251
|
Rademan R, Markotter W, Paweska JT, Jansen van Vuren P. Multiplex real-time RT-PCR for detection and distinction of Spondweni and Zika virus. J Virol Methods 2019; 266:72-76. [PMID: 30731153 DOI: 10.1016/j.jviromet.2019.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 11/17/2022]
Abstract
Zika (ZIKV) and Spondweni viruses (SPOV) are closely related mosquito borne flaviviruses in the Spondweni serogroup. The co-circulation and similar disease presentation following ZIKV and SPOV infection necessitates the development of a diagnostic tool for their simultaneous detection and distinction. We developed a one-step multiplex real-time RT-PCR (ZIKSPOV) to detect and distinguish between SPOV and ZIKV by utilizing a single primer set combined with virus specific hydrolysis probes. The ZIKSPOV assay was compared to published virus specific real-time RT-PCR assays and the limit of detection was comparable. The SPOV reference strain AR94 was detectable to 0.001 TCID50 per PCR reaction, while African lineage ZIKV (MR 766) was detectable to 0.002 TCID50 per reaction and Asian lineage ZIKV (H/PF/2013) to 0.05 TCID50 per reaction. The ZIKSPOV assay did not detect other flaviviruses, indicative of its specificity for Spondweni serogroup. The ZIKSPOV assay is a useful addition to arbovirus diagnostic and surveillance tools in areas where ZIKV and SPOV are expected to co-circulate. Further evaluation is required to demonstrate the application of the assay for detection of ZIKV and SPOV in mosquito and human clinical samples.
Collapse
Affiliation(s)
- Rochelle Rademan
- Centre of Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Wanda Markotter
- Centre of Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Janusz T Paweska
- Centre of Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Petrus Jansen van Vuren
- Centre of Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
252
|
Piltch-Loeb R, Merdjanoff AA, Bhanja A, Abramson DM. Support for vector control strategies in the United States during the Zika outbreak in 2016: The role of risk perception, knowledge, and confidence in government. Prev Med 2019; 119:52-57. [PMID: 30594531 DOI: 10.1016/j.ypmed.2018.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/28/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
Abstract
Limiting the spread and impact of Zika was a major global priority in 2016, which required a variety of vector control measures. The success of vector control campaigns is varied and often dependent on public or political will. This paper examines the change over time in the United States population's support for vector control and the factors that predicted support for three vector control strategies (i.e., indoor spraying, outdoor spraying, and use of larvacide tablets) during the 2016 Zika outbreak in the United States. Data is from a nationally representative random digit dial sample conducted at three time points in 2016. Bivariate and multivariate regression analyses were used, treating data as a pooled cross-sectional sample. Results show public support for vector control strategies depends on both perceived risk for disease and knowledge of disease characteristics, as well is confidence in government to prevent the threat. Support varied based on vector control method: indoor spraying, aerial spraying, and use of larvacide tables. Results can aide public health officials in implementing effective vector control campaigns depending on the vector control strategy of choice. Results have implications for ways to design effective prevention campaigns in future emerging infectious disease threats.
Collapse
Affiliation(s)
| | | | - Aditi Bhanja
- College of Global Public Health, New York University, New York, US
| | - David M Abramson
- College of Global Public Health, New York University, New York, US
| |
Collapse
|
253
|
Vogels CBF, Rückert C, Cavany SM, Perkins TA, Ebel GD, Grubaugh ND. Arbovirus coinfection and co-transmission: A neglected public health concern? PLoS Biol 2019; 17:e3000130. [PMID: 30668574 PMCID: PMC6358106 DOI: 10.1371/journal.pbio.3000130] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Epidemiological synergy between outbreaks of viruses transmitted by Aedes aegypti mosquitoes, such as chikungunya, dengue, and Zika viruses, has resulted in coinfection of humans with multiple viruses. Despite the potential impact on public health, we know only little about the occurrence and consequences of such coinfections. Here, we review the impact of coinfection on clinical disease in humans, discuss the possibility for co-transmission from mosquito to human, and describe a role for modeling transmission dynamics at various levels of co-transmission. Solving the mystery of virus coinfections will reveal whether they should be viewed as a serious concern for public health.
Collapse
Affiliation(s)
- Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Claudia Rückert
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sean M. Cavany
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
254
|
De Moraes Gomes PAT, Pena LJ, Leite ACL. Isatin Derivatives and Their Antiviral Properties Against Arboviruses: A Review. Mini Rev Med Chem 2019; 19:56-62. [PMID: 29692243 DOI: 10.2174/1389557518666180424093305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 01/25/2018] [Accepted: 04/22/2018] [Indexed: 12/17/2022]
Abstract
Arboviruses have been spreading rapidly throughout the Western Hemisphere in recent decades. Among the arboviruses with high morbidity and mortality are the members of the Alphavirus and Flavivirus genera. Within the first genus, Chikungunya Virus (CHIKV) is considered one of the most challenging human arboviral infection worldwide, against which there is no specific antivirals. Flaviviruses are some of the main viruses responsible for encephalitis, haemorrhagic disease and developmental defects. Dengue virus (DENV), Japanese Encephalitis Virus (JEV), West Nile Virus (WNV) and Zika Virus (ZIKV) are examples of flaviviruses without clinically approved antiviral agents. Thus, the search for new antivirals becomes highly important. One of the strategies that can be employed to obtain new drugs is the identification and utilization of privileged structures. Isatin is an example of a privileged molecular framework, displaying a broad spectrum of biological activities, including antiviral action. Obtaining and studying the antiviral properties of isatin derivatives have helped to identify important agents with potential activity against different arboviruses. This article reviews some of these isatin derivatives, their structures and antiviral properties reported against this important group of viruses.
Collapse
Affiliation(s)
- Paulo André Teixeira De Moraes Gomes
- Medicinal Chemistry Planning Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife-PE, Brazil.,Department of Virology and of Experimental Therapeutics, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife-PE, Brazil
| | - Lindomar J Pena
- Department of Virology and of Experimental Therapeutics, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife-PE, Brazil
| | - Ana C Lima Leite
- Medicinal Chemistry Planning Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife-PE, Brazil
| |
Collapse
|
255
|
Kakooza-Mwesige A, Tshala-Katumbay D, Juliano SL. Viral infections of the central nervous system in Africa. Brain Res Bull 2019; 145:2-17. [PMID: 30658129 DOI: 10.1016/j.brainresbull.2018.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022]
Abstract
Viral infections are a major cause of human central nervous system infection, and may be associated with significant mortality, and long-term sequelae. In Africa, the lack of effective therapies, limited diagnostic and human resource facilities are especially in dire need. Most viruses that affect the central nervous system are opportunistic or accidental pathogens. Some of these viruses were initially considered harmless, however they have now evolved to penetrate the nervous system efficiently and exploit neuronal cell biology thus resulting in severe illness. A number of potentially lethal neurotropic viruses have been discovered in Africa and over the course of time shown their ability to spread wider afield involving other continents leaving a devastating impact in their trail. In this review we discuss key viruses involved in central nervous system disease and of major public health concern with respect to Africa. These arise from the families of Flaviviridae, Filoviridae, Retroviridae, Bunyaviridae, Rhabdoviridae and Herpesviridae. In terms of the number of cases affected by these viruses, HIV (Retroviridae) tops the list for morbidity, mortality and long term disability, while the Rift Valley Fever virus (Bunyaviridae) is at the bottom of the list. The most deadly are the Ebola and Marburg viruses (Filoviridae). This review describes their epidemiology and key neurological manifestations as regards the central nervous system such as meningoencephalitis and Guillain-Barré syndrome. The potential pathogenic mechanisms adopted by these viruses are debated and research perspectives suggested.
Collapse
Affiliation(s)
- Angelina Kakooza-Mwesige
- Department of Paediatrics & Child Health, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda; Astrid Lindgren Children's Hospital, Neuropediatric Research Unit, Karolinska Institutet, Sweden.
| | - Desire Tshala-Katumbay
- Department of Neurology and School of Public Health, Oregon Health & Science University, Portland, OR, USA; Department of Neurology, University of Kinshasa, and Institut National de Recherches Biomedicales, University of Kinshasa, Democratic Republic of the Congo.
| | | |
Collapse
|
256
|
Öhlund P, Lundén H, Blomström AL. Insect-specific virus evolution and potential effects on vector competence. Virus Genes 2019; 55:127-137. [PMID: 30632016 PMCID: PMC6458977 DOI: 10.1007/s11262-018-01629-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023]
Abstract
The advancement in high-throughput sequencing technology and bioinformatics tools has spurred a new age of viral discovery. Arthropods is the largest group of animals and has shown to be a major reservoir of different viruses, including a group known as insect-specific viruses (ISVs). The majority of known ISVs have been isolated from mosquitoes and shown to belong to viral families associated with animal arbovirus pathogens, such as Flaviviridae, Togaviridae and Phenuiviridae. These insect-specific viruses have a strict tropism and are unable to replicate in vertebrate cells, these properties are interesting for many reasons. One is that these viruses could potentially be utilised as biocontrol agents using a similar strategy as for Wolbachia. Mosquitoes infected with the viral agent could have inferior vectorial capacity of arboviruses resulting in a decrease of circulating arboviruses of public health importance. Moreover, insect-specific viruses are thought to be ancestral to arboviruses and could be used to study the evolution of the switch from single-host to dual-host. In this review, we discuss new discoveries and hypothesis in the field of arboviruses and insect-specific viruses.
Collapse
Affiliation(s)
- Pontus Öhlund
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden
| | - Hanna Lundén
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden
| | - Anne-Lie Blomström
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden.
| |
Collapse
|
257
|
Identification and characterization of a mosquito-specific eggshell organizing factor in Aedes aegypti mosquitoes. PLoS Biol 2019; 17:e3000068. [PMID: 30620728 PMCID: PMC6324781 DOI: 10.1371/journal.pbio.3000068] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
Mosquito-borne diseases are responsible for several million human deaths annually around the world. One approach to controlling mosquito populations is to disrupt molecular processes or antagonize novel metabolic targets required for the production of viable eggs. To this end, we focused our efforts on identifying proteins required for completion of embryonic development that are mosquito selective and represent potential targets for vector control. We performed bioinformatic analyses to identify putative protein-coding sequences that are specific to mosquito genomes. Systematic RNA interference (RNAi) screening of 40 mosquito-specific genes was performed by injecting double-stranded RNA (dsRNA) into female Aedes aegypti mosquitoes. This experimental approach led to the identification of eggshell organizing factor 1 (EOF1, AAEL012336), which plays an essential role in the formation and melanization of the eggshell. Eggs deposited by EOF1-deficient mosquitoes have nonmelanized fragile eggshells, and all embryos are nonviable. Scanning electron microscopy (SEM) analysis identified that exochorionic eggshell structures are strongly affected in EOF1-deficient mosquitoes. EOF1 is a potential novel target, to our knowledge, for exploring the identification and development of mosquito-selective and biosafe small-molecule inhibitors. An RNAi functional screen of 40 Aedes aegypti genes specific to the mosquito lineage helped to identify EOF1, a protein that plays an essential role in mosquito eggshell formation and melanization. Mosquito-borne pathogens infect millions of people worldwide, and the rise in insecticide resistance is exacerbating this problem. A new generation of environmentally safe insecticides will be essential to control insecticide-resistant mosquitoes. One potential route to such novel insecticide targets is the identification of proteins specifically needed for mosquito reproduction. Female mosquitoes feed on blood to produce eggs, which are covered with an eggshell; using RNA interference screening of mosquito-specific genes in Aedes aegypti (the mosquito that transmits yellow fever), we identified the eggshell organizing factor 1 (EOF1) protein that plays an essential role in eggshell melanization and embryonic development. Nearly 100% of eggs laid by EOF1-deficient females had a defective eggshell and were not viable. Bleach assays on eggs further confirmed that mosquito-specific EOF1 is required for embryonic development in A. aegypti. Additional experiments revealed that EOF1 also plays an essential role in eggshell formation in Aedes albopictus (the tiger mosquito, a carrier of Zika virus and dengue fever). We hypothesize that EOF1 has evolved within the Culicidae family to effect eggshell formation and therefore maximize egg survival. The results provide new insights, to our knowledge, into mosquito egg maturation and eggshell synthesis and could lead to key advances in the field of mosquito vector control.
Collapse
|
258
|
Lozano-Fuentes S, Kenney JL, Varnado W, Byrd BD, Burkhalter KL, Savage HM. Susceptibility and Vectorial Capacity of American Aedes albopictus and Aedes aegypti (Diptera: Culicidae) to American Zika Virus Strains. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:233-240. [PMID: 30102327 PMCID: PMC6781865 DOI: 10.1093/jme/tjy114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 06/08/2023]
Abstract
The rapid expansion of Zika virus (ZIKV), following the recent outbreaks of Chikungunya virus, overwhelmed the public health infrastructure in many countries and alarmed many in the scientific community. Aedes aegypti (L.) (Diptera: Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) have previously been incriminated as the vectors of these pathogens in addition to dengue virus. In our study, we challenged low generation Ae. aegypti (Chiapas, Mexico) and Ae. albopictus (North Carolina, Mississippi), with three strains of ZIKV, Puerto Rico (GenBank: KU501215), Honduras (GenBank: KX694534), and Miami (GenBank: MF988743). Following an oral challenge with 107.5 PFU/ml of the Puerto Rico strain, we observed high infection and dissemination rates in both species (95%). We report estimated transmission rates for both species (74 and 33%, for Ae. aegypti (L.) (Diptera: Culicidae) and Ae. albopictus (Skuse) (Diptera: Culicidae), respectively), and the presence of a probable salivary gland barrier in Ae. albopictus to Zika virus. Finally, we calculated vectorial capacity for both species and found that Ae. albopictus had a slightly lower vectorial capacity when compared with Ae. aegypti.Second Language Abstract: La rápida expansión del virus Zika, poco después de las epidemias de chikungunya, rebaso la infraestructura de salud pública en muchos países y sorprendió a muchos en la comunidad científica. Notablemente, Aedes aegypti y Aedes albopictus transmiten estos patógenos además del virus del dengue. En este estudio se expusieron con tres cepas americanas de virus Zika a grupos de Aedes aegypti y Aedes albopictus de generación reciente. Encontramos altos porcentajes de infección y diseminación en ambas especies (95%). Se reporta, la transmisión viral en ambas especies (74 y 33%, para Aedes aegypti and Aedes albopictus, respectivamente) y una probable barrera a nivel de glándulas salivarías. Finalmente, calculamos la capacidad vectorial para ambas especies.
Collapse
Affiliation(s)
- Saul Lozano-Fuentes
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - Joan L. Kenney
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - Wendy Varnado
- Mississippi State Department of Health, 570 East Woodrow Wilson Avenue, Jackson, MS 39216
| | - Brian D. Byrd
- Vector-borne Infectious Disease Laboratory, Western Carolina University, 3971 Little Savannah Road, CHHS 416, Cullowhee, NC 28723
| | - Kristen L. Burkhalter
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - Harry M. Savage
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| |
Collapse
|
259
|
Prediction and Prevention: Interventions to Enhance Blood Safety. BLOOD SAFETY 2019. [PMCID: PMC7120977 DOI: 10.1007/978-3-319-94436-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The transmission of infectious disease by blood transfusion has been a major problem since the middle of the twentieth century. Since about 1960, there has been a concerted and prolonged effort to reduce or eliminate this outcome; the efforts have been successful, but new challenges continue to appear, mostly in the form of emerging infectious diseases. This chapter reviews two relevant issues: the possibility of predicting microbial threats to blood safety and the interventions that may be used to reduce the risks of transfusion transmission. While there are only limited opportunities to predict relevant infections, there are effective measures to enhance blood safety. These involve appropriate selection of donors, implementation of effective tests, and development and implementation of pathogen reduction.
Collapse
|
260
|
Biosurveillance and Dentistry. HEALTH INFORMATICS 2019. [PMCID: PMC7124043 DOI: 10.1007/978-3-319-98298-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Events of public health concern continue to present a challenge for the general population. A key element to address appropriate health responses is the establishment of modern public health surveillance mechanisms. In this chapter we explore possible scenarios/use cases where dentists can use electronic dental record technology to increase the accuracy, coverage, and timeliness of existing public health surveillance efforts. We identify organizational, technical, and regulatory elements that influence the adoption of such approaches and possible benefits when integrated to the public health system at large.
Collapse
|
261
|
Predicting wildlife reservoirs and global vulnerability to zoonotic Flaviviruses. Nat Commun 2018; 9:5425. [PMID: 30575757 PMCID: PMC6303316 DOI: 10.1038/s41467-018-07896-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 12/05/2018] [Indexed: 11/09/2022] Open
Abstract
Flaviviruses continue to cause globally relevant epidemics and have emerged or re-emerged in regions that were previously unaffected. Factors determining emergence of flaviviruses and continuing circulation in sylvatic cycles are incompletely understood. Here we identify potential sylvatic reservoirs of flaviviruses and characterize the macro-ecological traits common to known wildlife hosts to predict the risk of sylvatic flavivirus transmission among wildlife and identify regions that could be vulnerable to outbreaks. We evaluate variability in wildlife hosts for zoonotic flaviviruses and find that flaviviruses group together in distinct clusters with similar hosts. Models incorporating ecological and climatic variables as well as life history traits shared by flaviviruses predict new host species with similar host characteristics. The combination of vector distribution data with models for flavivirus hosts allows for prediction of global vulnerability to flaviviruses and provides potential targets for disease surveillance in animals and humans.
Collapse
|
262
|
Manning JE, Oliveira F, Parker DM, Amaratunga C, Kong D, Man S, Sreng S, Lay S, Nang K, Kimsan S, Sokha L, Kamhawi S, Fay MP, Suon S, Ruhl P, Ackerman H, Huy R, Wellems TE, Valenzuela JG, Leang R. The PAGODAS protocol: pediatric assessment group of dengue and Aedes saliva protocol to investigate vector-borne determinants of Aedes-transmitted arboviral infections in Cambodia. Parasit Vectors 2018; 11:664. [PMID: 30572920 PMCID: PMC6300895 DOI: 10.1186/s13071-018-3224-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Mosquito-borne arboviruses, like dengue virus, continue to cause significant global morbidity and mortality, particularly in Southeast Asia. When the infectious mosquitoes probe into human skin for a blood meal, they deposit saliva containing a myriad of pharmacologically active compounds, some of which alter the immune response and influence host receptivity to infection, and consequently, the establishment of the virus. Previous reports have highlighted the complexity of mosquito vector-derived factors and immunity in the success of infection. Cumulative evidence from animal models and limited data from humans have identified various vector-derived components, including salivary components, that are co-delivered with the pathogen and play an important role in the dissemination of infection. Much about the roles and effects of these vector-derived factors remain to be discovered. METHODS/DESIGN We describe a longitudinal, pagoda (community)-based pediatric cohort study to evaluate the burden of dengue virus infection and document the immune responses to salivary proteins of Aedes aegypti, the mosquito vector of dengue, Zika, and chikungunya viruses. The study includes community-based seroprevalence assessments in the peri-urban town of Chbar Mon in Kampong Speu Province, Cambodia. The study aims to recruit 771 children between the ages of 2 and 9 years for a three year period of longitudinal follow-up, including twice per year (rainy and dry season) serosurveillance for dengue seroconversion and Ae. aegypti salivary gland homogenate antibody intensity determinations by ELISA assays. Diagnostic tests for acute dengue, Zika and chikungunya viral infections will be performed by RT-PCR. DISCUSSION This study will serve as a foundation for further understanding of mosquito saliva immunity and its impact on Aedes-transmitted arboviral diseases endemic to Cambodia. TRIAL REGISTRATION NCT03534245 registered on 23 May 2018.
Collapse
Affiliation(s)
- Jessica E. Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Daniel M. Parker
- Department of Population Health and Disease Prevention, University of California, Irvine, California, USA
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Dara Kong
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Somnang Man
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Sokunthea Sreng
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Sreyngim Lay
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Kimsour Nang
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Soun Kimsan
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Ly Sokha
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Shaden Kamhawi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Michael P. Fay
- Biostatistics Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Seila Suon
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Parker Ruhl
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Hans Ackerman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Rekol Huy
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Jesus G. Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Rithea Leang
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| |
Collapse
|
263
|
Milich KM, Koestler BJ, Simmons JH, Nehete PN, Di Fiore A, Williams LE, Dudley JP, Vanchiere J, Payne SM. Methods for detecting Zika virus in feces: A case study in captive squirrel monkeys (Saimiri boliviensis boliviensis). PLoS One 2018; 13:e0209391. [PMID: 30571742 PMCID: PMC6301608 DOI: 10.1371/journal.pone.0209391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
A strain of Zika virus (ZIKV) of Asian origin associated with birth defects and neurological disorders has emerged and spread through the Americas. ZIKV was first isolated in the blood of nonhuman primates in Africa and has been detected in the blood, saliva, and urine of a few catarrhine species in both Africa and Asia, suggesting that nonhuman primates may serve as both a source and a reservoir of the virus. The recent introduction of ZIKV to human populations in the Americas presents the potential for the virus to spread into nonhuman primate reservoirs. Thus, it is critical to develop efficient and noninvasive detection methods to monitor the spread of the virus in wild nonhuman primate populations. Here, we describe a method for ZIKV detection in noninvasively collected fecal samples of a Neotropical primate. Fecal samples were collected from two captive squirrel monkeys (Saimiri boliviensis boliviensis) that were experimentally infected with ZIKV (Strain Mexico_1_44) and an additional two uninfected squirrel monkeys. Nucleic acids were extracted from these samples, and RT-qPCR was used to assay for the presence of ZIKV using primers flanking a 101 bp region of the NS5 gene. In both ZIKV-inoculated animals, ZIKV was detected 5-11 days post-infection, but was not detected in the uninfected animals. We compare the fecal results to ZIKV detection in serum, saliva, and urine samples from the same individuals. Our results indicate that fecal detection is a cost-effective, noninvasive method for monitoring wild populations of Neotropical primates as possible ZIKV reservoirs.
Collapse
Affiliation(s)
- Krista M Milich
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Anthropology, University of Texas at Austin, Austin, Texas, United States of America
| | - Benjamin J Koestler
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology and LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, Texas, United States of America
| | - Joe H Simmons
- University of Texas MD Anderson Cancer Research Center, Bastrop, Texas, United States of America
| | - Pramod N Nehete
- University of Texas MD Anderson Cancer Research Center, Bastrop, Texas, United States of America
| | - Anthony Di Fiore
- Department of Anthropology, University of Texas at Austin, Austin, Texas, United States of America
| | - Lawrence E Williams
- University of Texas MD Anderson Cancer Research Center, Bastrop, Texas, United States of America
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology and LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, Texas, United States of America
| | - John Vanchiere
- Department of Pediatrics, Louisiana State University Health Science Center at Shreveport, Shreveport, Louisiana, United States of America
| | - Shelley M Payne
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology and LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
264
|
Contemporary Zika Virus Isolates Induce More dsRNA and Produce More Negative-Strand Intermediate in Human Astrocytoma Cells. Viruses 2018; 10:v10120728. [PMID: 30572570 PMCID: PMC6316034 DOI: 10.3390/v10120728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
The recent emergence and rapid geographic expansion of Zika virus (ZIKV) poses a significant challenge for public health. Although historically causing only mild febrile illness, recent ZIKV outbreaks have been associated with more severe neurological complications, such as Guillain-Barré syndrome and fetal microcephaly. Here we demonstrate that two contemporary (2015) ZIKV isolates from Puerto Rico and Brazil may have increased replicative fitness in human astrocytoma cells. Over a single infectious cycle, the Brazilian isolate replicates to higher titers and induces more severe cytopathic effects in human astrocytoma cells than the historical African reference strain or an early Asian lineage isolate. In addition, both contemporary isolates induce significantly more double-stranded RNA in infected astrocytoma cells, despite similar numbers of infected cells across isolates. Moreover, when we quantified positive- and negative-strand viral RNA, we found that the Asian lineage isolates displayed substantially more negative-strand replicative intermediates than the African lineage isolate in human astrocytoma cells. However, over multiple rounds of infection, the contemporary ZIKV isolates appear to be impaired in cell spread, infecting a lower proportion of cells at a low MOI despite replicating to similar or higher titers. Taken together, our data suggests that contemporary ZIKV isolates may have evolved mechanisms that allow them to replicate with increased efficiency in certain cell types, thereby highlighting the importance of cell-intrinsic factors in studies of viral replicative fitness.
Collapse
|
265
|
Kum DB, Mishra N, Boudewijns R, Gladwyn-Ng I, Alfano C, Ma J, Schmid MA, Marques RE, Schols D, Kaptein S, Nguyen L, Neyts J, Dallmeier K. A yellow fever-Zika chimeric virus vaccine candidate protects against Zika infection and congenital malformations in mice. NPJ Vaccines 2018; 3:56. [PMID: 30564463 PMCID: PMC6292895 DOI: 10.1038/s41541-018-0092-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022] Open
Abstract
The recent Zika virus (ZIKV) epidemic in the Americas led to an intense search for therapeutics and vaccines. Here we report the engineering of a chimeric virus vaccine candidate (YF-ZIKprM/E) by replacing the antigenic surface glycoproteins and the capsid anchor of YFV-17D with those of a prototypic Asian lineage ZIKV isolate. By intracellular passaging, a variant with adaptive mutations in the E protein was obtained. Unlike YFV-17D, YF-ZIKprM/E replicates poorly in mosquito cells. Also, YF-ZIKprM/E does not cause disease nor mortality in interferon α/β, and γ receptor KO AG129 mice nor following intracranial inoculation of BALB/c pups. A single dose as low as 1 × 102 PFU results, as early as 7 days post vaccination, in seroconversion to neutralizing antibodies and confers full protection in AG129 mice against stringent challenge with a lethal inoculum (105 LD50) of either homologous or heterologous ZIKV strains. Induction of multi-functional CD4+ and CD8+ T cell responses against ZIKV structural and YFV-17D non-structural proteins indicates that cellular immunity may also contribute to protection. Vaccine immunogenicity and protection was confirmed in other mouse strains, including after temporal blockade of interferon-receptors in wild-type mice to facilitate ZIKV replication. Vaccination of wild-type NMRI dams with YF-ZIKprM/E results in complete protection of foetuses against brain infections and malformations following a stringent intraplacental challenge with an epidemic ZIKV strain. The particular characteristic of YF-ZIKprM/E in terms of efficacy and its marked attenuation in mice warrants further exploration as a vaccine candidate. Zika virus (ZIKV) infection generally results in mild symptoms but can cause serious developmental abnormalities in infants born to ZIKV infected mothers. Kai Dallmeier and colleagues at the KU Leuven in Belgium, engineered a chimeric live-attenuated vaccine (YF-ZIKprM/E) by swapping the glycoprotein from the Yellow Fever vaccine YFV-17D with that of a pre-epidemic ZIKV strain. YF-ZIKprM/E is very well tolerated with no adverse effects even following high dose intracranial infection. Mice highly susceptible to ZIKV infection—including AG129 and type I interferon receptor deficient strains—vaccinated with a single dose of YF-ZIKprM/E are fully protected from lethal ZIKV challenge. Protection can be achieved within 7 days and by low doses of YF-ZIKprM/E, is durable and generally results in sterilizing immunity. YF-ZIKprM/E elicits both neutralizing antibodies and robust cellular immunity. Finally, YF-ZIKprM/E can also prevent vertical transmission of ZIKV and achieve efficient protection of pups from neurological defects following intraplacental challenge.
Collapse
Affiliation(s)
- Dieudonné B Kum
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Niraj Mishra
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Robbert Boudewijns
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Ivan Gladwyn-Ng
- 2GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Christian Alfano
- 2GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Michael A Schmid
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Rafael E Marques
- 3Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Dominique Schols
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Suzanne Kaptein
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Laurent Nguyen
- 2GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
266
|
Lee T, Ahn JH, Park SY, Kim GH, Kim J, Kim TH, Nam I, Park C, Lee MH. Recent Advances in AIV Biosensors Composed of Nanobio Hybrid Material. MICROMACHINES 2018; 9:E651. [PMID: 30544883 PMCID: PMC6316213 DOI: 10.3390/mi9120651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 11/17/2022]
Abstract
Since the beginning of the 2000s, globalization has accelerated because of the development of transportation systems that allow for human and material exchanges throughout the world. However, this globalization has brought with it the rise of various pathogenic viral agents, such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), Zika virus, and Dengue virus. In particular, avian influenza virus (AIV) is highly infectious and causes economic, health, ethnical, and social problems to human beings, which has necessitated the development of an ultrasensitive and selective rapid-detection system of AIV. To prevent the damage associated with the spread of AIV, early detection and adequate treatment of AIV is key. There are traditional techniques that have been used to detect AIV in chickens, ducks, humans, and other living organisms. However, the development of a technique that allows for the more rapid diagnosis of AIV is still necessary. To achieve this goal, the present article reviews the use of an AIV biosensor employing nanobio hybrid materials to enhance the sensitivity and selectivity of the technique while also reducing the detection time and high-throughput process time. This review mainly focused on four techniques: the electrochemical detection system, electrical detection method, optical detection methods based on localized surface plasmon resonance, and fluorescence.
Collapse
Affiliation(s)
- Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Jae-Hyuk Ahn
- Department of Electronic Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Sun Yong Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Ga-Hyeon Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Jeonghyun Kim
- Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Inho Nam
- Division of Chemistry & Bio-Environmental Sciences, Seoul Women's University, Seoul 01797, Korea.
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
267
|
Allen MP. Chronicling the Risk and Risk Communication by Governmental Officials During the Zika Threat. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2018; 38:2507-2513. [PMID: 30419154 DOI: 10.1111/risa.13232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/31/2018] [Accepted: 10/12/2018] [Indexed: 06/09/2023]
Abstract
The unique circumstances surrounding Zika, including the fact that it is both mosquito-borne and sexually transmissible, brought to the fore concerns about optimal ways to communicate risk in an environment characterized by rapidly evolving knowledge. The difficulty in doing so is magnified by the fact that science-based health messages from governmental agencies must be developed in an evidence-based, audience-participative, and collaborative manner. A recent reminder in JAMA asserted the importance of preparing now for future threats. Understanding how the knowledge and messaging about Zika changed across time should help public health officials prepare for such challenges.
Collapse
|
268
|
Tennant W, Recker M. Robustness of the reproductive number estimates in vector-borne disease systems. PLoS Negl Trop Dis 2018; 12:e0006999. [PMID: 30557351 PMCID: PMC6312349 DOI: 10.1371/journal.pntd.0006999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 12/31/2018] [Accepted: 11/14/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The required efforts, feasibility and predicted success of an intervention strategy against an infectious disease are partially determined by its basic reproduction number, R0. In its simplest form R0 can be understood as the product of the infectious period, the number of infectious contacts and the per-contact transmission probability, which in the case of vector-transmitted diseases necessarily extend to the vector stages. As vectors do not usually recover from infection, they remain infectious for life, which places high significance on the vector's life expectancy. Current methods for estimating the R0 for a vector-borne disease are mostly derived from compartmental modelling frameworks assuming constant vector mortality rates. We hypothesised that some of the assumptions underlying these models can lead to unrealistic high vector life expectancies with important repercussions for R0 estimates. METHODOLOGY AND PRINCIPAL FINDINGS Here we used a stochastic, individual-based model which allowed us to directly measure the number of secondary infections arising from one index case under different assumptions about vector mortality. Our results confirm that formulas based on age-independent mortality rates can overestimate R0 by nearly 100% compared to our own estimate derived from first principles. We further provide a correction factor that can be used with a standard R0 formula and adjusts for the discrepancies due to erroneous vector age distributions. CONCLUSION Vector mortality rates play a crucial role for the success and general epidemiology of vector-transmitted diseases. Many modelling efforts intrinsically assume these to be age-independent, which, as clearly demonstrated here, can lead to severe over-estimation of the disease's reproduction number. Our results thus re-emphasise the importance of obtaining field-relevant and species-dependent vector mortality rates, which in turn would facilitate more realistic intervention impact predictions.
Collapse
Affiliation(s)
- Warren Tennant
- Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Mario Recker
- Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn, United Kingdom
| |
Collapse
|
269
|
Abstract
How virulence evolves after a virus jumps to a new host species is central to disease emergence. Our current understanding of virulence evolution is based on insights drawn from two perspectives that have developed largely independently: long-standing evolutionary theory based on limited real data examples that often lack a genomic basis, and experimental studies of virulence-determining mutations using cell culture or animal models. A more comprehensive understanding of virulence mutations and their evolution can be achieved by bridging the gap between these two research pathways through the phylogenomic analysis of virus genome sequence data as a guide to experimental study.
Collapse
Affiliation(s)
- Jemma L Geoghegan
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
270
|
Abstract
CRISPR-based therapeutics have the potential to revolutionize the treatment of hereditary diseases, but current efforts to translate research to the bedside face significant technical, regulatory, and ethical hurdles. In this article, we discuss an underappreciated application of CRISPR: diagnostic testing, and argue that: (1) CRISPR diagnostics are poised to disrupt diagnostic practices including perinatal screening and (2) since CRISPR diagnostics pose minimal technical, regulatory and ethical hurdles (unlike CRISPR therapeutic uses) they are likely to be clinically relevant before CRISPR-based therapies, and thus warrant medical community's attention.
Collapse
Affiliation(s)
- Adam Pan
- Solomon Center for Health Law & Policy, Yale Law School, United States.
| | | |
Collapse
|
271
|
Zhang L, Du X, Chen C, Chen Z, Zhang L, Han Q, Xia X, Song Y, Zhang J. Development and Characterization of Double-Antibody Sandwich ELISA for Detection of Zika Virus Infection. Viruses 2018; 10:E634. [PMID: 30445676 PMCID: PMC6266115 DOI: 10.3390/v10110634] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that can cause severe disease, including congenital birth defect and Guillain-Barré syndrome during pregnancy. Although, several molecular diagnostic methods have been developed to detect the ZIKV, these methods pose challenges as they cannot detect early viral infection. Furthermore, these methods require the extraction of RNA, which is easy to contaminate. Nonstructural protein 1 (NS1) is an important biomarker for early diagnosis of the virus, and the detection methods associated with the NS1 protein have recently been reported. The aim of this study was to develop a rapid and sensitive detection method for the detection of the ZIKV based on the NS1 protein. The sensitivity of this method is 120 ng mL-1 and it detected the ZIKV in the supernatant and lysates of Vero and BHK cells, as well as the sera of tree shrews infected with the ZIKV. Without the isolation of the virus and the extraction of the RNA, our method can be used as a primary screening test as opposed to other diagnosis methods that detect the ZIKV.
Collapse
Affiliation(s)
- Liding Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| | - Xuewei Du
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| | - Congjie Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| | - Zhixin Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| | - Li Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| | - Qinqin Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| | - Yuzhu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| | - Jinyang Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| |
Collapse
|
272
|
Whiteman A, Mejia A, Hernandez I, Loaiza JR. Socioeconomic and demographic predictors of resident knowledge, attitude, and practice regarding arthropod-borne viruses in Panama. BMC Public Health 2018; 18:1261. [PMID: 30428861 PMCID: PMC6236898 DOI: 10.1186/s12889-018-6172-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022] Open
Abstract
Background We sought to identify if socioeconomic and demographic factors play a role in resident knowledge, attitude, and practice regarding Dengue, Chikungunya, and Zika in order to inform effective management procedures for disease prevention in Panama, a middle-income tropical country in Central America. All three are arthropod-borne viruses transmitted by Aedes mosquito vectors present in the focal region of Panama City, the largest city in Central America and an urban region of extreme socioeconomic polarization. Methods Between November 2017 and February 2018, we administered standardized, anonymous knowledge, attitude, and practice surveys to 263 residents split between two neighborhoods of high socioeconomic status (SES) and two neighborhoods of low SES. We then summed the knowledge, attitude, and practice scores respectively, and used linear and logistic regressions to quantify relationships with socioeconomic and demographic factors. Results Low-SES neighborhoods with high proportions of low income residents, residents over 70 years old had lower mean knowledge scores compared to other groups. Furthermore, residents in neighborhoods of low SES reported more mosquito biting relative to residents in neighborhoods of high SES, yet comparably lower level of concerns for disease transmission. Additionally, knowledge was lower for the more novel emergent threats of Chikungunya and Zika, compared to the endemic Dengue. Conclusion Findings suggest that low-SES neighborhoods with high proportions of low income, low education, and elderly residents should be targeted for outreach programs designed to prevent DENV, CHIKV, or ZIKV in Panama City. These outcomes support our initial hypotheses as lower relative knowledge and fewer practices related to the prevention of Dengue, Chikungunya, and Zika were found in low-SES neighborhoods. There is also a widespread lack of adequate knowledge regarding these diseases as well as low levels of concern in areas of highly reported mosquito biting. We provide suggestions for taking neighborhood socioeconomic status and specific aspects resident health literacy and attitude into account for creating more effective outreach campaigns as both endemic and novel arthropod-borne disease rates continue to increase throughout Latin America. Electronic supplementary material The online version of this article (10.1186/s12889-018-6172-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Whiteman
- Department of Geography & Earth Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA. .,Smithsonian Tropical Research Institute, P.O. Box 0843-03092, Balboa, Ancón, Republic of Panama.
| | - A Mejia
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), P.O. Box 0843-01103, Panamá, República de Panamá
| | - I Hernandez
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), P.O. Box 0843-01103, Panamá, República de Panamá
| | - J R Loaiza
- Smithsonian Tropical Research Institute, P.O. Box 0843-03092, Balboa, Ancón, Republic of Panama.,Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), P.O. Box 0843-01103, Panamá, República de Panamá.,Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Panama City, República de Panamá
| |
Collapse
|
273
|
Abstract
Zika virus (ZIKV) is a significant global health threat, as infection has been linked to serious neurological complications, including microcephaly. Using a human stem cell-derived neural progenitor model system, we find that a critical cellular quality control process called the nonsense-mediated mRNA decay (NMD) pathway is disrupted during ZIKV infection. Importantly, disruption of the NMD pathway is a known cause of microcephaly and other neurological disorders. We further identify an interaction between the capsid protein of ZIKV and up-frameshift protein 1 (UPF1), the master regulator of NMD, and show that ZIKV capsid targets UPF1 for degradation. Together, these results offer a new mechanism for how ZIKV infection can cause neuropathology in the developing brain. Zika virus (ZIKV) infection of neural progenitor cells (NPCs) in utero is associated with neurological disorders, such as microcephaly, but a detailed molecular understanding of ZIKV-induced pathogenesis is lacking. Here we show that in vitro ZIKV infection of human cells, including NPCs, causes disruption of the nonsense-mediated mRNA decay (NMD) pathway. NMD is a cellular mRNA surveillance mechanism that is required for normal brain size in mice. Using affinity purification-mass spectrometry, we identified multiple cellular NMD factors that bind to the viral capsid protein, including the central NMD regulator up-frameshift protein 1 (UPF1). Endogenous UPF1 interacted with the ZIKV capsid protein in coimmunoprecipitation experiments, and capsid expression posttranscriptionally downregulated UPF1 protein levels, a process that we confirmed occurs during ZIKV infection. Cellular fractionation studies show that the ZIKV capsid protein specifically targets nuclear UPF1 for degradation via the proteasome. A further decrease in UPF1 levels by RNAi significantly enhanced ZIKV infection in NPC cultures, consistent with a model in which NMD restricts ZIKV infection in the fetal brain. We propose that ZIKV, via the capsid protein, has evolved a strategy to lower UPF1 levels and dampen antiviral activities of NMD, which in turn contributes to neuropathology in vivo.
Collapse
|
274
|
Abstract
Zika virus (ZIKV) infection has been associated with Guillain-Barré Syndrome (GBS). Roughly 60% of people in countries such as the U.S. live in areas at risk for seasonal spread of ZIKV. ZIKV belongs to a class of diseases that is not typically seen in hospital settings across the U.S. and Europe. We describe the case presentation, management, and treatment of ZIKV infection complicated by GBS. A 64-year-old woman with recent travel to the Dominican Republic presented with rash followed by an acute, ascending polyneuropathy consistent with GBS. She was confirmed to have an acute ZIKV infection by detection of ZIKV nucleic acid by reverse transcription-polymerase chain reaction. She met Brighton Collaboration criteria level 1 evidence for GBS. She received two courses of intravenous immunoglobulin and slowly improved, though still had weakness at discharge. More research is needed to identify the pathophysiology behind ZIKV-associated GBS and its optimal treatment. Prevention is fundamental to limiting infection and spread of ZIKV.
Collapse
|
275
|
Liao Y, Fan Z, Deng H, Yang Y, Lin J, Zhao Z, Tan Q, Li B, Huang X. Zika Virus Liquid Biopsy: A Dendritic Ru(bpy) 3 2+-Polymer-Amplified ECL Diagnosis Strategy Using a Drop of Blood. ACS CENTRAL SCIENCE 2018; 4:1403-1411. [PMID: 30410978 PMCID: PMC6202637 DOI: 10.1021/acscentsci.8b00471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that leads to devastating consequences for fetal development. However, accurate diagnosis of ZIKV is made difficult by the fact that most infected patients are asymptomatic or present with symptoms similar to those of other febrile illnesses. Thus, the development of a simple, accurate, highly sensitive, and reliable method for the biomedical analysis and diagnosis of ZIKV is needed. Herein, a novel ZIKV liquid biopsy system was constructed via a dendritic Ru(bpy)3 2+-polymer-amplified electro-chemiluminescence (ECL) strategy. This system accomplished amplification-free analysis of ZIKV using a drop of blood, and simultaneously achieved a high sensitivity of 500 copies and superior specificity. This strategy adopted the humoral biomarker as the diagnostic index, which greatly simplified the analysis process, and established a nondestructive detection mode. Furthermore, the performance index for biomedical analysis of clinical ZIKV samples was investigated, and the results indicated that the dendritic Ru(bpy)3 2+-polymer-amplified ECL strategy reliably responded to ZIKV from the body fluid (blood, saliva, and urine). Hence, this system suitably met the strict clinical requirements for ZIKV detection and thus has the potential to serve as a new paradigm for the biomedical analysis and diagnosis of ZIKV.
Collapse
Affiliation(s)
- Yuhui Liao
- Program
of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen
University, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510120, China
- Department
of Internal Medicine, Guangzhou Women and Children’s Medical
Center, Zhongshan School of Medicine, Sun
Yat-sen University, Guangdong 510120, China
- Key
Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangdong 510120, China
- Shenzhen
Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious
Disease, Shenzhen Third People’s
Hospital, Shenzhen 518112, China
| | - Zhijin Fan
- Program
of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen
University, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510120, China
| | - Huaping Deng
- Program
of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen
University, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510120, China
| | - Yang Yang
- Shenzhen
Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious
Disease, Shenzhen Third People’s
Hospital, Shenzhen 518112, China
| | - Jingyan Lin
- Shenzhen
Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious
Disease, Shenzhen Third People’s
Hospital, Shenzhen 518112, China
| | - Zhaoyan Zhao
- Program
of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen
University, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510120, China
- Key
Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangdong 510120, China
| | - Qingqin Tan
- Program
of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen
University, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510120, China
- Key
Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangdong 510120, China
| | - Bin Li
- Program
of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen
University, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510120, China
- Key
Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangdong 510120, China
| | - Xi Huang
- Program
of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen
University, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510120, China
- Department
of Internal Medicine, Guangzhou Women and Children’s Medical
Center, Zhongshan School of Medicine, Sun
Yat-sen University, Guangdong 510120, China
- Sino-French
Hoffmann Institute of Immunology, College of Basic Medical Science, Guangzhou Medical University, Guangzhou 510000, China
- Key
Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangdong 510120, China
- The
First Hospital of Jilin University, Changchun 130021, China
- Shenzhen
Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious
Disease, Shenzhen Third People’s
Hospital, Shenzhen 518112, China
| |
Collapse
|
276
|
Turner J, Krishna R, Van't Hof AE, Sutton ER, Matzen K, Darby AC. The sequence of a male-specific genome region containing the sex determination switch in Aedes aegypti. Parasit Vectors 2018; 11:549. [PMID: 30342535 PMCID: PMC6195999 DOI: 10.1186/s13071-018-3090-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/31/2018] [Indexed: 11/26/2022] Open
Abstract
Background Aedes aegypti is the principal vector of several important arboviruses. Among the methods of vector control to limit transmission of disease are genetic strategies that involve the release of sterile or genetically modified non-biting males, which has generated interest in manipulating mosquito sex ratios. Sex determination in Ae. aegypti is controlled by a non-recombining Y chromosome-like region called the M locus, yet characterisation of this locus has been thwarted by the repetitive nature of the genome. In 2015, an M locus gene named Nix was identified that displays the qualities of a sex determination switch. Results With the use of a whole-genome bacterial artificial chromosome (BAC) library, we amplified and sequenced a ~200 kb region containing the male-determining gene Nix. In this study, we show that Nix is comprised of two exons separated by a 99 kb intron primarily composed of repetitive DNA, especially transposable elements. Conclusions Nix, an unusually large and highly repetitive gene, exhibits features in common with Y chromosome genes in other organisms. We speculate that the lack of recombination at the M locus has allowed the expansion of repeats in a manner characteristic of a sex-limited chromosome, in accordance with proposed models of sex chromosome evolution in insects. Electronic supplementary material The online version of this article (10.1186/s13071-018-3090-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joe Turner
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,Oxitec Ltd., 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Ritesh Krishna
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,IBM Research UK, STFC Daresbury Laboratory, Warrington, WA4 4AD, UK
| | - Arjen E Van't Hof
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Elizabeth R Sutton
- Oxitec Ltd., 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK.,Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.,Sistemic, West of Scotland Science Park, Glasgow, G20 0SP, UK
| | - Kelly Matzen
- Oxitec Ltd., 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Alistair C Darby
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| |
Collapse
|
277
|
Sager G, Gabaglio S, Sztul E, Belov GA. Role of Host Cell Secretory Machinery in Zika Virus Life Cycle. Viruses 2018; 10:E559. [PMID: 30326556 PMCID: PMC6213159 DOI: 10.3390/v10100559] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
The high human cost of Zika virus infections and the rapid establishment of virus circulation in novel areas, including the United States, present an urgent need for countermeasures against this emerging threat. The development of an effective vaccine against Zika virus may be problematic because of the cross reactivity of the antibodies with other flaviviruses leading to antibody-dependent enhancement of infection. Moreover, rapidly replicating positive strand RNA viruses, including Zika virus, generate large spectrum of mutant genomes (quasi species) every replication round, allowing rapid selection of variants resistant to drugs targeting virus-specific proteins. On the other hand, viruses are ultimate cellular parasites and rely on the host metabolism for every step of their life cycle, thus presenting an opportunity to manipulate host processes as an alternative approach to suppress virus replication and spread. Zika and other flaviviruses critically depend on the cellular secretory pathway, which transfers proteins and membranes from the ER through the Golgi to the plasma membrane, for virion assembly, maturation and release. In this review, we summarize the current knowledge of interactions of Zika and similar arthropod-borne flaviviruses with the cellular secretory machinery with a special emphasis on virus-specific changes of the secretory pathway. Identification of the regulatory networks and effector proteins required to accommodate the trafficking of virions, which represent a highly unusual cargo for the secretory pathway, may open an attractive and virtually untapped reservoir of alternative targets for the development of superior anti-viral drugs.
Collapse
Affiliation(s)
- Garrett Sager
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham AL 35294, UK.
| | - Samuel Gabaglio
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham AL 35294, UK.
| | - George A Belov
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
278
|
Hraber P, Bradfute S, Clarke E, Ye C, Pitard B. Amphiphilic block copolymer delivery of a DNA vaccine against Zika virus. Vaccine 2018; 36:6911-6917. [PMID: 30337177 DOI: 10.1016/j.vaccine.2018.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/18/2018] [Accepted: 10/06/2018] [Indexed: 12/30/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that was first discovered in 1947. Since then, outbreaks have been reported in tropical Africa, Southeast Asia, the Pacific Islands, and, in 2015, in the Americas. Since 2013, many countries have reported cases of microcephaly and other central nervous system malformation associated with ZIKV. Because the initial target population for a ZIKV vaccine is expected to be women of child-bearing age, including those who may be pregnant, it is necessary to develop safe, easily administered, and non-viral vaccines. Here, we show that a single tetrafunctional Amphiphilic Block Copolymer (ABC) delivers DNA that encodes the full natural sequence of prM-E, among other antigen designs tested, induces the highest antibody titer and neutralization activity against three divergent ZIKV isolates. Vaccination with a single tetrafunctional block copolymer delivering low dose (10 µg) DNA plasmid rapidly induces protection from detectable viremia during acute infection in mice challenged by ZIKV more than 7 months after their first vaccination and boosted 2 weeks before challenge. This use of tetrafunctional ABCs is a new approach to deliver DNA antigens against flaviviruses. The data demonstrate that DNA formulated by a tetrafunctional block copolymer rapidly elicits protective responses against multiple diverse ZIKV isolates. This represents potential for an easy-to-administer and simple to manufacture vaccine candidate against ZIKV and possibly other emerging threats to global health.
Collapse
Affiliation(s)
- Peter Hraber
- Theoretical Biology and Biophysics, MS K710, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Steven Bradfute
- Center for Global Health, MSC10 5550, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Elizabeth Clarke
- Center for Global Health, MSC10 5550, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Chunyan Ye
- Center for Global Health, MSC10 5550, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Bruno Pitard
- In-Cell-Art, 21 rue La Noue Bras de Fer, Nantes F-44200, France
| |
Collapse
|
279
|
Lustig Y, Sofer D, Bucris ED, Mendelson E. Surveillance and Diagnosis of West Nile Virus in the Face of Flavivirus Cross-Reactivity. Front Microbiol 2018; 9:2421. [PMID: 30369916 PMCID: PMC6194321 DOI: 10.3389/fmicb.2018.02421] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/21/2018] [Indexed: 01/20/2023] Open
Abstract
West Nile Virus (WNV) is an arthropod-borne flavivirus whose zoonotic cycle includes both mosquitoes and birds as amplifiers and humans and horses as dead-end hosts. In recent years WNV has been spreading globally and is currently endemic in Africa, The Middle East, India, Australia, central and southern Europe, and the Americas. Integrated surveillance schemes and environmental data aim to detect viral circulation and reduce the risk of infection for the human population emphasizing the critical role for One Health principles in public health. Approximately 20% of WNV infected patients develop West Nile Fever while in less than 1%, infection results in West Nile Neurological Disease. Currently, the diagnosis of WNV infection is primarily based on serology, since molecular identification of WNV RNA is unreliable due to the short viremia. The recent emergence of Zika virus epidemic in America and Asia has added another layer of complexity to WNV diagnosis due to significant cross-reactivity between several members of the Flaviviridae family such as Zika, dengue, Usutu, and West Nile viruses. Diagnosis is especially challenging in persons living in regions with flavivirus co-circulation as well as in travelers from WNV endemic countries traveling to Zika or dengue infected areas or vise-versa. Here, we review the recent studies implementing WNV surveillance of mosquitoes and birds within the One Health initiative. Furthermore, we discuss the utility of novel molecular methods, alongside traditional molecular and serological methods, in WNV diagnosis and epidemiological research.
Collapse
Affiliation(s)
- Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Danit Sofer
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Efrat Dahan Bucris
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel.,School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
280
|
Screening for Zika virus RNA in sera of suspected cases: a retrospective cross-sectional study. Virol J 2018; 15:155. [PMID: 30305112 PMCID: PMC6180573 DOI: 10.1186/s12985-018-1070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) became a global human health concern owing to its rapid spread worldwide and its association with congenital and neurological disorders. The current epidemiological profile of arboviruses in Brazil is characterized by widespread co-circulation of Dengue virus, Chikungunya virus, and ZIKV throughout the country. These viruses cause acute diseases frequently with overlapping symptoms, which could result in an inaccurate diagnosis based solely on clinical and epidemiological grounds. Here we conducted a screening for ZIKV RNA in serum samples from patients across Brazil with suspected ZIKV infection. METHODS Using RT-qPCR, we investigated ZIKV RNA in 3001 serum samples. Samples were passively acquired through a private laboratory network, between December 2015 and August 2016, from 27 Brazilian Federative Units. We performed descriptive statistics on demographic variables including sex, age, and geographic location. RESULTS ZIKV was detected in 11.4% (95%CI = 10.3-12.6%) of the sera. ZIKV RNA was detected in sera collected throughout the country, but during the analyzed period, RNA was more frequently detected in samples from the Southeast, Midwest, and North regions (3.9 to 5.8 times higher) when compared to the Northeast and South regions. CONCLUSIONS These data reinforce the importance of laboratory diagnosis, surveillance systems, and further epidemiological studies to understand the dynamics of outbreaks and diseases associated with ZIKV and other arboviruses.
Collapse
|
281
|
Roimicher L, Ferreira OC, Arruda MB, Tanuri A. Zika Virus in the Joint of a Patient with Rheumatoid Arthritis. J Rheumatol 2018; 44:535. [PMID: 28604348 DOI: 10.3899/jrheum.160722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Luis Roimicher
- Department of Rheumatology-Internal Medicine, Hospital Universitário CFF, Universidade Federal do Rio de Janeiro;
| | - Orlando C Ferreira
- Laboratory of Molecular Virology, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro
| | - Monica B Arruda
- Laboratory of Molecular Virology, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro
| | - Amilcar Tanuri
- Laboratory of Molecular Virology, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
282
|
Wong LP, Alias H, Aghamohammadi N, Sam IC, AbuBakar S. Differences in Perceived Severity of Zika Virus Infection and Dengue Fever and its Influence on Mosquito Control Practices in Malaysia. J Community Health 2018; 42:854-864. [PMID: 28238029 DOI: 10.1007/s10900-017-0326-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aims of this study were to explore the differences in (1) the perception of severity towards ZIKV infection and dengue fever, and (2) mosquito control practices before and after the ZIKV outbreak were declared a Public Health Emergency of International Concern (PHEIC). Data were collected between Feb to May 2016 using a computer-assisted telephone interviewing system. The median scale score for perceived severity of ZIKV was 3 (interquartile range [IQR] 1-5) versus 4 (IQR 3-5) for dengue (P < 0.001). The scores for mosquito control practices before and after ZIKV was declared a PHEIC were similar, at 4 (IQR 3-5). Multivariate analysis revealed that participants with a higher score for perception of severity of ZIKV were more likely to report greater mosquito control practices after the declaration of the PHEIC (OR 1.822 [95% CI 1.107-2.998]). The emerging ZIKV pandemic requires concerted efforts to enhance mosquito control practices among the Malaysian public. Efforts to improve public mosquito control practices should focus on enhancing the perception of the severity of ZIKV.
Collapse
Affiliation(s)
- Li Ping Wong
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Haridah Alias
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nasrin Aghamohammadi
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Educational Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
283
|
Aberle JH, Koblischke M, Stiasny K. CD4 T cell responses to flaviviruses. J Clin Virol 2018; 108:126-131. [PMID: 30312909 DOI: 10.1016/j.jcv.2018.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 12/17/2022]
Abstract
Flaviviruses pose an increasing threat to global health with their potential to cause severe disease in millions of people. Protective and long-lived immunity is closely linked to the generation of CD4 T cells, which provide B cell help and support high affinity neutralizing antibody responses. Research performed during the last years revealed important new insights into the antigen specificities and diverse effector functions of CD4 T cell responses to flaviviruses. Moreover, the identification of mechanisms involved in the regulation of T cell specificity and function provides significant advances in our understanding of how durable protective immunity is established. Here, we summarize what is known about human CD4 T cell responses to flaviviruses, with a special emphasis on CD4 T cells that provide direct help to B cells producing neutralizing and protective antibodies. We review recent progress in the identification of epitope sites in the context of the atomic structures of flavivirus proteins and highlight specific influences that shape the human CD4 T cell response in the context of infection or vaccination. Finally, we discuss challenges facing vaccine efforts to generate appropriate CD4 T cell responses, as well as recent strategies to enhance T cell-mediated antibody responses.
Collapse
Affiliation(s)
- Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| | | | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
284
|
Amin ND, Paşca SP. Building Models of Brain Disorders with Three-Dimensional Organoids. Neuron 2018; 100:389-405. [DOI: 10.1016/j.neuron.2018.10.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
|
285
|
Molefe PF, Masamba P, Oyinloye BE, Mbatha LS, Meyer M, Kappo AP. Molecular Application of Aptamers in the Diagnosis and Treatment of Cancer and Communicable Diseases. Pharmaceuticals (Basel) 2018; 11:ph11040093. [PMID: 30274155 PMCID: PMC6315466 DOI: 10.3390/ph11040093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer and infectious diseases such as Ebola, HIV, tuberculosis, Zika, hepatitis, measles and human schistosomiasis are serious global health hazards. The increasing annual morbidities and mortalities of these diseases have been blamed on drug resistance and the inefficacy of available diagnostic tools, particularly those which are immunologically-based. Antibody-based tools rely solely on antibody production for diagnosis and for this reason they are the major cause of diagnostic delays. Unfortunately, the control of these diseases depends on early detection and administration of effective treatment therefore any diagnostic delay is a huge challenge to curbing these diseases. Hence, there is a need for alternative diagnostic tools, discovery and development of novel therapeutic agents. Studies have demonstrated that aptamers could potentially offer one of the best solutions to these problems. Aptamers are short sequences of either DNA or RNA molecules, which are identified in vitro through a SELEX process. They are sensitive and bind specifically to target molecules. Their promising features suggest they may serve as better diagnostic agents and can be used as drug carriers for therapeutic purposes. In this article, we review the applications of aptamers in the theranostics of cancer and some infectious diseases.
Collapse
Affiliation(s)
- Philisiwe Fortunate Molefe
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Priscilla Masamba
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
- Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria.
| | - Londiwe Simphiwe Mbatha
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa.
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
286
|
Mancera-Páez O, Román GC, Pardo-Turriago R, Rodríguez Y, Anaya JM. Concurrent Guillain-Barré syndrome, transverse myelitis and encephalitis post-Zika: A case report and review of the pathogenic role of multiple arboviral immunity. J Neurol Sci 2018; 395:47-53. [PMID: 30292020 DOI: 10.1016/j.jns.2018.09.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
Abstract
We review post-infectious and post-vaccination neurological syndromes involving peripheral and central nervous system (CNS) and report an illustrative case of simultaneous occurrence of Guillain-Barré syndrome (GBS), confirmed by nerve conduction velocities, plus MRI-demonstrated transverse myelitis (TM) and acute encephalitis [acute disseminated encephalomyelitis] (ADEM+GBS) affecting a 24-year-old woman from Cúcuta, Colombia, who developed acute Zika virus (ZIKV) infection confirmed by serum reverse transcriptase-polymerase chain reaction (RT-PCR) and convalescent ZIKV IgG antibodies. With intensive care treatment, respiratory support, steroids, and intravenous immunoglobulin (IVIg), patient survived with residual flaccid paraparesis. She had preexisting immunity against Chikungunya virus (CHIKV) and Dengue virus (DENV) acquired before the arrival of ZIKV in Colombia. From reports in the Caribbean, Central and South America we review 19 cases of ZIKV-associated TM, encephalitis and ADEM occurring after a mean latent period of 10.5 days (range 1-96) post-infection. Although GBS and ADEM are usually considered post-infectious and associated with development of antibodies against peripheral nerve and CNS epitopes, we postulate that our case of ADEM+GBS is para-infectious, induced by acute ZIKV neurotropism boosted by active immunity against other arboviruses. Animal models of ZIKV demonstrated strong viral neurotropism enhanced by passive immunity with antibodies against arboviruses such as West Nile virus, CHIKV, or DENV. These considerations are relevant to prevent potential ZIKV vaccine-induced reactions involving central and peripheral nervous system.
Collapse
Affiliation(s)
- Oscar Mancera-Páez
- Universidad Nacional de Colombia, Hospital Universitario Nacional, Faculty of Medicine, Department of Neurology, Bogotá, Colombia.; David Cabello International Alzheimer Disease Scholarship Fund, Houston Methodist Hospital, Houston, TX, USA..
| | - Gustavo C Román
- Department of Neurology, Methodist Neurological Institute and the Institute for Academic Medicine Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA; Weill Cornell Medical College, Department of Neurology, Cornell University, NY, New York, USA.
| | - Rodrigo Pardo-Turriago
- Universidad Nacional de Colombia, Hospital Universitario Nacional, Faculty of Medicine, Department of Neurology, Bogotá, Colombia..
| | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
287
|
Blom K, Cuapio A, Sandberg JT, Varnaite R, Michaëlsson J, Björkström NK, Sandberg JK, Klingström J, Lindquist L, Gredmark Russ S, Ljunggren HG. Cell-Mediated Immune Responses and Immunopathogenesis of Human Tick-Borne Encephalitis Virus-Infection. Front Immunol 2018; 9:2174. [PMID: 30319632 PMCID: PMC6168641 DOI: 10.3389/fimmu.2018.02174] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a flavivirus that belongs to the Flaviviridae family. TBEV is transmitted to humans primarily from infected ticks. The virus causes tick-borne encephalitis (TBE), an acute viral disease that affects the central nervous system (CNS). Infection can lead to acute neurological symptoms of significant severity due to meningitis or meningo(myelo)encephalitis. TBE can cause long-term suffering and has been recognized as an increasing public health problem. TBEV-affected areas currently include large parts of central and northern Europe as well as northern Asia. Infection with TBEV triggers a humoral as well as a cell-mediated immune response. In contrast to the well-characterized humoral antibody-mediated response, the cell-mediated immune responses elicited to natural TBEV-infection have been poorly characterized until recently. Here, we review recent progress in our understanding of the cell-mediated immune response to human TBEV-infection. A particular emphasis is devoted to studies of the response mediated by natural killer (NK) cells and CD8 T cells. The studies described include results revealing the temporal dynamics of the T cell- as well as NK cell-responses in relation to disease state and functional characterization of these cells. Additionally, we discuss specific immunopathological aspects of TBEV-infection in the CNS.
Collapse
Affiliation(s)
- Kim Blom
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Angelica Cuapio
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J. Tyler Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Renata Varnaite
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Michaëlsson
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K. Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K. Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Lindquist
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Gredmark Russ
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
288
|
Viruses.STRING: A Virus-Host Protein-Protein Interaction Database. Viruses 2018; 10:v10100519. [PMID: 30249048 PMCID: PMC6213343 DOI: 10.3390/v10100519] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022] Open
Abstract
As viruses continue to pose risks to global health, having a better understanding of virus–host protein–protein interactions aids in the development of treatments and vaccines. Here, we introduce Viruses.STRING, a protein–protein interaction database specifically catering to virus–virus and virus–host interactions. This database combines evidence from experimental and text-mining channels to provide combined probabilities for interactions between viral and host proteins. The database contains 177,425 interactions between 239 viruses and 319 hosts. The database is publicly available at viruses.string-db.org, and the interaction data can also be accessed through the latest version of the Cytoscape STRING app.
Collapse
|
289
|
Modeling the Spread of Zika Virus in a Stage-Structured Population: Effect of Sexual Transmission. Bull Math Biol 2018; 80:3038-3067. [DOI: 10.1007/s11538-018-0510-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
|
290
|
Vasireddi M, Crum A, May H, Katz D, Hilliard J. A novel antiviral inhibits Zika virus infection while increasing intracellular glutathione biosynthesis in distinct cell culture models. Antiviral Res 2018; 161:46-52. [PMID: 30217651 DOI: 10.1016/j.antiviral.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 06/29/2018] [Accepted: 09/10/2018] [Indexed: 01/23/2023]
Abstract
We investigated the effects of a specific free-form amino acids formulation on Zika virus replication in two different cell culture model systems, one representative of humans and the other of Old World primates from whom Zika virus was first isolated. Here we present data demonstrating that the formulation of the specific free-form amino acid (FFAAP), comprising cystine, glycine, and a glutamate source, along with a minute concentration of selenium inhibited Zika virus replication by up to 90% with an ED90 (effective dose at which 90% of a dose of Zika virus was inhibited) of 2.5 mM in human cells and 4 mM Vero cells. The ED90 concentration of precursors was innocuous for uninfected cells, but resulted in reduced Zika virus replication by up to 90% at 2-5 mM concentrations in nonhuman primate cells and at 1-3 mM concentration in human placental cells. Two important observations were forthcoming: 1) Zika virus production was decreased by up to 90% in Vero and JEG-3 cells treated with FFAAP (ED90 4.0 mM, and 2.5 mM, respectively) throughout 48-72 h of post infection (hpi) compared to untreated infected cells and 2) Zika virus requires intracellular glutathione for replication in human placental cells, while showing enhanced replication in Vero cells with no glutathione. Relative increases in intracellular glutathione biosynthesis followed FFAAP treatment but blocking intracellular biosynthesis of glutathione in human cells resulted in virus inhibition in human placental cells. The blockade of biosynthesis actually increased Zika virus replication in Vero cells. These findings identify an efficacious inhibitor, FFAAP, of Zika virus replication in both human and nonhuman primate cells, while providing novel insight into the different roles of intracellular glutathione in Zika virus replication.
Collapse
Affiliation(s)
- Mugdha Vasireddi
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Albert Crum
- ProImmune Research Institute, LLC, Rhinebeck, NY, 12572, USA
| | | | - David Katz
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Julia Hilliard
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
291
|
Stauft CB, Shen SH, Song Y, Gorbatsevych O, Asare E, Futcher B, Mueller S, Payne A, Brecher M, Kramer L, Wimmer E. Extensive recoding of dengue virus type 2 specifically reduces replication in primate cells without gain-of-function in Aedes aegypti mosquitoes. PLoS One 2018; 13:e0198303. [PMID: 30192757 PMCID: PMC6128446 DOI: 10.1371/journal.pone.0198303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
Dengue virus (DENV), an arthropod-borne ("arbovirus") virus, causes a range of human maladies ranging from self-limiting dengue fever to the life-threatening dengue shock syndrome and proliferates well in two different taxa of the Animal Kingdom, mosquitoes and primates. Mosquitoes and primates show taxonomic group-specific intolerance to certain codon pairs when expressing their genes by translation. This is called "codon pair bias". By necessity, dengue viruses evolved to delicately balance this fundamental difference in their open reading frames (ORFs). We have undone the evolutionarily conserved genomic balance in the DENV2 ORF sequence and specifically shifted the encoding preference away from primates. However, this recoding of DENV2 raised concerns of 'gain-of-function,' namely whether recoding could inadvertently increase fitness for replication in the arthropod vector. Using mosquito cell lines and two strains of Aedes aegypti we did not observe any increase in fitness in DENV2 variants codon pair deoptimized for humans. This ability to disrupt and control DENV2's host preference has great promise towards developing the next generation of synthetic vaccines not only for DENV but for other emerging arboviral pathogens such as chikungunya virus and Zika virus.
Collapse
Affiliation(s)
- Charles B. Stauft
- Stony Brook University, Department of Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
- Codagenix, Incorporated, Farmingdale, New York, United States of America
| | - Sam H. Shen
- Stony Brook University, Department of Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
| | - Yutong Song
- Stony Brook University, Department of Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
| | - Oleksandr Gorbatsevych
- Stony Brook University, Department of Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
| | - Emmanuel Asare
- Stony Brook University, Department of Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
| | - Bruce Futcher
- Stony Brook University, Department of Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
| | - Steffen Mueller
- Stony Brook University, Department of Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
- Codagenix, Incorporated, Farmingdale, New York, United States of America
| | - Anne Payne
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, United States of America
| | - Matthew Brecher
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, United States of America
| | - Laura Kramer
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, United States of America
- School of Public Health, State University of New York at Albany, Rensselaer, New York, United States of America
| | - Eckard Wimmer
- Stony Brook University, Department of Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
- Codagenix, Incorporated, Farmingdale, New York, United States of America
| |
Collapse
|
292
|
Giel-Moloney M, Goncalvez AP, Catalan J, Lecouturier V, Girerd-Chambaz Y, Diaz F, Maldonado-Arocho F, Gomila RC, Bernard MC, Oomen R, Delagrave S, Burdin N, Kleanthous H, Jackson N, Heinrichs J, Pugachev KV. Chimeric yellow fever 17D-Zika virus (ChimeriVax-Zika) as a live-attenuated Zika virus vaccine. Sci Rep 2018; 8:13206. [PMID: 30181550 PMCID: PMC6123396 DOI: 10.1038/s41598-018-31375-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/17/2018] [Indexed: 11/15/2022] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne pathogen representing a global health concern. It has been linked to fetal microcephaly and other birth defects and neurological disorders in adults. Sanofi Pasteur has engaged in the development of an inactivated ZIKV vaccine, as well as a live chimeric vaccine candidate ChimeriVax-Zika (CYZ) that could become a preferred vaccine depending on future ZIKV epidemiology. This report focuses on the CYZ candidate that was constructed by replacing the pre-membrane and envelope (prM-E) genes in the genome of live attenuated yellow fever 17D vaccine virus (YF 17D) with those from ZIKV yielding a viable CYZ chimeric virus. The replication rate of CYZ in the Vero cell substrate was increased by using a hybrid YF 17D-ZIKV signal sequence for the prM protein. CYZ was highly attenuated both in mice and in human in vitro models (human neuroblastoma and neuronal progenitor cells), without the need for additional attenuating modifications. It exhibited significantly reduced viral loads in organs compared to a wild-type ZIKV and a complete lack of neuroinvasion following inoculation of immunodeficient A129 mice. A single dose of CYZ elicited high titers of ZIKV-specific neutralizing antibodies in both immunocompetent and A129 mice and protected animals from ZIKV challenge. The data indicate that CYZ is a promising vaccine candidate against ZIKV.
Collapse
Affiliation(s)
| | | | - John Catalan
- Sanofi Pasteur Research & Development, Cambridge, MA, USA
| | | | | | - Fernando Diaz
- Sanofi Pasteur Research & Development, Cambridge, MA, USA.,VL46 Inc., Cambridge, MA, USA
| | | | - Raul C Gomila
- Sanofi Pasteur Research & Development, Cambridge, MA, USA
| | | | - Ray Oomen
- Sanofi Pasteur Research & Development, Cambridge, MA, USA
| | | | - Nicolas Burdin
- Sanofi Pasteur Research & Development, Marcy-l'Étoile, France
| | | | - Nicolas Jackson
- Sanofi Pasteur Research & Development, Marcy-l'Étoile, France
| | - Jon Heinrichs
- Sanofi Pasteur Research & Development, Swiftwater, PA, USA
| | | |
Collapse
|
293
|
Eder M, Cortes F, Teixeira de Siqueira Filha N, Araújo de França GV, Degroote S, Braga C, Ridde V, Turchi Martelli CM. Scoping review on vector-borne diseases in urban areas: transmission dynamics, vectorial capacity and co-infection. Infect Dis Poverty 2018; 7:90. [PMID: 30173661 PMCID: PMC6120094 DOI: 10.1186/s40249-018-0475-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transmission dynamics, vectorial capacity, and co-infections have substantial impacts on vector-borne diseases (VBDs) affecting urban and suburban populations. Reviewing key factors can provide insight into priority research areas and offer suggestions for potential interventions. MAIN BODY Through a scoping review, we identify knowledge gaps on transmission dynamics, vectorial capacity, and co-infections regarding VBDs in urban areas. Peer-reviewed and grey literature published between 2000 and 2016 was searched. We screened abstracts and full texts to select studies. Using an extraction grid, we retrieved general data, results, lessons learned and recommendations, future research avenues, and practice implications. We classified studies by VBD and country/continent and identified relevant knowledge gaps. Of 773 articles selected for full-text screening, 50 were included in the review: 23 based on research in the Americas, 15 in Asia, 10 in Africa, and one each in Europe and Australia. The largest body of evidence concerning VBD epidemiology in urban areas concerned dengue and malaria. Other arboviruses covered included chikungunya and West Nile virus, other parasitic diseases such as leishmaniasis and trypanosomiasis, and bacterial rickettsiosis and plague. Most articles retrieved in our review combined transmission dynamics and vectorial capacity; only two combined transmission dynamics and co-infection. The review identified significant knowledge gaps on the role of asymptomatic individuals, the effects of co-infection and other host factors, and the impacts of climatic, environmental, and socioeconomic factors on VBD transmission in urban areas. Limitations included the trade-off from narrowing the search strategy (missing out on classical modelling studies), a lack of studies on co-infections, most studies being only descriptive, and few offering concrete public health recommendations. More research is needed on transmission risk in homes and workplaces, given increasingly dynamic and mobile populations. The lack of studies on co-infection hampers monitoring of infections transmitted by the same vector. CONCLUSIONS Strengthening VBD surveillance and control, particularly in asymptomatic cases and mobile populations, as well as using early warning tools to predict increasing transmission, were key strategies identified for public health policy and practice.
Collapse
Affiliation(s)
- Marcus Eder
- Public Health England Sierra Leone Country Office, Freetown, Sierra Leone
- Aggeu Magalhaes Institute (IAM) / Oswaldo Cruz Foundation (Fiocruz), Avenida Professor Moraes Rego, s/n. Cidade Universitaria. CEP 50, Recife, Pernambuco 740-465 Brazil
| | - Fanny Cortes
- Universidade de Pernambuco (UPE), Recife, Pernambuco Brazil
| | | | | | - Stéphanie Degroote
- University of Montreal School of Public Health (ESPUM), Montreal, Quebec Canada
| | - Cynthia Braga
- Aggeu Magalhaes Institute (IAM) / Oswaldo Cruz Foundation (Fiocruz), Avenida Professor Moraes Rego, s/n. Cidade Universitaria. CEP 50, Recife, Pernambuco 740-465 Brazil
| | - Valéry Ridde
- University of Montreal School of Public Health (ESPUM), Montreal, Quebec Canada
- IRD (French Institute For Research on Sustainable Development), CEPED (IRD-Université Paris Descartes), Universités Paris Sorbonne Cités, ERL INSERM SAGESUD, Paris, France
| | - Celina Maria Turchi Martelli
- Aggeu Magalhaes Institute (IAM) / Oswaldo Cruz Foundation (Fiocruz), Avenida Professor Moraes Rego, s/n. Cidade Universitaria. CEP 50, Recife, Pernambuco 740-465 Brazil
| |
Collapse
|
294
|
Quintana-Domeque C, Carvalho JR, de Oliveira VH. Zika virus incidence, preventive and reproductive behaviors: Correlates from new survey data. ECONOMICS AND HUMAN BIOLOGY 2018; 30:14-23. [PMID: 29772278 DOI: 10.1016/j.ehb.2018.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/28/2018] [Indexed: 05/27/2023]
Abstract
During the outbreak of the Zika virus, Brazilian health authorities recommended that pregnant women take meticulous precaution to avoid mosquito bites and that women in general use contraceptive methods to postpone/delay pregnancies. In this article, we present new estimates on the Zika virus incidence, its correlates and preventive behaviors in the Northeast of Brazil, where the outbreak initiated, using survey data collected between March 30th and June 3rd of 2016. The target population were women aged 15-49 in the capital cities of the nine states of the Northeast region of Brazil. We find that more educated women were less likely to report suffering from Zika (or its symptoms) and more likely to report having taken precaution against Zika, such as having used long and light-colored clothes, having used mosquito repellent or insecticides, having used mosquito protective screens or kept windows closed, and having dumped standing water where mosquitoes can breed. In addition, more educated women were more likely to report being informed about the association between Zika and microcephaly and to avoid pregnancy in the last 12 months. Finally, we also find that women who reported experiencing sexual domestic violence in the last 12 months were more likely to report suffering from Zika.
Collapse
|
295
|
Probing Zika Virus Neutralization Determinants with Glycoprotein Mutants Bearing Linear Epitope Insertions. J Virol 2018; 92:JVI.00505-18. [PMID: 29976678 DOI: 10.1128/jvi.00505-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/02/2018] [Indexed: 01/13/2023] Open
Abstract
Zika virus (ZIKV) glycoproteins are the primary target of the humoral immune response. In this study, we explored the capacity of these glycoproteins to tolerate insertion of linear epitope sequences and the potential of antibodies that bind these epitopes to inhibit infection. We first created a panel of ZIKV mutants with the FLAG epitope inserted in the premembrane (prM) and envelope (E) glycoprotein regions. The insertion locations were based on the results of our recent transposon insertional mutagenesis screen. Although FLAG insertions in prM greatly impaired viral fitness, this sequence was tolerated in numerous surface-exposed E protein sites. We observed that mutants bearing FLAG epitopes in E domains I and II and the E domain I-II hinge region were all neutralized by FLAG antibody; however, the neutralization sensitivity varied highly. We measured the antibody binding efficiency and found that this closely matched the pattern of neutralization sensitivity. We determined that E glycosylation did not affect antibody binding to a nearby epitope or its capacity to serve as a neutralization target. Although we could not generate infectious viruses with FLAG epitope insertions in a buried region of E protein domain III, we found that the V5 epitope could be inserted at this site without greatly impacting fitness. Furthermore, this virus was efficiently neutralized by V5 antibodies, highlighting that even buried epitopes can function as neutralization targets. Finally, we analyzed the timing of antibody neutralization activity during cell entry and found that all antibodies blocked a step after cell attachment.IMPORTANCE Zika virus (ZIKV) infections are associated with severe birth defects and neurological disease. The structure of the mature ZIKV particle reveals a virion surface covered by the envelope glycoprotein, which is the dominant target of the humoral immune response. It is unclear if all regions of the envelope protein surface or even buried epitopes can function as neutralization targets. To test this, we created a panel of ZIKV mutants with epitope insertions in different regions of the envelope protein. In characterizing these viruses, we found that the strength of antibody binding to an epitope is the major determinant of the neutralization potential of an antibody, that even a buried region of the envelope protein can be efficiently targeted, and that the sole potential envelope glycan does not impact nearby epitope antibody binding and neutralization. Furthermore, this work provides important insights into our understanding of how antibodies neutralize ZIKV.
Collapse
|
296
|
The microbiota of hematophagous ectoparasites collected from migratory birds. PLoS One 2018; 13:e0202270. [PMID: 30148833 PMCID: PMC6110481 DOI: 10.1371/journal.pone.0202270] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/31/2018] [Indexed: 11/24/2022] Open
Abstract
Arthropod vectors are responsible for the transmission of human pathogens worldwide. Several arthropod species are bird ectoparasites, however, no study to date has characterized their microbiota as a whole. We sampled hematophagous ectoparasites that feed on migratory birds and performed 16S rRNA gene metabarcoding to characterize their microbial community. A total of 194 ectoparasites were collected from 115 avian hosts and classified into three groups: a) Hippoboscidae diptera; b) ticks; c) other arthropods. Metabarcoding showed that endosymbionts were the most abundant genera of the microbial community, including Wolbachia for Hippoboscidae diptera, Candidatus Midichloria for ticks, Wolbachia and Arsenophonus for the other arthropod group. Genera including pathogenic species were: Rickettsia, Borrelia, Coxiella, Francisella, Bartonella, Anaplasma. Co-infection with Borrelia-Rickettsia and Anaplasma-Rickettsia was also observed. A global overview of the microbiota of ectoparasites sampled from migratory birds was obtained with the use of 16S rRNA gene metabarcoding. A novel finding is the first identification of Rickettsia in the common swift louse fly, Crataerina pallida. Given their possible interaction with pathogenic viruses and bacteria, the presence of endosymbionts in arthropods merits attention. Finally, molecular characterization of genera, including both pathogenic and symbiont species, plays a pivotal role in the design of targeted molecular diagnostics.
Collapse
|
297
|
Chen Y, Liu T, Zhang Z, Chen M, Rong L, Ma L, Yu B, Wu D, Zhang P, Zhu X, Huang X, Zhang H, Li YP. Novel genetically stable infectious clone for a Zika virus clinical isolate and identification of RNA elements essential for virus production. Virus Res 2018; 257:14-24. [PMID: 30144463 DOI: 10.1016/j.virusres.2018.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 01/19/2023]
Abstract
Zika virus (ZIKV) is an Aedes mosquitoes-transmitted flavivirus, and its infection may cause severe neurological diseases. A genetically stable infectious clone is essential for ZIKV research, however the toxicity and instability of the viral cDNA in bacteria potentially due to its bacterial promoter activity are major challenges. Here, we constructed a full-length cDNA clone for isolate ZG01 by introducing non-coding changes T1865C/A1868G to reduce the bacterial promoter activity. Wild-type and recombinant ZG01 were highly attenuated in Vero cells, thus we serially passaged wild-type ZG01 through neonatal mice and Vero cells to generate high-titer virus, from which four mutations (4m, C2178T/G2913A/T4991C/T10561C) were identified. Addition of 4m greatly enhanced the infectivity, as ZG01_4m released ZIKV of 107.0-107.5 plaque-forming unit (PFU)/ml in infected Vero and A549 cells. ZG01_4m resembled the infectivity of high-titer ZG01 in vitro and in vivo. Notably, ZG01_4m plasmid was genetically stable after multiple rounds of transformation-purification in bacteria. Using ZG01_4m, we identified a potential RNA-RNA interaction between 5'UTR and 3'UTR and demonstrated that the nucleotides involved were essential for ZIKV production. The genetically stable ZG01 cDNA clone provides a reliable tool for the study of this important virus, and the strategy used here is feasible for the development of reverse genetics systems for other ZIKV isolates and related flaviviruses.
Collapse
Affiliation(s)
- Yiyi Chen
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ting Liu
- Department of Immunology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhenzhen Zhang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Mingxiao Chen
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Liang Rong
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ling Ma
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bolan Yu
- Key Lab for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou 510150, China
| | - De Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Ping Zhang
- Department of Immunology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xun Zhu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xi Huang
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China; Program in Pathobiology, The Fifth Affiliated Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
298
|
Transcriptomic Analysis of Aedes aegypti in Response to Mosquitocidal Bacillus thuringiensis LLP29 Toxin. Sci Rep 2018; 8:12650. [PMID: 30140020 PMCID: PMC6107635 DOI: 10.1038/s41598-018-30741-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/01/2018] [Indexed: 01/11/2023] Open
Abstract
Globally, Aedes aegypti is one of the most dangerous mosquitoes that plays a crucial role as a vector for human diseases, such as yellow fever, dengue, and chikungunya. To identify (1) transcriptomic basis of midgut (2) key genes that are involved in the toxicity process by a comparative transcriptomic analysis between the control and Bacillus thuringiensis (Bt) toxin (LLP29 proteins)-treated groups. Next-generation sequencing technology was used to sequence the midgut transcriptome of A. aegypti. A total of 17130 unigenes, including 574 new unigenes, were identified containing 16358 (95.49%) unigenes that were functionally annotated. According to differentially expressed gene (DEG) analysis, 557 DEGs were annotated, including 226 upregulated and 231 downregulated unigenes in the Bt toxin-treated group. A total of 442 DEGs were functionally annotated; among these, 33 were specific to multidrug resistance, 6 were immune-system-related (Lectin, Defensin, Lysozyme), 28 were related to putative proteases, 7 were lipase-related, 8 were related to phosphatases, and 30 were related to other transporters. In addition, the relative expression of 28 DEGs was further confirmed through quantitative real time polymerase chain reaction. The results provide a transcriptomic basis for the identification and functional authentication of DEGs in A. aegypti.
Collapse
|
299
|
Mechanism of Larvicidal Activity of Antimicrobial Silver Nanoparticles Synthesized Using Garcinia mangostana Bark Extract. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1441-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
300
|
Devillers J, Larghi A, Lagneau C. QSAR modelling of synergists to increase the efficacy of deltamethrin against pyrethroid-resistant Aedes aegypti mosquitoes $. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:613-629. [PMID: 30141356 DOI: 10.1080/1062936x.2018.1503846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Space spraying of deltamethrin allows the control of adult Aedes (Stegomyia) aegypti mosquitoes. Unfortunately, many vector control programs are threatened by the development of resistances that decrease the efficacy of this adulticide. Faced with this situation, we can either try to use another insecticide presenting a different mechanism of action or find a strategy that brings back the efficacy of the insecticide at a satisfying level to pursue its use in vector control. Restoration of the efficacy of an insecticide can be obtained by means of a synergist. In this context, QSAR modelling was used to find synergists to combine with deltamethrin for increasing its efficacy against resistant strains of Ae. aegypti. Seventy-four structurally diverse chemicals with their 24-hour LD50 values, obtained under the same experimental conditions on Ae. aegypti females, were used. Molecules were described by means of autocorrelation vectors encoding lipophilicity, molar refractivity, H-bonding acceptor and donor ability. A three-layer perceptron (TLP) was employed as statistical tool. The performances of the models were evaluated through the analysis of the prediction results obtained on the different training and test sets (80%/20%) as well as from an out-sample test set. A 6/4/1 TLP computed with the Broyden-Fletcher-Goldfarb-Shanno second-order training algorithm led to the best prediction results. The convergence was obtained in 132 cycles. The sum of squares was used as error function. The hidden and output activation functions were tanh and exponential, respectively. Various chemical structures were identified as potential synergists and searched for their commercial availability. Molecules of interest were tested in vivo on Ae. aegypti by using the susceptible reference Bora Bora strain and two resistant strains from Martinique island. This led to the identification of the PSM-05 molecule that shows interesting synergistic activity.
Collapse
Affiliation(s)
| | - A Larghi
- b EID Méditerranée , Montpellier , France
| | - C Lagneau
- b EID Méditerranée , Montpellier , France
| |
Collapse
|