251
|
Kawano T, Hirano T, Fujinaga M, Kadowaki Y, Matsunaga T, Tateyama K, Kizu Y, Suzuki M. Tumor immune tissue response to a solitary fibrous tumor treated with pazopanib. Clin Case Rep 2021. [DOI: 10.1002/ccr3.4056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Toshiaki Kawano
- Department of Otolaryngology & Head and Neck Surgery Faculty of Medicine Oita University Oita Japan
| | - Takashi Hirano
- Department of Otolaryngology & Head and Neck Surgery Faculty of Medicine Oita University Oita Japan
| | - Maki Fujinaga
- Department of Otolaryngology & Head and Neck Surgery Faculty of Medicine Oita University Oita Japan
| | - Yoshinori Kadowaki
- Department of Otolaryngology & Head and Neck Surgery Faculty of Medicine Oita University Oita Japan
| | - Takayuki Matsunaga
- Department of Otolaryngology & Head and Neck Surgery Faculty of Medicine Oita University Oita Japan
| | - Kaori Tateyama
- Department of Otolaryngology & Head and Neck Surgery Faculty of Medicine Oita University Oita Japan
| | - Yumi Kizu
- Department of Otolaryngology & Head and Neck Surgery Faculty of Medicine Oita University Oita Japan
| | - Masashi Suzuki
- Department of Otolaryngology & Head and Neck Surgery Faculty of Medicine Oita University Oita Japan
| |
Collapse
|
252
|
Cao Y, Wang X. Effects of molecular markers on the treatment decision and prognosis of colorectal cancer: a narrative review. J Gastrointest Oncol 2021; 12:1191-1196. [PMID: 34295567 PMCID: PMC8261319 DOI: 10.21037/jgo-21-230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To summarize the effects of molecular markers on the treatment decision and prognosis of colorectal cancer. BACKGROUND Colorectal cancer is a highly heterogeneous disease. Even colorectal cancers of the same pathological type and clinical stage may have significant differences in treatment efficacy and prognosis. There are three main molecular mechanisms for the occurrence and development of colorectal cancer: chromosomal instability (CIN) pathway, microsatellite instability (MSI), and CpG island methylate phenotype (CIMP). There are multiple molecular markers distributed on each pathway. METHODS We performed a literature search on the PubMed database for studies published in English (from the date of initiation of the database to the year of 2020) using the following subject terms: "colon cancer", "rectal cancer", "colorectal cancer", "molecular markers", "biomarkers", "treatment strategies", and "prognosis". CONCLUSIONS The different expression states of molecular markers have a significant impact on the treatment decision and prognosis of colorectal cancer. Main colorectal cancer molecular markers include MSI and some important genes. Individualized treatments for tumors with different molecular phenotypes have improved the treatment effectiveness for colorectal cancer. The rational use of molecular markers is valuable for treatment decision-making and the prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Yujuan Cao
- Department of Oncology, Peking University Shougang Hospital, Beijing, China
| | - Xiaodong Wang
- Department of Oncology, Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
253
|
Kong JC, Flood M, Ramsay RG, Warrier SK, Heriot A. Shifting the treatment paradigm for patients with deficient mismatch repair colon cancer: is there a role for immunotherapy? ANZ J Surg 2021; 91:778-780. [PMID: 33999535 DOI: 10.1111/ans.16485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph C Kong
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Flood
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robert G Ramsay
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Satish K Warrier
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alexander Heriot
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
254
|
Li Y, Chen X, Li W, Ye Y, Du X, Sun S, Liu L, Zhang H. Combination of Anti-EGFR and Anti-VEGF Drugs for the Treatment of Previously Treated Metastatic Colorectal Cancer: A Case Report and Literature Review. Front Oncol 2021; 11:684309. [PMID: 34109130 PMCID: PMC8180844 DOI: 10.3389/fonc.2021.684309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/03/2021] [Indexed: 01/09/2023] Open
Abstract
The standard third-line treatment of metastatic colorectal cancer (mCRC) includes the small-molecule anti-vascular drugs (Regofenib and Fruquintinib) and the chemotherapy drug trifluridine and tipiracil hydrochloride (TAS-102). There is no standard treatment for mCRC if the third-line treatment failed. Therefore, it is a pressing need to develop new therapeutic approaches to improve the survival of patients who developed drug resistance to the third-line treatment. In this study, we report a case of mCRC with RAS/BRAF wild-type, who was successfully treated using cetuximab in combination with fruquintinib after resistance to chemotherapy, bevacizumab, cetuximab and regorafenib. This patient responded to this combination regimen. Then, we discuss the mechanisms of action of this combination. Furthermore, we introduce the clinical trials on the combination regimens of anti-EGFR with anti-vascular monoclonal antibodies. Finally, we discuss the clinical explorations of using combination of anti-EGFR with small-molecule anti-VEGF drugs and their potential benefits. The clinical effects of small-molecule anti-vascular drugs in combination with anti-EGFR in the treatment of CRC warrant further explored.
Collapse
Affiliation(s)
- Yong Li
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xian Chen
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wenzhu Li
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yongsong Ye
- Department of Image, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaohua Du
- Department of Pathology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shaodan Sun
- Deparment of Pharmacology of Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lirong Liu
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Haibo Zhang
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
255
|
Jensen BV, Schou JV, Yilmaz M, Johannesen HH, Skougaard K, Linnemann D, Hogdall EV, Larsen FO, Johansen JS, Pfeiffer P, Nielsen DL. Cetuximab plus irinotecan administered biweekly with reduced infusion time to heavily pretreated patients with metastatic colorectal cancer and related RAS and BRAF mutation status. Int J Cancer 2021; 148:2542-2556. [PMID: 33336394 DOI: 10.1002/ijc.33448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/15/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022]
Abstract
Metastatic colorectal cancer (mCRC) is treated with cetuximab 250 mg/m2 administered weekly over 1 hour or biweekly (q2w) over 3.5 hours when combined with irinotecan. This prospective study investigated cetuximab 500 mg/m2 plus irinotecan 180 mg/m2 administered q2w over 1.5 hours independent of RAS or BRAF mutation status in mCRC patients in a third-line setting. The intention-to-treat population included 181 patients. No patients had complete response, 18% had partial responses (PR) and 48% stable disease (SD). For cetuximab, a relative dose intensity of ≥90% was reached in 78% and for irinotecan in 67% of the patients. Grade 3 to 4 toxicities were pain (17%), fatigue (9%), neutropenia (8%), diarrhea (8%), rash (8%), infection (7%) and hypersensitivity (3%). No deaths occurred. Next-generation sequencing in 96.7% of the patients revealed that 50.3% had RAS and BRAFV600E wild type (WT), with a mutation type (MT) in 45.1% of the RAS and 4.4% of the BRAFV600E genes. In patients with RAS-WT and RAS-MT tumors, a PR was obtained in 32% and 4% (P = .000003) and an SD in 43% and 53%, respectively, with a superior PFS (6.2 vs 3.7 months; hazard ratio [HR] 2.12, P = .00001) and OS (12.9 vs 8.8 months; HR 1.71, P = .0008). Treatment efficacy was poor in 7.4% of patients with an RAS mutation outside KRAS exon 2 and in 38% of patients with KRAS exon 2 mutations. Administration of cetuximab and irinotecan q2w, shortening treatment time from 3.5 to 1.5 hours, is recommended as standard therapy.
Collapse
Affiliation(s)
- Benny Vittrup Jensen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jakob V Schou
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Yilmaz
- Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Helle H Johannesen
- Department of Radiology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kristin Skougaard
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Dorte Linnemann
- Department of Pathology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Estrid V Hogdall
- Department of Pathology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Finn O Larsen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Pfeiffer
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Dorte L Nielsen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
256
|
Razavi ZS, Asgarpour K, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, Hamblin MR, Mirzaei H. Angiogenesis-related non-coding RNAs and gastrointestinal cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:220-241. [PMID: 34095461 PMCID: PMC8141508 DOI: 10.1016/j.omto.2021.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) cancers are among the main reasons for cancer death globally. The deadliest types of GI cancer include colon, stomach, and liver cancers. Multiple lines of evidence have shown that angiogenesis has a key role in the growth and metastasis of all GI tumors. Abnormal angiogenesis also has a critical role in many non-malignant diseases. Therefore, angiogenesis is considered to be an important target for improved cancer treatment. Despite much research, the mechanisms governing angiogenesis are not completely understood. Recently, it has been shown that angiogenesis-related non-coding RNAs (ncRNAs) could affect the development of angiogenesis in cancer cells and tumors. The broad family of ncRNAs, which include long non-coding RNAs, microRNAs, and circular RNAs, are related to the development, promotion, and metastasis of GI cancers, especially in angiogenesis. This review discusses the role of ncRNAs in mediating angiogenesis in various types of GI cancers and looks forward to the introduction of mimetics and antagonists as possible therapeutic agents.
Collapse
Affiliation(s)
| | - Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Rasouli
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
257
|
He J, Wu F, Han Z, Hu M, Lin W, Li Y, Cao M. Biomarkers (mRNAs and Non-Coding RNAs) for the Diagnosis and Prognosis of Colorectal Cancer - From the Body Fluid to Tissue Level. Front Oncol 2021; 11:632834. [PMID: 33996548 PMCID: PMC8118670 DOI: 10.3389/fonc.2021.632834] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, the diagnosis and treatment of colorectal cancer (CRC) have been continuously improved, but the mortality rate continues to be high, especially in advanced patients. CRC patients usually have no obvious symptoms in the early stage and are already in the advanced stage when they are diagnosed. The 5-year survival rate is only 10%. The blood markers currently used to screen for CRC, such as carcinoembryonic antigen and carbohydrate antigen 19-9, have low sensitivity and specificity, whereas other methods are invasive or too expensive. As a result, recent research has shifted to the development of minimally invasive or noninvasive biomarkers in the form of body fluid biopsies. Non-coding RNA molecules are composed of microRNAs, long non-coding RNAs, small nucleolar RNAs, and circular RNAs, which have important roles in the occurrence and development of diseases and can be utilized for the early diagnosis and prognosis of tumors. In this review, we focus on the latest findings of mRNA-ncRNA as biomarkers for the diagnosis and prognosis of CRC, from fluid to tissue level.
Collapse
Affiliation(s)
- Jinhua He
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Feifeng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zeping Han
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Min Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weida Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuguang Li
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Mingrong Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
258
|
Zaryouh H, De Pauw I, Baysal H, Peeters M, Vermorken JB, Lardon F, Wouters A. Recent insights in the PI3K/Akt pathway as a promising therapeutic target in combination with EGFR-targeting agents to treat head and neck squamous cell carcinoma. Med Res Rev 2021; 42:112-155. [PMID: 33928670 DOI: 10.1002/med.21806] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/17/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Resistance to therapies targeting the epidermal growth factor receptor (EGFR), such as cetuximab, remains a major roadblock in the search for effective therapeutic strategies in head and neck squamous cell carcinoma (HNSCC). Due to its close interaction with the EGFR pathway, redundant or compensatory activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been proposed as a major driver of resistance to EGFR inhibitors. Understanding the role of each of the main proteins involved in this pathway is utterly important to develop rational combination strategies able to circumvent resistance. Therefore, the current work reviewed the role of PI3K/Akt pathway proteins, including Ras, PI3K, tumor suppressor phosphatase and tensing homolog, Akt and mammalian target of rapamycin in resistance to anti-EGFR treatment in HNSCC. In addition, we summarize PI3K/Akt pathway inhibitors that are currently under (pre)clinical investigation with focus on overcoming resistance to EGFR inhibitors. In conclusion, genomic alterations in and/or overexpression of one or more of these proteins are common in both human papillomavirus (HPV)-positive and HPV-negative HNSCC tumors. Therefore, downstream effectors of the PI3K/Akt pathway serve as promising drug targets in the search for novel therapeutic strategies that are able to overcome resistance to anti-EGFR treatment. Co-targeting EGFR and the PI3K/Akt pathway can lead to synergistic drug interactions, possibly restoring sensitivity to EGFR inhibitors and hereby improving clinical efficacy. Better understanding of the predictive value of PI3K/Akt pathway alterations is needed to allow the identification of patient populations that might benefit most from these combination strategies.
Collapse
Affiliation(s)
- Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Ines De Pauw
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Hasan Baysal
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
259
|
Molecularly targeted therapy for advanced gastrointestinal noncolorectal cancer treatment: how to choose? Past, present, future. Anticancer Drugs 2021; 32:593-601. [PMID: 33929995 DOI: 10.1097/cad.0000000000001071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gastrointestinal cancer is a leading cause of death worldwide. Conventional cytotoxic chemotherapy has been the backbone of advanced gastrointestinal cancer treatment for decades and still represents a key element of the therapeutic armamentarium. However, only small increments in survival outcomes have been reached. New clinical trials are designed, including classic chemotherapy in association with either small-molecule inhibitors or mAb. During the past few years, remarkable progress in molecular biology of gastrointestinal noncolorectal cancers, the discovery of specific targets and the resulting development of systemic drugs that block critical kinases and several molecular pathways have all contributed to progress. New biological agents with molecularly targeted therapies are now available or currently included in clinical trials (EGFR inhibitors (i), antiangiogenic agents, c-METi, IDHi, FGFR2i, BRAFi, Pi3Ki/AKTi/mTORi, NTRKi). When we focus on the current state of precision medicine for gastrointestinal malignancies, it becomes apparent that there is a mixed history of success and failure. The aim of this review is to focus on the studies that have been completed to date with target therapies and to understand which of these are currently the accepted choice in clinical practice and which need further confirmation and approval for inclusion in guidelines. All these findings will enable to guide clinical practice for oncologists in the design of the next round of clinical trials.
Collapse
|
260
|
Ghafouri-Fard S, Abak A, Tondro Anamag F, Shoorei H, Fattahi F, Javadinia SA, Basiri A, Taheri M. 5-Fluorouracil: A Narrative Review on the Role of Regulatory Mechanisms in Driving Resistance to This Chemotherapeutic Agent. Front Oncol 2021; 11:658636. [PMID: 33954114 PMCID: PMC8092118 DOI: 10.3389/fonc.2021.658636] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
5-fluorouracil (5-FU) is among the mostly administrated chemotherapeutic agents for a wide variety of neoplasms. Non-coding RNAs have a central impact on the determination of the response of patients to 5-FU. These transcripts via modulation of cancer-related pathways, cell apoptosis, autophagy, epithelial-mesenchymal transition, and other aspects of cell behavior can affect cell response to 5-FU. Modulation of expression levels of microRNAs or long non-coding RNAs may be a suitable approach to sensitize tumor cells to 5-FU treatment via modulating multiple biological signaling pathways such as Hippo/YAP, Wnt/β-catenin, Hedgehog, NF-kB, and Notch cascades. Moreover, there is an increasing interest in targeting these transcripts in various kinds of cancers that are treated by 5-FU. In the present article, we provide a review of the function of non-coding transcripts in the modulation of response of neoplastic cells to 5-FU.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Dental Research Center, Research Institute for Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Faranak Fattahi
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Seyed Alireza Javadinia
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
261
|
Biomarker-Guided Anti-Egfr Rechallenge Therapy in Metastatic Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13081941. [PMID: 33920531 PMCID: PMC8073594 DOI: 10.3390/cancers13081941] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The survival of patients with metastatic colorectal cancer (mCRC) has been improved over the years and now reaches 30–40 months. However, few therapeutic options are available after failure of first- and second-line treatments. In fact, prognosis of chemo-refractory mCRC remains poor. Therefore, new therapeutic strategies are needed. Emerging evidence suggest that retreatment with epidermal growth factor (EGFR) inhibitors after a treatment break, in patients that obtained a clinical benefit by previous anti-EGFR, could lead to prolonged survival. The rationale beyond this “rechallenge” strategy is that after a “treatment holiday” EGFR resistant cancer cells decay, restoring the sensibility to EGFR blockade. In this review we analyze the current knowledge of retreatment with EGFR inhibitors, examine the role of novel biomarkers that can guide the appropriate selection of patients. Finally, we discuss future perspectives and on-going clinical trials. Abstract The prognosis of patients with metastatic colorectal cancer (mCRC) who progressed to the first and the second lines of treatment is poor. Thus, new therapeutic strategies are needed. During the last years, emerging evidence suggests that retreatment with anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (MAbs) in the third line of mCRC patients, that have previously obtained clinical benefit by first-line therapy with anti-EGFR MAbs plus chemotherapy, could lead to prolonged survival. The rationale beyond this “rechallenge” strategy is that, after disease progression to first line EGFR-based therapy, a treatment break from anti-EGFR drugs results in RAS mutant cancer cell decay, restoring the sensitivity of cancer cells to cetuximab and panitumumab. In fact, rechallenge treatment with anti-EGFR drugs has shown promising clinical activity, particularly in patients with plasma RAS and BRAF wild type circulating tumor DNA, as defined by liquid biopsy analysis at baseline treatment. The aim of this review is to analyze the current knowledge on rechallenge and to investigate the role of novel biomarkers that can guide the appropriate selection of patients that could benefit from this therapeutic strategy. Finally, we discuss on-going trials and future perspectives.
Collapse
|
262
|
Wang X, Luo X, Tian Y, Wu T, Weng J, Li Z, Ye F, Huang X. Equipping Natural Killer Cells with Cetuximab through Metabolic Glycoengineering and Bioorthogonal Reaction for Targeted Treatment of KRAS Mutant Colorectal Cancer. ACS Chem Biol 2021; 16:724-730. [PMID: 33829754 DOI: 10.1021/acschembio.1c00022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While Cetuximab can be used to treat KRAS wild-type colon cancer cells by targeting EGFR and inhibiting the activation of downstream signaling pathways, it exhibits little therapeutic effect on KRAS mutant colon cancer cells. Natural killer (NK) cells are a class of powerful immune cells with anticancer activities. However, NK cells typically lack inherent tumor targeting abilities. Here, a new method is established to bestow NK-92 cells with tumor targeting abilities by installing cetuximab on the cell surface. Through metabolic glycoengineering, azide groups were introduced onto the surface of NK-92 cells. Bioorthogonal strain promoted the azide-alkyne cycloaddition click reaction of engineered NK-92 cells with alkyne modified cetuximab functionalized NK cells with the antibody. The resulting NK-92 cells were significantly more effective than the parent NK-92 cells in protecting against tumor development in a KRAS mutant mouse tumor model resistant to cetuximab treatment. Thus, NK cell functionalization with antibodies enabled by metabolic glycoengineering is a promising strategy to enhance anticancer immune therapy.
Collapse
Affiliation(s)
- Xianwu Wang
- Key Laboratory of Biomedical Engineering of Fujian Province, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xi Luo
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yunpeng Tian
- Xiamen Nuokangde Biological Technology Co., Ltd, Xiamen, 361006, China
| | - Ting Wu
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jian Weng
- Key Laboratory of Biomedical Engineering of Fujian Province, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Zhu Li
- Xiamen Nuokangde Biological Technology Co., Ltd, Xiamen, 361006, China
| | - Feng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Xuefei Huang
- Department of Chemistry and Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
263
|
Yang YCSH, Ko PJ, Pan YS, Lin HY, Whang-Peng J, Davis PJ, Wang K. Role of thyroid hormone-integrin αvβ3-signal and therapeutic strategies in colorectal cancers. J Biomed Sci 2021; 28:24. [PMID: 33827580 PMCID: PMC8028191 DOI: 10.1186/s12929-021-00719-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid hormone analogues-particularly, L-thyroxine (T4) has been shown to be relevant to the functions of a variety of cancers. Integrin αvβ3 is a plasma membrane structural protein linked to signal transduction pathways that are critical to cancer cell proliferation and metastasis. Thyroid hormones, T4 and to a less extend T3 bind cell surface integrin αvβ3, to stimulate the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway to stimulate cancer cell growth. Thyroid hormone analogues also engage in crosstalk with the epidermal growth factor receptor (EGFR)-Ras pathway. EGFR signal generation and, downstream, transduction of Ras/Raf pathway signals contribute importantly to tumor cell progression. Mutated Ras oncogenes contribute to chemoresistance in colorectal carcinoma (CRC); chemoresistance may depend in part on the activity of ERK1/2 pathway. In this review, we evaluate the contribution of thyroxine interacting with integrin αvβ3 and crosstalking with EGFR/Ras signaling pathway non-genomically in CRC proliferation. Tetraiodothyroacetic acid (tetrac), the deaminated analogue of T4, and its nano-derivative, NDAT, have anticancer functions, with effectiveness against CRC and other tumors. In Ras-mutant CRC cells, tetrac derivatives may overcome chemoresistance to other drugs via actions initiated at integrin αvβ3 and involving, downstream, the EGFR-Ras signaling pathways.
Collapse
Affiliation(s)
- Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 11031, Taiwan
| | - Po-Jui Ko
- School of Medicine, I-Shou University, Kaohsiung, 84001, Taiwan.,Department of Pediatrics, E-DA Hospital, Kaohsiung, 82445, Taiwan
| | - Yi-Shin Pan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hung-Yun Lin
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12144, USA.
| | - Jacqueline Whang-Peng
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12144, USA.,Albany Medical College, Albany, NY, 12144, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
264
|
Klupp F, Sass M, Bergmann F, Khajeh E, Ghamarnejad O, Hassenpflug M, Mehrabi A, Kulu Y. Impact of EGFR and EGFR ligand expression on treatment response in patients with metastatic colorectal cancer. Oncol Lett 2021; 21:448. [PMID: 33868486 DOI: 10.3892/ol.2021.12709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
Up to 50% of patients with colorectal cancer (CRC) have either synchronous or metachronous hepatic metastases in the course of their disease. Patients with metastatic CRC (mCRC) whose tumors express wild-type KRAS benefit from treatment with monoclonal antibodies (such as cetuximab or panitumumab) that target the epidermal growth factor receptor (EGFR). However, the therapeutic response to these antibodies is variable, and further predictive models are required. The present study examined whether expression of different EGFRs or their ligands in tumors was associated with the response to cetuximab treatment. Tumor tissues, collected during liver resection in 28 patients with mCRC, were analyzed. The protein expression levels of EGFR/ErbB1, ErbB2, ErbB3 and the EGFR ligands heregulin and amphiregulin were determined using Luminex 200® and enzyme-linked immunosorbent assays. Computed tomography or magnetic resonance imaging was performed 4 weeks before and 6-8 weeks after treatment with cetuximab. Response to treatment was assessed using the response evaluation criteria for solid tumors (RECIST). The association between the protein expression levels of different EGFRs and their ligands with RECIST criteria was then analyzed to determine whether these protein levels could predict the treatment response to cetuximab. A total of 12 patients exhibited a partial response, 9 exhibited stable disease and 7 exhibited progressive disease after cetuximab therapy according to RECIST. The expression levels of EGFRs (EGFR/ErbB1, ErbB2 and ErbB3) and their ligands (heregulin and amphiregulin) were not significantly associated with the response to cetuximab therapy. Therefore, the present study indicated that EGFR or EGFR ligand expression did not predict treatment response in patients with CRC with liver metastases following cetuximab therapy.
Collapse
Affiliation(s)
- Fee Klupp
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Malte Sass
- Department of Otorhinolaryngology, Head and Neck Surgery, Asklepios Hospital, D-21075 Hamburg, Germany
| | - Frank Bergmann
- Institute of Pathology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Elias Khajeh
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Omid Ghamarnejad
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Matthias Hassenpflug
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Yakup Kulu
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
265
|
Hong M, Yoo Y, Kim M, Kim JY, Cha JS, Choi MK, Kim U, Kim K, Sohn Y, Bae D, Cho HS, Hong SB. A Novel Therapeutic Anti-ErbB3, ISU104 Exhibits Potent Antitumorigenic Activity by Inhibiting Ligand Binding and ErbB3 Heterodimerization. Mol Cancer Ther 2021; 20:1142-1152. [PMID: 33782100 DOI: 10.1158/1535-7163.mct-20-0907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
ErbB3, a member of the ErbB receptor family, is a potent mediator in the development and progression of cancer, and its activation plays pivotal roles in acquired resistance against anti-EGFR therapies and other standard-of-care therapies. Upon ligand (NRG1) binding, ErbB3 forms heterodimers with other ErbB proteins (i.e., EGFR and ErbB2), which allows activation of downstream PI3K/Akt signaling. In this study, we developed a fully human anti-ErbB3 antibody, named ISU104, as an anticancer agent. ISU104 binds potently and specifically to the domain 3 of ErbB3. The complex structure of ErbB3-domain 3::ISU104-Fab revealed that ISU104 binds to the NRG1 binding region of domain 3. The elucidated structure suggested that the binding of ISU104 to ErbB3 would hinder not only ligand binding but also the structural changes required for heterodimerization. Biochemical studies confirmed these predictions. ISU104 inhibited ligand binding, ligand-dependent heterodimerization and phosphorylation, and induced the internalization of ErbB3. As a result, downstream Akt phosphorylation and cell proliferation were inhibited. The anticancer efficacy of ISU104 was demonstrated in xenograft models of various cancers. In summary, a highly potent ErbB3 targeting antibody, ISU104, is suitable for clinical development.
Collapse
Affiliation(s)
- Mirim Hong
- Research Institute, ISU ABXIS Co., Ltd., Sungnam-si, Republic of Korea (South)
| | - Youngki Yoo
- Department of Systems Biology, Yonsei University, Seoul, Republic of Korea (South)
| | - Miyoung Kim
- Research Institute, ISU ABXIS Co., Ltd., Sungnam-si, Republic of Korea (South)
| | - Ju Yeon Kim
- Research Institute, ISU ABXIS Co., Ltd., Sungnam-si, Republic of Korea (South)
| | - Jeong Seok Cha
- Department of Systems Biology, Yonsei University, Seoul, Republic of Korea (South)
| | - Myung Kyung Choi
- Department of Systems Biology, Yonsei University, Seoul, Republic of Korea (South)
| | - Uijin Kim
- Department of Systems Biology, Yonsei University, Seoul, Republic of Korea (South)
| | - Kyungyong Kim
- Research Institute, ISU ABXIS Co., Ltd., Sungnam-si, Republic of Korea (South)
| | - Youngsoo Sohn
- Research Institute, ISU ABXIS Co., Ltd., Sungnam-si, Republic of Korea (South)
| | - Donggoo Bae
- Research Institute, ISU ABXIS Co., Ltd., Sungnam-si, Republic of Korea (South)
| | - Hyun-Soo Cho
- Department of Systems Biology, Yonsei University, Seoul, Republic of Korea (South).
| | - Seung-Beom Hong
- Research Institute, ISU ABXIS Co., Ltd., Sungnam-si, Republic of Korea (South).
| |
Collapse
|
266
|
Berdel WE. Unintended Regulatory Caused Early Death-A Difficult Endpoint in Cancer Patient Care and Treatment. Cancers (Basel) 2021; 13:cancers13061457. [PMID: 33810203 PMCID: PMC8005202 DOI: 10.3390/cancers13061457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary This is a position paper by a clinical oncologist. It voices concerns about political decision making and regulatory time frames for drug availability, both of which are critical for patient care in life-threatening diseases such as cancer. Abstract The pharmacological armory against cancer has been growing, with many new drugs approved. The Good Clinical Practice (GCP)-based Clinical Trials Directive was adopted in the EU in 2001, with the important objectives of achieving better patient safety and improved quality of clinical trial conduct. However, clinical experience with the implementation of the regulation raises the question as to whether aspects of this regulatory framework can cause harm to some patients. This question also arises in daily clinical cancer patient care when the time between the publication of pivotal study results and their approval, and details of post-approval regulations, are scrutinized. Clinical observations, provocatively summarized as “unintended regulatory caused early death”, are discussed.
Collapse
Affiliation(s)
- Wolfgang E Berdel
- Department of Medicine A (Hematology, Hemostaseology, Oncology, Pneumology), University Hospital of Muenster, D-48149 Muenster, Germany
| |
Collapse
|
267
|
Angerilli V, Galuppini F, Businello G, Dal Santo L, Savarino E, Realdon S, Guzzardo V, Nicolè L, Lazzarin V, Lonardi S, Loupakis F, Fassan M. MicroRNAs as Predictive Biomarkers of Resistance to Targeted Therapies in Gastrointestinal Tumors. Biomedicines 2021; 9:318. [PMID: 33801049 PMCID: PMC8003870 DOI: 10.3390/biomedicines9030318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
The advent of precision therapies against specific gene alterations characterizing different neoplasms is revolutionizing the oncology field, opening novel treatment scenarios. However, the onset of resistance mechanisms put in place by the tumor is increasingly emerging, making the use of these drugs ineffective over time. Therefore, the search for indicators that can monitor the development of resistance mechanisms and above all ways to overcome it, is increasingly important. In this scenario, microRNAs are ideal candidate biomarkers, being crucial post-transcriptional regulators of gene expression with a well-known role in mediating mechanisms of drug resistance. Moreover, as microRNAs are stable molecules, easily detectable in tissues and biofluids, they are the ideal candidate biomarker to identify patients with primary resistance to a specific targeted therapy and those who have developed acquired resistance. The aim of this review is to summarize the major studies that have investigated the role of microRNAs as mediators of resistance to targeted therapies currently in use in gastro-intestinal neoplasms, namely anti-EGFR, anti-HER2 and anti-VEGF antibodies, small-molecule tyrosine kinase inhibitors and immune checkpoint inhibitors. For every microRNA and microRNA signature analyzed, the putative mechanisms underlying drug resistance were outlined and the potential to be translated in clinical practice was evaluated.
Collapse
Affiliation(s)
- Valentina Angerilli
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Francesca Galuppini
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Gianluca Businello
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Luca Dal Santo
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Edoardo Savarino
- Division of Gastroenterology, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, 35100 Padua, Italy;
| | - Stefano Realdon
- Istituto Oncologico Veneto (IOV-IRCCS), 35100 Padua, Italy; (S.R.); (S.L.); (F.L.)
| | - Vincenza Guzzardo
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Lorenzo Nicolè
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Vanni Lazzarin
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Sara Lonardi
- Istituto Oncologico Veneto (IOV-IRCCS), 35100 Padua, Italy; (S.R.); (S.L.); (F.L.)
| | - Fotios Loupakis
- Istituto Oncologico Veneto (IOV-IRCCS), 35100 Padua, Italy; (S.R.); (S.L.); (F.L.)
| | - Matteo Fassan
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
- Istituto Oncologico Veneto (IOV-IRCCS), 35100 Padua, Italy; (S.R.); (S.L.); (F.L.)
| |
Collapse
|
268
|
Li Y, Gao Q, Liu H, Lin S, Chen H, Ding R, Gu Y, Chao CC, Dong X. The Targeting Effect of Cetuximab Combined with PD-L1 Blockade against EGFR-Expressing Tumors in a Tailored CD16-CAR T-Cell Reporter System. Cancer Invest 2021; 39:285-296. [PMID: 33646061 DOI: 10.1080/07357907.2021.1894570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The switchable chimeric antigen receptors (CARs) have shown many advantages in CAR T-cell therapy. However, human primary T-cells are required to evaluate antigen-specific adaptors by IFN-γ assay or FACS analysis, which limits the throughput of adaptor screening. A sensitive and robust CD16-CAR Jurkat NFAT-eGFP reporter system has been developed to assess the therapeutic efficacy of antibody-targeted CAR-T-cell by effectively evaluating the T-cell activation by various tumor cells and the impact of immune checkpoint inhibitor antibodies. This reporter system facilitates the screening of targeted antibodies in a high throughput manner for the development of improved T-cell immunotherapy.
Collapse
Affiliation(s)
- Yijian Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | | | | | | | | | | | - Ying Gu
- BGI-Shenzhen, Shenzhen, China
| | | | - Xuan Dong
- BGI-Shenzhen, Shenzhen, China.,Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| |
Collapse
|
269
|
Auber ML, Wen S, Hobbs G, Higa GM. Capecitabine as Maintenance Therapy for High-Risk, Resected Colorectal Cancer. Gastrointest Tumors 2021; 8:81-86. [PMID: 33981686 DOI: 10.1159/000513960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/22/2020] [Indexed: 11/19/2022] Open
Abstract
Introduction In 2020, colorectal cancer will be the fourth most frequently diagnosed malignant neoplasm and the second leading cause of site-specific, cancer-related deaths in the USA. Notably, 80% of the new cases are, by staging criteria, potentially curable even those with completely resected stage 4 disease. If slightly more than half the losses can be attributed to metastatic disease at presentation, then the remaining portion of deaths may be linked to disease relapse after surgery and, if applicable, adjuvant chemotherapy. The inference that these therapies are not curative for a significant number of subjects poses a role for maintenance therapy. Objective To assess event-free survival (EFS) of patients who received capecitabine as maintenance therapy following treatment according to current guidelines. Methods Clinical outcomes data were collected for 35 subjects treated with capecitabine as maintenance therapy. Descriptive statistical analyses were conducted on collective data related to duration of maintenance therapy and disease or clinical status from surgery to initial event. Kaplan-Meier method and log-rank test were used to analyze EFS and overall survival. Results Of the entire cohort, 26 subjects have no evidence of disease (NED), a median of 5.5 years from surgery. Kaplan-Meier analyses indicated a 5-year EFS rate of 74% (95% CI: 60-90%). Eighteen of these 26 patients received capecitabine ≥30 months. Eight of the 17 subjects treated with capecitabine therapy for <30 months developed progressive disease; the majority of the relapses occurred within 20 months of surgery. The difference between the two groups was statistically significant. Six subjects died, only two of who had metastatic disease at the time of death; the other four had NED at least 4 years from surgery. Five patients with resected stage 4 disease who received capecitabine as maintenance therapy were alive >5 years from surgery. Conclusion The findings and analyses of this cohort of patients suggest that maintenance capecitabine therapy reduces the risk of disease progression and cancer-related death.
Collapse
Affiliation(s)
- Miklos L Auber
- Department of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown, West Virginia, USA
| | - Gerald Hobbs
- Department of Statistics, West Virginia University, Morgantown, West Virginia, USA
| | - Gerald M Higa
- Department of Medicine, West Virginia University, Morgantown, West Virginia, USA.,Department of Clinical Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
270
|
Rosenkranz AA, Slastnikova TA. Epidermal Growth Factor Receptor: Key to Selective Intracellular Delivery. BIOCHEMISTRY (MOSCOW) 2021; 85:967-1092. [PMID: 33050847 DOI: 10.1134/s0006297920090011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidermal growth factor receptor (EGFR) is an integral surface protein mediating cellular response to a number of growth factors. Its overexpression and increased activation due to mutations is one of the most common traits of many types of cancer. Development and clinical use of the agents, which block EGFR activation, became a prime example of the personalized targeted medicine. However, despite the obvious success in this area, cancer cure remains unattainable in most cases. Because of that, as well as the result of the search for possible ways to overcome the difficulties of treatment, a huge number of new treatment methods relying on the use of EGFR overexpression and its changes to destroy cancer cells. Modern data on the structure, functioning, and intracellular transport of EGFR, its natural ligands, as well as signaling cascades triggered by the EGFR activation, peculiarities of the EGFR expression and activation in oncological disorders, as well as applied therapeutic approaches aimed at blocking EGFR signaling pathway are summarized and analyzed in this review. Approaches to the targeted delivery of various chemotherapeutic agents, radionuclides, immunotoxins, photosensitizers, as well as the prospects for gene therapy aimed at cancer cells with EGFR overexpression are reviewed in detail. It should be noted that increasing attention is being paid nowadays to the development of multifunctional systems, either carrying several different active agents, or possessing several environment-dependent transport functions. Potentials of the systems based on receptor-mediated endocytosis of EGFR and their possible advantages and limitations are discussed.
Collapse
Affiliation(s)
- A A Rosenkranz
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - T A Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
271
|
Benson AB, Venook AP, Al-Hawary MM, Arain MA, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Farkas L, Garrido-Laguna I, Grem JL, Gunn A, Hecht JR, Hoffe S, Hubbard J, Hunt S, Johung KL, Kirilcuk N, Krishnamurthi S, Messersmith WA, Meyerhardt J, Miller ED, Mulcahy MF, Nurkin S, Overman MJ, Parikh A, Patel H, Pedersen K, Saltz L, Schneider C, Shibata D, Skibber JM, Sofocleous CT, Stoffel EM, Stotsky-Himelfarb E, Willett CG, Gregory KM, Gurski LA. Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19:329-359. [PMID: 33724754 DOI: 10.6004/jnccn.2021.0012] [Citation(s) in RCA: 921] [Impact Index Per Article: 230.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This selection from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Colon Cancer focuses on systemic therapy options for the treatment of metastatic colorectal cancer (mCRC), because important updates have recently been made to this section. These updates include recommendations for first-line use of checkpoint inhibitors for mCRC, that is deficient mismatch repair/microsatellite instability-high, recommendations related to the use of biosimilars, and expanded recommendations for biomarker testing. The systemic therapy recommendations now include targeted therapy options for patients with mCRC that is HER2-amplified, or BRAF V600E mutation-positive. Treatment and management of nonmetastatic or resectable/ablatable metastatic disease are discussed in the complete version of the NCCN Guidelines for Colon Cancer available at NCCN.org. Additional topics covered in the complete version include risk assessment, staging, pathology, posttreatment surveillance, and survivorship.
Collapse
Affiliation(s)
- Al B Benson
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | - Alan P Venook
- 2UCSF Helen Diller Family Comprehensive Cancer Center
| | | | | | | | | | - Stacey Cohen
- 6Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | | | - Linda Farkas
- 9UT Southwestern Simmons Comprehensive Cancer Center
| | | | | | | | | | | | | | - Steven Hunt
- 16Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | - Smitha Krishnamurthi
- 19Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | | | - Eric D Miller
- 22The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Mary F Mulcahy
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | | | - Katrina Pedersen
- 16Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Thol K, McGranahan N. Potential Use of Shared Frameshift Mutations in 'Off-the-Shelf' Neoantigen Vaccines. Trends Cancer 2021; 7:175-177. [PMID: 33500225 DOI: 10.1016/j.trecan.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/30/2022]
Abstract
Neoantigens derived from frameshift mutations in microsatellite unstable tumours are more commonly shared between different patients' cancers compared with neoantigens arising from missense mutations. A recent study by Roudko et al. evaluates the immunogenicity of shared frameshift neoantigens, which could potentially be used in 'off-the-shelf' neoantigen vaccines.
Collapse
Affiliation(s)
- Kerstin Thol
- Cancer Genome Evolution Research Group, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
273
|
Li S, Hu H, Ding D, Zhu Y, Huang J. Cost-Effectiveness Analysis of Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Metastatic Colorectal Cancer in the USA. Adv Ther 2021; 38:1650-1659. [PMID: 33569738 DOI: 10.1007/s12325-021-01627-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/15/2021] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Recently the phase 3 BEACON trial showed that the combination of encorafenib, cetuximab, and binimetinib versus cetuximab and irinotecan/FOLFIRI improved overall survival in pre-treated patients with metastatic colorectal cancer (mCRC) with BRAF V600E mutation. However, whether the benefits of these therapies justify their high costs has not been estimated in the USA. The purpose of this study was to evaluate the cost-effectiveness of BEC (binimetinib, encorafenib, and cetuximab), EC (encorafenib and cetuximab), and CI/CF (cetuximab with irinotecan or FOLFIRI) in patients with BRAF V600E-mutated mCRC after first- and second-line therapy. METHODS A Markov model was constructed to determine the costs and effects of BEC, EC, and CI/CF on the basis of BEACON trial outcomes data. Health outcomes were measured in life years (LYs), quality-adjusted life years (QALYs), and incremental cost-effectiveness ratios (ICERs). Deterministic and probabilistic sensitivity analyses characterized parameters influencing cost-effectiveness. Subgroup analyses were conducted as well. RESULTS The QALYs gained in BEC, EC, and CI/CF were 0.62, 0.54, and 0.40, respectively. BEC resulted in ICERs of $883,895.73/QALY and $1,646,846.14/QALY versus CI/CF and EC, respectively. Compared with CI/CF, the ICER was $435,449.88/QALY in EC. The most sensitive parameters in the comparison among the three arms were the utilities of progressive disease and progression-free survival. Probabilistic sensitivity analyses showed that the probability of BEC and EC being cost-effective was 0%. In subgroup analyses, the ICER remained above the willingness-to-pay threshold of $150,000 per QALY. CONCLUSION BEC and EC were not cost-effective regimens for patients with pre-treated mCRC with BRAF V600E mutation.
Collapse
Affiliation(s)
- Shuosha Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huabin Hu
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, 510655, China
| | - Dong Ding
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Youwen Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
274
|
Shan Z, Luo D, Liu Q, Cai S, Wang R, Ma Y, Li X. Proteomic profiling reveals a signature for optimizing prognostic prediction in Colon Cancer. J Cancer 2021; 12:2199-2205. [PMID: 33758598 PMCID: PMC7974900 DOI: 10.7150/jca.50630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/26/2020] [Indexed: 01/11/2023] Open
Abstract
Previous studies developed prognostic signatures largely depended on transcriptome profiles. The purpose of our present study was to develop a proteomic signature to optimize the evaluation of prognosis of colon cancer patients. The proteomic data of colon cancer patient cohorts were downloaded from The Cancer Proteome Atlas (TCPA). Patients were randomized 3:2 to train set and internal validation set. Univariate Cox regression and lasso Cox regression analysis were performed to identify the prognostic proteins. A four-protein signature was developed to divide patients into a high-risk group and low-risk group with significantly different survival outcomes in both train set and internal validation set. Time-dependent receiver-operating characteristic at 1 year demonstrated that the proteomic signature presented more prognostic accuracy [area under curve (AUC = 0.704)] than the American Joint Commission on Cancer tumor-node-metastasis (AJCC-TNM) staging system (AUC = 0.681) in entire set. In conclusion, we developed a proteomic signature which can improve prognostic accuracy of patients with colon cancer and optimize the therapeutic and follow-up strategies.
Collapse
Affiliation(s)
- Zezhi Shan
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Dakui Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Renjie Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
275
|
Trends in Primary Surgical Resection and Chemotherapy for Metastatic Colorectal Cancer, 2000-2016. Am J Clin Oncol 2021; 43:850-856. [PMID: 32976176 DOI: 10.1097/coc.0000000000000764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND When, whether, and in whom primary tumor resection (PTR) for patients with metastatic colorectal cancer (CRC) is indicated remains unknown. With advances in multiagent systemic chemotherapy, PTR may be undertaken less frequently. The aim of this study was to obtain estimates of changes in the utilization of PTR and chemotherapy for metastatic CRC. METHODS Patients diagnosed with metastatic CRC between 2000 and 2016 were identified from Surveillance Epidemiology, and End Results (SEER) registry. Multivariable logistic regression defined odds of undergoing PTR. The analysis was also stratified by primary site (colon vs. rectum), age (younger than 50 vs. 50 y and older), and whether patients also underwent resection of metastatic sites (yes vs. no). The secondary endpoint of interest was the receipt of any chemotherapy, also assessed by multivariable logistic regression. RESULTS Among 99,835 patients with metastatic CRC, 55,527 (55.7%) underwent PTR. The odds of undergoing PTR decreased with a later year of diagnosis, with patients diagnosed in 2016 being 61.1% less likely to undergo surgery than those diagnosed in 2000 (adjusted odds ratio=0.39, 95% confidence interval: 0.36-0.42, P<0.0001; absolute percentage: 62.3% to 43.8%). Similar trends by year for PTR were observed among each of the subgroups, although patients with colon primary, young adults (age younger than 50 y), and patients also undergoing metastasectomy were more likely to undergo PTR (P<0.001 for all). In contrast, the odds of receiving chemotherapy increased dramatically with a later year of diagnosis (adjusted odds ratio=2.21, 95% confidence interval: 2.04-2.40, P<0.0001). CONCLUSIONS From 2000 to 2016, there was a sharp decline in the rate of PTR for patients with metastatic CRC, while the use of chemotherapy increased over the same period. Prospective studies are needed to define the optimal local treatment for patients with metastatic CRC.
Collapse
|
276
|
Adenoid cystic carcinoma: a review of clinical features, treatment targets and advances in improving the immune response to monoclonal antibody therapy. Biochim Biophys Acta Rev Cancer 2021; 1875:188523. [PMID: 33600823 DOI: 10.1016/j.bbcan.2021.188523] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 12/11/2022]
Abstract
The natural history of adenoid cystic carcinoma (ACC) is relentless, defined by treatment failure heralded by locoregional recurrence and distant metastatic disease. In this review, we present an update of clinical features, molecular classification, current targeted therapies, immune landscapes and novel treatment targets with their respective clinical trials. The presented results are defined by a lack of overall response rate and limited progression free survival, with restriction to stable disease. In addition, ACC is resistant to immune checkpoint inhibition due to low tumour immunogenicity and lack of PD-L1 expression. Here we present a new prospective research paradigm for ACC, including the potential to target prostate specific membrane antigen (PSMA) and the potential for manipulation of target receptors in the clinic. The presentation of this review aims to promote future research to improve response rates and outcomes for therapeutics undergoing clinical trial in ACC.
Collapse
|
277
|
Sivaccumar J, Sandomenico A, Vitagliano L, Ruvo M. Monoclonal Antibodies: A Prospective and Retrospective View. Curr Med Chem 2021; 28:435-471. [PMID: 32072887 DOI: 10.2174/0929867327666200219142231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoclonal Antibodies (mAbs) represent one of the most important classes of biotherapeutic agents. They are used to cure many diseases, including cancer, autoimmune diseases, cardiovascular diseases, angiogenesis-related diseases and, more recently also haemophilia. They can be highly varied in terms of format, source, and specificity to improve efficacy and to obtain more targeted applications. This can be achieved by leaving substantially unchanged the basic structural components for paratope clustering. OBJECTIVES The objective was to trace the most relevant findings that have deserved prestigious awards over the years, to report the most important clinical applications and to emphasize their latest emerging therapeutic trends. RESULTS We report the most relevant milestones and new technologies adopted for antibody development. Recent efforts in generating new engineered antibody-based formats are briefly reviewed. The most important antibody-based molecules that are (or are going to be) used for pharmacological practice have been collected in useful tables. CONCLUSION The topics here discussed prove the undisputed role of mAbs as innovative biopharmaceuticals molecules and as vital components of targeted pharmacological therapies.
Collapse
Affiliation(s)
- Jwala Sivaccumar
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luigi Vitagliano
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| |
Collapse
|
278
|
Strickler JH, Rushing CN, Uronis HE, Morse MA, Niedzwiecki D, Blobe GC, Moyer AN, Bolch E, Webb R, Haley S, Hatch AJ, Altomare IP, Sherrill GB, Chang DZ, Wells JL, Hsu SD, Jia J, Zafar SY, Nixon AB, Hurwitz HI. Cabozantinib and Panitumumab for RAS Wild-Type Metastatic Colorectal Cancer. Oncologist 2021; 26:465-e917. [PMID: 33469991 DOI: 10.1002/onco.13678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
LESSONS LEARNED Antitumor activity was observed in the study population. Dose modifications of cabozantinib improve long-term tolerability. Biomarkers are needed to identify patient populations most likely to benefit. Further study of cabozantinib with or without panitumumab in patients with metastatic colorectal cancer is warranted. BACKGROUND The epidermal growth factor receptor (EGFR) antibody panitumumab is active in patients with RAS wild-type (WT) metastatic colorectal cancer (mCRC), but nearly all patients experience resistance. MET amplification is a driver of panitumumab resistance. Cabozantinib is an inhibitor of multiple kinases, including vascular endothelial growth factor receptor 2 (VEGFR2) and c-MET, and may delay or reverse anti-EGFR resistance. METHODS In this phase Ib clinical trial, we established the maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of cabozantinib and panitumumab. We then treated an expansion cohort to further describe the tolerability and clinical activity of the RP2D. Eligibility included patients with KRAS WT mCRC (later amended to include only RAS WT mCRC) who had received prior treatment with a fluoropyrimidine, oxaliplatin, irinotecan, and bevacizumab. RESULTS Twenty-five patients were enrolled and treated. The MTD/RP2D was cabozantinib 60 mg p.o. daily and panitumumab 6 mg/kg I.V. every 2 weeks. The objective response rate (ORR) was 16%. Median progression free survival (PFS) was 3.7 months (90% confidence interval [CI], 2.3-7.1). Median overall survival (OS) was 12.1 months (90% CI, 7.5-14.3). Five patients (20%) discontinued treatment due to toxicity, and 18 patients (72%) required a dose reduction of cabozantinib. CONCLUSION The combination of cabozantinib and panitumumab has activity. Dose reductions of cabozantinib improve tolerability.
Collapse
Affiliation(s)
| | - Christel N Rushing
- Duke Cancer Institute, Biostatistics, Duke University Medical Center, Durham, North Carolina, USA
| | - Hope E Uronis
- Duke University Medical Center, Durham, North Carolina, USA
| | | | - Donna Niedzwiecki
- Duke Cancer Institute, Biostatistics, Duke University Medical Center, Durham, North Carolina, USA
| | - Gerard C Blobe
- Duke University Medical Center, Durham, North Carolina, USA
| | - Ashley N Moyer
- Duke University Medical Center, Durham, North Carolina, USA
| | - Emily Bolch
- Duke University Medical Center, Durham, North Carolina, USA
| | - Renee Webb
- Duke University Medical Center, Durham, North Carolina, USA
| | - Sherri Haley
- Duke University Medical Center, Durham, North Carolina, USA
| | - Ace J Hatch
- Duke University Medical Center, Durham, North Carolina, USA
| | - Ivy P Altomare
- Duke University Medical Center, Durham, North Carolina, USA
| | - Gary B Sherrill
- Moses Cone Regional Cancer Center, Greensboro, North Carolina, USA
| | - David Z Chang
- Virginia Oncology Associates, Hampton, Virginia, USA
| | - James L Wells
- Lexington Oncology, West Columbia, South Carolina, USA
| | - S David Hsu
- Duke University Medical Center, Durham, North Carolina, USA
| | - Jingquan Jia
- Duke University Medical Center, Durham, North Carolina, USA
| | - S Yousuf Zafar
- Duke University Medical Center, Durham, North Carolina, USA
| | - Andrew B Nixon
- Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
279
|
Chen R, Huang Y, Wang L, Zhou J, Tan Y, Peng C, Yang P, Peng W, Li J, Gu Q, Sheng Y, Wang Y, Shao G, Zhang Q, Sun Y. Cetuximab functionalization strategy for combining active targeting and antimigration capacities of a hybrid composite nanoplatform applied to deliver 5-fluorouracil: toward colorectal cancer treatment. Biomater Sci 2021; 9:2279-2294. [PMID: 33538278 DOI: 10.1039/d0bm01904f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibody-functionalized targeted nanocarriers to deliver chemotherapeutics have been widely explored. However, it remains highly desirable to understand and apply the antitumor potential of antibodies integrated in hybrid composite nanoplatforms. Herein, mesoporous silica nanoparticles, a supported lipid bilayer and cetuximab were integrated to fabricate a hybrid nanoplatform for effectively encapsulating and selectively delivering 5-fluorouracil (5-FU) against colorectal cancer (CRC) cells. The specially designed nanoplatform exhibited superior properties, such as satisfying size distribution, dispersity and stability, drug encapsulation, controlled release, and cellular uptake. Interestingly, the modification of cetuximab onto nanoplatforms without drug loading can significantly inhibit the migration and invasion of CRC cells through suppressing the epidermal growth factor receptor (EGFR)-associated signaling pathway. Furthermore, delivery of 5-FU by using this nanoplatform can remarkably induce cytotoxicity, cell cycle arrest, and cell apoptosis for CRC cells with high EGFR expression. Overall, this nanostructured platform can dramatically improve the tumor killing effects of encapsulated chemotherapeutics and present antimigration effects derived from the antibody modified on it. Moreover, in vivo biodistribution experiments demonstrated the superior tumor targeting ability of the targeted nanoparticles. Thus, this targeted nanoplatform has substantial potential in combinational therapy of antibodies and chemotherapy agents against colorectal cancer.
Collapse
Affiliation(s)
- Ranran Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Molecular Genetics and the Role of Molecularly Targeted Agents in Metastatic Colorectal Carcinoma. J Gastrointest Cancer 2021; 51:387-400. [PMID: 31273629 DOI: 10.1007/s12029-019-00272-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. It is the third most common malignancy and fourth leading cancer-related deaths worldwide. In the USA, CRC is the third most commonly diagnosed cancer in both men and women. It is caused by genetic components and potential environmental factors such as consumption of processed meat, red meat, animal fats, low fiber intake, and obesity. Despite the utilization of effective screening modalities and guidelines in the USA, a significant number of patients are diagnosed with advanced, metastatic disease at the time of presentation to the physician. Recent advances in the understanding of molecular medicine with subsequent development and incorporation of newer therapeutic agents into current chemotherapeutic regimens have improved outcomes; however, the management of metastatic CRC remains challenging, particularly for the treating oncologists. METHODS We conducted a literature search on CRC mainly related to molecular genetics, targeted biologic agents, and published clinical trials. We also searched and reviewed ongoing clinical trials from Clinicaltrials.gov. RESULTS AND CONCLUSIONS Alterations in several oncogenes are associated with CRC, among those RAS, BRAF, and HER2 are of current clinical importance. Chemotherapy drugs, along with vascular endothelial growth factor or epidermal growth factor receptor monoclonal antibodies, are proven to be efficient with manageable toxicity profiles in metastatic CRC. Additional researches on Her-2-directed therapy, BRAF-targeted agents, immunotherapeutic, and newer molecularly targeted agents are needed for further improvement in outcome.
Collapse
|
281
|
Lisby AN, Flickinger JC, Bashir B, Weindorfer M, Shelukar S, Crutcher M, Snook AE, Waldman SA. GUCY2C as a biomarker to target precision therapies for patients with colorectal cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021; 6:117-129. [PMID: 34027103 DOI: 10.1080/23808993.2021.1876518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction Colorectal cancer (CRC) is one of the most-deadly malignancies worldwide. Current therapeutic regimens for CRC patients are relatively generic, based primarily on disease type and stage, with little variation. As the field of molecular oncology advances, so too must therapeutic management of CRC. Understanding molecular heterogeneity has led to a new-found promotion for precision therapy in CRC; underlining the diversity of molecularly targeted therapies based on individual tumor characteristics. Areas covered We review current approaches for the treatment of CRC and discuss the potential of precision therapy in advanced CRC. We highlight the utility of the intestinal protein guanylyl cyclase C (GUCY2C), as a multi-purpose biomarker and unique therapeutic target in CRC. Here, we summarize current GUCY2C-targeted approaches for treatment of CRC. Expert opinion The GUCY2C biomarker has multi-faceted utility in medicine. Developmental investment of GUCY2C as a diagnostic and therapeutic biomarker offers a variety of options taking the molecular characteristics of cancer into account. From GUCY2C-targeted therapies, namely cancer vaccines, CAR-T cells, and monoclonal antibodies, to GUCY2C agonists for chemoprevention in those who are at high risk for developing colorectal cancer, the utility of this protein provides many avenues for exploration with significance in the field of precision medicine.
Collapse
Affiliation(s)
- Amanda N Lisby
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Babar Bashir
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Megan Weindorfer
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Sanjna Shelukar
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Madison Crutcher
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
282
|
Affiliation(s)
- Cathy Eng
- Vanderbilt-Ingram Cancer Center, Nashville, TN
| |
Collapse
|
283
|
Mammana M, Bergamo F, Procaccio L, Schiavon M, Loupakis F, Lonardi S, Manai C, Schirripa M, Fassan M, Dei Tos AP, Calabrese F, Rea F, Zagonel V. Outcome of patients with colorectal cancer undergoing lung metastases resection: a single-institution retrospective analysis. TUMORI JOURNAL 2021; 107:46-54. [PMID: 32597321 DOI: 10.1177/0300891620930793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION This study was undertaken to review a single-institution cohort of patients with metastatic colorectal cancer undergoing lung resection after a multidisciplinary evaluation and to investigate the main prognostic factors for survival. METHODS Medical records of 129 patients undergoing lung metastasectomy for colorectal cancer with curative intent from 2001 to 2017 were reviewed. Tissue samples from the primary tumor were analyzed with a multiplex genotyping system for the detection of mutations in RAS and BRAF genes. Survival analyses were carried out by the Kaplan-Meier method. Univariate and multivariable analyses were performed using the log-rank test and the Cox regression model. RESULTS Postoperative morbidity and mortality were 13.2% and 0%, respectively. At a median follow-up time of 62.5 months, median overall survival was 90.5 months and median relapse-free survival was 42.8 months. Multivariable analysis for overall survival identified synchronous versus metachronous metastatic presentation as the only prognostic factor, whereas relapse-free survival was independently associated with synchronous versus metachronous metastatic presentation, number of metastases, and postoperative chemotherapy. CONCLUSIONS This study shows particularly favorable survival outcomes for patients undergoing lung metastasectomy. The validity of some of the main prognostic factors was confirmed and a positive effect of postoperative chemotherapy on relapse-free survival was shown. Contrary to other reports, the presence of KRAS mutations was not associated with significant survival differences. Further studies are needed in order to clarify the interactions between molecular, clinical, and pathologic characteristics and treatment-related factors.
Collapse
Affiliation(s)
- Marco Mammana
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Francesca Bergamo
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Istituto Oncologico Veneto (IRCSS), Padua, Italy
| | - Letizia Procaccio
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Istituto Oncologico Veneto (IRCSS), Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Marco Schiavon
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Fotios Loupakis
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Istituto Oncologico Veneto (IRCSS), Padua, Italy
| | - Sara Lonardi
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Istituto Oncologico Veneto (IRCSS), Padua, Italy
| | - Chiara Manai
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Istituto Oncologico Veneto (IRCSS), Padua, Italy
| | - Marta Schirripa
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Istituto Oncologico Veneto (IRCSS), Padua, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Fiorella Calabrese
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Federico Rea
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Vittorina Zagonel
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Istituto Oncologico Veneto (IRCSS), Padua, Italy
| |
Collapse
|
284
|
89Zr-Labeled Domain II-Specific scFv-Fc ImmunoPET Probe for Imaging Epidermal Growth Factor Receptor In Vivo. Cancers (Basel) 2021; 13:cancers13030560. [PMID: 33535661 PMCID: PMC7867132 DOI: 10.3390/cancers13030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/18/2020] [Accepted: 01/22/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Abundance of certain proteins such as epidermal growth factor receptor (EGFR) and their growth factors on cancer cells is in part responsible for their uncontrolled growth. Compounds that selectively bind to such proteins have diagnostic and/or therapeutic implications. EGFR has four binding domains (I-IV). Most anti-EGFR therapeutic antibodies bind to domain III. Compounds that bind to other domains have implications not only for diagnosis but also for monitoring therapy response. We describe the development of a diagnostic agent to be used with positron emission tomography (PET) that binds to domain II of EGFR. We developed 89Zr-8709-scFv-Fc antibody PET agent and evaluated its binding characteristics in cancer cells and mouse models. The presence of a domain III-binding antibody such as nimotuzumab did not inhibit the binding of 89Zr-8709-scFv-Fc, and vice versa. Therefore, 89Zr-8709-scFv-Fc PET/CT can be used for diagnosis and monitoring therapy response in the presence of a domain III-binding agent. Abstract Epidermal growth factor receptor I (EGFR) is overexpressed in many cancers. The extracellular domain of EGFR has four binding epitopes (domains I- IV). All clinically approved anti-EGFR antibodies bind to domain III. Imaging agents that bind to domains other than domain III of EGFR are needed for accurate quantification of EGFR, patient selection for anti-EGFR therapeutics and monitoring of response to therapies. We recently developed a domain II-specific antibody fragment 8709. In this study, we have evaluated the in vitro and in vivo properties of 89Zr-8709-scFv-Fc (105 kDa). We conjugated 8709-scFv-Fc with the deferoxamine (DFO) chelator and radiolabeled the DFO-8970-scFv with 89Zr. We evaluated the binding of 89Zr-DFO-8709-scFv-Fc in EGFR positive and negative cell lines DLD-1, MDA-MB-231 and MDA-MB-435, respectively, and in mouse xenograft models. Simultaneously, we have compared the binding of 89Zr-8709-scFv-Fc with 111In-nimotuzumab, a domain III anti-EGFR antibody. DFO-8709-scFv-Fc displayed similar cell binding specificity as 8709-scFv-Fc. Saturation cell binding assay and immunoreactive fraction showed that radiolabeling did not alter the binding of 8709-scFv-Fc. Biodistribution and microPET showed good uptake of 89Zr-8709-scFv-Fc in xenografts after 120 h post injection (p.i). and was domain-specific to EGFR domain II. 89Zr-8709-scFv-Fc did not compete for binding in vitro and in vivo with a known domain III binder nimotuzumab. The results show that 89Zr-8709-scFv-Fc is specific to domain II of EGFR making it favorable for quantification of EGFR in vivo, hence, patient selection and monitoring of response to treatment with anti-EGFR antibodies.
Collapse
|
285
|
Preparation of a novel EGFR specific immunotoxin and its efficacy of anti-colorectal cancer in vitro and in vivo. Clin Transl Oncol 2021; 23:1549-1560. [PMID: 33474678 DOI: 10.1007/s12094-020-02548-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Epithelial growth factor receptor (EGFR), as a malignancy marker, is overly expressed in multiple solid tumors including colorectal neoplasms, one of the most prevalent malignancies worldwide. The main objective of this study is to enhance the efficacy of anti-tumor therapy targeting EGFR by constructing a novel EGFR-specific immunotoxin (C-CUS245C) based on Cetuximab and recombinant Cucurmosin (CUS245C). METHODS E. coli BL21 (DE3) PlysS (E. coli) was used to express CUS245C with a cysteine residue inserting to the C-terminus of Cucurmosin. Then immobilized metal ion affinity chromatography (IMAC) was used to purify CUS245C. The chemical conjugation method was used for the preparation of C-CUS245C. Then dialysis and IMAC were used to purify C-CUS245C. Western blot as well as SDS-PAGE was carried out to characterize the formation of C-CUS245C. At last the anti-colorectal cancer activity of C-CUS245C was investigated in vitro and in vivo. RESULTS CUS245C with high purity could be obtained from the prokaryotic system. C-CUS245C was successfully constructed and highly purified. The cytotoxicity assays in vitro showed a significant proliferation inhibition of C-CUS245C on EGFR-positive cells for 120 h with IC50 values less than 0.1 pM. Besides, the anti-tumor efficacy of C-CUS245C was remarkably more potent than that of Cetuximab, CUS245C, and C + CUS245C (P < 0.001). Whereas the cytotoxicity of C-CUS245C could hardly be detected on EGFR-null cell line. Our results also showed that C-CUS245C had efficacy of anti-colorectal cancer in mouse xenograft model, indicating the therapeutic potential of C-CUS245C for the targeted therapy of colorectal neoplasms. CONCLUSIONS C-CUS245C exhibits potent and EGFR-specific cytotoxicity. Insertional mutagenesis technique is worthy to be adopted in the preparation of immunotoxin. Immunotoxin can be highly purified through dialysis followed by IMAC.
Collapse
|
286
|
Kafatos G, Banks V, Burdon P, Neasham D, Anger C, Manuguid F, Lowe KA, Cheung P, Taieb J, van Krieken JH. Biomarker testing and mutation prevalence in metastatic colorectal cancer patients in five European countries using a large oncology database. Future Oncol 2021; 17:1483-1494. [PMID: 33464119 DOI: 10.2217/fon-2020-0975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: The literature on biomarker testing for metastatic colorectal cancer (mCRC) in Europe is scarce. This study aimed to estimate the percentage of mCRC patients from five European countries tested for biomarkers over time. Materials & methods: An oncology database was retrospectively analyzed; evaluated biomarkers were RAS, BRAF and microsatellite instability (MSI). The patients were drug treated during 2018 and tested for relevant biomarkers in 2013-2018. Results: RAS testing was conducted in >90% of mCRC patients from 2014 onwards. BRAF testing increased from 31% of mCRC patients in 2013 to 67% in 2018. MSI testing increased from 10 to 41%. There was no notable trend over time for RAS and BRAF mutation or MSI-high prevalence. Conclusion: Biomarker testing among patients diagnosed with mCRC was increased over time. This study demonstrates the quick uptake of biomarker testing in clinical practice. These findings are significant as biomarker-based drugs are becoming more common.
Collapse
Affiliation(s)
- George Kafatos
- Amgen Ltd, Center for Observational Research, 1 Uxbridge Business Park, Sanderson Road, Uxbridge, UB8 1DK, UK
| | - Victoria Banks
- Amgen Ltd, Center for Observational Research, 1 Uxbridge Business Park, Sanderson Road, Uxbridge, UB8 1DK, UK
| | - Peter Burdon
- Amgen (Europe) GmbH, Suurstoffi 22, Postfach 94, 6343, Rotkreuz, Switzerland
| | - David Neasham
- Amgen Ltd, Center for Observational Research, 1 Uxbridge Business Park, Sanderson Road, Uxbridge, UB8 1DK, UK
| | - Caroline Anger
- IQVIA Ltd, Real-World & Analytics solutions, 210 Pentonville Road, London, N1 9JY, UK
| | - Fil Manuguid
- IQVIA Ltd, Real-World & Analytics solutions, 210 Pentonville Road, London, N1 9JY, UK
| | - Kimberly A Lowe
- Amgen, Inc., Center for Observational Research, One Amgen Center Drive, MS D2262, Thousand Oaks, CA 91320, USA
| | - Patrick Cheung
- Amgen Ltd, Center for Observational Research, 240 Milton Road, Cambridge Science Park, Cambridge, EENG, CB4 0WD, UK
| | - Julien Taieb
- Department of Gastroenterology & Digestive Oncology, Université de Paris, Hopital Européen Georges-Pompidou, 20, Rue Leblanc, Paris, 75015, France
| | - Joannes Han van Krieken
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
287
|
Improved therapeutic efficacy of unmodified anti-tumor antibodies by immune checkpoint blockade and kinase targeted therapy in mouse models of melanoma. Oncotarget 2021; 12:66-80. [PMID: 33520112 PMCID: PMC7825641 DOI: 10.18632/oncotarget.27868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The use of specific anti-tumor antibodies has transformed the solid cancer therapeutics landscape with the relative successes of therapies such as anti-HER2 in breast cancer, and anti-EGFR in HNSCC and colorectal cancer. However, these therapies result in toxicity and the emergence of resistant tumors. Here, we showed that removing immune suppression and enhancing stimulatory signals increased the anti-tumor activity of unmodified TA99 antibodies (anti-TYRP1) with a significant reduction of growth of solid tumors and lung metastases in mouse models of melanoma. Immune checkpoint blockade enhanced the efficacy of TA99, which was associated with greater CD8+/Foxp3+, NK1.1+ and dendritic cell infiltrates, suggestive of an increased anti-tumor innate and adaptive immune responses. Further, MEK inhibition in melanoma cell lines increased the expression of melanosomal antigens in vitro, and combining TA99 and MEKi in vivo resulted in enhanced tumor control. Moreover, we found an improved therapeutic effect when YUMM tumor-bearing mice were treated with TA99 combined with MEKi and immune checkpoint blockade (anti-PD1 and anti-CTLA4). Our findings suggest that MEKi induced an increased expression of tumor-associated antigens, which in combination with anti-tumor antibodies, generated a robust adaptive anti-tumor response that was sustained by immune checkpoint inhibition therapy. We postulate that combining anti-tumor antibodies with standard-of-care strategies such as immune checkpoint blockade or targeted therapy, will improve therapeutic outcomes in cancer.
Collapse
|
288
|
Hasbal-Celikok G, Aksoy-Sagirli P, Altiparmak-Ulbegi G, Can A. Identification of AKT1/β-catenin mutations conferring cetuximab and chemotherapeutic drug resistance in colorectal cancer treatment. Oncol Lett 2021; 21:209. [PMID: 33574948 DOI: 10.3892/ol.2021.12470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
In anticancer therapy, the effectiveness of therapeutics is limited by mutations causing drug resistance. KRAS mutations are the only determinant for cetuximab resistance in patients with colorectal cancer (CRC). However, cetuximab treatment has not been fully successful in the majority of patients with wild-type (WT) KRAS. Therefore, it is important to determine new predictive mutations in CRC treatment. In the present study, the association between AKT1/β-catenin (CTNNB1) mutations with the drug resistance to cetuximab and other chemotherapeutics used in the CRC treatment was investigated by using site-directed mutagenesis, transfection, western blotting and cell proliferation inhibition assay. Cetuximab resistance was higher in the presence of AKT1 E17K, E49K and L52R mutations, as well as CTNNB1 T41A, S45F and S33P mutations compared with that of respective WT proteins. AKT1/CTNNB1 mutations were also associated with oxaliplatin, irinotecan, SN-38 and 5-fluorouracil resistance. Furthermore, mutant cell viability in oxaliplatin treatment was more effectively inhibited compared with that of the other chemotherapeutic drugs. In conclusion, AKT1/CTNNB1 mutations may be used as an important predictive biomarker in CRC treatment.
Collapse
Affiliation(s)
- Gozde Hasbal-Celikok
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Fatih, Istanbul 34116, Turkey
| | - Pinar Aksoy-Sagirli
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Fatih, Istanbul 34116, Turkey
| | - Gulsum Altiparmak-Ulbegi
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Fatih, Istanbul 34116, Turkey
| | - Ayse Can
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Fatih, Istanbul 34116, Turkey
| |
Collapse
|
289
|
Murugesan S, Murugesan J, Palaniappan S, Palaniappan S, Murugan T, Siddiqui SS, Loganathan S. Tyrosine Kinase Inhibitors (TKIs) in Lung Cancer Treatment: A Comprehensive Analysis. Curr Cancer Drug Targets 2021; 21:55-69. [PMID: 33038912 DOI: 10.2174/1568009620666201009130008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading type of cancer worldwide today. Kinases play a crucial role in mediating the signaling pathways, and it directs to control several necessary cellular processes. Conversely, the deregulation of tyrosine kinases leads to oncogenic conversion, uncontrolled cell proliferation and tumorigenesis. Tyrosine kinases are largely deregulated in lung cancer and specifically in non-small cell lung cancer (NSCLC). Therefore, the inhibition of pathogenic kinases is a breakthrough development in cancer research, treatment and care, which clinically improve the quality of life. In the last decades, various single or combination inhibitors are approved by U.S Food and Drug Administration (FDA) and commercially available in clinics, and currently, several preclinical studies are ongoing and examining the kinase inhibitors. However, many gaps remain in understanding the mechanisms of kinase inhibitors and their selectivity. In this analysis, we focus on a class of receptor and non-receptor tyrosine kinase inhibitors and their novel role in lung cancer.
Collapse
Affiliation(s)
- Sivakumar Murugesan
- Department of Environmental Science, Periyar University, Salem-636011, Tamil Nadu, India
| | - Jayakumar Murugesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar- 608002, Tamilnadu, India
| | - Seedevi Palaniappan
- Department of Environmental Science, Periyar University, Salem-636011, Tamil Nadu, India
| | - Sivasankar Palaniappan
- Department of Environmental Science, Periyar University, Salem-636011, Tamil Nadu, India
| | - Tamilselvi Murugan
- Department of Zoology, Government Arts College (Autonomous), Coimbatore-641018, Tamil Nadu, India
| | - Shahid S Siddiqui
- Department of Medicine, University of Chicago, Chicago, IL-60637, United States
| | - Sivakumar Loganathan
- Department of Environmental Science, Periyar University, Salem-636011, Tamil Nadu, India
| |
Collapse
|
290
|
Grundy M, Bau L, Hill C, Paverd C, Mannaris C, Kwan J, Crake C, Coviello C, Coussios C, Carlisle R. Improved therapeutic antibody delivery to xenograft tumors using cavitation nucleated by gas-entrapping nanoparticles. Nanomedicine (Lond) 2021; 16:37-50. [PMID: 33426913 DOI: 10.2217/nnm-2020-0263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aims: Testing ultrasound-mediated cavitation for enhanced delivery of the therapeutic antibody cetuximab to tumors in a mouse model. Methods: Tumors with strong EGF receptor expression were grown bilaterally. Cetuximab was coadministered intravenously with cavitation nuclei, consisting of either the ultrasound contrast agent Sonovue or gas-stabilizing nanoscale SonoTran Particles. One of the two tumors was exposed to focused ultrasound. Passive acoustic mapping localized and monitored cavitation activity. Both tumors were then excised and cetuximab concentration was quantified. Results: Cavitation increased tumoral cetuximab concentration. When nucleated by Sonovue, a 2.1-fold increase (95% CI 1.3- to 3.4-fold) was measured, whereas SonoTran Particles gave a 3.6-fold increase (95% CI 2.3- to 5.8-fold). Conclusions: Ultrasound-mediated cavitation, especially when nucleated by nanoscale gas-entrapping particles, can noninvasively increase site-specific delivery of therapeutic antibodies to solid tumors.
Collapse
Affiliation(s)
- Megan Grundy
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Luca Bau
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Claudia Hill
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Catherine Paverd
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Christophoros Mannaris
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - James Kwan
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Calum Crake
- OxSonics Therapeutics, Oxford Science Park, Oxford OX4 4GA, UK
| | | | - Constantin Coussios
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Robert Carlisle
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|
291
|
Nanki Y, Nomura H, Iwasa N, Saotome K, Dozen A, Yoshihama T, Hirano T, Hashimoto S, Chiyoda T, Yamagami W, Kataoka F, Aoki D. A prospective cohort study on the safety and efficacy of bevacizumab combined with chemotherapy in Japanese patients with relapsed ovarian, fallopian tube or primary peritoneal cancer. Jpn J Clin Oncol 2021; 51:54-59. [PMID: 32776094 DOI: 10.1093/jjco/hyaa140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE this prospective cohort study aimed to assess the safety and efficacy of bevacizumab combined with chemotherapy in Japanese patients with relapsed ovarian, fallopian tube or primary peritoneal cancer. METHODS in this study, 40 Japanese patients with relapsed ovarian, fallopian tube or primary peritoneal cancer selected to receive bevacizumab with chemotherapy were enrolled. Patients in poor general condition were excluded. Each patient was monitored prospectively for adverse events, administration status, disease status and survival. Treatment was continued until intolerable adverse events or disease progression. The primary endpoint was safety. RESULTS bevacizumab plus platinum-based chemotherapy was performed for 30 patients (median cycle; 16.5), while bevacizumab plus non-platinum chemotherapy was performed for 10 patients (median cycle; 5.5). Among bevacizumab-related adverse events, hypertension occurred in 80% of patients, proteinuria in 83%, mucositis in 25%, bleeding in 20%, thromboembolic events in 5.0% and fistula in 2.5%. Gastrointestinal perforation or other life-threatening lethal adverse events were not observed. Response rate and median progression-free survival were 73% and 19.3 months for patients with bevacizumab plus platinum-based chemotherapy, and 30% and 3.9 months for patients with bevacizumab plus non-platinum chemotherapy, respectively. There was no correlation between response rate and occurrence of adverse events such as hypertension or proteinuria. CONCLUSION bevacizumab combined with chemotherapy was tolerable and effective for Japanese patients with relapsed ovarian cancer, fallopian tube cancer or primary peritoneal cancer. Hypertension and proteinuria are frequently occurred and managed properly for continuing treatment.
Collapse
Affiliation(s)
- Yoshiko Nanki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Nomura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan.,Department of Obstetrics and Gynecology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Naomi Iwasa
- Department of Obstetrics and Gynecology, National Hospital Organization Saitama National Hospital, Wako City, Saitama, Japan
| | - Keiko Saotome
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Ai Dozen
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Yoshihama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Takuro Hirano
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Shiho Hashimoto
- Department of Obstetrics and Gynecology, Tokyo Dental College Ichikawa General Hospital, Ichikawa City, Chiba, Japan
| | - Tatsuyuki Chiyoda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Wataru Yamagami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Fumio Kataoka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
292
|
Sabbah DA, Hajjo R, Sweidan K. Review on Epidermal Growth Factor Receptor (EGFR) Structure, Signaling Pathways, Interactions, and Recent Updates of EGFR Inhibitors. Curr Top Med Chem 2021; 20:815-834. [PMID: 32124699 DOI: 10.2174/1568026620666200303123102] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ERBB family of tyrosine kinase receptors. EGFR signaling cascade is a key regulator in cell proliferation, differentiation, division, survival, and cancer development. In this review, the EGFR structure and its mutations, signaling pathway, ligand binding and EGFR dimerization, EGF/EGFR interaction, and the progress in the development of EGFR inhibitors have been explored.
Collapse
Affiliation(s)
- Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Kamal Sweidan
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
293
|
Ji G, Zhou W, Li X, Du J, Li X, Hao H. Melatonin inhibits proliferation and viability and promotes apoptosis in colorectal cancer cells via upregulation of the microRNA-34a/449a cluster. Mol Med Rep 2021; 23:187. [PMID: 33398374 PMCID: PMC7809902 DOI: 10.3892/mmr.2021.11826] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) has a significant burden on healthcare systems worldwide, and is associated with high morbidity and mortality rates in patients. In 2020, the estimated new cases of colon cancer in the United States are 78,300 in men and 69,650 in women. Thus, developing effective and novel alternative agents and adjuvants with reduced side effects is important to reduce the lethality of the disease and improve the quality of life of patients. Melatonin, a pineal hormone that possesses numerous physiological functions, including anti-inflammatory and antitumor activities, can be found in various tissues, including the gastrointestinal tract. Melatonin exerts anticarcinogenic effects via various mechanisms; however, the identified underlying molecular mechanisms do not explain the full breadth of anti-CRC effects mediated by melatonin. MicroRNAs (miRs) serve critical roles in tumorigenesis, however, whether melatonin can inhibit CRC by regulating miRs is not completely understood. In the present study, the roles and mechanism underlying melatonin in CRC were investigated. The proliferation of human CRC cells was tested by CCK8, EDU and colony formation assay. The apoptosis of cancer cells was detected by flow cytometry and western blotting. A xenograft mouse model was constructed and the proliferation and apoptosis of tumor tissue was detected by Ki-67 and TUNEL staining assay respectively. Reverse transcription-quantitative PCR and western blotting were performed to measure the regulation of miRs on mRNA, and the dual-luciferase report analysis experiment was used to verify the direct target genes of miRs. Compared with the control group, melatonin inhibited viability and proliferation, and induced apoptosis in CRC cells. Additionally, the effect of melatonin in a xenograft mouse model was assessed. Compared with the control group, melatonin significantly enhanced the expression levels of the miR-34a/449a cluster, reduced CRC cell proliferation and viability, and increased CRC cell apoptosis. Finally, the dual-luciferase reporter assay indicated that Bcl-2 and Notch1 were the target mRNAs of the miR-34a/449a cluster. To the best of our knowledge, the present study was the first to suggest that melatonin inhibited proliferation and viability, and promoted apoptosis in CRC cells via upregulating the expression of the miR-34a/449a cluster in vitro and in vivo. Therefore, melatonin may serve as a potential therapeutic for CRC.
Collapse
Affiliation(s)
- Guangyu Ji
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xian Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xinyue Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hongbo Hao
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
294
|
Yokokawa H, Kono T, Shidei H, Oyama K, Ito Y, Imaizumi R, Miyano Y, Shiozawa S, Yoshimatsu K. Successful rechallenge with cetuximab after an infusion related reaction to panitumumab in a patient with locally advanced rectal cancer. Int Cancer Conf J 2021; 10:87-90. [PMID: 33489709 PMCID: PMC7797389 DOI: 10.1007/s13691-020-00455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/12/2020] [Indexed: 10/26/2022] Open
Abstract
Incidence of infusion related reaction (IR) is more common with cetuximab (Cmab) than with panitumumab (Pmab). Although little is known about rechallenge IR with monoclonal antibodies, we experienced a successful rechallenge to Cmab after IR to Pmab. A 67-year-old female patient was scheduled for chemotherapy with mFOLFOX6 plus Pmab against unresectable advanced rectal cancer in the hope of tumor shrinkage. On the first administration of Pmab, she complained of dyspnea with shortness of breath and wheezing, even after premedication with steroids and antihistamines. Her reaction was judged as Grade 2 IR to Pmab. For the next course, we tried Cmab. No IRs were observed. Since then, she has undergone seven further courses of treatment, followed by surgical resection. The patient benefited from administration of Cmab after experiencing IR to Pmab, suggesting this treatment to be an option for patients of this type who experience IR to Pmab.
Collapse
Affiliation(s)
- Hideyuki Yokokawa
- Department of Surgery, Saitama-ken Saiseikai Kurihashi Hospital, 714-6 Koemon, Kuki, Saitama 349-1105 Japan
- Department of Surgery, Tokyo Women’s Medical University, Medical Center East, 2-1-10 Nishiogu, Arakawa, Tokyo 116-8567 Japan
| | - Teppei Kono
- Department of Surgery, Saitama-ken Saiseikai Kurihashi Hospital, 714-6 Koemon, Kuki, Saitama 349-1105 Japan
- Department of Surgery, Tokyo Women’s Medical University, Medical Center East, 2-1-10 Nishiogu, Arakawa, Tokyo 116-8567 Japan
| | - Hiroaki Shidei
- Department of Surgery, Saitama-ken Saiseikai Kurihashi Hospital, 714-6 Koemon, Kuki, Saitama 349-1105 Japan
| | - Kunihiro Oyama
- Department of Surgery, Saitama-ken Saiseikai Kurihashi Hospital, 714-6 Koemon, Kuki, Saitama 349-1105 Japan
| | - Yoshitomo Ito
- Department of Surgery, Saitama-ken Saiseikai Kurihashi Hospital, 714-6 Koemon, Kuki, Saitama 349-1105 Japan
| | - Rie Imaizumi
- Department of Surgery, Saitama-ken Saiseikai Kurihashi Hospital, 714-6 Koemon, Kuki, Saitama 349-1105 Japan
| | - Yutaka Miyano
- Department of Surgery, Saitama-ken Saiseikai Kurihashi Hospital, 714-6 Koemon, Kuki, Saitama 349-1105 Japan
| | - Shunichi Shiozawa
- Department of Surgery, Tokyo Women’s Medical University, Medical Center East, 2-1-10 Nishiogu, Arakawa, Tokyo 116-8567 Japan
| | - Kazuhiko Yoshimatsu
- Department of Surgery, Saitama-ken Saiseikai Kurihashi Hospital, 714-6 Koemon, Kuki, Saitama 349-1105 Japan
- Department of Surgery, Tokyo Women’s Medical University, Medical Center East, 2-1-10 Nishiogu, Arakawa, Tokyo 116-8567 Japan
| |
Collapse
|
295
|
Connell LC, Kemeny NE. Intraarterial Chemotherapy for Liver Metastases. Surg Oncol Clin N Am 2021; 30:143-158. [PMID: 33220802 PMCID: PMC8594481 DOI: 10.1016/j.soc.2020.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Colorectal cancer (CRC) is one of the leading cancers globally in terms of both incidence and cancer-related mortality. Liver metastatic disease is the main prognostic driver for patients with CRC. The management options for liver metastatic CRC continue to evolve, particularly with the incorporation of locoregional therapies into the treatment paradigm. Hepatic arterial infusion (HAI) chemotherapy is one such liver directed approach used with the goal of converting patients to liver resection, reducing the risk of recurrence, treating recurrent disease, and most importantly improving overall survival. This article summarizes the role of HAI chemotherapy in the treatment of liver metastatic CRC.
Collapse
Affiliation(s)
- Louise C Connell
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, 10th floor, New York, NY 10065, USA
| | - Nancy E Kemeny
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, 10th floor, New York, NY 10065, USA.
| |
Collapse
|
296
|
Gathirua-Mwangi WG, Sethi H, Afable MG, Bhattacharyya D, Khan T. Cost-minimization analysis of biweekly dosing of cetuximab and FOLFIRI compared with panitumumab and FOLFOX for first-line treatment of patients with KRAS wild-type metastatic colorectal cancer in the United States. J Med Econ 2021; 24:1164-1172. [PMID: 34529522 DOI: 10.1080/13696998.2021.1982181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM To compare the cost of biweekly regimens of first-line (1L) treatments of cetuximab-folinic acid, fluorouracil, and irinotecan (FOLFIRI) versus panitumumab-folinic acid, fluorouracil, and oxaliplatin (FOLFOX) in patients with Kirsten's rat sarcoma wild type (KRAS WT) metastatic colorectal cancer (mCRC) in the United States, across varying weights and body surface areas (BSAs). MATERIALS AND METHODS Cost-minimization analysis (CMA) was performed to estimate per-patient cost differences of cetuximab-FOLFIRI versus panitumumab-FOLFOX. The CMA estimated the costs of RAS testing, premedication, drug acquisition, treating infusion reactions (IRs), supportive therapy, and biweekly administration of chemotherapy, cetuximab (500 mg/m2), and panitumumab (6 mg/kg) over 43 weeks (median progression-free survival). To calculate dose and cost, weight and height data were gathered from an electronic health record-derived de-identified database (n = 7,669; January 2013-October 2020). Base case analysis utilized mean weight/BSA of the overall cohort (82.04 kg/1.92 m2), and alternate scenarios were based on 88.18 kg/2.03 m2 (men, n = 4,477) and 73.43 kg/1.76 m2 (women, n = 3,192). RESULTS For the base case, total treatment costs were $167,853 for cetuximab-FOLFIRI and $168,254 for panitumumab-FOLFOX; cost savings per patient receiving cetuximab-FOLFIRI was $400. Cost savings in alternate scenarios (men, $15,138; women, $15,004) resulted from lower drug acquisition costs for cetuximab (men, $14,833; women $14,854) and administration cost ($440) versus panitumumab. Cost savings of cetuximab-FOLFIRI in treating IR ($353) were similar across all scenarios. LIMITATIONS With no head-to-head clinical trial data in the 1L setting, assumptions of similarity in efficacy and safety of cetuximab versus panitumumab were based on published network meta-analysis and the ASPECCT trial. This model did not consider a lifetime horizon. Costs of managing all adverse events (except IR) were not included. CONCLUSIONS Biweekly cetuximab-FOLFIRI offers cost savings compared with panitumumab-FOLFOX for 1L therapy of patients with KRAS WT mCRC in the United States. These cost differences were observed for the overall population and across different BSA and weights for men and women.
Collapse
Affiliation(s)
| | | | | | | | - Taha Khan
- Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
297
|
Stančič B, Qvarfordt B, Berglund MM, Brenden N, Sydow Bäckman M, Fransson M, Nordling S, Magnusson PU. The blood endothelial cell chamber - An innovative system to study immune responses in drug development. Int Immunopharmacol 2020; 90:107237. [PMID: 33310662 DOI: 10.1016/j.intimp.2020.107237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
The risk for adverse immune-mediated reactions, associated with the administration of certain immunotherapeutic agents, should be mitigated early. Infusion reactions to monoclonal antibodies and other biopharmaceuticals, known as cytokine release syndrome, can arise from the release of cytokines via the drug target cell, as well as the recruitment of immune effector cells. While several in vitro cytokine release assays have been proposed up to date, many of them lack important blood components, required for this response to occur. The blood endothelial cell chamber model is an in vitro assay, composed of freshly drawn human whole blood and cultured human primary endothelial cells. Herein, its potential to study the compatibility of immunotherapeutics with the human immune system was studied by evaluating three commercially available monoclonal antibodies and bacterial endotoxin lipopolysaccharide. We demonstrate that the anti-CD28 antibody TGN1412 displayed an adaptive cytokine release profile and a distinct IL-2 response, accompanied with increased CD3+ cell recruitment. Alemtuzumab exhibited a clear cytokine response with a mixed adaptive/innate source (IFNγ, TNFα and IL-6). Its immunosuppressive nature is observed in depleted CD3+ cells. Cetuximab, associated with low infusion reactions, showed a very low or absent stimulatory effect on proinflammatory cytokines. In contrast, bacterial endotoxin demonstrated a clear innate cytokine response, defined by TNFα, IL-6 and IL-1β release, accompanied with a strong recruitment of CD14+CD16+ cells. Therefore, the blood endothelial cell chamber model is presented as a valuable in vitro tool to investigate therapeutic monoclonal antibodies with respect to cytokine release and vascular immune cell recruitment.
Collapse
Affiliation(s)
- Brina Stančič
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjöldsväg 20, 751 85, Uppsala University, Uppsala, Sweden; Department of Molecular Biology, Universidad Autónoma de Madrid, and Department of Molecular Neuropathology, Center of Molecular Biology Severo Ochoa (UAM-CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Bodil Qvarfordt
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjöldsväg 20, 751 85, Uppsala University, Uppsala, Sweden
| | | | - Nina Brenden
- Swedish Orphan Biovitrum AB, Tomtebodavägen 23A, 112 76 Solna, Sweden
| | | | - Moa Fransson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjöldsväg 20, 751 85, Uppsala University, Uppsala, Sweden
| | - Sofia Nordling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjöldsväg 20, 751 85, Uppsala University, Uppsala, Sweden
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjöldsväg 20, 751 85, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
298
|
Okita K, Hara Y, Okura H, Hayashi H, Sasaki Y, Masuko S, Kitadai E, Masuko K, Yoshimoto S, Hayashi N, Sugiura R, Endo Y, Okazaki S, Arai S, Yoshioka T, Matsumoto T, Makino Y, Komiyama H, Sakamoto K, Masuko T. Antitumor effects of novel mAbs against cationic amino acid transporter 1 (CAT1) on human CRC with amplified CAT1 gene. Cancer Sci 2020; 112:563-574. [PMID: 33211385 PMCID: PMC7894011 DOI: 10.1111/cas.14741] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Copy number alterations detected by comparative genomic hybridization (CGH) can lead to the identification of novel cancer‐related genes. We analyzed chromosomal aberrations in a set of 100 human primary colorectal cancers (CRCs) using CGH and found a solute carrier (SLC) 7A1 gene, which encodes cationic amino acid transporter 1 (CAT1) with 14 putative transmembrane domains, in a chromosome region (13q12.3) with a high frequency of gene amplifications. SLC7A1/CAT1 is a transporter responsible for the uptake of cationic amino acids (arginine, lysine, and ornithine) essential for cellular growth. Microarray and PCR analyses have revealed that mRNA transcribed from CAT1 is overexpressed in more than 70% of human CRC samples, and RNA interference–mediated knockdown of CAT1 inhibited the cell growth of CRCs. Rats were immunized with rat hepatoma cells expressing CAT1 tagged with green fluorescent protein (GFP), and rat splenocytes were fused with mouse myeloma cells. Five rat monoclonal antibodies (mAbs) (CA1 ~ CA5) reacting with HEK293 cells expressing CAT1‐GFP in a GFP expression–dependent manner were selected from established hybridoma clones. Novel anti‐CAT1 mAbs selectively reacted with human CRC tumor tissues compared with adjacent normal tissues according to immuno‐histochemical staining and bound strongly to numerous human cancer cell lines by flow cytometry. Anti‐CAT1 mAbs exhibited internalization activity, antibody‐dependent cellular cytotoxicity, and migration inhibition activity against CRC cell lines. Furthermore, CA2 inhibited the in vivo growth of human HT29 and SW‐C4 CRC tumors in nude mice. This study suggested CAT1 to be a promising target for mAb therapy against CRCs.
Collapse
Affiliation(s)
- Kouki Okita
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Production and Manufacturing, Carna Biosciences, Inc., Kobe, Japan
| | - Yuta Hara
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Hiroshi Okura
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Hidemi Hayashi
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Yoko Sasaki
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Sachiko Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Eri Kitadai
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Kazue Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Soshi Yoshimoto
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Laboratory of Molecular Pharmacogenomics, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Natsumi Hayashi
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Laboratory of Molecular Pharmacogenomics, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Yuichi Endo
- Natural Drug Resources, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Shogo Okazaki
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Sayaka Arai
- Field of Basic Science, Department of Occupational therapy, Graduate School of Health Sciences, Akita University, Akita, Japan
| | - Toshiaki Yoshioka
- Field of Basic Science, Department of Occupational therapy, Graduate School of Health Sciences, Akita University, Akita, Japan
| | - Toshiharu Matsumoto
- Department of Diagnostic Pathology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yasutaka Makino
- Department of Coloproctological Surgery, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Hiromitsu Komiyama
- Department of Coloproctological Surgery, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Kazuhiro Sakamoto
- Department of Coloproctological Surgery, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Natural Drug Resources, Faculty of Pharmacy, Kindai University, Osaka, Japan
| |
Collapse
|
299
|
Zhu GX, Gao D, Shao ZZ, Chen L, Ding WJ, Yu QF. Wnt/β‑catenin signaling: Causes and treatment targets of drug resistance in colorectal cancer (Review). Mol Med Rep 2020; 23:105. [PMID: 33300082 PMCID: PMC7723170 DOI: 10.3892/mmr.2020.11744] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in humans. Chemotherapy is used for the treatment of CRC. However, the effect of chemotherapy remains unsatisfactory due to drug resistance. Growing evidence has shown that the presence of highly metastatic tumor stem cells, regulation of non-coding RNAs and the tumor microenvironment contributes to drug resistance mechanisms in CRC. Wnt/β-catenin signaling mediates the chemoresistance of CRC in these three aspects. Therefore, the present study analyzed the abundant evidence of the contribution of Wnt/β-catenin signaling to the development of drug resistance in CRC and discussed its possible role in improving the chemosensitivity of CRC, which may provide guidelines for its clinical treatment.
Collapse
Affiliation(s)
- Gui-Xian Zhu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhao-Zhao Shao
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Chen
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Jie Ding
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiong-Fang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
300
|
He K, Wang Y, Zhong Y, Pan X, Si L, Lu J. KRAS Codon 12 Mutation is Associated with More Aggressive Invasiveness in Synchronous Metastatic Colorectal Cancer (mCRC): Retrospective Research. Onco Targets Ther 2020; 13:12601-12613. [PMID: 33335401 PMCID: PMC7737549 DOI: 10.2147/ott.s279312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Objective To investigate the connection between mutant KRAS/NRAS/BRAF and clinicopathological characteristics in therapy-naïve synchronous metastatic colorectal cancer (mCRC) in Chinese populations when compared with all wild type (KRAS/NRAS/BRAF wild type). Patients and Methods A total of 200 patients with therapy-naïve synchronous mCRC (TNM stage: TanyNanyM1) were retrospectively collected as study objects. Primary tumor tissues from 200 mCRC patients were analyzed through next-generation sequencing panel to assess the mutated regions of KRAS/NRAS/BRAF. Results The distribution frequency of gene mutation in our study was 41% KRAS, 4% NRAS, 11.5% BRAF, 0.5% both KRAS and BRAF. Tumors with any gene mutations (any gene mutations in KRAS/NRAS/BRAF), KRAS and KRAS codon 12 mutation were more likely to be located in right-sided colon (P=0.007, P=0.008, P=0.026, respectively). For metastasis, tumors with any gene mutations, KRAS and KRAS codon 12 mutation were significantly correlated with peritoneal metastasis (P=0.019, P=0.017, P=0.014, respectively), liver-peritoneum metastases (P=0.004, P=0.003, P=0.002, respectively) and multi-organ metastases (P=0.002, P=0.008, P=0.001, respectively). Tumors with all wild type were significantly correlated with distant lymph node-only metastasis. No statistically significant differences were found between clinicopathological characteristics and KRAS codon 13 and NRAS mutations. Conclusion Our study suggests that clinicopathological characteristics (specifically for metastasis) are related to KRAS/NRAS/BRAF mutations in therapy-naïve synchronous mCRC population in China. We demonstrated that distant lymph node-only metastasis is visibly linked to all wild-type tumors. We found that patients with any gene mutations, KRAS mutation are more likely to carry peritoneal metastasis, liver-peritoneum metastases and multi-organ metastases than those with all wild type. After stratification, KRAS codon 12 mutation, but not codon 13 mutation, was remarkably associated with peritoneal metastasis, liver-peritoneum metastases, and multi-organ metastases compared to all wild type. These results may be useful for aiding in the prediction of prognosis and choosing the appropriate regimens for therapy.
Collapse
Affiliation(s)
- Kang He
- The Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China
| | - Yajing Wang
- The Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China
| | - Yuejiao Zhong
- The Department of Oncology, Jiangsu Cancer Hospital, and the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China
| | - Xiaohua Pan
- The Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China
| | - Lixiang Si
- The Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China
| | - Jianwei Lu
- The Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China
| |
Collapse
|