251
|
Di Marco M, Ramassone A, Pagotto S, Anastasiadou E, Veronese A, Visone R. MicroRNAs in Autoimmunity and Hematological Malignancies. Int J Mol Sci 2018; 19:ijms19103139. [PMID: 30322050 PMCID: PMC6213554 DOI: 10.3390/ijms19103139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Autoimmunity and hematological malignancies are often concomitant in patients. A causal bidirectional relationship exists between them. Loss of immunological tolerance with inappropriate activation of the immune system, likely due to environmental and genetic factors, can represent a breeding ground for the appearance of cancer cells and, on the other hand, blood cancers are characterized by imbalanced immune cell subsets that could support the development of the autoimmune clone. Considerable effort has been made for understanding the proteins that have a relevant role in both processes; however, literature advances demonstrate that microRNAs (miRNAs) surface as the epigenetic regulators of those proteins and control networks linked to both autoimmunity and hematological malignancies. Here we review the most up-to-date findings regarding the miRNA-based molecular mechanisms that underpin autoimmunity and hematological malignancies.
Collapse
Affiliation(s)
- Mirco Di Marco
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Alice Ramassone
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Sara Pagotto
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Eleni Anastasiadou
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Angelo Veronese
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medicine and Aging Science (DMSI), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Rosa Visone
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
252
|
Dezorella N, Ashkenazi E, Shapiro M, Perry C, Kamdjou T, Katz BZ, Herishanu Y. Wide-range effects of the MALT-1 inhibitor Mi-2 in CLL cells results in apoptosis. Leuk Lymphoma 2018; 60:817-820. [DOI: 10.1080/10428194.2018.1498489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nili Dezorella
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Enosh Ashkenazi
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mika Shapiro
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Chava Perry
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Talia Kamdjou
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ben-Zion Katz
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yair Herishanu
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
253
|
Lu GF, You CY, Chen YS, Jiang H, Zheng X, Tang WW, Wang XY, Xu HY, Geng F. MicroRNA-671-3p promotes proliferation and migration of glioma cells via targeting CKAP4. Onco Targets Ther 2018; 11:6217-6226. [PMID: 30288057 PMCID: PMC6162991 DOI: 10.2147/ott.s177325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background and objective Glioma is one of the most aggressive and malignant cancers originating from the human brain. Increasing evidence suggests that aberrant expression of microRNAs (miRNAs) frequently occurs in glioma and miRNAs are critical regulators of glioma. miR-671 has recently been revealed to be a novel miRNA that plays a vital role in human glioblastoma multiforme. However, the functional role and underlying mechanisms of miR-671-3p require further analysis. Materials and methods Western blot and fluorescence quantitative PCR were used to assess the expression of cytoskeleton-associated protein 4 (CKAP4) and miR-671-3p, respectively. A Cell Counting Kit-8 (CCK-8) assay and a Boyden chamber assay were used to detect the proliferative and migratory abilities of glioma cells. A luciferase assay was used to determine the target gene of miR-671-3p. Apoptosis was analyzed by flow cytometry. Results Our results revealed that overexpression of miR-671-3p promoted cell proliferation and migration in vitro. Meanwhile, forced expression of miR-671-3p reduced apoptosis. In contrast, inhibition of miR-671-3p had the opposite effects. We also identified CKAP4 to be a direct target of miR-671-3p. The expression levels of CKAP4 were decreased in clinical samples and inversely correlated with miR-671-3p expression levels. Ectopic expression of CKAP4 reversed the promotive activity of miR-671-3p in the proliferation and migration and enhanced apoptosis. Conclusion Our study demonstrates that miR-671-3p is a predominant positive regulator of glioma progression, thus providing new insights into the molecular mechanisms of glioma development. The findings suggest that the miR-6713p/CKAP4 axis may serve as a potential therapeutic target or biomarker in glioma.
Collapse
Affiliation(s)
- Gui-Feng Lu
- Department of Pathophysiology, Zunyi Medical University, Zunyi 563003, China
| | - Chun-Yue You
- Department of Neurosurgery, The Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yuan-Shou Chen
- Department of Physiology, Zunyi Medical University, Zunyi 563003, China,
| | - Hui Jiang
- Department of Physiology, Zunyi Medical University, Zunyi 563003, China,
| | - Xiang Zheng
- Department of Genetics, Zunyi Medical University, Zunyi 563003, China
| | - Wei-Wei Tang
- Department of Pathophysiology, Zunyi Medical University, Zunyi 563003, China
| | - Xian-Yan Wang
- Department of Pathophysiology, Zunyi Medical University, Zunyi 563003, China
| | - Hai-Yan Xu
- Department of Pathophysiology, Zunyi Medical University, Zunyi 563003, China
| | - Fei Geng
- Department of Physiology, Zunyi Medical University, Zunyi 563003, China,
| |
Collapse
|
254
|
Jurj A, Pop L, Petrushev B, Pasca S, Dima D, Frinc I, Deak D, Desmirean M, Trifa A, Fetica B, Gafencu G, Selicean S, Moisoiu V, Micu WT, Berce C, Sacu A, Moldovan A, Colita A, Bumbea H, Tanase A, Dascalescu A, Zdrenghea M, Stiufiuc R, Leopold N, Tetean R, Burzo E, Tomuleasa C, Berindan-Neagoe I. Exosome-carried microRNA-based signature as a cellular trigger for the evolution of chronic lymphocytic leukemia into Richter syndrome. Crit Rev Clin Lab Sci 2018; 55:501-515. [PMID: 30238808 DOI: 10.1080/10408363.2018.1499707] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Even if considered a cumulative and not a proliferative CD5+ B-cell neoplasm, chronic lymphocytic leukemia (CLL) has a proliferation rate higher than that recognized earlier, especially in the lymphoid tissues. Some patients with CLL develop a clinical syndrome entitled Richter syndrome (RS). Understanding CLL genetics and epigenetics may help to elucidate the molecular basics of the clinical heterogeneity of this type of malignancy. In the present project we aimed to identify a microRNA species that can predict the evolution of therapy-resistant CLL towards RS. In the first phase of our study, microRNA-19b was identified as a possible target, and in the second phase, we transfected three different CLL cell lines with microRNA-19b mimic and inhibitor and assessed the potential role on leukemia cells in vitro. The mechanism by which miR-19b acts were identified as the upregulation of Ki67 and downregulation of p53. This was further supported through RT-PCR and western blotting on CLL cell lines, as well as by next generation sequencing on two patients diagnosed with CLL that evolved into RS.
Collapse
Affiliation(s)
- Ancuta Jurj
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Laura Pop
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Bobe Petrushev
- b Department of Pathology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Sergiu Pasca
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Delia Dima
- c Department of Hematology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Ioana Frinc
- c Department of Hematology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Dalma Deak
- c Department of Hematology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Minodora Desmirean
- d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Adrian Trifa
- c Department of Hematology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Bogdan Fetica
- b Department of Pathology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Grigore Gafencu
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Sonia Selicean
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Vlad Moisoiu
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Wilhelm-Thomas Micu
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Cristian Berce
- e Center for Experimental Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Alexandra Sacu
- d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Alin Moldovan
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania.,f Department of Hematology , Carol Davilla University of Medicine and Pharmacy , Bucharest , Romania
| | - Andrei Colita
- g Department of Hematology , Coltea Hospital , Bucharest , Romania
| | - Horia Bumbea
- f Department of Hematology , Carol Davilla University of Medicine and Pharmacy , Bucharest , Romania.,h Department of Hematology , University Hospital , Bucharest , Romania
| | - Alina Tanase
- h Department of Hematology , University Hospital , Bucharest , Romania.,i Department of Hematology , Fundeni Clinical Hospital , Bucharest , Romania
| | - Angela Dascalescu
- j Department of Hematology , Grigore T. Popa University of Medicine and Pharmacy , Iasi , Romania.,k Department of Hematology , Regional Institute of Oncology , Iasi , Romania
| | - Mihnea Zdrenghea
- d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Rares Stiufiuc
- d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Nicolae Leopold
- l Department of Physics , Babes Bolyai University , Cluj Napoca , Romania
| | - Romulus Tetean
- l Department of Physics , Babes Bolyai University , Cluj Napoca , Romania
| | - Emil Burzo
- l Department of Physics , Babes Bolyai University , Cluj Napoca , Romania.,m Romanian Academy , Romania
| | - Ciprian Tomuleasa
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania.,c Department of Hematology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Ioana Berindan-Neagoe
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| |
Collapse
|
255
|
miR-125a and miR-34a expression predicts Richter syndrome in chronic lymphocytic leukemia patients. Blood 2018; 132:2179-2182. [PMID: 30242085 DOI: 10.1182/blood-2018-04-845115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia. It is characterized by the accumulation of CD19+/CD5+ lymphocytes and can have variable outcomes. Richter syndrome (RS) is a lethal complication in CLL patients that results in aggressive B-cell lymphomas, and there are no tests to predict its occurrence. Because alterations in microRNA expression can predict the development and progression of several cancers, we investigated whether dysregulation of specific microRNAs can predict RS in CLL patients. Thus, we compared microRNA expression levels in samples from 49 CLL patients who later developed RS with samples from 59 CLL patients who did not. We found that high expression of miR-125a-5p or low expression of miR -34a-5p can predict ∼50% of RS with a false positive rate of ∼9%. We found that CLL patients predicted to develop RS show either an increase of miR-125a-5p expression (∼20-fold) or a decrease of miR-34a-5p expression (∼21-fold) compared with CLL patients that are not predicted to develop RS. Thus, miR-125a-5p and miR-34a-5p can be valuable predictor markers of RS and have the potential to provide physicians with information that can indicate the best therapeutic strategy for CLL patients.
Collapse
|
256
|
|
257
|
Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The Network of Non-coding RNAs in Cancer Drug Resistance. Front Oncol 2018; 8:327. [PMID: 30211115 PMCID: PMC6123370 DOI: 10.3389/fonc.2018.00327] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have been implicated in most cellular functions. The disruption of their function through somatic mutations, genomic imprinting, transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer development. ncRNAs, including notorious microRNAs, have been thus proposed to function as tumor suppressors or oncogenes, often in a context-dependent fashion. In parallel, ncRNAs with altered expression in cancer have been reported to exert a key role in determining drug sensitivity or restoring drug responsiveness in resistant cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective chemotherapy and is one of the most important causes of relapse and mortality in cancer patients. For these reasons, non-coding RNAs have become recent focuses as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief outline of the role of most studied non-coding RNAs in cancer and then highlights the modulation of cancer drug resistance via known ncRNAs based mechanisms. We identified from literature 388 ncRNA-drugs interactions and analyzed them using an unsupervised approach. Essentially, we performed a network analysis of the non-coding RNAs with direct relations with cancer drugs. Within such a machine-learning framework we detected the most representative ncRNAs-drug associations and groups. We finally discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling effectors from downstream effects and further clarify the involvement of ncRNAs in the cellular mechanisms underlying resistance to cancer treatments.
Collapse
Affiliation(s)
- Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
258
|
Xu J, Shao T, Ding N, Li Y, Li X. miRNA-miRNA crosstalk: from genomics to phenomics. Brief Bioinform 2018; 18:1002-1011. [PMID: 27551063 DOI: 10.1093/bib/bbw073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 12/11/2022] Open
Abstract
The discovery of microRNA (miRNA)-miRNA crosstalk has greatly improved our understanding of complex gene regulatory networks in normal and disease-specific physiological conditions. Numerous approaches have been proposed for modeling miRNA-miRNA networks based on genomic sequences, miRNA-mRNA regulation, functional information and phenomics alone, or by integrating heterogeneous data. In addition, it is expected that miRNA-miRNA crosstalk can be reprogrammed in different tissues or specific diseases. Thus, transcriptome data have also been integrated to construct context-specific miRNA-miRNA networks. In this review, we summarize the state-of-the-art miRNA-miRNA network modeling methods, which range from genomics to phenomics, where we focus on the need to integrate heterogeneous types of omics data. Finally, we suggest future directions for studies of crosstalk of noncoding RNAs. This comprehensive summarization and discussion elucidated in this work provide constructive insights into miRNA-miRNA crosstalk.
Collapse
|
259
|
Fei Z, Qiu M, Qi X, Dai Y, Wang S, Quan Z, Liu Y, Ou J. MicroRNA‑424 suppresses the proliferation of hemangioma‑derived endothelial cells by targeting VEGFR‑2. Mol Med Rep 2018; 18:4065-4071. [PMID: 30132564 DOI: 10.3892/mmr.2018.9409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 07/27/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Zhewei Fei
- Department of General Surgery, Xinhua Hospital (Chong Ming) Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 202150, P.R. China
| | - Mingke Qiu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Xianqin Qi
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yuxin Dai
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Shuqing Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Zhiwei Quan
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Jingmin Ou
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
260
|
Sonic Hedgehog Medulloblastoma Cancer Stem Cells Mirnome and Transcriptome Highlight Novel Functional Networks. Int J Mol Sci 2018; 19:ijms19082326. [PMID: 30096798 PMCID: PMC6121264 DOI: 10.3390/ijms19082326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
Molecular classification has improved the knowledge of medulloblastoma (MB), the most common malignant brain tumour in children, however current treatments cause severe side effects in patients. Cancer stem cells (CSCs) have been described in MB and represent a sub population characterised by self-renewal and the ability to generate tumour cells, thus representing the reservoir of the tumour. To investigate molecular pathways that characterise this sub population, we isolated CSCs from Sonic Hedgehog Medulloblastoma (SHH MB) arisen in Patched 1 (Ptch1) heterozygous mice, and performed miRNA- and mRNA-sequencing. Comparison of the miRNA-sequencing of SHH MB CSCs with that obtained from cerebellar Neural Stem Cells (NSCs), allowed us to obtain a SHH MB CSC miRNA differential signature. Pathway enrichment analysis in SHH MB CSCs mirnome and transcriptome was performed and revealed a series of enriched pathways. We focused on the putative targets of the SHH MB CSC miRNAs that were involved in the enriched pathways of interest, namely pathways in cancer, PI3k-Akt pathway and protein processing in endoplasmic reticulum pathway. In silico analysis was performed in SHH MB patients and identified several genes, whose expression was associated with worse overall survival of SHH MB patients. This study provides novel candidates whose functional role should be further investigated in SHH MB.
Collapse
|
261
|
Chen QY, Li J, Sun H, Wu F, Zhu Y, Kluz T, Jordan A, DesMarais T, Zhang X, Murphy A, Costa M. Role of miR-31 and SATB2 in arsenic-induced malignant BEAS-2B cell transformation. Mol Carcinog 2018; 57:968-977. [PMID: 29603397 PMCID: PMC6588163 DOI: 10.1002/mc.22817] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022]
Abstract
Arsenic is a naturally occurring and highly potent metalloid known to elicit serious public health concerns. Today, approximately 200 million people around the globe are exposed to arsenic-contaminated drinking water at levels greater than the World Health Organization's recommended limit of 10 parts per billion. As a class I human carcinogen, arsenic exposure is known to elicit various cancers, including lung, skin, liver, and kidney. Current evidence suggests that arsenic is capable of inducing both genotoxic and cytotoxic injury, as well as activating epigenetic pathways to induce carcinogenesis. Our study identifies a novel pathway that is implicated in arsenic-induced carcinogenesis. Arsenic down-regulated miRNA-31 and the release of this inhibition caused overexpression of special AT-rich sequence-binding protein 2 (SATB2). Arsenic is known to disrupt miRNA expression, and here we report for the first time that arsenic is capable of inhibiting miR-31 expression. As a direct downstream target of miR-31, SATB2 is a prominent transcription factor, and nuclear matrix binding protein implicated in many types of human diseases including lung cancer. Results from this study show that arsenic induces the overexpressing SATB2 by inhibiting miR-31 expression, which blocks the translation of SATB2 mRNA, since levels of SATB2 mRNA remain the same but protein levels decrease. Overexpression of SATB2 induces malignant transformation of human bronchial epithelial (BEAS-2B) cells indicating the importance of the expression of miR-31 in preventing carcinogenesis by suppressing SATB2 protein levels.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Jinquan Li
- Brain and Cognitive Dysfunction Research Center, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical college, Wuhan University of Science and Technology, Wuhan, China
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Feng Wu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Yusha Zhu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Thomas Kluz
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Ashley Jordan
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Thomas DesMarais
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Xiaoru Zhang
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
262
|
Arvidsson Y, Rehammar A, Bergström A, Andersson E, Altiparmak G, Swärd C, Wängberg B, Kristiansson E, Nilsson O. miRNA profiling of small intestinal neuroendocrine tumors defines novel molecular subtypes and identifies miR-375 as a biomarker of patient survival. Mod Pathol 2018; 31:1302-1317. [PMID: 29487354 DOI: 10.1038/s41379-018-0010-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022]
Abstract
The aim of this study was to define the miRNA profile of small intestinal neuroendocrine tumors and to search for novel molecular subgroups and prognostic biomarkers. miRNA profiling was conducted on 42 tumors from 37 patients who underwent surgery for small intestinal neuroendocrine tumors. Unsupervised hierarchical clustering analysis of miRNA profiles identified two groups of tumor metastases, denoted cluster M1 and M2. The smaller cluster M1 was associated with shorter overall survival and contained tumors with higher grade (WHO grade G2/3) and multiple chromosomal gains including gain of chromosome 14. Tumors of cluster M1 had elevated expression of miR-1246 and miR-663a, and reduced levels of miR-488-3p. Pathway analysis predicted Wnt signaling to be the most significantly altered signaling pathway between clusters M1 and M2. Analysis of miRNA expression in relation to tumor proliferation rate showed significant alterations including downregulation of miR-137 and miR-204-5p in tumors with Ki67 index above 3%. Similarly, tumor progression was associated with significant alterations in miRNA expression, e.g. higher expression of miR-95 and miR-210, and lower expression of miR-378a-3p in metastases. Pathway analysis predicted Wnt signaling to be altered during tumor progression, which was supported by decreased nuclear translocation of β-catenin in metastases. Survival analysis revealed that downregulation of miR-375 was associated with shorter overall survival. We performed in situ hybridization on biopsies from an independent cohort of small intestinal neuroendocrine tumors using tissue microarrays. Expression of miR-375 was found in 578/635 (91%) biopsies and survival analysis confirmed that there was a correlation between downregulation of miR-375 in tumor metastases and shorter patient survival. We conclude that miRNA profiling defines novel molecular subgroups of metastatic small intestinal neuroendocrine tumors and identifies miRNAs associated with tumor proliferation rate and progression. miR-375 is highly expressed in small intestinal neuroendocrine tumors and may be used as a prognostic biomarker.
Collapse
Affiliation(s)
- Yvonne Arvidsson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Anna Rehammar
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Anders Bergström
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ellinor Andersson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Gülay Altiparmak
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christina Swärd
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bo Wängberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Ola Nilsson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
263
|
Pasquariello R, Fernandez-Fuertes B, Strozzi F, Pizzi F, Mazza R, Lonergan P, Gandolfi F, Williams JL. Profiling bovine blastocyst microRNAs using deep sequencing. Reprod Fertil Dev 2018; 29:1545-1555. [PMID: 27623773 DOI: 10.1071/rd16110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/24/2016] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are known to control several reproductive functions, including oocyte maturation, implantation and early embryonic development. Recent advances in deep sequencing have allowed the analysis of all miRNAs of a sample. However, when working with embryos, due to the low RNA content, miRNA profiling is challenging because of the relatively large amount of total RNA required for library preparation protocols. In the present study we compared three different procedures for RNA extraction and prepared libraries using pools of 30 bovine blastocysts. In total, 14 of the 15 most abundantly expressed miRNAs were common to all three procedures. Furthermore, using miRDeep discovery and annotation software (Max Delbrück Center), we identified 1363 miRNA sequences, of which bta-miR-10b and bta-miR-378 were the most abundant. Most of the 179 genes identified as experimentally validated (86.6%) or predicted targets (13.4%) were associated with cancer canonical pathways. We conclude that reliable analysis of bovine blastocyst miRNAs can be achieved using the procedures described herein. The repeatability of the results across different procedures and independent replicates, as well as their consistency with results obtained in other species, support the biological relevance of these miRNAs and of the gene pathways they modulate in early embryogenesis.
Collapse
Affiliation(s)
- R Pasquariello
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territori, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - B Fernandez-Fuertes
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - F Strozzi
- Parco Tecnologico Padano, Via Einstein Albert, 26900, Lodi, Italy
| | - F Pizzi
- Istituto di Biologia e Biotecnologia Agraria - Consiglio Nazionale delle Ricerche, Via Einstein Albert, 26900, Lodi, Italy
| | - R Mazza
- Associazione Italiana Allevatori, Via Bergamo 292, 26100, Cremona, Italy
| | - P Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - F Gandolfi
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territori, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - J L Williams
- School of Animal and Veterinary Sciences, Faculty of Science, University of Adelaide, Roseworthy, SA 5371, Australia
| |
Collapse
|
264
|
The Nefarious Nexus of Noncoding RNAs in Cancer. Int J Mol Sci 2018; 19:ijms19072072. [PMID: 30018188 PMCID: PMC6073630 DOI: 10.3390/ijms19072072] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
The past decade has witnessed enormous progress, and has seen the noncoding RNAs (ncRNAs) turn from the so-called dark matter RNA to critical functional molecules, influencing most physiological processes in development and disease contexts. Many ncRNAs interact with each other and are part of networks that influence the cell transcriptome and proteome and consequently the outcome of biological processes. The regulatory circuits controlled by ncRNAs have become increasingly more relevant in cancer. Further understanding of these complex network interactions and how ncRNAs are regulated, is paving the way for the identification of better therapeutic strategies in cancer.
Collapse
|
265
|
A Novel Multi-Gene Detection Platform for the Analysis of miRNA Expression. Sci Rep 2018; 8:10684. [PMID: 30013095 PMCID: PMC6048151 DOI: 10.1038/s41598-018-29146-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022] Open
Abstract
The study of miRNAs and their roles as non-invasive biomarkers has been intensely conducted in cancer diseases over the past decade. Various platforms, ranging from conventional qPCRs to Next Generation Sequencers (NGS), have been widely used to analyze miRNA expression. Here we introduced a novel platform, PanelChip™ Analysis System, which provides a sensitive solution for the analysis of miRNA levels in blood. After conducting miRQC analysis, the system's analytical performance compared favorably against similar nanoscale qPCR-based array technologies. Because PanelChip™ requires only a minimal amount of miRNA for analysis, we used it to screen for potential diagnostic biomarkers in the plasma of patients with oral cavity squamous cell carcinoma (OSCC). Combining the platform with a machine learning algorithm, we were able to discover miRNA expression patterns capable of separating healthy subjects from patients with OSCC.
Collapse
|
266
|
Melatonin restrains angiogenic factors in triple-negative breast cancer by targeting miR-152-3p: In vivo and in vitro studies. Life Sci 2018; 208:131-138. [PMID: 29990486 DOI: 10.1016/j.lfs.2018.07.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022]
Abstract
AIMS Breast cancer represents the second most prevalent tumor-related cause of death among women. Although studies have already been published regarding the association between breast tumors and miRNAs, this field remains unclear. MicroRNAs (miRNAs) are defined as non-coding RNA molecules, and are known to be involved in cell pathways through the regulation of gene expression. Melatonin can regulate miRNAs and genes related with angiogenesis. This hormone is produced naturally by the pineal gland and presents several antitumor effects. The aim of this study was to understand the action of melatonin in the regulation of miRNA-152-3p in vivo and in vitro. MAIN METHODS In order to standardize the melatonin treatment in the MDA-MB-468 cells, we carried out the cell viability assay at different concentrations. PCR Array plates were used to identify the differentiated expression of miRNAs after the treatment with melatonin. The relative quantification of the target gene expression (IGF-IR, HIF-1α and VEGF) was performed by real-time PCR. For the tumor development, MDA-MB-468 cells were implanted in female BALB/c mice, and treated or not treated with melatonin. Moreover, the quantification of the target genes protein expression was performed by immunocytochemistry and immunohistochemistry. KEY FINDINGS Relative quantification shows that the melatonin treatment increases the gene expression of miR-152-3p and the target genes, and decreased protein levels of the genes both in vitro and in vivo. SIGNIFICANCE Our results confirm the action of melatonin on the miR-152-3p regulation known to be involved in the progression of breast cancer.
Collapse
|
267
|
Omidbakhsh A, Saeedi M, Khoshnia M, Marjani A, Hakimi S. Micro-RNAs -106a and -362-3p in Peripheral Blood of Inflammatory Bowel Disease Patients. Open Biochem J 2018; 12:78-86. [PMID: 30069249 PMCID: PMC6040212 DOI: 10.2174/1874091x01812010078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
Objective MicroRNAs (miRNAs) can regulate various genes after binding to target mRNAs. Studies on Inflammatory Bowel Disease (IBD) in relation with miRNA are much less shown. The aim of the present study was to assess the expression patterns of microRNA 106a and microRNA 362-3p in peripheral blood samples of Inflammatory Bowel Disease (IBD) patients including Crohn's Disease(CD) and Ulcerative Colitis (UC). Methods This study consisted of 32 CD, 32 UC patients and 32 controls. The expression level of the micro-RNAs -106a and -362-3p was determined using reverse transcription and real-time RT-PCR. Results Our findings showed that MiR-106a and miR-362-3p are expressed at significantly higher levels in the peripheral blood from patients with CD and UC compared to controls. MiR-106a and miR-362-3p expression are also different in the peripheral blood of patients regarding the activity score of the disease. There were significant differences of miR362-3p in active UC relative to inactive UC. Conclusion Altogether our findings suggest that miR-106a and miR-363-3p can play an important role in the pathogenesis of IBD. The differences in expression of miR106a and miR362-3p in peripheral blood of the UC and CD patients in an active phase in comparison to inactive disease suggest that these miRNAs may be useful as potential biomarkers for diagnosis and monitoring the disease activity.
Collapse
Affiliation(s)
- Ameneh Omidbakhsh
- Student Research Committee, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| | - Mohsen Saeedi
- Stem Cell Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| | - Masoud Khoshnia
- Golestan Research Center of Gastroenterology and Hepatology, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| | - Abdoljalal Marjani
- Metabolic Disorders Research Center, Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| | - Safoura Hakimi
- Student Research Committee, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| |
Collapse
|
268
|
The microRNA signatures: aberrantly expressed miRNAs in prostate cancer. Clin Transl Oncol 2018; 21:126-144. [DOI: 10.1007/s12094-018-1910-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/18/2018] [Indexed: 01/27/2023]
|
269
|
Morishita A, Masaki T. MicroRNAs as possible biomarkers for hepatocellular carcinoma. Hepatol Res 2018; 48:499-501. [PMID: 29633526 DOI: 10.1111/hepr.13078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 02/08/2023]
Affiliation(s)
- Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University Faculty of Medicine, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University Faculty of Medicine, Kagawa, Japan
| |
Collapse
|
270
|
Pero-Gascon R, Sanz-Nebot V, Berezovski MV, Benavente F. Analysis of Circulating microRNAs and Their Post-Transcriptional Modifications in Cancer Serum by On-Line Solid-Phase Extraction-Capillary Electrophoresis-Mass Spectrometry. Anal Chem 2018; 90:6618-6625. [PMID: 29730931 DOI: 10.1021/acs.analchem.8b00405] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this paper, an on-line solid-phase extraction capillary electrophoresis-mass spectrometry (SPE-CE-MS) method is described for the purification, preconcentration, separation, and characterization of endogenous microRNA (miRNA) and their post-transcriptional modifications in serum. First, analysis by CE-MS was optimized using a standard mixture of hsa-miR-21-5p (miR-21-5p) and hsa-let-7g-5p (let-7g-5p). For SPE-CE-MS, a commercial silicon carbide (SiC) resin was used to prepare the microcartridges. Under the optimized conditions with standards, the microcartridge lifetime (>25 analyses) and repeatability (2.8% RSD for the migration times; 4.4 and 6.4% RSD for the miR-21-5p and let-7g-5p peak areas, respectively) were good, the method was linear between 25 and 100 nmol·L-1, and the limit of detection (LOD) was around 10 nmol·L-1 (50 times lower than by CE-MS). In order to analyze human serum samples, an off-line sample pretreatment based on phenol/chloroform/isoamyl alcohol (PCA) extraction was necessary prior to SPE-CE-MS. The potential of the SPE-CE-MS method to screen for B-cell chronic lymphocytic leukemia (CLL) was demonstrated by an analysis of serum samples from healthy controls and patients. MicroRNAs, specifically miR-21-5p and a 23 nucleotide long 5'-phosphorylated miRNA with 3'-uridylation (iso-miR-16-5p), were only detected in the CLL patients.
Collapse
Affiliation(s)
- Roger Pero-Gascon
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB) , University of Barcelona , Barcelona 08028 , Spain
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB) , University of Barcelona , Barcelona 08028 , Spain
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB) , University of Barcelona , Barcelona 08028 , Spain
| |
Collapse
|
271
|
Min N, Sakthi Vale PD, Wong AA, Tan NWH, Chong CY, Chen CJ, Wang RYL, Chu JJH. Circulating Salivary miRNA hsa-miR-221 as Clinically Validated Diagnostic Marker for Hand, Foot, and Mouth Disease in Pediatric Patients. EBioMedicine 2018; 31:299-306. [PMID: 29754884 PMCID: PMC6014581 DOI: 10.1016/j.ebiom.2018.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/24/2018] [Accepted: 05/03/2018] [Indexed: 12/01/2022] Open
Abstract
Enhancements in the diagnostic capabilities using host biomarkers are currently much needed where sensitivity and specificity issues plague the diagnosis of Hand, Foot and Mouth Disease (HFMD) in pediatrics clinical samples. We investigated miRNome profiles of HFMD saliva samples against healthy children and developed miRNA-based diagnosis models. Our 6-miRNA scoring model predicted HFMD with an overall accuracy of 85.11% in the training set and 92.86% in the blinded test set of Singapore cohort. Blinded evaluation of the model in Taiwan HFMD cases resulted in 77.08% accuracy with the 6-miRNA model and 68.75% with the 4-miRNA model. The strongest predictor of HFMD in all of the panels, hsa-miR-221 was found to be consistently and significantly downregulated in all of our HFMD cohorts. This is the first study to prove that HFMD infection could be diagnosed by circulating miRNAs in patient's saliva. Moreover, this study also serves as a stepping stone towards the future development of other infectious disease diagnosis workflows using novel biomarkers. Targeted salivary miRNome profiling was conducted between Hand Foot and Mouth disease patients and healthy individuals. HFMD diagnosis models were established with training data from Singapore HFMD cohort using the support vector machine. The models were also validated blindly using the testing data from Singapore HFMD cohort and the entire Taiwan HFMD cohort.
Using saliva as the medium for diagnosis of human diseases has been a long dream for doctors and patients. In this research article, we developed a rapid test for detecting hand foot and mouth disease using molecules known as miRNA in saliva. We created a mathematical model to detect a specific pattern of miRNA response of the HFMD infection to identify HFMD infected patients. Our model can accurately distinguish HFMD patients from the healthy person by 92.86% in the blinded testing set of Singapore HFMD cohort.
Collapse
Affiliation(s)
- Nyo Min
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597, Singapore.
| | - Previtha Dawn Sakthi Vale
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597, Singapore.
| | - Anng Anng Wong
- Infectious Disease Service, Department of Pediatric Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore.
| | - Natalie Woon Hui Tan
- Infectious Disease Service, Department of Pediatric Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore.
| | - Chia Yin Chong
- Infectious Disease Service, Department of Pediatric Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore.
| | - Chih-Jung Chen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children's Hospital, Linkuo 33305, Taiwan
| | - Robert Y L Wang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children's Hospital, Linkuo 33305, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan 33302, Taiwan.
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597, Singapore; Collaborative and Translational Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
272
|
Alharthi A, Beck D, Howard DR, Hillmen P, Oates M, Pettitt A, Wagner SD. An increased fraction of circulating miR-363 and miR-16 is particle bound in patients with chronic lymphocytic leukaemia as compared to normal subjects. BMC Res Notes 2018; 11:280. [PMID: 29739419 PMCID: PMC5941460 DOI: 10.1186/s13104-018-3391-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES In vitro culture studies have shown that miR-363 is enriched in extracellular vesicles from chronic lymphocytic leukaemia cells. We wondered whether miR-363 was detectable in plasma, which is an essential precondition for further studies to assess its usefulness as a biomarker. Using samples from two clinical trials: one enrolling patients with advanced disease and the other asymptomatic patients with early stage disease, we determined plasma miR-363 levels and secondly investigated the distribution of this miRNA between plasma and particle bound fractions in patients and normal subjects. RESULTS Advanced disease (n = 95) was associated with higher levels of miR-363 than early stage disease (n = 45) or normal subjects (n = 11) but there was no association with markers of prognosis. The distribution of specific miRNA between particle bound and plasma protein fractions was investigated using size exclusion chromatography on plasma from patients (n = 4) and normal subjects (n = 3). ~ 20% of total miR-16 and miR-363 is particle bound in patients while there was no detectable particle bound material in normal subjects. Our work demonstrates that miR-363 levels are raised in chronic lymphocytic leukaemia patients and raises the possibility that distribution of circulating miRNA between plasma fractions differs in health and disease.
Collapse
Affiliation(s)
- Afaf Alharthi
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Room 104, Hodgkin Building, Lancaster Road, Leicester, LE1 7HB UK
| | - Daniel Beck
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Room 104, Hodgkin Building, Lancaster Road, Leicester, LE1 7HB UK
| | | | | | - Melanie Oates
- University of Liverpool, Level 6, Duncan Building, Daulby Street, Liverpool, L69 3GA UK
| | - Andrew Pettitt
- University of Liverpool, Level 6, Duncan Building, Daulby Street, Liverpool, L69 3GA UK
| | - Simon D. Wagner
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Room 104, Hodgkin Building, Lancaster Road, Leicester, LE1 7HB UK
| |
Collapse
|
273
|
Vidal DO, Ramão A, Pinheiro DG, Muys BR, Lorenzi JCC, de Pádua Alves C, Zanette DL, de Molfetta GA, Duarte G, Silva WA. Highly expressed placental miRNAs control key biological processes in human cancer cell lines. Oncotarget 2018; 9:23554-23563. [PMID: 29805755 PMCID: PMC5955126 DOI: 10.18632/oncotarget.25264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/24/2018] [Indexed: 12/31/2022] Open
Abstract
Despite being a healthy tissue, the constituent cells of the placenta, share similar characteristics with tumor cells, such as increased cell growth, migration, and invasion. However, while these processes are stochastic and uncontrolled in cancer cells, in placenta they are precisely controlled. Since miRNAs have been reported to regulate genes that control the molecular mechanisms necessary for the development of both human placenta and cancer, we addressed for miRNAs highly expressed in the placenta that could be involved in tumorigenesis. Here, we assessed the miRNA profile in placenta samples using microarray analysis. The results showed that miR-451 and miR-720, highly expressed placental miRNAs, presented very low or undetectable expression in cancer cell lines compared to the normal placenta and healthy tissues. Additionally, transfection of miR-451 or miR-720 mimics in choriocarcinoma cell line (JEG3) and colorectal adenocarcinoma cell line (HT-29) resulted in impaired cell proliferation, decreased cell migration and invasion and reduced ability of colony formation. These findings provide evidence that placenta may work as an alternative model to identify novel miRNAs involved in pathways controlling tumorigenesis.
Collapse
Affiliation(s)
- Daniel Onofre Vidal
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Anelisa Ramão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Daniel Guariz Pinheiro
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Bruna Rodrigues Muys
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Julio Cesar Cetrulo Lorenzi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Cleidson de Pádua Alves
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Dalila Luciola Zanette
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Greice Andreotti de Molfetta
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Geraldo Duarte
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Wilson Araújo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil.,Center for Medical Genomics (HCFMRP/USP), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Integrative Systems Biology (CISBi-NAP/USP), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
274
|
Chen S, Wang Y, Su Y, Zhang L, Zhang M, Li X, Wang J, Zhang X. miR‑205‑5p/PTK7 axis is involved in the proliferation, migration and invasion of colorectal cancer cells. Mol Med Rep 2018; 17:6253-6260. [PMID: 29488611 PMCID: PMC5928600 DOI: 10.3892/mmr.2018.8650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 04/24/2017] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are small non‑coding RNAs, which are critical in a diverse range of biological processes, including development, differentiation, homeostasis, and in the formation of diseases by accelerating and/or inhibiting the translation of mRNAs. The present study aimed to examine the potential role of miRNA (miR)‑205‑5p in the developmental process of colorectal cancer (CRC) through protein‑tyrosine kinase 7 (PTK7). Initially, TargetScan was used to predict the miRNA target sites in the sequence of the PTK7 3'‑untranslated region. It was then found that the mRNA expression level of miR‑205‑5p was lower in CRC cells, determined using reverse transcription‑quantitative polymerase chain reaction analysis, and there was a negative correlation between miR‑205‑5p and PTK7 in CRC tissues. It was also found that miR‑205‑5p regulated the gene transcription of PTK7, determined using a luciferase reporter assay. The results of RT‑qPCR and western blot analyses in human colorectal cancer revealed that miR‑205‑5p suppressed the expression of PTK7. Finally, it was revealed that miR‑205‑5p restricted the proliferation ability of CRC cells through inhibiting PTK7, which was determined using colony forming and 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assays. miR‑205‑5p accelerated cell apoptosis through inhibiting PTK7, demonstrated using Annexin V‑FITC/propidium iodide staining. The results of a Transwell assay indicated that miR‑205‑5p inhibited the migration and invasion abilities of CRC cells through inhibiting PTK7. Therefore, miR‑205‑5p is involved in the proliferation, migration and invasion of CRC through inhibiting PTK7.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Colorectal Surgery, The People's Hospital of Tianjin, Tianjin 300121, P.R. China
| | - Yan Wang
- Department of Pathology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yinan Su
- Department of Colorectal Surgery, The People's Hospital of Tianjin, Tianjin 300121, P.R. China
| | - Lin Zhang
- Department of Colorectal Surgery, The People's Hospital of Tianjin, Tianjin 300121, P.R. China
| | - Mingqing Zhang
- Department of Colorectal Surgery, The People's Hospital of Tianjin, Tianjin 300121, P.R. China
| | - Xueqing Li
- Department of Colorectal Surgery, The People's Hospital of Tianjin, Tianjin 300121, P.R. China
| | - Juan Wang
- Department of Colorectal Surgery, The People's Hospital of Tianjin, Tianjin 300121, P.R. China
| | - Xipeng Zhang
- Department of Colorectal Surgery, The People's Hospital of Tianjin, Tianjin 300121, P.R. China
| |
Collapse
|
275
|
The Challenges and Opportunities in the Clinical Application of Noncoding RNAs: The Road Map for miRNAs and piRNAs in Cancer Diagnostics and Prognostics. Int J Genomics 2018; 2018:5848046. [PMID: 29854719 PMCID: PMC5952559 DOI: 10.1155/2018/5848046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/13/2018] [Accepted: 03/25/2018] [Indexed: 12/11/2022] Open
Abstract
Discoveries on nonprotein-coding RNAs have induced a paradigm shift in our overall understanding of gene expression and regulation. We now understand that coding and noncoding RNA machinery work in concert to maintain overall homeostasis. Based on their length, noncoding RNAs are broadly classified into two groups—long (>200 nt) and small noncoding RNAs (<200 nt). These RNAs perform diverse functions—gene regulation, splicing, translation, and posttranscriptional modifications. MicroRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs) are two classes of small noncoding RNAs that are now classified as master regulators of gene expression. They have also demonstrated clinical significance as potential biomarkers and therapeutic targets for several diseases, including cancer. Despite these similarities, both these RNAs are generated through contrasting mechanisms, and one of the aims of this review is to cover the distance travelled since their discovery and compare and contrast the various facets of these RNAs. Although these RNAs show tremendous promise as biomarkers, translating the findings from bench to bedside is often met with roadblocks. The second aim of this review therefore is to highlight some of the challenges that hinder application of miRNA and piRNA as in guiding treatment decisions.
Collapse
|
276
|
Zheng B, Xi Z, Liu R, Yin W, Sui Z, Ren B, Miller H, Gong Q, Liu C. The Function of MicroRNAs in B-Cell Development, Lymphoma, and Their Potential in Clinical Practice. Front Immunol 2018; 9:936. [PMID: 29760712 PMCID: PMC5936759 DOI: 10.3389/fimmu.2018.00936] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
B-cell formation, development, and differentiation are complex processes regulated by several mechanisms. Recently, there has been growing evidence indicating that microRNAs (miRNAs) are important for normal B-cell lineage development. miRNAs are small non-coding RNA molecules, about 20–22 nucleotide in length, that play an important role in regulating gene expression. They pair with specific messenger RNAs (mRNAs), resulting in mRNAs translational repression or degradation. Here, we review current research about the function of miRNAs in the aspects of B-cell physiology and pathology. We start by introducing the process of miRNA biogenesis. We will then focus on the role of miRNAs during B-cell lineage commitment and development in the bone marrow, followed by a discussion of miRNAs’ role in subsequent peripheral B-cell activation, proliferation, and final differentiation (including B-cell central tolerance and autoimmunity). We list and describe several examples to illustrate miRNAs’ role in the development of B-cell lymphoma, both as oncogenes and tumor suppressor genes. Finally, we delineate the potential value of miRNAs in diagnosing B-cell lymphoma, predicting clinical outcomes, and modulating the efficiency of anticancer treatments. Despite the vast amount of research conducted on miRNAs in recent years, it is still necessary to increase and further strengthen studies on miRNAs and their targets to promote a better understanding on B-cell development and as a result, construct more effective treatments against B-cell disease.
Collapse
Affiliation(s)
- Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Zhijiang Xi
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Rong Liu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Sui
- Division of Medical and Biological Measurement, National Institute of Metrology, Beijing, China
| | - Boxu Ren
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Heather Miller
- Department of Intracellular Pathogens, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
277
|
Assessment of micro RNAs expression in leukemic cells as prognostic markers in chronic lymphocytic leukemia: micro RNAs can predict survival in a course of the disease. Oncotarget 2018; 9:19136-19146. [PMID: 29721189 PMCID: PMC5922383 DOI: 10.18632/oncotarget.24927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/07/2018] [Indexed: 01/06/2023] Open
Abstract
Numerous genetic alterations predicting prognosis and clinical outcome are revealed recently in chronic lymphocytic leukemia (CLL). Among them the deregulated expression of micro RNAs that can induce tumor growth, or act as tumor suppressors seem to be of great importance. This study aimed to analyze the possible role of chosen micro RNAs as markers of prognosis in patients with CLL. We assessed the expression of miR-21, miR-34a, miR-181a, miR-199a/b and miR-221 in previously separated leukemic cells with the use of qRQ-PCR technique at the moment of diagnosis. The results were then analyzed in regards to presence of prognostic factors, clinical data and the end points like progression free survival (PFS), time to progression (TP) and overall survival time (OS). We detected significant correlations between expression of the analyzed micro RNAs and CLL prognostic markers particularly as far as miR-221 and miR-181a were concerned. The subsequent analysis revealed that high expression of miR-34a and miR-181a as well as low miR-21 expression indicated longer TTP, while miR-221 was predictor of OS. The obtained results prove the role of micro RNAs as CLL prognostic markers, particularly as factors predicting survival in a course of the disease.
Collapse
|
278
|
Liu C, Su C, Chen Y, Li G. MiR-144-3p promotes the tumor growth and metastasis of papillary thyroid carcinoma by targeting paired box gene 8. Cancer Cell Int 2018; 18:54. [PMID: 29632436 PMCID: PMC5885360 DOI: 10.1186/s12935-018-0550-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/24/2018] [Indexed: 12/21/2022] Open
Abstract
Background Paired box gene 8 (PAX8) is expressed in and indispensable to thyroid development. MiR-144-3p is found dys-regulated in cancers, and it can block the expression of target gens. This study sought to understand the effect of MiR-144-3p in papillary thyroid carcinoma (PTC) as well as the associated mechanisms. Materials and methods Real-time PCR, immunohistochemical and Western blot assays were performed to examine the expression of target miRNA and/or genes. CCK-8 and flow cytometry analysis was used to respectively test cell growth, cell cycle progression and apoptosis. Luciferase reporter assay was performed to find out whether miR-144-3p could bind to the 3′ untranslated region of PAX8 or not. Results We found that PAX8 decreased in PTC, while miR-144-3p increased in PTC. Over-expression of miR-144-3p promoted the cell viability and cell cycle progression. The expressions of cell-cycle-related genes, cyclin D1, cyclin-dependent kinase 2 and CDC25A were modulated by miR-144-3p. Meanwhile, the presence or absence of miR-144-3p both affected epithelial-mesenchymal transition of PTC by regulating the expression of E-cadherin, N-cadherin and vimentin. Moreover, PAX8 may be a potential direct target of miR-144-3p. Mechanically, the activation of extracellular signal–regulated kinases 1/2, Akt and c-Jun N-terminal kinases may be associated with the tumor-promoting effect of miR-144-3p. In addition, the blockage of miR-144-3p forced the anti-tumor effect delivered by X-ray exposure or paclitaxel. Conclusion MiR-144-3p promoted the growth of tumor and the metastasis of PTC by targeting PAX 8. The study provided promising prognosis markers and valuable treatment strategy for PTC.
Collapse
Affiliation(s)
- Chang Liu
- 1Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, 155 NanJing North Road, Shenyang, 110000 China
| | - Chang Su
- Department of Ultrasound Diagnosis, The Liaoning Province People Hospital, Shenyang, China
| | - Yanchun Chen
- Department of Ultrasound Diagnosis, The Liaoning Province People Hospital, Shenyang, China
| | - Guang Li
- 1Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, 155 NanJing North Road, Shenyang, 110000 China
| |
Collapse
|
279
|
Classification of heterogeneous genetic variations of microRNA regulome in cancer. Cancer Lett 2018; 419:128-138. [DOI: 10.1016/j.canlet.2018.01.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/30/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
|
280
|
Benway CJ, Iacomini J. Defining a microRNA-mRNA interaction map for calcineurin inhibitor induced nephrotoxicity. Am J Transplant 2018; 18:796-809. [PMID: 28925592 DOI: 10.1111/ajt.14503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/21/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023]
Abstract
Calcineurin inhibitors induce nephrotoxicity through poorly understood mechanisms thereby limiting their use in transplantation and other diseases. Here we define a microRNA (miRNA)-messenger RNA (mRNA) interaction map that facilitates exploration into the role of miRNAs in cyclosporine-induced nephrotoxicity (CIN) and the gene pathways they regulate. Using photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP), we isolated RNAs associated with Argonaute 2 in the RNA-induced silencing complex (RISC) of cyclosporine A (CsA) treated and control human proximal tubule cells and identified mRNAs undergoing active targeting by miRNAs. CsA causes specific changes in miRNAs and mRNAs associated with RISC, thereby altering post-transcriptional regulation of gene expression. Pathway enrichment analysis identified canonical pathways regulated by miRNAs specifically following CsA treatment. RNA-seq performed on total RNA indicated that only a fraction of total miRNAs and mRNAs are actively targeted in the RISC, indicating that PAR-CLIP more accurately defines meaningful targeting interactions. Our data also revealed a role for miRNAs in calcineurin-independent regulation of JNK and p38 MAPKs caused by targeting of MAP3K1. Together, our data provide a novel resource and unique insights into molecular pathways regulated by miRNAs in CIN. The gene pathways and miRNAs defined may represent novel targets to reduce calcineurin induced nephrotoxicity.
Collapse
Affiliation(s)
- Christopher J Benway
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.,Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - John Iacomini
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.,Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.,Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.,Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
281
|
Ozer HG, El-Gamal D, Powell B, Hing ZA, Blachly JS, Harrington B, Mitchell S, Grieselhuber NR, Williams K, Lai TH, Alinari L, Baiocchi RA, Brinton L, Baskin E, Cannon M, Beaver L, Goettl VM, Lucas DM, Woyach JA, Sampath D, Lehman AM, Yu L, Zhang J, Ma Y, Zhang Y, Spevak W, Shi S, Severson P, Shellooe R, Carias H, Tsang G, Dong K, Ewing T, Marimuthu A, Tantoy C, Walters J, Sanftner L, Rezaei H, Nespi M, Matusow B, Habets G, Ibrahim P, Zhang C, Mathé EA, Bollag G, Byrd JC, Lapalombella R. BRD4 Profiling Identifies Critical Chronic Lymphocytic Leukemia Oncogenic Circuits and Reveals Sensitivity to PLX51107, a Novel Structurally Distinct BET Inhibitor. Cancer Discov 2018; 8:458-477. [PMID: 29386193 PMCID: PMC5882533 DOI: 10.1158/2159-8290.cd-17-0902] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/12/2017] [Accepted: 01/26/2018] [Indexed: 11/16/2022]
Abstract
Bromodomain and extra-terminal (BET) family proteins are key regulators of gene expression in cancer. Herein, we utilize BRD4 profiling to identify critical pathways involved in pathogenesis of chronic lymphocytic leukemia (CLL). BRD4 is overexpressed in CLL and is enriched proximal to genes upregulated or de novo expressed in CLL with known functions in disease pathogenesis and progression. These genes, including key members of the B-cell receptor (BCR) signaling pathway, provide a rationale for this therapeutic approach to identify new targets in alternative types of cancer. Additionally, we describe PLX51107, a structurally distinct BET inhibitor with novel in vitro and in vivo pharmacologic properties that emulates or exceeds the efficacy of BCR signaling agents in preclinical models of CLL. Herein, the discovery of the involvement of BRD4 in the core CLL transcriptional program provides a compelling rationale for clinical investigation of PLX51107 as epigenetic therapy in CLL and application of BRD4 profiling in other cancers.Significance: To date, functional studies of BRD4 in CLL are lacking. Through integrated genomic, functional, and pharmacologic analyses, we uncover the existence of BRD4-regulated core CLL transcriptional programs and present preclinical proof-of-concept studies validating BET inhibition as an epigenetic approach to target BCR signaling in CLL. Cancer Discov; 8(4); 458-77. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 371.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Cycle Proteins
- Cell Line, Tumor
- Cell Proliferation
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Isoxazoles/pharmacology
- Isoxazoles/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology
- Mice
- Mice, SCID
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Pyrroles/pharmacology
- Pyrroles/therapeutic use
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hatice Gulcin Ozer
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Dalia El-Gamal
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | | | - Zachary A Hing
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - James S Blachly
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Bonnie Harrington
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Shaneice Mitchell
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Nicole R Grieselhuber
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Katie Williams
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Tzung-Huei Lai
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Lapo Alinari
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Robert A Baiocchi
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Lindsey Brinton
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Elizabeth Baskin
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Matthew Cannon
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Larry Beaver
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Virginia M Goettl
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - David M Lucas
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Jennifer A Woyach
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Deepa Sampath
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Amy M Lehman
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | | | - Yan Ma
- Plexxikon Inc., Berkeley, California
| | | | | | | | | | | | | | | | - Ken Dong
- Plexxikon Inc., Berkeley, California
| | | | | | | | | | | | | | | | | | | | | | | | - Ewy A Mathé
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | | | - John C Byrd
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio.
| | - Rosa Lapalombella
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
282
|
Abstract
miRNA regulome is whole set of regulatory elements that regulate miRNA expression or are under control of miRNAs. Its understanding is vital for comprehension of miRNA functions. Classification of miRNA-related genetic variability is challenging because miRNA interact with different genomic elements and are studied at different omics levels. In the present study, miRNA-associated genetic variability is presented at three levels: miRNA genes and their upstream regulation, miRNA silencing machinery and miRNA targets. Several types of miRNA-associated genetic variations are known, including short and structural polymorphisms and epimutations. Differential expression can also affect miRNA regulome function. Classification of miRNA-associated genetic variability presents a baseline for complementing sequence variant nomenclature, planning of experiments, protocols for multi-omics data integration and development of biomarkers.
Collapse
Affiliation(s)
- Karin Hrovatin
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia
| |
Collapse
|
283
|
The long noncoding RNA, treRNA, decreases DNA damage and is associated with poor response to chemotherapy in chronic lymphocytic leukemia. Oncotarget 2018; 8:25942-25954. [PMID: 28412730 PMCID: PMC5432228 DOI: 10.18632/oncotarget.15401] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 12/11/2022] Open
Abstract
The study of long noncoding RNAs (lncRNAs) is an emerging area of cancer research, in part due to their ability to serve as disease biomarkers. However, few studies have investigated lncRNAs in chronic lymphocytic leukemia (CLL). We have identified one particular lncRNA, treRNA, which is overexpressed in CLL B-cells. We measured transcript expression in 144 CLL patient samples and separated samples into high or low expression of treRNA relative to the overall median. We found that high expression of treRNA is significantly associated with shorter time to treatment. High treRNA also correlates with poor prognostic indicators such as unmutated IGHV and high ZAP70 protein expression. We validated these initial findings in samples collected in a clinical trial comparing the nucleoside analog fludarabine alone or in combination with the alkylating agent cyclophosphamide in untreated CLL samples collected prior to starting therapy (E2997). High expression of treRNA was independently prognostic for shorter progression free survival in patients receiving fludarabine plus cyclophosphamide. Given these results, in order to study the role of treRNA in DNA damage response we generated a model cell line system where treRNA was over-expressed in the human B-CLL cell line OSU-CLL. Relative to the vector control line, there was less cell death in OSU-CLL over-expressing treRNA after exposure to fludarabine and mafosfamide, due in part to a reduction in DNA damage. Therefore, we suggest that treRNA is a novel biomarker in CLL associated with aggressive disease and poor response to chemotherapy through enhanced protection against cytotoxic mediated DNA damage.
Collapse
|
284
|
Mansouri L, Wierzbinska JA, Plass C, Rosenquist R. Epigenetic deregulation in chronic lymphocytic leukemia: Clinical and biological impact. Semin Cancer Biol 2018; 51:1-11. [PMID: 29427646 DOI: 10.1016/j.semcancer.2018.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/12/2017] [Accepted: 02/05/2018] [Indexed: 01/01/2023]
Abstract
Deregulated transcriptional control caused by aberrant DNA methylation and/or histone modifications is a hallmark of cancer cells. In chronic lymphocytic leukemia (CLL), the most common adult leukemia, the epigenetic 'landscape' has added a new layer of complexity to our understanding of this clinically and biologically heterogeneous disease. Early studies identified aberrant DNA methylation, often based on single gene promoter analysis with both biological and clinical impact. Subsequent genome-wide profiling studies revealed differential DNA methylation between CLLs and controls and in prognostics subgroups of the disease. From these studies, it became apparent that DNA methylation in regions outside of promoters, such as enhancers, is important for the regulation of coding genes as well as for the regulation of non-coding RNAs. Although DNA methylation profiles are reportedly stable over time and in relation to therapy, a higher epigenetic heterogeneity or 'burden' is seen in more aggressive CLL subgroups, albeit as non-recurrent 'passenger' events. More recently, DNA methylation profiles in CLL analyzed in relation to differentiating normal B-cell populations revealed that the majority of the CLL epigenome reflects the epigenomes present in the cell of origin and that only a small fraction of the epigenetic alterations represents truly CLL-specific changes. Furthermore, CLL patients can be grouped into at least three clinically relevant epigenetic subgroups, potentially originating from different cells at various stages of differentiation and associated with distinct outcomes. In this review, we summarize the current understanding of the DNA methylome in CLL, the role of histone modifying enzymes, highlight insights derived from animal models and attempts made to target epigenetic regulators in CLL along with the future directions of this rapidly advancing field.
Collapse
Affiliation(s)
- Larry Mansouri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden
| | - Justyna Anna Wierzbinska
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden.
| |
Collapse
|
285
|
Nobili L, Lionetti M, Neri A. Long non-coding RNAs in normal and malignant hematopoiesis. Oncotarget 2018; 7:50666-50681. [PMID: 27177333 PMCID: PMC5226612 DOI: 10.18632/oncotarget.9308] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/01/2016] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are defined as ncRNAs of more than 200 nt in length. They are involved in a large spectrum of biological processes, such as maintenance of genome integrity, genomic imprinting, cell differentiation, and development by means of mechanisms that remain to be fully elucidated. Besides their role in normal cellular physiology, accumulating evidence has linked lncRNA expression and functions to cancer development and progression. In this review, we summarize and discuss what is known about their expression and roles in hematopoiesis with a particular focus on their cell-type speciï¬city, functional interactions, and involvement in the pathobiology of hematological malignancies.
Collapse
Affiliation(s)
- Lucia Nobili
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Marta Lionetti
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
286
|
Ferrero G, Cordero F, Tarallo S, Arigoni M, Riccardo F, Gallo G, Ronco G, Allasia M, Kulkarni N, Matullo G, Vineis P, Calogero RA, Pardini B, Naccarati A. Small non-coding RNA profiling in human biofluids and surrogate tissues from healthy individuals: description of the diverse and most represented species. Oncotarget 2018; 9:3097-3111. [PMID: 29423032 PMCID: PMC5790449 DOI: 10.18632/oncotarget.23203] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022] Open
Abstract
The role of non-coding RNAs in different biological processes and diseases is continuously expanding. Next-generation sequencing together with the parallel improvement of bioinformatics analyses allows the accurate detection and quantification of an increasing number of RNA species. With the aim of exploring new potential biomarkers for disease classification, a clear overview of the expression levels of common/unique small RNA species among different biospecimens is necessary. However, except for miRNAs in plasma, there are no substantial indications about the pattern of expression of various small RNAs in multiple specimens among healthy humans. By analysing small RNA-sequencing data from 243 samples, we have identified and compared the most abundantly and uniformly expressed miRNAs and non-miRNA species of comparable size with the library preparation in four different specimens (plasma exosomes, stool, urine, and cervical scrapes). Eleven miRNAs were commonly detected among all different specimens while 231 miRNAs were globally unique across them. Classification analysis using these miRNAs provided an accuracy of 99.6% to recognize the sample types. piRNAs and tRNAs were the most represented non-miRNA small RNAs detected in all specimen types that were analysed, particularly in urine samples. With the present data, the most uniformly expressed small RNAs in each sample type were also identified. A signature of small RNAs for each specimen could represent a reference gene set in validation studies by RT-qPCR. Overall, the data reported hereby provide an insight of the constitution of the human miRNome and of other small non-coding RNAs in various specimens of healthy individuals.
Collapse
Affiliation(s)
- Giulio Ferrero
- Department of Computer Science, University of Turin, Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Francesca Cordero
- Department of Computer Science, University of Turin, Turin, Italy
- Italian Institute for Genomic Medicine, IIGM (formerly Human Genetics Foundation, HuGeF), Turin, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine, IIGM (formerly Human Genetics Foundation, HuGeF), Turin, Italy
| | - Maddalena Arigoni
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federica Riccardo
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Gaetano Gallo
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
- Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
| | - Guglielmo Ronco
- Center for Cancer Epidemiology and Prevention, AO City of Health and Science, Turin, Italy
| | - Marco Allasia
- Department of Surgical Sciences, University of Turin and Città della Salute e della Scienza, Turin, Italy
| | - Neha Kulkarni
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Giuseppe Matullo
- Italian Institute for Genomic Medicine, IIGM (formerly Human Genetics Foundation, HuGeF), Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Vineis
- Italian Institute for Genomic Medicine, IIGM (formerly Human Genetics Foundation, HuGeF), Turin, Italy
- MRC-HPA Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Raffaele A. Calogero
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine, IIGM (formerly Human Genetics Foundation, HuGeF), Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine, IIGM (formerly Human Genetics Foundation, HuGeF), Turin, Italy
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
287
|
Pekarsky Y, Balatti V, Croce CM. BCL2 and miR-15/16: from gene discovery to treatment. Cell Death Differ 2018; 25:21-26. [PMID: 28984869 PMCID: PMC5729525 DOI: 10.1038/cdd.2017.159] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/09/2017] [Accepted: 08/03/2017] [Indexed: 01/05/2023] Open
Abstract
In 1984, we investigated the t(14;18) chromosomal translocations that frequently occur in patients with follicular lymphoma. We first identified a locus on chromosome 18 involved in these translocations with the chromosome 14 containing the immunoglobulin heavy chain locus. Within this region on chromosome 18, we then discovered a gene that we called BCL2, which was activated by the translocations. Since that time, many studies determined that BCL2 is one of the most important oncogenes involved in cancer by inhibiting apoptosis. In 2002, we studied 13q deletions in chronic lymphocytic leukemia (CLL) and found that the microRNA cluster miR-15a/miR-16-1 (miR-15/16) is deleted by 13q deletions. In 2005, we discovered that miR-15/16 function as tumor suppressors by directly targeting BCL2. Thus the loss of two negative regulators of BCL2 expression results in overexpression of BCL2. Very recently, a specific BCL2 inhibitor ABT-199 (Venetoclax) was developed and approved by FDA for CLL treatment. Thus it took 32 years from fundamental discovery of a critical oncogene to the development of a drug capable to cure CLL. In this review, we discuss the discovery, functions and clinical relevance of miR-15/16 and BCL2.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Chromosome Deletion
- Chromosome Disorders/genetics
- Chromosomes, Human, Pair 13/genetics
- Gene Expression Regulation, Neoplastic
- Genes, bcl-2
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Mice
- MicroRNAs/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/therapeutic use
Collapse
Affiliation(s)
- Yuri Pekarsky
- Department of Cancer Biology and Genetics, The Wexner Medical Center, Columbus, OH, USA
| | - Veronica Balatti
- Department of Cancer Biology and Genetics, The Wexner Medical Center, Columbus, OH, USA
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
288
|
Abstract
Our understanding of cancer pathways has been changed by the determination of noncoding transcripts in the human genome in recent years. miRNAs and pseudogenes are key players of the noncoding transcripts from the genome, and alteration of their expression levels provides clues for significant biomarkers in pathogenesis of diseases. Especially, miRNAs and pseudogenes have both oncogenic and tumor-suppressive roles in each step of cancer tumorigenesis. In this current study, association between oncogenes and miRNAs-pseudogenes was reviewed and determined in human cancer by the CellMiner web-tool.
Collapse
Affiliation(s)
- Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ahi Evran University, Kırşehir, Turkey
| | - Aykut Özgür
- Division of Biochemistry, Department of Basic Sciences, Faculty of Pharmacy, Cumhuriyet University, 58140, Sivas, Turkey
| | - Yusuf Tutar
- Division of Biochemistry, Department of Basic Sciences, Faculty of Pharmacy, Cumhuriyet University, 58140, Sivas, Turkey.
- Department of Nutrition and Dietetics, Health Sciences Faculty, University of Health Sciences, Üsküdar, Istanbul, 34668, Turkey.
| |
Collapse
|
289
|
|
290
|
Wu H, Medeiros LJ, Young KH. Apoptosis signaling and BCL-2 pathways provide opportunities for novel targeted therapeutic strategies in hematologic malignances. Blood Rev 2018; 32:8-28. [PMID: 28802908 DOI: 10.1016/j.blre.2017.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/05/2017] [Accepted: 08/06/2017] [Indexed: 12/14/2022]
Abstract
Apoptosis is an essential biological process involved in tissue homeostasis and immunity. Aberrations of the two main apoptotic pathways, extrinsic and intrinsic, have been identified in hematological malignancies; many of these aberrations are associated with pathogenesis, prognosis and resistance to standard chemotherapeutic agents. Targeting components of the apoptotic pathways, especially the chief regulatory BCL-2 family in the intrinsic pathway, has proved to be a promising therapeutic approach for patients with hematological malignances, with the expectation of enhanced efficacy and reduced adverse events. Continuous investigations regarding the biological importance of each of the BCL-2 family components and the clinical rationale to achieve optimal therapeutic outcomes, using either monotherapy or in combination with other targeted agents, have generated inspiring progress in the field. Genomic, epigenomic and biological analyses including BH3 profiling facilitate effective evaluation of treatment response, cancer recurrence and drug resistance. In this review, we summarize the biological features of each of the components in the BCL-2 apoptotic pathways, analyze the regulatory mechanisms and the pivotal roles of BCL-2 family members in the pathogenesis of major types of hematologic malignances, and evaluate the potential of apoptosis- and BCL-2-targeted strategies as effective approaches in anti-cancer therapies.
Collapse
Affiliation(s)
- Huanling Wu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Laboratory Medicine, Shandong Provincial Hospital affiliated to Shandong University, Shandong, China
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Science, Houston, TX, USA.
| |
Collapse
|
291
|
Ahmed FE, Ahmed NC, Gouda MM, Vos PW, Bonnerup C. RT-qPCR for Fecal Mature MicroRNA Quantification and Validation. Methods Mol Biol 2018; 1765:203-215. [PMID: 29589310 DOI: 10.1007/978-1-4939-7765-9_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
By routinely and systematically being able to perform quantitative stem-loop reverse transcriptase (RT) followed by TaqMan® minor-groove binding (MGB) probe, real-time quantitative PCR analysis on exfoliated enriched colonocytes in stool, using human (Homo sapiens, hsa) micro(mi)RNAs to monitor changes of their expression at various stages of colorectal (CRC) progression, this method allows for the reliable and quantitative diagnostic screening of colon cancer (CC). Although the expression of some miRNA genes tested in tissue shows less variability in normal or cancerous patients than in stool, the noninvasive stool by itself is well suited for CC screening. An miRNA approach using stool promises to offer more sensitivity and specificity than currently used genomic, methylomic, or proteomic methods for CC screening.To present an application of employing miRNAs as diagnostic markers for CC screening, we carried out global microarray expression studies on stool colonocytes isolated by paramagnetic beads, using Affymetrix GeneChip miRNA 3.0 Array, to select a panel of miRNAs for subsequent focused semiquantitative PCR analysis studies. We then conducted a stem-loop RT-TaqMan® MGB probes, followed by a modified real-time qPCR expression study on 20 selected miRNAs for subsequent validation of the extracted immunocaptured total small RNA isolated from stool colonocytes. Results showed 12 miRNAs (miR-7, miR-17, miR-20a, miR-21, miR-92a, miR-96, miR-106a, miR-134, miR-183, miR-196a, miR-199a-3p, and miR214) to have an increased expression in stool of CC patients, and that later TNM stages exhibited more increased expressions than adenomas, while 8 miRNAs (miR-9, miR-29b, miR-127-5p, miR-138, miR-143, miR-146a, miR-222, and miR-938) showed decreased expressions in stool of CC patients, which becomes more pronounced as the cancer progresses from early to late TNM stages (0-IV).
Collapse
Affiliation(s)
- Farid E Ahmed
- GEM Tox Labs, Institute for Research in Biotechnology, Greenville, NC, USA.
| | - Nancy C Ahmed
- GEM Tox Labs, Institute for Research in Biotechnology, Greenville, NC, USA
| | - Mostafa M Gouda
- Department of Nutrition & Food Science, National Research Center, Cairo, Egypt
| | - Paul W Vos
- Department of Biostatistics, East Carolina University, Greenville, NC, USA
| | - Chris Bonnerup
- Department of Physics, East Carolina University, Greenville, NC, USA
| |
Collapse
|
292
|
Abstract
Fibrolamellar hepatocellular carcinoma (FLC) is a rare primary liver cancer found in adolescents and young adults without underlying liver disease. A deletion of ~400 kD has been found in one copy of chromosome 19 in the tumor tissue of all patients tested. This produces a fusion of the genes DNAJB1 and PRKACA which, in turn, produces a chimeric transcript and protein. Transcriptomic analysis of the tumor has shown upregulation of various oncologically relevant pathways, including EGF/ErbB, Aurora Kinase A, pak21 and wnt. To explore other factors that may contribute to oncogenesis, we examined the microRNA (miRNA) and long non-coding RNA (lncRNA) expression in FLC. The non-coding RNA expression profile in tumor tissue samples is distinctly different from the adjacent normal liver and from other liver tumors. Furthermore, miRZip knock down or over expression of certain miRNAs led to changes in the levels of coding genes that recapitulated changes observed in FLC, suggesting mechanistically that the changes in the cellular levels of miRNA are not merely correlative. Thus, in addition to serving as diagnostic tools for FLC, non-coding RNAs may serve as therapeutic targets.
Collapse
|
293
|
Discovery and functional implications of a miR-29b-1/miR-29a cluster polymorphism in acute myeloid leukemia. Oncotarget 2017; 9:4354-4365. [PMID: 29435107 PMCID: PMC5796978 DOI: 10.18632/oncotarget.23150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022] Open
Abstract
We previously reported that microRNA (miR)-29b is down-regulated and has a tumor suppressor role in acute myeloid leukemia (AML). However, little is known about the mechanisms responsible for miR-29b expression downregulation in AML. In this work we screened for mutations that could affect miR-29b expression. Using Sanger sequencing, we identified a germline thymidine (T) base deletion within the miR-29b-1/miR-29a cluster precursor in 16% of AML patients. Remarkably we found a significant enrichment for the presence of the miR-29 polymorphism in core binding factor (CBF) newly diagnosed AML patients (n = 61/303; 20%) with respect to age, sex and race matched controls (n = 43/402:11%, P < 0.01). Mechanistically, this polymorphism affects the expression ratio of mature miR-29b and miR-29a by dampening the processing of miR-29a. RNA immunoprecipitation assays showed reduced DROSHA binding capacity to the polymorphism with respect to the controls. Finally, we showed that this polymorphism negatively impacts the ability of miR-29b-1/miR-29a cluster to target MCL-1 and CDK6, both known miR-29 targets.
Collapse
|
294
|
Lipoprotein Lipase Expression in Chronic Lymphocytic Leukemia: New Insights into Leukemic Progression. Molecules 2017; 22:molecules22122083. [PMID: 29206143 PMCID: PMC6149886 DOI: 10.3390/molecules22122083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 11/21/2022] Open
Abstract
Lipoprotein lipase (LPL) is a central enzyme in lipid metabolism. Due to its catalytic activity, LPL is involved in metabolic pathways exploited by various solid and hematologic malignancies to provide an extra energy source to the tumor cell. We and others described a link between the expression of LPL in the tumor cell and a poor clinical outcome of patients suffering Chronic Lymphocytic Leukemia (CLL). This leukemia is characterized by a slow accumulation of mainly quiescent clonal CD5 positive B cells that infiltrates secondary lymphoid organs, bone marrow and peripheral blood. Despite LPL being found to be a reliable molecular marker for CLL prognosis, its functional role and the molecular mechanisms regulating its expression are still matter of debate. Herein we address some of these questions reviewing the current state of the art of LPL research in CLL and providing some insights into where currently unexplored questions may lead to.
Collapse
|
295
|
Sun Z, Li A, Yu Z, Li X, Guo X, Chen R. MicroRNA-497-5p Suppresses Tumor Cell Growth of Osteosarcoma by Targeting ADP Ribosylation Factor-Like Protein 2. Cancer Biother Radiopharm 2017; 32:371-378. [PMID: 29265919 DOI: 10.1089/cbr.2017.2268] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Zhibo Sun
- Department of Traumatic Orthopaedics Surgery, Remin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Anjun Li
- Department of Traumatic Orthopaedics Surgery, Remin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Zhihong Yu
- Department of Traumatic Orthopaedics Surgery, Remin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Xiangwei Li
- Department of Traumatic Orthopaedics Surgery, Remin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Xiao Guo
- Department of Traumatic Orthopaedics Surgery, Remin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Rong Chen
- Department of Traumatic Orthopaedics Surgery, Remin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| |
Collapse
|
296
|
Geva GA, Gielchinsky I, Aviv N, Max KEA, Gofrit ON, Gur-Wahnon D, Ben-Dov IZ. Urine cell-free microRNA as biomarkers for transitional cell carcinoma. BMC Res Notes 2017; 10:641. [PMID: 29187235 PMCID: PMC5708087 DOI: 10.1186/s13104-017-2950-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/21/2017] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE MicroRNA (miRNA) are short nucleotide strands with a regulatory function in the cell. Several miRNAs have been shown to be useful as biomarkers for different neoplasms. The aim of this project was to assess whether levels of miRNA in cell free urine could be used as a biomarker in transitional cell carcinoma (TCC). RESULTS cDNA libraries were produced based on small RNAs in urine samples of fourteen TCC patients and twenty healthy volunteers. Resulting reads were deep sequenced on Illumina HiSeq sequencer with the intent of characterizing cell free urine miRNA profiles. A statistically significant difference was found for a single miRNA; miR-210 was > sixfold higher in the TCC group compared to the control group. Furthermore, we were able to produce a diagnostic score by summing of standardized levels of overexpressed miRNA. This score was considerably higher in TCC patients with a sensitivity of 0.93, specificity of 0.76 and negative predictive value > 0.97.
Collapse
Affiliation(s)
- Gil A. Geva
- Nephrology and Hypertension, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Ilan Gielchinsky
- Department of Urology, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Nina Aviv
- Nephrology and Hypertension, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Klaas E. A. Max
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065 USA
| | - Ofer N. Gofrit
- Department of Urology, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Devorah Gur-Wahnon
- Nephrology and Hypertension, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Iddo Z. Ben-Dov
- Nephrology and Hypertension, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| |
Collapse
|
297
|
Therapeutic prospects of microRNAs in cancer treatment through nanotechnology. Drug Deliv Transl Res 2017; 8:97-110. [DOI: 10.1007/s13346-017-0440-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
298
|
Amato T, Sall A, Dièye TND, Gozzetti A, Iacono M, Ambrosio MR, Granai M, Somma S, Diop S, Touré AO, May E, Gattiollat CH, Wiels J, Ahmed Y, Raphael M, Leoncini L, Bellan C, Piccaluga PP. Preferential Usage of Specific Immunoglobulin Heavy Chain Variable Region Genes With Unmutated Profile and Advanced Stage at Presentation Are Common Features in Patients With Chronic Lymphocytic Leukemia From Senegal. Am J Clin Pathol 2017; 148:545-554. [PMID: 29165569 DOI: 10.1093/ajcp/aqx105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in Western populations, being rarer in Asian and African people. It has been suggested that patients with CLL from Africa might have a more aggressive disease compared with white patients. In this study, we aimed to identify genetic factors that may account for this difference. METHODS We analyzed immunoglobulin heavy chain (IGH) genes' mutational status by performing next-generation sequencing in 25 Senegalese and 50 Italian patients with CLL. RESULTS We found that Senegalese patients more frequently had adverse prognostic factors and an unmutated profile. Furthermore, we documented that IGHV1 (IGHV1-69), IGHD3, and IGHJ6 were significantly more frequent in Senegalese patients, whereas IGHV3-30 was common and limited to the Italian cohort. Stereotyped receptors commonly detected in the white population were not recorded in our Senegalese series. CONCLUSIONS The different IGH repertoire we observed in the Senegalese cohort may reflect the diverse genetic and microenvironmental (ie, polymicrobial stimulation) background.
Collapse
Affiliation(s)
| | | | | | - Alessandro Gozzetti
- Medical Genetics, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | | | | | | | - Serena Somma
- Medical Genetics, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | | | | | - Evelyne May
- Université Paris-Sud, Université Paris-Saclay, Institut Gustave Roussy, Paris, France
| | | | - Joëlle Wiels
- Université Paris-Sud, Université Paris-Saclay, Institut Gustave Roussy, Paris, France
| | - Yonis Ahmed
- Department of Hematology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Martine Raphael
- Université Paris-Sud, Université Paris-Saclay, Institut Gustave Roussy, Paris, France
| | | | | | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Experimental Medicine, Bologna University School of Medicine, Bologna, Italy
- Department of Genomics and Personalized Medicine, Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| |
Collapse
|
299
|
Deng N, Zhou H, Fan H, Yuan Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 2017; 8:110635-110649. [PMID: 29299175 PMCID: PMC5746410 DOI: 10.18632/oncotarget.22372] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
A large number of genes associated with various cancer types contain single nucleotide polymorphisms (SNPs). SNPs are located in gene promoters, exons, introns as well as 5'- and 3'- untranslated regions (UTRs) and affect gene expression by different mechanisms. These mechanisms depend on the role of the genetic elements in which the individual SNPs are located. Moreover, alterations in epigenetic regulation due to gene polymorphisms add to the complexity underlying cancer susceptibility related to SNPs. In this systematic review, we discuss the various genetic and epigenetic mechanisms involved in determining cancer susceptibility related to various SNPs located in different genetic elements. We also discuss the diagnostic potential of these SNPs and the focus for future studies.
Collapse
Affiliation(s)
- Na Deng
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.,Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Heng Zhou
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Hua Fan
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.,National Clinical Research Center for Digestive Diseases, Xi'an 110001, China
| |
Collapse
|
300
|
Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, Ju J, Kornmann M, Ju J. Prognostic Values of microRNAs in Colorectal Cancer. Biomark Insights 2017. [DOI: 10.1177/117727190600100009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The functions of non-coding microRNAs (miRNAs) in tumorigenesis are just beginning to emerge. Previous studies from our laboratory have identified a number of miRNAs that were deregulated in colon cancer cell lines due to the deletion of the p53 tumor suppressor gene. In this study, the in vivo significance of some of these miRNAs was further evaluated using colorectal clinical samples. Ten miRNAs ( hsa-let-7b, hsa-let-7g, hsa-miR-15b, hsa-miR-181b, hsa-miR-191, hsa-miR-200c, hsa-miR-26a, hsa-miR-27a, hsa-miR-30a-5p and hsa-miR-30c) were evaluated for their potential prognostic value in colorectal cancer patients. Forty eight snap frozen clinical colorectal samples (24 colorectal cancer and 24 paired normal patient samples) with detailed clinical follow-up information were selected. The expression levels of 10 miRNAs were quantified via qRT-PCR analysis. The statistical significance of these markers for disease prognosis was evaluated using a two tailed paired Wilcoxon test. A Kaplan-Meier survival curve was generated followed by performing a Logrank test. Among the ten miRNAs, hsa-miR-15b (p = 0.0278), hsa-miR-181b (p = 0.0002), hsa-miR-191 (p = 0.0264) and hsa-miR-200c (p = 0.0017) were significantly over-expressed in tumors compared to normal colorectal samples. Kaplan-Meier survival analysis indicated that hsa-miR-200c was significantly associated with patient survival (p = 0.0122). The patients (n = 15) with higher hsa-miR-200c expression had a shorter survival time (median survival = 26 months) compared to patients (n = 9) with lower expression (median survival = 38 months). Sequencing analysis revealed that hsa-miR-181b (p = 0.0098) and hsa-miR-200c (p = 0.0322) expression were strongly associated with the mutation status of the p53 tumor suppressor gene. Some of these miRNAs may function as oncogenes due to their over-expression in tumors. hsa-miR-200c may be a potential novel prognostic factor in colorectal cancer.
Collapse
Affiliation(s)
- Yaguang Xi
- The Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688
| | - Andrea Formentini
- Department of Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstrasse 9, 89075 Ulm, Germany
| | - Minchen Chien
- Columbia Genome Center, Columbia University, New York, NY, 10032
| | - David B. Weir
- Columbia Genome Center, Columbia University, New York, NY, 10032
| | - James J. Russo
- Columbia Genome Center, Columbia University, New York, NY, 10032
| | - Jingyue Ju
- Columbia Genome Center, Columbia University, New York, NY, 10032
| | - Marko Kornmann
- Department of Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstrasse 9, 89075 Ulm, Germany
| | - Jingfang Ju
- The Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688
| |
Collapse
|