251
|
Li YY, Ye K, Siegbahn PEM, Liao RZ. Mechanism of Water Oxidation Catalyzed by a Mononuclear Manganese Complex. CHEMSUSCHEM 2017; 10:903-911. [PMID: 27925413 DOI: 10.1002/cssc.201601538] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/01/2016] [Indexed: 06/06/2023]
Abstract
The design and synthesis of biomimetic Mn complexes to catalyze oxygen evolution is a very appealing goal because water oxidation in nature employs a Mn complex. Recently, the mononuclear Mn complex [LMnII (H2 O)2 ]2+ [1, L=Py2 N(tBu)2 , Py=pyridyl] was reported to catalyze water oxidation electrochemically at an applied potential of 1.23 V at pH 12.2 in aqueous solution. Density functional calculations were performed to elucidate the mechanism of water oxidation promoted by this catalyst. The calculations showed that 1 can lose two protons and one electron readily to produce [LMnIII (OH)2 ]+ (2), which then undergoes two sequential proton-coupled electron-transfer processes to afford [LMnV OO]+ (4). The O-O bond formation can occur through direct coupling of the two oxido ligands or through nucleophilic attack of water. These two mechanisms have similar barriers of approximately 17 kcal mol-1 . The further oxidation of 4 to generate [LMnVI OO]2+ (5), which enables O-O bond formation, has a much higher barrier. In addition, ligand degradation by C-H activation has a similar barrier to that for the O-O bond formation, and this explains the relatively low turnover number of this catalyst.
Collapse
Affiliation(s)
- Ying-Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ke Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
252
|
Hodel FH, Luber S. Dehydrogenation Free Energy of Co 2+(aq) from Density Functional Theory-Based Molecular Dynamics. J Chem Theory Comput 2017; 13:974-981. [PMID: 28225613 DOI: 10.1021/acs.jctc.6b01077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Electron and proton transfers are important steps occurring in chemical reactions. The often used approach of calculating the energy differences of those steps using methods based on geometry optimizations neglects the influence of dynamic effects. To further investigate this issue and inspired by research in water oxidation, we calculate in the present study the dehydrogenation free energy of aqueous Co2+, which is the free energy change associated with the first step of the water oxidation reaction mechanism of recently investigated model Co(II)-aqua catalysts. We employ a method based on a thermodynamic integration scheme with strong ties to Marcus theory to obtain free energy differences, solvent reorganization free energies, and dynamic structural information on the systems from density functional theory-based molecular dynamics. While this method is computationally orders of magnitude more expensive than a static approach, it potentially allows for predicting the validity of the approximation of neglecting dynamic effects.
Collapse
Affiliation(s)
- Florian H Hodel
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
253
|
Dinpajooh M, Newton MD, Matyushov DV. Free energy functionals for polarization fluctuations: Pekar factor revisited. J Chem Phys 2017; 146:064504. [DOI: 10.1063/1.4975625] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Mohammadhasan Dinpajooh
- School of Molecular Sciences, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, USA
| | - Marshall D. Newton
- Chemistry Department, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, USA
| | - Dmitry V. Matyushov
- Department of Physics and School of Molecular Sciences, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, USA
| |
Collapse
|
254
|
Malloum A, Fifen JJ, Dhaouadi Z, Nana Engo SG, Jaidane NE. Structures and spectroscopy of medium size protonated ammonia clusters at different temperatures, H+(NH3)10–16. J Chem Phys 2017; 146:044305. [DOI: 10.1063/1.4974179] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
255
|
Rubešová M, Jurásková V, Slavíček P. Efficient modeling of liquid phase photoemission spectra and reorganization energies: Difficult case of multiply charged anions. J Comput Chem 2017; 38:427-437. [DOI: 10.1002/jcc.24696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/25/2016] [Accepted: 11/23/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Martina Rubešová
- Department of Physical Chemistry; University of Chemistry and Technology; Technická 5 Prague 16628 Czech Republic
| | - Veronika Jurásková
- Department of Physical Chemistry; University of Chemistry and Technology; Technická 5 Prague 16628 Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry; University of Chemistry and Technology; Technická 5 Prague 16628 Czech Republic
| |
Collapse
|
256
|
Borioni JL, Puiatti M, Vera DMA, Pierini AB. In search of the best DFT functional for dealing with organic anionic species. Phys Chem Chem Phys 2017; 19:9189-9198. [DOI: 10.1039/c6cp06163j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
“And the winner is…” This work assesses the ability of different Density Functional Theory (DFT) functionals for a proper treatment of organic anionic species.
Collapse
Affiliation(s)
- José L. Borioni
- INFIQC – CONICET
- Instituto de Investigaciones en Físicoquímica de Córdoba
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
| | - Marcelo Puiatti
- INFIQC – CONICET
- Instituto de Investigaciones en Físicoquímica de Córdoba
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
| | - D. Mariano A. Vera
- QUIAMM-IMBIOTEC-Departamento de Química
- Facultad de Ciencias Exactas y Naturales
- Universidad Nacional de Mar del Plata
- Mar del Plata
- Argentina
| | - Adriana B. Pierini
- INFIQC – CONICET
- Instituto de Investigaciones en Físicoquímica de Córdoba
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
| |
Collapse
|
257
|
Cao X, Heinz N, Zhang J, Dolg M. The first water coordination sphere of lanthanide(iii) motexafins (Ln-Motex2+, Ln = La, Gd, Lu) and its effects on structures, reduction potentials and UV-vis absorption spectra. Theoretical studies. Phys Chem Chem Phys 2017; 19:20160-20171. [DOI: 10.1039/c7cp02861j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An explicit treatment of strongly bound water molecules is mandatory to calculate correct UV-vis absorption spectra of lanthanide(iii) motexafins.
Collapse
Affiliation(s)
- Xiaoyan Cao
- Institute for Theoretical Chemistry, University of Cologne
- D-50939 Cologne
- Germany
| | - Norah Heinz
- Institute for Theoretical Chemistry, University of Cologne
- D-50939 Cologne
- Germany
| | - Jun Zhang
- Department of Chemistry
- University of Illinois at Urbana Champaign
- Urbana
- USA
| | - Michael Dolg
- Institute for Theoretical Chemistry, University of Cologne
- D-50939 Cologne
- Germany
| |
Collapse
|
258
|
Brereton KR, Bellows SM, Fallah H, Lopez AA, Adams RM, Miller AJM, Jones WD, Cundari TR. Aqueous Hydricity from Calculations of Reduction Potential and Acidity in Water. J Phys Chem B 2016; 120:12911-12919. [PMID: 28002955 DOI: 10.1021/acs.jpcb.6b09864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hydricity, or hydride donating ability, is a thermodynamic value that helps define the reactivity of transition metal hydrides. To avoid some of the challenges of experimental hydricity measurements in water, a computational method for the determination of aqueous hydricity values has been developed. With a thermochemical cycle involving deprotonation of the metal hydride (pKa), 2e- oxidation of the metal (E°), and 2e- reduction of the proton, hydricity values are provided along with other valuable thermodynamic information. The impact of empirical corrections (for example, calibrating reduction potentials with 2e- organic versus 1e- inorganic potentials) was assessed in the calculation of the reduction potentials, acidities, and hydricities of a series of iridium hydride complexes. Calculated hydricities are consistent with electronic trends and agree well with experimental values.
Collapse
Affiliation(s)
- Kelsey R Brereton
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Sarina M Bellows
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Hengameh Fallah
- Department of Chemistry and CASCaM, University of North Texas , Denton, Texas 76203, United States
| | - Antonio A Lopez
- Department of Chemistry and CASCaM, University of North Texas , Denton, Texas 76203, United States
| | - Robert M Adams
- Department of Chemistry and CASCaM, University of North Texas , Denton, Texas 76203, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - William D Jones
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Thomas R Cundari
- Department of Chemistry and CASCaM, University of North Texas , Denton, Texas 76203, United States
| |
Collapse
|
259
|
Silva NM, Deglmann P, Pliego JR. CMIRS Solvation Model for Methanol: Parametrization, Testing, and Comparison with SMD, SM8, and COSMO-RS. J Phys Chem B 2016; 120:12660-12668. [DOI: 10.1021/acs.jpcb.6b10249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Natalia M. Silva
- Departamento
de Ciências Naturais, Universidade Federal de São João del-Rei, 36301-160 São João
del-Rei, Minas Gerais, Brazil
| | - Peter Deglmann
- Polymer Processing & Engineering, BASF SE, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany
| | - Josefredo R. Pliego
- Departamento
de Ciências Naturais, Universidade Federal de São João del-Rei, 36301-160 São João
del-Rei, Minas Gerais, Brazil
| |
Collapse
|
260
|
|
261
|
Levin JR, Dorfner WL, Dai AX, Carroll PJ, Schelter EJ. Density Functional Theory as a Predictive Tool for Cerium Redox Properties in Nonaqueous Solvents. Inorg Chem 2016; 55:12651-12659. [PMID: 27989172 DOI: 10.1021/acs.inorgchem.6b01779] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two methods to correlate and predict experimental redox potentials for cerium complexes were evaluated. Seventeen previously reported cerium complexes were computed using DFT methods in both the CeIII and CeIV oxidation states with a dichloromethane solvent continuum. In the first computational approach, the ΔGo(CeIV/CeIII) was determined for each of the compounds and these values were correlated with the experimental E1/2 values measured in dichloromethane, referenced to the ferrocene/ferrocenium couple. The second method involved correlating the energies of the CeIV LUMOs (lowest unoccupied molecular orbitals) with the experimental redox potentials, E1/2. The predictive capabilities of these two correlative methods were tested using a new cerium hydroxylamine complex, Ce(ODiNOx)2 (ODiNOx = bis(2-tert-butylhydroxylaminatobenzyl) ether). All 18 complexes studied in this paper were combined with the 15 complexes determined in acetonitrile from a previously published correlation by our group. These sets of data allowed us to develop two methods for predicting the redox potential of cerium complexes regardless of the solvent for the experimental measurement.
Collapse
Affiliation(s)
- Jessica R Levin
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Walter L Dorfner
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Alan X Dai
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
262
|
Thapa B, Schlegel HB. Theoretical Calculation of pKa’s of Selenols in Aqueous Solution Using an Implicit Solvation Model and Explicit Water Molecules. J Phys Chem A 2016; 120:8916-8922. [DOI: 10.1021/acs.jpca.6b09520] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bishnu Thapa
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H. Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
263
|
Gorden AEV, McKee ML. Computational Study of Reduction Potentials of Th4+ Compounds and Hydrolysis of ThO2(H2O)n, n = 1, 2, 4. J Phys Chem A 2016; 120:8169-8183. [DOI: 10.1021/acs.jpca.6b08472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anne E. V. Gorden
- Department
of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Michael L. McKee
- Department
of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
264
|
Calbo J, Viruela R, Ortí E, Aragó J. Relationship between Electron Affinity and Half-Wave Reduction Potential: A Theoretical Study on Cyclic Electron-Acceptor Compounds. Chemphyschem 2016; 17:3881-3890. [DOI: 10.1002/cphc.201600778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Joaquín Calbo
- Instituto de Ciencia Molecular; Universidad de Valencia; Catedrático José Beltrán 2 46980 Paterna Spain
| | - Rafael Viruela
- Instituto de Ciencia Molecular; Universidad de Valencia; Catedrático José Beltrán 2 46980 Paterna Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular; Universidad de Valencia; Catedrático José Beltrán 2 46980 Paterna Spain
| | - Juan Aragó
- Instituto de Ciencia Molecular; Universidad de Valencia; Catedrático José Beltrán 2 46980 Paterna Spain
| |
Collapse
|
265
|
Ding S, Ghosh P, Lunsford AM, Wang N, Bhuvanesh N, Hall MB, Darensbourg MY. Hemilabile Bridging Thiolates as Proton Shuttles in Bioinspired H2 Production Electrocatalysts. J Am Chem Soc 2016; 138:12920-12927. [DOI: 10.1021/jacs.6b06461] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shengda Ding
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Pokhraj Ghosh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Allen M. Lunsford
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Ning Wang
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Marcetta Y. Darensbourg
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| |
Collapse
|
266
|
Yang L, Skjevik ÅA, Han Du WG, Noodleman L, Walker RC, Götz AW. Water exit pathways and proton pumping mechanism in B-type cytochrome c oxidase from molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1594-1606. [PMID: 27317965 PMCID: PMC4995112 DOI: 10.1016/j.bbabio.2016.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/21/2016] [Accepted: 06/14/2016] [Indexed: 01/22/2023]
Abstract
Cytochrome c oxidase (CcO) is a vital enzyme that catalyzes the reduction of molecular oxygen to water and pumps protons across mitochondrial and bacterial membranes. While proton uptake channels as well as water exit channels have been identified for A-type CcOs, the means by which water and protons exit B-type CcOs remain unclear. In this work, we investigate potential mechanisms for proton transport above the dinuclear center (DNC) in ba3-type CcO of Thermus thermophilus. Using long-time scale, all-atom molecular dynamics (MD) simulations for several relevant protonation states, we identify a potential mechanism for proton transport that involves propionate A of the active site heme a3 and residues Asp372, His376 and Glu126(II), with residue His376 acting as the proton-loading site. The proposed proton transport process involves a rotation of residue His376 and is in line with experimental findings. We also demonstrate how the strength of the salt bridge between residues Arg225 and Asp287 depends on the protonation state and that this salt bridge is unlikely to act as a simple electrostatic gate that prevents proton backflow. We identify two water exit pathways that connect the water pool above the DNC to the outer P-side of the membrane, which can potentially also act as proton exit transport pathways. Importantly, these water exit pathways can be blocked by narrowing the entrance channel between residues Gln151(II) and Arg449/Arg450 or by obstructing the entrance through a conformational change of residue Tyr136, respectively, both of which seem to be affected by protonation of residue His376.
Collapse
Affiliation(s)
- Longhua Yang
- Department of Chemistry, Nanchang University, 999 Xuefudadao, Nanchang, Jiangxi 330031, China; San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093, USA
| | - Åge A Skjevik
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093, USA; Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, GAC1118, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Louis Noodleman
- Department of Integrative Structural and Computational Biology, GAC1118, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ross C Walker
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093, USA.
| |
Collapse
|
267
|
Thapa B, Munk BH, Burrows CJ, Schlegel HB. Computational Study of the Radical Mediated Mechanism of the Formation of C8, C5, and C4 Guanine:Lysine Adducts in the Presence of the Benzophenone Photosensitizer. Chem Res Toxicol 2016; 29:1396-409. [DOI: 10.1021/acs.chemrestox.6b00057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bishnu Thapa
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Barbara H. Munk
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, Salt Lake
City, Utah 84112, United States
| | - H. Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
268
|
Götze JP, Bühl M. Laccase Redox Potentials: pH Dependence and Mutants, a QM/MM Study. J Phys Chem B 2016; 120:9265-76. [DOI: 10.1021/acs.jpcb.6b04978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jan P. Götze
- EastChem School of Chemistry, University of St Andrews, North
Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Michael Bühl
- EastChem School of Chemistry, University of St Andrews, North
Haugh, St Andrews, Fife KY16 9ST, U.K
| |
Collapse
|
269
|
Rizvi MA, Mane M, Khuroo MA, Peerzada GM. Computational survey of ligand properties on iron(III)–iron(II) redox potential: exploring natural attenuation of nitroaromatic compounds. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1813-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
270
|
Becker PM. Antireduction: an ancient strategy fit for future. Biosci Rep 2016; 36:e00367. [PMID: 27274089 PMCID: PMC4986409 DOI: 10.1042/bsr20160085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 01/16/2023] Open
Abstract
While antioxidants are on everyone's lips, antireductants are their much less-known counterparts. Following an antioxidant's definition, an antireductant prevents the chemical reduction of another compound by undergoing reduction itself. Antireductants have been traced back as far as the origin of life, which they facilitated by removal of atmospheric dihydrogen, H2 Moreover, as electron acceptors, antireductants equipped the first metabolic pathways, enabling lithoautotrophic microbial growth. When the Earth's atmosphere became more oxidizing, certain antireductants revealed their Janus-face by acting as antioxidants. Both capacities, united in one compound, were detected in primary as well as plant secondary metabolites. Substantiated by product identification, such antireductants comprise antiradicals (e.g. carotenoids) up to diminishers of ruminal methane emission (e.g. fumarate, catechin or resveratrol). Beyond these Janus-faced, multifunctional compounds, the spectrum of antireductants extends to pure electron-attractors (e.g. atmospheric triplet oxygen, O2, for plant root and gut protection). Current and prospective fields of antireductant application range from health promotion over industrial production to environmental sustainability.
Collapse
Affiliation(s)
- Petra Maria Becker
- IEZ-Institute for Ethnobotany and Zoopharmacognosy, Rijksstraatweg 158, 6573 DG Beek-Ubbergen, The Netherlands
| |
Collapse
|
271
|
Hasanayn F, Al-Assi LM, Moussawi RN, Omar BS. Mechanism of Alcohol–Water Dehydrogenative Coupling into Carboxylic Acid Using Milstein’s Catalyst: A Detailed Investigation of the Outer-Sphere PES in the Reaction of Aldehydes with an Octahedral Ruthenium Hydroxide. Inorg Chem 2016; 55:7886-902. [DOI: 10.1021/acs.inorgchem.6b00766] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Faraj Hasanayn
- Department of Chemistry, The American University of Beirut, Beirut, Lebanon
| | - Lara M. Al-Assi
- Department of Chemistry, The American University of Beirut, Beirut, Lebanon
| | - Rasha N. Moussawi
- Department of Chemistry, The American University of Beirut, Beirut, Lebanon
| | - Boushra Srour Omar
- Department of Chemistry, The American University of Beirut, Beirut, Lebanon
| |
Collapse
|
272
|
Liao RZ, Chen SL, Siegbahn PEM. Unraveling the Mechanism and Regioselectivity of the B12-Dependent Reductive Dehalogenase PceA. Chemistry 2016; 22:12391-9. [DOI: 10.1002/chem.201601575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Shi-Lu Chen
- School of Chemistry; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Per E. M. Siegbahn
- Department of Organic Chemistry; Arrhenius Laboratory; Stockholm University; 10691 Stockholm Sweden
| |
Collapse
|
273
|
Johnston RC, Zhou J, Smith JC, Parks JM. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid-Base and Ligand Binding Equilibria of Aquacobalamin. J Phys Chem B 2016; 120:7307-18. [PMID: 27391132 DOI: 10.1021/acs.jpcb.6b02701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. A major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co-ligand binding equilibrium constants (Kon/off), pKas, and reduction potentials for models of aquacobalamin in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for Co(III), Co(II), and Co(I) species, respectively, and the second model features saturation of each vacant axial coordination site on Co(II) and Co(I) species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pKas and 2.3 log units for two log Kon/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of Co-axial ligand binding, leading to substantial errors in predicted pKas and Kon/off values. These findings demonstrate the effectiveness of the present approach for computing electrochemical and thermodynamic properties of a complex transition metal-containing cofactor.
Collapse
Affiliation(s)
- Ryne C Johnston
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6309, United States
| | | | | | - Jerry M Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6309, United States
| |
Collapse
|
274
|
Gurunathan PK, Acharya A, Ghosh D, Kosenkov D, Kaliman I, Shao Y, Krylov AI, Slipchenko LV. Extension of the Effective Fragment Potential Method to Macromolecules. J Phys Chem B 2016; 120:6562-74. [PMID: 27314461 DOI: 10.1021/acs.jpcb.6b04166] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effective fragment potential (EFP) approach, which can be described as a nonempirical polarizable force field, affords an accurate first-principles treatment of noncovalent interactions in extended systems. EFP can also describe the effect of the environment on the electronic properties (e.g., electronic excitation energies and ionization and electron-attachment energies) of a subsystem via the QM/EFP (quantum mechanics/EFP) polarizable embedding scheme. The original formulation of the method assumes that the system can be separated, without breaking covalent bonds, into closed-shell fragments, such as solvent and solute molecules. Here, we present an extension of the EFP method to macromolecules (mEFP). Several schemes for breaking a large molecule into small fragments described by EFP are presented and benchmarked. We focus on the electronic properties of molecules embedded into a protein environment and consider ionization, electron-attachment, and excitation energies (single-point calculations only). The model systems include chromophores of green and red fluorescent proteins surrounded by several nearby amino acid residues and phenolate bound to the T4 lysozyme. All mEFP schemes show robust performance and accurately reproduce the reference full QM calculations. For further applications of mEFP, we recommend either the scheme in which the peptide is cut along the Cα-C bond, giving rise to one fragment per amino acid, or the scheme with two cuts per amino acid, along the Cα-C and Cα-N bonds. While using these fragmentation schemes, the errors in solvatochromic shifts in electronic energy differences (excitation, ionization, electron detachment, or electron-attachment) do not exceed 0.1 eV. The largest error of QM/mEFP against QM/EFP (no fragmentation of the EFP part) is 0.06 eV (in most cases, the errors are 0.01-0.02 eV). The errors in the QM/molecular mechanics calculations with standard point charges can be as large as 0.3 eV.
Collapse
Affiliation(s)
| | - Atanu Acharya
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Debashree Ghosh
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Pune 411008, Maharashtra, India
| | - Dmytro Kosenkov
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
- Department of Chemistry and Physics, Monmouth University , West Long Branch, New Jersey 07764, United States
| | - Ilya Kaliman
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Yihan Shao
- Q-Chem Inc. , 6601 Owens Drive, Suite 105 Pleasanton, California 94588, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Lyudmila V Slipchenko
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
275
|
Tazhigulov RN, Bravaya KB. Free Energies of Redox Half-Reactions from First-Principles Calculations. J Phys Chem Lett 2016; 7:2490-2495. [PMID: 27295124 DOI: 10.1021/acs.jpclett.6b00893] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quantitative prediction of the energetics of redox half-reactions is still a challenge for modern computational chemistry. Here, we propose a simple scheme for reliable calculations of vertical ionization and attachment energies, as well as of redox potentials of solvated molecules. The approach exploits linear response approximation in the context of explicit solvent simulations with spherical boundary conditions. It is shown that both vertical ionization energies and vertical electron affinities, and, consequently redox potentials, exhibit linear dependence on the inverse radius of the solvation sphere. The explanation of the linear dependence is provided, and an extrapolation scheme is suggested. The proposed approach accounts for the specific short-range interactions within hybrid DFT and effective fragment potential approach as well as for the asymptotic system-size effects. The computed vertical ionization energies and redox potentials are in excellent agreement with the experimental values.
Collapse
Affiliation(s)
- Ruslan N Tazhigulov
- Department of Chemistry, Boston University , Boston, Massachusetts 02215, United States
| | - Ksenia B Bravaya
- Department of Chemistry, Boston University , Boston, Massachusetts 02215, United States
| |
Collapse
|
276
|
Thapa B, Schlegel HB. Density Functional Theory Calculation of pKa’s of Thiols in Aqueous Solution Using Explicit Water Molecules and the Polarizable Continuum Model. J Phys Chem A 2016; 120:5726-35. [DOI: 10.1021/acs.jpca.6b05040] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bishnu Thapa
- Chemistry Department, Wayne State University, Detroit, Michigan 48202, United States
| | - H. Bernhard Schlegel
- Chemistry Department, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
277
|
Perez Sirkin YA, Factorovich MH, Molinero V, Scherlis DA. Vapor Pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models without Electrostatics. J Chem Theory Comput 2016; 12:2942-9. [DOI: 10.1021/acs.jctc.6b00291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yamila A. Perez Sirkin
- Departamento
de Química Inorgánica, Analítica y Quimíca
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Matías H. Factorovich
- Departamento
de Química Inorgánica, Analítica y Quimíca
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Valeria Molinero
- Department
of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Damian A. Scherlis
- Departamento
de Química Inorgánica, Analítica y Quimíca
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
278
|
Blomberg MRA, Siegbahn PEM. Improved free energy profile for reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR). J Comput Chem 2016; 37:1810-8. [DOI: 10.1002/jcc.24396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Margareta R. A. Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory; Stockholm University; Stockholm SE-106 91 Sweden
| | - Per E. M. Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory; Stockholm University; Stockholm SE-106 91 Sweden
| |
Collapse
|
279
|
Isegawa M, Neese F, Pantazis DA. Ionization Energies and Aqueous Redox Potentials of Organic Molecules: Comparison of DFT, Correlated ab Initio Theory and Pair Natural Orbital Approaches. J Chem Theory Comput 2016; 12:2272-84. [PMID: 27065224 DOI: 10.1021/acs.jctc.6b00252] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The calculation of redox potentials involves large energetic terms arising from gas phase ionization energies, thermodynamic contributions, and solvation energies of the reduced and oxidized species. In this work we study the performance of a wide range of wave function and density functional theory methods for the prediction of ionization energies and aqueous one-electron oxidation potentials of a set of 19 organic molecules. Emphasis is placed on evaluating methods that employ the computationally efficient local pair natural orbital (LPNO) approach, as well as several implementations of coupled cluster theory and explicitly correlated F12 methods. The electronic energies are combined with implicit solvation models for the solvation energies. With the exception of MP2 and its variants, which suffer from enormous errors arising at least partially from the poor Hartree-Fock reference, ionization energies can be systematically predicted with average errors below 0.1 eV for most of the correlated wave function based methods studies here, provided basis set extrapolation is performed. LPNO methods are the most efficient way to achieve this type of accuracy. DFT methods show in general larger errors and suffer from inconsistent behavior. The only exception is the M06-2X functional which is found to be competitive with the best LPNO-based approaches for ionization energies. Importantly, the limiting factor for the calculation of accurate redox potentials is the solvation energy. The errors in the predicted solvation energies by all continuum solvation models tested in this work dominate the final computed reduction potential, resulting in average errors typically in excess of 0.3 V and hence obscuring the gains that arise from choosing a more accurate electronic structure method.
Collapse
Affiliation(s)
- Miho Isegawa
- Max Planck Institute for Chemical Energy Conversion, Stiftrasse 34-38, 45470 Mülheim and der Ruhr, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftrasse 34-38, 45470 Mülheim and der Ruhr, Germany
| | - Dimitrios A Pantazis
- Max Planck Institute for Chemical Energy Conversion, Stiftrasse 34-38, 45470 Mülheim and der Ruhr, Germany
| |
Collapse
|
280
|
Han Du WG, Götz AW, Yang L, Walker RC, Noodleman L. A broken-symmetry density functional study of structures, energies, and protonation states along the catalytic O-O bond cleavage pathway in ba3 cytochrome c oxidase from Thermus thermophilus. Phys Chem Chem Phys 2016; 18:21162-71. [PMID: 27094074 DOI: 10.1039/c6cp00349d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Broken-symmetry density functional calculations have been performed on the [Fea3, CuB] dinuclear center (DNC) of ba3 cytochrome c oxidase from Thermus thermophilus in the states of [Fea3(3+)-(HO2)(-)-CuB(2+), Tyr237(-)] and [Fea3(4+)[double bond, length as m-dash]O(2-), OH(-)-CuB(2+), Tyr237˙], using both PW91-D3 and OLYP-D3 functionals. Tyr237 is a special tyrosine cross-linked to His233, a ligand of CuB. The calculations have shown that the DNC in these states strongly favors the protonation of His376, which is above propionate-A, but not of the carboxylate group of propionate-A. The energies of the structures obtained by constrained geometry optimizations along the O-O bond cleavage pathway between [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] and [Fea3(4+)[double bond, length as m-dash]O(2-)HO(-)-CuB(2+), Tyr237˙] have also been calculated. The transition of [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] → [Fea3(4+)[double bond, length as m-dash]O(2-)HO(-)-CuB(2+), Tyr237˙] shows a very small barrier, which is less than 3.0/2.0 kcal mol(-1) in PW91-D3/OLYP-D3 calculations. The protonation state of His376 does not affect this O-O cleavage barrier. The rate limiting step of the transition from state A (in which O2 binds to Fea3(2+)) to state PM ([Fea3(4+)[double bond, length as m-dash]O(2-), OH(-)-CuB(2+), Tyr237˙], where the O-O bond is cleaved) in the catalytic cycle is, therefore, the proton transfer originating from Tyr237 to O-O to form the hydroperoxo [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] state. The importance of His376 in proton uptake and the function of propionate-A/neutral-Asp372 as a gate to prevent the proton from back-flowing to the DNC are also shown.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, GAC1118, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
281
|
Ishikawa A, Nakai H. Quantum chemical approach for condensed-phase thermochemistry (III): Accurate evaluation of proton hydration energy and standard hydrogen electrode potential. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
282
|
Kumar A, Adhikary A, Shamoun L, Sevilla MD. Do Solvated Electrons (e(aq)⁻) Reduce DNA Bases? A Gaussian 4 and Density Functional Theory-Molecular Dynamics Study. J Phys Chem B 2016; 120:2115-23. [PMID: 26878197 PMCID: PMC4863935 DOI: 10.1021/acs.jpcb.5b11269] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The solvated electron (e(aq)⁻) is a primary intermediate after an ionization event that produces reductive DNA damage. Accurate standard redox potentials (E(o)) of nucleobases and of e(aq)⁻ determine the extent of reaction of e(aq)⁻ with nucleobases. In this work, E(o) values of e(aq)⁻ and of nucleobases have been calculated employing the accurate ab initio Gaussian 4 theory including the polarizable continuum model (PCM). The Gaussian 4-calculated E(o) of e(aq)⁻ (-2.86 V) is in excellent agreement with the experimental one (-2.87 V). The Gaussian 4-calculated E(o) of nucleobases in dimethylformamide (DMF) lie in the range (-2.36 V to -2.86 V); they are in reasonable agreement with the experimental E(o) in DMF and have a mean unsigned error (MUE) = 0.22 V. However, inclusion of specific water molecules reduces this error significantly (MUE = 0.07). With the use of a model of e(aq)⁻ nucleobase complex with six water molecules, the reaction of e(aq)⁻ with the adjacent nucleobase is investigated using approximate ab initio molecular dynamics (MD) simulations including PCM. Our MD simulations show that e(aq)⁻ transfers to uracil, thymine, cytosine, and adenine, within 10 to 120 fs and e(aq)⁻ reacts with guanine only when a water molecule forms a hydrogen bond to O6 of guanine which stabilizes the anion radical.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Amitava Adhikary
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Lance Shamoun
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Michael D Sevilla
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| |
Collapse
|
283
|
Maximiano P, Mendonça PV, Costa JRC, Haworth NL, Serra AC, Guliashvili T, Coote ML, Coelho JFJ. Ambient Temperature Transition-Metal-Free Dissociative Electron Transfer Reversible Addition–Fragmentation Chain Transfer Polymerization (DET-RAFT) of Methacrylates, Acrylates, and Styrene. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02647] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pedro Maximiano
- CEMUC,
Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Patrícia V. Mendonça
- CEMUC,
Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - João R. C. Costa
- CEMUC,
Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Naomi L. Haworth
- ARC
Centre of Excellence for Electromaterials Science, Research School
of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Arménio C. Serra
- CEMUC,
Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Tamaz Guliashvili
- CEMUC,
Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Michelle L. Coote
- ARC
Centre of Excellence for Electromaterials Science, Research School
of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jorge F. J. Coelho
- CEMUC,
Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
284
|
Abstract
We recently showed for a large data set of pKas and reduction potentials that free energies calculated directly within the SMD continuum model compares very well with corresponding thermodynamic cycle calculations in both aqueous and organic solvents [ Phys. Chem. Chem. Phys. 2015 , 17 , 2859 ]. In this paper, we significantly expand the scope of our study to examine the suitability of this approach for calculating general solution phase kinetics and thermodynamics, in conjunction with several commonly used solvation models (SMD-M062X, SMD-HF, CPCM-UAKS, and CPCM-UAHF) for a broad range of systems. This includes cluster-continuum schemes for pKa calculations as well as various neutral, radical, and ionic reactions such as enolization, cycloaddition, hydrogen and chlorine atom transfer, and SN2 and E2 reactions. On the basis of this benchmarking study, we conclude that the accuracies of both approaches are generally very similar-the mean errors for Gibbs free energy changes of neutral and ionic reactions are approximately 5 and 25 kJ mol(-1), respectively. In systems where there are significant structural changes due to solvation, as is the case for certain ionic transition states and amino acids, the direct approach generally afford free energy changes that are in better agreement with experiment.
Collapse
Affiliation(s)
- Junming Ho
- Agency for Science, Technology and Research, Institute of High Performance Computing , 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632.,Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mehmed Z Ertem
- Chemistry Department, Brookhaven National Laboratory , Upton, New York 11973, United States
| |
Collapse
|
285
|
Guerard JJ, Tentscher PR, Seijo M, Samuel Arey J. Explicit solvent simulations of the aqueous oxidation potential and reorganization energy for neutral molecules: gas phase, linear solvent response, and non-linear response contributions. Phys Chem Chem Phys 2016; 17:14811-26. [PMID: 25978135 DOI: 10.1039/c4cp04760e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
First principles simulations were used to predict aqueous one-electron oxidation potentials (Eox) and associated half-cell reorganization energies (λaq) for aniline, phenol, methoxybenzene, imidazole, and dimethylsulfide. We employed quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations of the oxidized and reduced species in an explicit aqueous solvent, followed by EOM-IP-CCSD computations with effective fragment potentials for diabatic energy gaps of solvated clusters, and finally thermodynamic integration of the non-linear solvent response contribution using classical MD. A priori predicted Eox and λaq values exhibit mean absolute errors of 0.17 V and 0.06 eV, respectively, compared to experiment. We also disaggregate Eox into several well-defined free energy properties, including the gas phase adiabatic free energy of ionization (7.73 to 8.82 eV), the solvent-induced shift in the free energy of ionization due to linear solvent response (-2.01 to -2.73 eV), and the contribution from non-linear solvent response (-0.07 to -0.14 eV). The linear solvent response component is further apportioned into contributions from the solvent-induced shift in vertical ionization energy of the reduced species (ΔVIEaq) and the solvent-induced shift in negative vertical electron affinity of the ionized species (ΔNVEAaq). The simulated ΔVIEaq and ΔNVEAaq are found to contribute the principal sources of uncertainty in computational estimates of Eox and λaq. Trends in the magnitudes of disaggregated solvation properties are found to correlate with trends in structural and electronic features of the solute. Finally, conflicting approaches for evaluating the aqueous reorganization energy are contrasted and discussed, and concluding recommendations are given.
Collapse
Affiliation(s)
- Jennifer J Guerard
- Environmental Chemistry Modeling Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
286
|
Zarkadoulas A, Field MJ, Papatriantafyllopoulou C, Fize J, Artero V, Mitsopoulou CA. Experimental and Theoretical Insight into Electrocatalytic Hydrogen Evolution with Nickel Bis(aryldithiolene) Complexes as Catalysts. Inorg Chem 2016; 55:432-44. [PMID: 26645557 PMCID: PMC5493980 DOI: 10.1021/acs.inorgchem.5b02000] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of neutral and monoanionic nickel dithiolene complexes with p-methoxyphenyl-substituted 1,2-dithiolene ligands have been prepared and characterized with physicochemical methods. Two of the complexes, the monoanion of the symmetric [Ni{S2C2(Ph-p-OCH3)2}2] (3(-)) with NBu4(+) as a counterion and the neutral asymmetric [Ni{S2C2(Ph)(Ph-p-OCH3)}2] (2), have been structurally characterized by single-crystal X-ray crystallography. All complexes have been employed as proton-reducing catalysts in N,N-dimethylformamide with trifluoroacetic acid as the proton source. The complexes are active catalysts with good faradaic yields, reaching 83% for 2 but relatively high overpotential requirements (0.91 and 1.55 V measured at the middle of the catalytic wave for two processes observed depending on the different routes of the mechanism). The similarity of the experimental data regardless of whether the neutral or anionic form of the complexes is used indicates that the neutral form acts as a precatalyst. On the basis of detailed density functional theory calculations, the proposed mechanism reveals two different main routes after protonation of the dianion of the catalyst in accordance with the experimental data, indicating the role of the concentration of the acid and the influence of the methoxy groups. Protonation at sulfur seems be more favorable than that at the metal, which is in marked contrast with the catalytic mechanism proposed for analogous cobalt dithiolene complexes.
Collapse
Affiliation(s)
- Athanasios Zarkadoulas
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 157 71, Greece
| | - Martin J. Field
- DYNAMO/DYNAMOP, Institut de Biologie Structurale, UMR CNRS/Université Grenoble Alpes/CEA 5075, EPN Campus, 6 rue Jules Horowitz F-38000 Grenoble, France
| | | | - Jennifer Fize
- Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Vincent Artero
- Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Christiana A. Mitsopoulou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 157 71, Greece
| |
Collapse
|
287
|
Blomberg MRA. Mechanism of Oxygen Reduction in Cytochrome c Oxidase and the Role of the Active Site Tyrosine. Biochemistry 2016; 55:489-500. [PMID: 26690322 DOI: 10.1021/acs.biochem.5b01205] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome c oxidase, the terminal enzyme in the respiratory chain, reduces molecular oxygen to water and stores the released energy through electrogenic chemistry and proton pumping across the membrane. Apart from the heme-copper binuclear center, there is a conserved tyrosine residue in the active site (BNC). The tyrosine delivers both an electron and a proton during the O-O bond cleavage step, forming a tyrosyl radical. The catalytic cycle then occurs in four reduction steps, each taking up one proton for the chemistry (water formation) and one proton to be pumped. It is here suggested that in three of the reduction steps the chemical proton enters the center of the BNC, leaving the tyrosine unprotonated with radical character. The reproprotonation of the tyrosine occurs first in the final reduction step before binding the next oxygen molecule. It is also suggested that this reduction mechanism and the presence of the tyrosine are essential for the proton pumping. Density functional theory calculations on large cluster models of the active site show that only the intermediates with the proton in the center of the BNC and with an unprotonated tyrosyl radical have a high electron affinity of similar size as the electron donor, which is essential for the ability to take up two protons per electron and thus for the proton pumping. This type of reduction mechanism is also the only one that gives a free energy profile in accordance with experimental observations for the amount of proton pumping in the working enzyme.
Collapse
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91, Stockholm, Sweden
| |
Collapse
|
288
|
Bím D, Rulíšek L, Srnec M. Accurate Prediction of One-Electron Reduction Potentials in Aqueous Solution by Variable-Temperature H-Atom Addition/Abstraction Methodology. J Phys Chem Lett 2016; 7:7-13. [PMID: 26647144 DOI: 10.1021/acs.jpclett.5b02452] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A robust and efficient theoretical approach for calculation of the reduction potentials of charged species in aqueous solution is presented. Within this approach, the reduction potential of a charged complex (with a charge |n| ≥ 2) is probed by means of the reduction potential of its neutralized (protonated/deprotonated) cognate, employing one or several H-atom addition/abstraction thermodynamic cycles. This includes a separation of one-electron reduction from protonation/deprotonation through the temperature dependence. The accuracy of the method has been assessed for the set of 15 transition-metal complexes that are considered as highly challenging systems for computational electrochemistry. Unlike the standard computational protocol(s), the presented approach yields results that are in excellent agreement with experimental electrochemical data. Last but not least, the applicability and limitations of the approach are thoroughly discussed.
Collapse
Affiliation(s)
- Daniel Bím
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic , Dolejškova 3, 182 20 Praha 8, Czech Republic
| |
Collapse
|
289
|
Kärkäs MD, Liao RZ, Laine TM, Åkermark T, Ghanem S, Siegbahn PEM, Åkermark B. Molecular ruthenium water oxidation catalysts carrying non-innocent ligands: mechanistic insight through structure–activity relationships and quantum chemical calculations. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01704a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein is highlighted how structure–activity relationships can be used to provide mechanistic insight into H2O oxidation catalysis.
Collapse
Affiliation(s)
- Markus D. Kärkäs
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Rong-Zhen Liao
- Key Laboratory for Large-Format Battery Materials and System
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Tanja M. Laine
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Torbjörn Åkermark
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Shams Ghanem
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Per E. M. Siegbahn
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Björn Åkermark
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| |
Collapse
|
290
|
Liu X, Cheng J, Lu X, He M, Wang R. Redox potentials of aryl derivatives from hybrid functional based first principles molecular dynamics. Phys Chem Chem Phys 2016; 18:14911-7. [DOI: 10.1039/c6cp01375a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the redox potentials of a set of organic aryl molecules, including quinones, juglone, tyrosine and tryptophan, calculated using a first principles molecular dynamics (FPMD) based method.
Collapse
Affiliation(s)
- Xiandong Liu
- State Key Laboratory for Mineral Deposits Research
- School of Earth Sciences and Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jun Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Xiancai Lu
- State Key Laboratory for Mineral Deposits Research
- School of Earth Sciences and Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Mengjia He
- State Key Laboratory for Mineral Deposits Research
- School of Earth Sciences and Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Rucheng Wang
- State Key Laboratory for Mineral Deposits Research
- School of Earth Sciences and Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|
291
|
Liu X, Cheng J, He M, Lu X, Wang R. Acidity constants and redox potentials of uranyl ions in hydrothermal solutions. Phys Chem Chem Phys 2016; 18:26040-26048. [DOI: 10.1039/c6cp03469a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a first principles molecular dynamics (FPMD) study of the structures, acidity constants (pKa) and redox potentials (E0) of uranyl (UO22+) from ambient conditions to 573 K.
Collapse
Affiliation(s)
- Xiandong Liu
- State Key Laboratory for Mineral Deposits Research
- School of Earth Sciences and Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jun Cheng
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- P. R. China
- Department of Chemistry
| | - Mengjia He
- State Key Laboratory for Mineral Deposits Research
- School of Earth Sciences and Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Xiancai Lu
- State Key Laboratory for Mineral Deposits Research
- School of Earth Sciences and Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Rucheng Wang
- State Key Laboratory for Mineral Deposits Research
- School of Earth Sciences and Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|
292
|
Krewald V, Neese F, Pantazis DA. Redox potential tuning by redox-inactive cations in nature's water oxidizing catalyst and synthetic analogues. Phys Chem Chem Phys 2016; 18:10739-50. [DOI: 10.1039/c5cp07213a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fundamental differences between synthetic manganese clusters and the biological water oxidizing catalyst are demonstrated in the modulation of their redox potential by redox-inactive cations.
Collapse
Affiliation(s)
- Vera Krewald
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | | |
Collapse
|
293
|
Malloum A, Fifen JJ, Dhaouadi Z, Nana Engo SG, Jaidane NE. Structures and spectroscopy of protonated ammonia clusters at different temperatures. Phys Chem Chem Phys 2016; 18:26827-26843. [DOI: 10.1039/c6cp03240k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protonated ammonia clusters are all Eigen structures and the first solvation shell of the related ammonium ion core is saturated by four ammonia molecules.
Collapse
Affiliation(s)
- Alhadji Malloum
- Department of Physics
- Faculty of Science
- The University of Ngaoundere
- Ngaoundere
- Cameroon
| | - Jean Jules Fifen
- Department of Physics
- Faculty of Science
- The University of Ngaoundere
- Ngaoundere
- Cameroon
| | - Zoubeida Dhaouadi
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications
- Faculté des Sciences de Tunis
- Université de Tunis El Manar
- Campus Universitaire
- Tunis
| | - Serge Guy Nana Engo
- Department of Physics
- Faculty of Science
- The University of Ngaoundere
- Ngaoundere
- Cameroon
| | - Nejm-Eddine Jaidane
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications
- Faculté des Sciences de Tunis
- Université de Tunis El Manar
- Campus Universitaire
- Tunis
| |
Collapse
|
294
|
Jäger M, Freitag L, González L. Using computational chemistry to design Ru photosensitizers with directional charge transfer. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
295
|
Liao RZ, Chen SL, Siegbahn PEM. Which Oxidation State Initiates Dehalogenation in the B12-Dependent Enzyme NpRdhA: CoII, CoI, or Co0? ACS Catal 2015. [DOI: 10.1021/acscatal.5b01502] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rong-Zhen Liao
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Shi-Lu Chen
- School
of Chemistry, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Per E. M. Siegbahn
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
296
|
Boumendil S, Cornard JP, Sekkal-Rahal M, Moncomble A. Solvent effects to compute UV–vis spectra for ionic metal complexes. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
297
|
Demissie TB, Ruud K, Hansen JH. DFT as a Powerful Predictive Tool in Photoredox Catalysis: Redox Potentials and Mechanistic Analysis. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00582] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Taye B. Demissie
- Centre for Theoretical and Computational
Chemistry, ‡Department of Chemistry, UiT − The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kenneth Ruud
- Centre for Theoretical and Computational
Chemistry, ‡Department of Chemistry, UiT − The Arctic University of Norway, 9037 Tromsø, Norway
| | - Jørn H. Hansen
- Centre for Theoretical and Computational
Chemistry, ‡Department of Chemistry, UiT − The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
298
|
Li J, Farrokhnia M, Rulíšek L, Ryde U. Catalytic Cycle of Multicopper Oxidases Studied by Combined Quantum- and Molecular-Mechanical Free-Energy Perturbation Methods. J Phys Chem B 2015; 119:8268-84. [DOI: 10.1021/acs.jpcb.5b02864] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jilai Li
- Department
of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
- Institute
of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Maryam Farrokhnia
- Department
of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
- The
Persian Gulf Marine Biotechnology Research Center, The Persian Gulf
Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Lubomír Rulíšek
- Institute
of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research
Center, Academy of Sciences of the Czech Republic, Flemingovo
náměstí 2, 166
10 Prague 6, Czech Republic
| | - Ulf Ryde
- Department
of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
299
|
Heiles S, Cooper RJ, DiTucci MJ, Williams ER. Hydration of guanidinium depends on its local environment. Chem Sci 2015; 6:3420-3429. [PMID: 28706704 PMCID: PMC5490459 DOI: 10.1039/c5sc00618j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/14/2015] [Indexed: 01/10/2023] Open
Abstract
Hydration of gaseous guanidinium (Gdm+) with up to 100 water molecules attached was investigated using infrared photodissociation spectroscopy in the hydrogen stretch region between 2900 and 3800 cm-1. Comparisons to IR spectra of low-energy computed structures indicate that at small cluster size, water interacts strongly with Gdm+ with three inner shell water molecules each accepting two hydrogen bonds from adjacent NH2 groups in Gdm+. Comparisons to results for tetramethylammonium (TMA+) and Na+ enable structural information for larger clusters to be obtained. The similarity in the bonded OH region for Gdm(H2O)20+vs. Gdm(H2O)100+ and the similarity in the bonded OH regions between Gdm+ and TMA+ but not Na+ for clusters with <50 water molecules indicate that Gdm+ does not significantly affect the hydrogen-bonding network of water molecules at large size. These results indicate that the hydration around Gdm+ changes for clusters with more than about eight water molecules to one in which inner shell water molecules only accept a single H-bond from Gdm+. More effective H-bonding drives this change in inner-shell water molecule binding to other water molecules. These results show that hydration of Gdm+ depends on its local environment, and that Gdm+ will interact with water even more strongly in an environment where water is partially excluded, such as the surface of a protein. This enhanced hydration in a limited solvation environment may provide new insights into the effectiveness of Gdm+ as a protein denaturant.
Collapse
Affiliation(s)
- Sven Heiles
- Department of Chemistry , University of California , B42 Hildebrand Hall , Berkeley , CA 94720 , USA .
| | - Richard J Cooper
- Department of Chemistry , University of California , B42 Hildebrand Hall , Berkeley , CA 94720 , USA .
| | - Matthew J DiTucci
- Department of Chemistry , University of California , B42 Hildebrand Hall , Berkeley , CA 94720 , USA .
| | - Evan R Williams
- Department of Chemistry , University of California , B42 Hildebrand Hall , Berkeley , CA 94720 , USA .
| |
Collapse
|
300
|
Pluhařová E, Slavíček P, Jungwirth P. Modeling photoionization of aqueous DNA and its components. Acc Chem Res 2015; 48:1209-17. [PMID: 25738773 DOI: 10.1021/ar500366z] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Radiation damage to DNA is usually considered in terms of UVA and UVB radiation. These ultraviolet rays, which are part of the solar spectrum, can indeed cause chemical lesions in DNA, triggered by photoexcitation particularly in the UVB range. Damage can, however, be also caused by higher energy radiation, which can ionize directly the DNA or its immediate surroundings, leading to indirect damage. Thanks to absorption in the atmosphere, the intensity of such ionizing radiation is negligible in the solar spectrum at the surface of Earth. Nevertheless, such an ionizing scenario can become dangerously plausible for astronauts or flight personnel, as well as for persons present at nuclear power plant accidents. On the beneficial side, ionizing radiation is employed as means for destroying the DNA of cancer cells during radiation therapy. Quantitative information about ionization of DNA and its components is important not only for DNA radiation damage, but also for understanding redox properties of DNA in redox sensing or labeling, as well as charge migration along the double helix in nanoelectronics applications. Until recently, the vast majority of experimental and computational data on DNA ionization was pertinent to its components in the gas phase, which is far from its native aqueous environment. The situation has, however, changed for the better due to the advent of photoelectron spectroscopy in liquid microjets and its most recent application to photoionization of aqueous nucleosides, nucleotides, and larger DNA fragments. Here, we present a consistent and efficient computational methodology, which allows to accurately evaluate ionization energies and model photoelectron spectra of aqueous DNA and its individual components. After careful benchmarking, the method based on density functional theory and its time-dependent variant with properly chosen hybrid functionals and polarizable continuum solvent model provides ionization energies with accuracy of 0.2-0.3 eV, allowing for faithful modeling and interpretation of DNA photoionization. The key finding is that the aqueous medium is remarkably efficient in screening the interactions within DNA such that, unlike in the gas phase, ionization of a base, nucleoside, or nucleotide depends only very weakly on the particular DNA context. An exception is the electronic interaction between neighboring bases which can lead to sequence-specific effects, such as a partial delocalization of the cationic hole upon ionization enabled by presence of adjacent bases of the same type.
Collapse
Affiliation(s)
- Eva Pluhařová
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Petr Slavíček
- University of Chemistry and Technology, Department
of Physical Chemistry, Technická 5, 16628 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| |
Collapse
|