories to adopt and modify these methods for their own purposes. The advantages and disadvantages of each method are summarized, and guidelines for choosing the right method for a given application, as well as the current challenges and future directions of this field, are discussed.
Collapse
Affiliation(s)
- Yi Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China.
| |
Collapse
|
290
|
Immobilization of enzyme on chiral polyelectrolyte surface. Anal Chim Acta 2017; 952:88-95. [DOI: 10.1016/j.aca.2016.11.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 11/19/2022]
|
291
|
Immobilization of pectinase onto chitosan magnetic nanoparticles by macromolecular cross-linker. Carbohydr Polym 2017; 157:677-685. [DOI: 10.1016/j.carbpol.2016.10.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 12/26/2022]
|
292
|
Fernandez-Lopez L, Virgen-OrtÍz JJ, Pedrero SG, Lopez-Carrobles N, Gorines BC, Otero C, Fernandez-Lafuente R. Optimization of the coating of octyl-CALB with ionic polymers to improve stability and decrease enzyme leakage. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2016.1278212] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Jose J. Virgen-OrtÍz
- Catedrático CONACYT – Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD) – Centro de Innovación y Desarrollo Agroalimentario de Michoacán, A.C. (CIDAM), Morelia, Michoacán, Mexico
| | - Sara G. Pedrero
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Madrid, Spain and
| | | | - Beatriz C. Gorines
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Madrid, Spain and
| | - Cristina Otero
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Madrid, Spain and
| | | |
Collapse
|
293
|
Chate AV, Sukale SB, Ugale RS, Gill CH. Baker’s yeast: An efficient, green, and reusable biocatalyst for the one-pot synthesis of biologically important N-substituted decahydroacridine-1,8-dione derivatives. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2016.1266501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Asha V. Chate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Shital B. Sukale
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Reshma S. Ugale
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Charansingh H. Gill
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| |
Collapse
|
294
|
Cui J, Zhao Y, Feng Y, Lin T, Zhong C, Tan Z, Jia S. Encapsulation of Spherical Cross-Linked Phenylalanine Ammonia Lyase Aggregates in Mesoporous Biosilica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:618-625. [PMID: 28054483 DOI: 10.1021/acs.jafc.6b05003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cross-linked enzyme aggregates (CLEAs) have recently emerged as a promising tool for enzyme immobilization because of their simplicity and low cost. However, a lack of good size and morphological control over the as-prepared CLEAs has limited their practical applications. For example, the prepared CLEAs exhibit amorphous large clusters that would cause significant mass-transfer limitations, which lead to a low catalytic efficiency. Here, inspired by biomineralized core-shell structures in nature, we develop a novel mesoporous spherical CLEA with a biosilica shell by using phenylalanine ammonia lyase based on CaCO3 microtemplates and biomimetic mineralization. The resultant CLEAs exhibited a spherical structure with good monodispersity instead of the amorphous clusters of conventional CLEAs and showed activity higher than that of conventional CLEAs. Moreover, the thermostability, tolerance against denaturants, and mechanical stability of the spherical CLEAs with a biosilica shell were enhanced significantly compared with those of conventional CLEAs. In particular, the spherical CLEAs with a biosilica shell retained 70% of their original activity after 13 cycles, whereas the conventional CLEAs retained only 35% of their original activity. This approach could be an efficient strategy for improving the catalytic properties of CLEAs.
Collapse
Affiliation(s)
- Jiandong Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P. R. China
- Research Center for Fermentation Engineering of Hebei, College of Bioscience and Bioengineering, Hebei University of Science and Technology , 26 Yuxiang Street, Shijiazhang 050000, P. R. China
| | - Yamin Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P. R. China
- Research Center for Fermentation Engineering of Hebei, College of Bioscience and Bioengineering, Hebei University of Science and Technology , 26 Yuxiang Street, Shijiazhang 050000, P. R. China
| | - Yuxiao Feng
- Research Center for Fermentation Engineering of Hebei, College of Bioscience and Bioengineering, Hebei University of Science and Technology , 26 Yuxiang Street, Shijiazhang 050000, P. R. China
| | - Tao Lin
- Research Center for Fermentation Engineering of Hebei, College of Bioscience and Bioengineering, Hebei University of Science and Technology , 26 Yuxiang Street, Shijiazhang 050000, P. R. China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P. R. China
| | - Zhilei Tan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P. R. China
| | - Shiru Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P. R. China
| |
Collapse
|
295
|
Hoarau M, Badieyan S, Marsh ENG. Immobilized enzymes: understanding enzyme – surface interactions at the molecular level. Org Biomol Chem 2017; 15:9539-9551. [DOI: 10.1039/c7ob01880k] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Interactions between immobilized enzymes and supporting surfaces are complex and context-dependent and can significantly alter enzyme structure, stability and activity.
Collapse
Affiliation(s)
- Marie Hoarau
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | | | - E. Neil G. Marsh
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
- Department of Biological Chemistry
| |
Collapse
|
296
|
Ali Z, Tian L, Zhang B, Ali N, khan M, Zhang Q. Synthesis of paramagnetic dendritic silica nanomaterials with fibrous pore structure (Fe3O4@KCC-1) and their application in immobilization of lipase from Candida rugosa with enhanced catalytic activity and stability. NEW J CHEM 2017. [DOI: 10.1039/c7nj01912b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paramagnetic mesoporous fibrous silica (Fe3O4@KCC-1) was prepared and its surface was functionalized with 3-aminopropyltriethoxysilane (APTES).
Collapse
Affiliation(s)
- Zafar Ali
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Lei Tian
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Baoliang Zhang
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Nisar Ali
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Muhammad khan
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Qiuyu Zhang
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| |
Collapse
|
297
|
Zhao D, Zhou J. Electrostatics-mediated α-chymotrypsin inhibition by functionalized single-walled carbon nanotubes. Phys Chem Chem Phys 2017; 19:986-995. [DOI: 10.1039/c6cp04962a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrostatics-mediated α-chymotrypsin inhibition by functionalized single-walled carbon nanotubes.
Collapse
Affiliation(s)
- Daohui Zhao
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
298
|
Guan ZY, Huang CW, Huang MC, Wu CY, Liu HY, Ding ST, Chen HY. Controlling multi-function of biomaterials interfaces based on multiple and competing adsorption of functional proteins. Colloids Surf B Biointerfaces 2017; 149:130-137. [PMID: 27750087 DOI: 10.1016/j.colsurfb.2016.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 10/20/2022]
|
299
|
Shikha S, Thakur KG, Bhattacharyya MS. Facile fabrication of lipase to amine functionalized gold nanoparticles to enhance stability and activity. RSC Adv 2017. [DOI: 10.1039/c7ra06075k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of the formation of a AuNPs-NH2-lipase nanozyme composite involving activation of accessible acidic amino acids (Step 1), and conjugation to amine functionalized gold nanoparticles (Step 2).
Collapse
Affiliation(s)
- Sristy Shikha
- Fermentation Science and Biocatalysis Laboratory
- CSIR-Institute of Microbial Technology
- Chandigarh-160036
- India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory
- G. N. Ramachandran Protein Centre
- CSIR-Institute of Microbial Technology
- Chandigarh 160036
- India
| | - Mani Shankar Bhattacharyya
- Fermentation Science and Biocatalysis Laboratory
- CSIR-Institute of Microbial Technology
- Chandigarh-160036
- India
| |
Collapse
|
300
|
|