251
|
Hoffmann J, Sommer A. Anti-hormone Therapy: Principles of Endocrine Therapy of Cancer. TOPICS IN MEDICINAL CHEMISTRY 2006. [DOI: 10.1007/7355_2006_002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
252
|
Sternlicht MD. Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res 2005; 8:201. [PMID: 16524451 PMCID: PMC1413974 DOI: 10.1186/bcr1368] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Part of how the mammary gland fulfills its function of producing and delivering adequate amounts of milk is by forming an extensive tree-like network of branched ducts from a rudimentary epithelial bud. This process, termed branching morphogenesis, begins in fetal development, pauses after birth, resumes in response to estrogens at puberty, and is refined in response to cyclic ovarian stimulation once the margins of the mammary fat pad are met. Thus it is driven by systemic hormonal stimuli that elicit local paracrine interactions between the developing epithelial ducts and their adjacent embryonic mesenchyme or postnatal stroma. This local cellular cross-talk, in turn, orchestrates the tissue remodeling that ultimately produces a mature ductal tree. Although the precise mechanisms are still unclear, our understanding of branching in the mammary gland and elsewhere is rapidly improving. Moreover, many of these mechanisms are hijacked, bypassed, or corrupted during the development and progression of cancer. Thus a clearer understanding of the underlying endocrine and paracrine pathways that regulate mammary branching may shed light on how they contribute to cancer and how their ill effects might be overcome or entirely avoided.
Collapse
Affiliation(s)
- Mark D Sternlicht
- Department of Anatomy, University of California, San Francisco, CA 94143-0452, USA.
| |
Collapse
|
253
|
Abstract
Unique developmental features during puberty, pregnancy, lactation and post-lactation make the mammary gland a prime object to explore genetic circuits that control the specification, proliferation, differentiation, survival and death of cells. Steroids and simple peptide hormones initiate and carry out complex developmental programmes, and reverse genetics has been used to define the underlying mechanistic connections.
Collapse
Affiliation(s)
- Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
254
|
Mrusek S, Classen-Linke I, Vloet A, Beier HM, Krusche CA. Estradiol and medroxyprogesterone acetate regulated genes in T47D breast cancer cells. Mol Cell Endocrinol 2005; 235:39-50. [PMID: 15866426 DOI: 10.1016/j.mce.2005.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 12/21/2004] [Accepted: 01/17/2005] [Indexed: 11/26/2022]
Abstract
Many mammary tumors express estrogen receptors (ER) and progesterone receptors (PR), and there is increasing evidence that progestins influence gene expression of breast tumor cells. To analyse the impact of progestins on breast cancer cells, we compared (a) the expression of two cytokines, involved in tumor progression, and searched (b) for differentially regulated genes by a microarray, containing 2400 genes, on T47D breast cancer cells cultured for 6 days with 17beta-estradiol (E2) or E2+medroxyprogesterone acetate (E2+MPA). Lower amounts of PDGF and TNFalpha were found in culture supernatants of E2+MPA treated T47D cells. MPA addition induced a 2.8-3.5-fold increase of the mRNA expression of (a) tristetraprolin, which is involved in the posttranscriptional regulation of cytokine biosynthesis, and (b) zinc-alpha2-glycoprotein and Na, K-ATPase alpha1-subunit, which both resemble differentiation markers of breast epithelium. In contrast, the mRNA expression of lipocalin 2, which promotes matrixmetalloproteinase-9 activity, was decreased five-fold in E2+MPA treated cells. Our data show that the expression of genes from various functional gene families is regulated differentially by E2 and E2+MPA treatment in T47D cells. This suggests that exogenous progestins applied for therapy and endogenous changes of the progesterone levels during the menstrual cycle both influence breast cancer pathophysiology.
Collapse
Affiliation(s)
- S Mrusek
- Department of Anatomy and Reproductive Biology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
255
|
Reddy DS, O'Malley BW, Rogawski MA. Anxiolytic activity of progesterone in progesterone receptor knockout mice. Neuropharmacology 2005; 48:14-24. [PMID: 15617723 DOI: 10.1016/j.neuropharm.2004.09.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 07/13/2004] [Accepted: 09/02/2004] [Indexed: 11/18/2022]
Abstract
Progesterone is an anxiolytic steroid that could play a role in the regulation of anxiety in women. However, the mechanism by which progesterone decreases anxiety is incompletely understood. Progesterone affects the function of the brain by two distinct mechanisms. Progesterone regulates reproductive behavior by activating intracellular progesterone receptors (PRs). In addition, progesterone is believed to influence neuronal activity through its conversion to allopregnanolone, a neurosteroid that acts as a positive allosteric modulator of GABAA receptors. The extent to which the anxiolytic action of progesterone requires PRs is uncertain. In this study, we utilized PR knockout (PRKO) mice bearing a targeted null mutation of the PR gene that abrogates the function of both PR-A and PR-B subtypes to determine the requirement for PRs in the anxiolytic actions of progesterone. The absence of PR receptor protein expression in PRKO brain was confirmed by immunocytochemistry. In PRKO mice and their isogenic wild-type (WT) littermates, progesterone administration was associated with a dose-dependent rise in plasma allopregnanolone concentrations and corresponding anxiolytic effects in the elevated plus maze test. PRKO mice exhibited a greater anxiolytic response than WT animals although the allopregnanolone levels were similar in the two genotypes. Allopregnanolone also exhibited anxiolytic effects, but the magnitude of the response was similar in both genotypes. Pretreatment of PRKO mice with finasteride, a 5alpha-reductase inhibitor that blocks the conversion of progesterone to allopregnanolone, completely prevented the anxiolytic activity of progesterone, but had no effect on the response to allopregnanolone, demonstrating that allopregnanolone (or other 5alpha-reduced metabolites of progesterone) accounts for the response to the parent steroid hormone. These results provide direct evidence that the anxiolytic action of progesterone does not require PRs. However, PR activation by progesterone may influence the anxiolytic response since PRKO mice were more sensitive to progesterone.
Collapse
Affiliation(s)
- Doodipala S Reddy
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| | | | | |
Collapse
|
256
|
Hoffmann J, Sommer A. Steroid hormone receptors as targets for the therapy of breast and prostate cancer--recent advances, mechanisms of resistance, and new approaches. J Steroid Biochem Mol Biol 2005; 93:191-200. [PMID: 15860262 DOI: 10.1016/j.jsbmb.2004.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Surgical ovariectomy and orchiectomy, first proposed over a century ago, are effective in breast and prostate cancer therapy, respectively. Later, the discovery of steroid hormones and their nuclear receptors led to the concept that inhibition of steroid receptor function by an antagonist prevents tumour growth. While the first anti-hormones, cyproteroneacetate (CPA) and tamoxifen were found accidentally, deeper understanding of nuclear receptors as transcription factors enabled more rational, structure-activity based drug discovery. Results from a drug-finding program on pure anti-estrogens will be reported. These new steroidal anti-estrogens are highly active, pure ER-antagonists that lead to an efficient degradation of the estrogen receptor alpha (ERalpha) protein without any agonistic activity. Data obtained in preclinical tumour models in mice and rats showed a high potency in growth inhibition of ERalpha-positive breast cancer. In parallel, by comparing three independently generated anti-estrogen-resistant breast cancer cell lines, it was our intention to gain insight into the mechanisms of endocrine resistance which will allow to define new approaches for the treatment of endocrine-resistant breast cancer. Candidate proteins potentially involved in mechanisms of anti-estrogen-resistant growth of breast cancer cell lines were analyzed. ERalpha and progesterone receptor (PR) expressions were lost on the protein level in all three anti-estrogen-resistant cell lines, whereas binding of epidermal growth factor (EGF) and protein expression of epidermal growth factor receptor (EGFR) were increased. Loss of ERalpha expression may be linked to the acquisition of anti-estrogen resistance and enhanced expression of the EGFR and of members of the S100 family of Ca2+-binding proteins may contribute to the outgrowth of resistant cells. Furthermore, we describe the pharmacological development of a novel, highly potent progesterone receptor antagonist. In rat mammary tumour models, treatment with the PR antagonist completely suppressed the growth of established tumours and prevented the development of breast tumours. Advanced prostate cancer is effectively treated by androgen ablation. However, this therapy becomes inefficient although the androgen receptor (AR) is still functionally expressed. One novel strategy for the treatment of advanced prostate cancer could be the selective inhibition of AR protein expression by anti-sense oligonucleotides or small interfering RNA (siRNA) molecules. Down-regulation of the human AR caused significant inhibition of LNCaP prostate cancer growth in vivo. Taken together, many promising alternatives for endocrine therapy of breast and prostate cancer are arising.
Collapse
Affiliation(s)
- J Hoffmann
- Research Laboratories of Schering AG, Müller Str. 178, 13342 Berlin, Germany.
| | | |
Collapse
|
257
|
Méniel V, Hay T, Douglas-Jones A, Sansom OJ, Clarke AR. Mutations in Apc and p53 Synergize to Promote Mammary Neoplasia. Cancer Res 2005. [DOI: 10.1158/0008-5472.410.65.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Mutations of Apc and p53 have both been implicated in human and murine mammary neoplasia. To investigate potential interactions between Apc and p53, we conditionally inactivated Apc in both the presence and the absence of functional p53. Apc deficiency on its own leads to the development of metaplasia but not neoplasia. We show here that these areas of metaplasia are characterized by elevated levels of both p53 and p21. In the additional absence of p53,there is rapid progression to neoplasia, with 44.4% of lymphoma-free mice developing a mammary tumor with earliest observed onset at pregnancy. To investigate the mechanism by which p53 deficiency accelerates neoplasia, we used the Rosa26R reporter strain as a marker of Cre-mediated recombination and show a role for p53 in the loss of Apc-deficient cells. This role seems limited to pregnancy and subsequent time points. We therefore show clear synergy between these two mutations in mammary gland neoplasia and present data to suggest that at least one mechanism for this acceleration is the p53-dependent loss of Apc-deficient cells.
Collapse
Affiliation(s)
| | - Trevor Hay
- 1School of Biological Sciences, Cardiff University and
| | - Anthony Douglas-Jones
- 2Department of Pathology, University of Wales College of Medicine, Cardiff, United Kingdom
| | | | | |
Collapse
|
258
|
Jia Y, Qi C, Zhang Z, Zhu YT, Rao SM, Zhu YJ. Peroxisome proliferator-activated receptor-binding protein null mutation results in defective mammary gland development. J Biol Chem 2005; 280:10766-73. [PMID: 15647257 DOI: 10.1074/jbc.m413331200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A conditional null mutation of peroxisome proliferator-activated receptor-binding protein (PBP) gene was generated to understand its role in mammary gland development. PBP-deficient mammary glands exhibited retarded ductal elongation during puberty, and decreased alveolar density during pregnancy and lactation. PBP-deficient mammary glands could not produce milk to nurse pups during lactation. Both the mammary ductal elongation in response to estrogen treatment and the mammary lobuloalveolar proliferation stimulated by estrogen plus progesterone were attenuated in PBP-deficient mammary glands. The proliferation index was decreased in PBP-deficient mammary glands. PBP-deficient mammary epithelial cells expressed abundant beta-casein, whey acidic protein, and WDNM1 mRNA, indicating a relatively intact differentiated function. PBP-deficient epithelial cells were unable to form mammospheres, which were considered to be derived from mammary progenitor/stem cells. We conclude that PBP plays a pivotal role in the normal mammary gland development.
Collapse
Affiliation(s)
- Yuzhi Jia
- Department of Pathology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Ave., Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
259
|
Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS. A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 2005; 277:443-56. [PMID: 15617686 DOI: 10.1016/j.ydbio.2004.07.044] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Revised: 06/18/2004] [Accepted: 07/19/2004] [Indexed: 11/19/2022]
Abstract
Breast epithelial stem cells are thought to be the primary targets in the etiology of breast cancer. Since breast cancers mostly express estrogen and progesterone receptor (ERalpha and PR), we examined the biology of these ERalpha/PR-positive cells and their relationship to stem cells in normal human breast epithelium. We employed several complementary approaches to identify putative stem cell markers, to characterise an isolated stem cell population and to relate these to cells expressing the steroid receptors ERalpha and PR. Using DNA radiolabelling in human tissue implanted into athymic nude mice, a population of label-retaining cells were shown to be enriched for the putative stem cell markers p21(CIP1) and Msi-1, the human homolog of Drosophila Musashi. Steroid receptor-positive cells were found to co-express these stem cell markers together with cytokeratin 19, another putative stem cell marker in the breast. Human breast epithelial cells with Hoechst dye-effluxing "side population" (SP) properties characteristic of mammary stem cells in mice were demonstrated to be undifferentiated "intermediate" cells by lack of expression of myoepithelial and luminal apical membrane markers. These SP cells were 6-fold enriched for ERalpha-positive cells and expressed several fold higher levels of the ERalpha, p21(CIP1) and Msi1 genes than non-SP cells. In contrast to non-SP cells, SP cells formed branching structures in matrigel which included cells of both luminal and myoepithelial lineages. The data suggest a model where scattered steroid receptor-positive cells are stem cells that self-renew through asymmetric cell division and generate patches of transit amplifying and differentiated cells.
Collapse
Affiliation(s)
- Robert B Clarke
- Breast Biology Group, Cancer Research UK Department of Medical Oncology, University of Manchester, Christie Hospital (NHS) Trust, Wilmslow Road, Withington, Manchester M20 4BX, UK.
| | | | | | | | | | | |
Collapse
|
260
|
Mulac-Jericevic B, Conneely OM. Reproductive tissue-selective actions of progesterone receptors. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:19-37. [PMID: 15704466 DOI: 10.1007/3-540-27147-3_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- B Mulac-Jericevic
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
261
|
Mulac-Jericevic B, Conneely OM. Reproductive tissue selective actions of progesterone receptors. Reproduction 2004; 128:139-46. [PMID: 15280552 DOI: 10.1530/rep.1.00189] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The steroid hormone, progesterone, plays a central coordinate role in diverse events associated with female reproduction. In humans and other vertebrates, the biological activity of progesterone is mediated by modulation of the transcriptional activity of two progesterone receptors, PR-A and PR-B. These receptors arise from the same gene and exhibit both overlapping and distinct transcriptional activities in vitro. To delineate the individual roles of PR-A and PR-B in vivo, we have generated mouse models in which expression of a single PR isoform has been ablated. Analysis of the reproductive phenotypes of these mice has indicated that PR-A and PR-B mediate mostly distinct but partially overlapping reproductive responses to progesterone. While selective ablation of the PR-A protein (PR-A knockout mice, PRAKO mice) shows normal mammary gland response to progesterone but severe uterine hyperplasia and ovarian abnormalities, ablation of PR-B protein (PRBKO mice) does not affect biological responses of the ovary or uterus to progesterone but results in reduced pregnancy-associated mammary gland morphogenesis. The distinct tissue-specific reproductive responses to progesterone exhibited by these isoforms are due to regulation of distinct subsets of progesterone-dependent target genes by the individual PR isoforms. This review will summarize our current understanding of the selective contribution of PR isoforms to the cellular and molecular actions of progesterone in reproductive tissues.
Collapse
Affiliation(s)
- Biserka Mulac-Jericevic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
262
|
Abstract
Ovarian steroids, acting through nuclear receptors, are crucial players in normal breast development and cancer. Estrogen, in particular, is the focus of breast cancer therapies because tumours are often dependent on this steroid for growth. Recently, novel genes and/or protein isoforms of receptors for both estrogen and progesterone have been discovered, leading us to reappraise their roles in breast development and cancer. Recognition of changes in estrogen receptor biology that occur in the transition from normal development to cancer has emphasized its contribution to tumorigenesis. In addition, complex interactions with other signalling pathways, particularly growth factor pathways, have recently come to the forefront. These interactions might explain resistance to endocrine treatments and offer solutions in terms of novel therapeutic targets.
Collapse
Affiliation(s)
- Robert B Clarke
- CR-UK Department of Medical Oncology, Christie Hospital, Manchester, UK.
| | | | | |
Collapse
|
263
|
Qi C, Kashireddy P, Zhu YT, Rao SM, Zhu YJ. Null Mutation of Peroxisome Proliferator-activated Receptor-interacting Protein in Mammary Glands Causes Defective Mammopoiesis. J Biol Chem 2004; 279:33696-701. [PMID: 15161927 DOI: 10.1074/jbc.m401266200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the role of nuclear receptor coactivator peroxisome proliferator-activated receptor-interacting protein (PRIP) in mammary gland development, we generated a conditional null mutation of PRIP in mammary glands. In PRIP-deficient mammary glands, the elongation of ducts during puberty was not affected, but the numbers of ductal branches were decreased, a condition that persisted long after puberty, indicating that the potential of ductal branching was impaired. During pregnancy, PRIP-deficient mammary glands exhibited decreased alveolar density. The lactating PRIP-deficient glands contained scant lobuloalveoli with many adipocytes, whereas the wild type glands were composed of virtually no adipocytes but mostly lobuloalveoli. As a result, PRIP mammary-deficient glands could not produce enough milk to nurse all the pups during lactation. The ductal branching of mammary glands in response to estrogen treatment was attenuated in PRIP mutant glands. Whereas the proliferation index was similar between wild type and PRIP-deficient glands, increased apoptosis was observed in PRIP-deficient glands. PRIP-deficient glands expressed increased amphiregulin, transforming growth factor-alpha, and betacellulin mRNA as compared with wild type glands. The differentiated function of PRIP-deficient mammary epithelial cells was largely intact, as evidenced by the expression of abundant beta-casein, whey acidic protein (WAP), and WDNM1 mRNA. We conclude that PRIP is important for normal mammary gland development.
Collapse
Affiliation(s)
- Chao Qi
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
264
|
Bagheri-Yarmand R, Talukder AH, Wang RA, Vadlamudi RK, Kumar R. Metastasis-associated protein 1 deregulation causes inappropriate mammary gland development and tumorigenesis. Development 2004; 131:3469-79. [PMID: 15226262 DOI: 10.1242/dev.01213] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emerging data suggest that metastasis-associated protein 1 (MTA1) represses ligand-dependent transactivation functions of estrogen receptor-alpha in cultured breast cancer cells and that MTA1 is upregulated in human breast tumors. However, the role of MTA1 in tumorigenesis in a physiologically relevant animal system remains unknown. To reveal the role of MTA1 in mammary gland development, transgenic mice expressing MTA1 under the control of the mouse mammary tumor virus promoter long terminal repeat were generated. Unexpectedly, we found that mammary glands of these virgin transgenic mice exhibited extensive side branching and precocious differentiation because of increased proliferation of ductal and alveolar epithelial cells. Mammary glands of virgin transgenic mice resemble those from wild-type mice in mid-pregnancy and inappropriately express beta-casein, cyclin D1 and beta-catenin protein. Increased ductal growth was also observed in the glands of ovariectomized female mice, as well as of transgenic male mice. MTA1 dysregulation in mammary epithelium and cancer cells triggered downregulation of the progesterone receptor-B isoform and upregulation of the progesterone receptor-A isoform, resulting in an imbalance in the native ratio of progesterone receptor A and B isoforms. MTA1 transgene also increased the expression of progesterone receptor-A target genes Bcl-XL (Bcl2l1) and cyclin D1 in mammary gland of virgin mice, and, subsequently, produced a delayed involution. Remarkably, 30% of MTA1 transgenic females developed focal hyperplastic nodules, and about 7% exhibited mammary tumors within 18 months. These studies establish, for the first time, a potential role of MTA1 in mammary gland development and tumorigenesis. The underlying mechanism involves the upregulation of progesterone receptor A and its targets, Bcl-XL and cyclin D1.
Collapse
Affiliation(s)
- Rozita Bagheri-Yarmand
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
265
|
Wagner KU, Krempler A, Triplett AA, Qi Y, George NM, Zhu J, Rui H. Impaired alveologenesis and maintenance of secretory mammary epithelial cells in Jak2 conditional knockout mice. Mol Cell Biol 2004; 24:5510-20. [PMID: 15169911 PMCID: PMC419899 DOI: 10.1128/mcb.24.12.5510-5520.2004] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Jak2 is a hormone-receptor-coupled kinase that mediates the tyrosine phosphorylation and activation of signal transducers and activators of transcription (Stat). The biological relevance of Jak2-Stat signaling in hormone-responsive adult tissues is difficult to investigate since Jak2 deficiency leads to embryonic lethality. We generated Jak2 conditional knockout mice to study essential functions of Jak2 during mammary gland development. The mouse mammary tumor virus-Cre-mediated excision of the first coding exon resulted in a Jak2 null mutation that uncouples signaling from the prolactin receptor (PRL-R) to its downstream mediator Stat5 in the presence of normal and supraphysiological levels of PRL. Jak2-deficient females were unable to lactate as a result of impaired alveologenesis. Unlike Stat5a knockouts, multiple gestation cycles could not reverse the Jak2-deficient phenotype, suggesting that neither other components of the PRL-R signaling cascade nor other growth factors and their signal transducers were able to compensate for the loss of Jak2 function to activate Stat5 in vivo. A comparative analysis of Jak2-deficient mammary glands with transplants from Stat5a/b knockouts revealed that Jak2 deficiency also impairs the pregnancy-induced branching morphogenesis. Jak2 conditional mutants therefore resemble PRL-R knockouts more closely, which suggested that Jak2 deficiency might affect additional PRL-R downstream mediators other than Stat5a and Stat5b. To address whether Jak2 is required for the maintenance of PRL-responsive, differentiating alveolar cells, we utilized a transgenic strain that expresses Cre recombinase under regulatory elements of the whey acidic protein gene (Wap). The Wap-Cre-mediated excision of Jak2 resulted in a negative selection of differentiated alveolar cells, suggesting that Jak2 is required not only for the proliferation and differentiation of alveolar cells but also for their maintenance during lactation.
Collapse
Affiliation(s)
- Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases and Department of Pathology, University of Nebraska Medical Center, Omaha, 68198-6805, USA.
| | | | | | | | | | | | | |
Collapse
|
266
|
Kass L, Durando M, Ramos JG, Varayoud J, Powell CE, Luque EH, Muñoz-de-Toro M. Association of increased estrogen receptor beta2 expression with parity-induced alterations in the rat mammary gland. J Steroid Biochem Mol Biol 2004; 91:29-39. [PMID: 15261305 DOI: 10.1016/j.jsbmb.2004.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 02/12/2004] [Indexed: 11/29/2022]
Abstract
In this study, we investigated the cellular and molecular events involved in parity-related alterations in mammary gland (MG) proliferation and differentiation. Rat MGs were removed on day 9 of either first (nulliparous), second (primiparous) or third (multiparous) pregnancy. Expression of steroid hormone receptors along with cellular biomarkers of proliferation and differentiation were quantified in all MG tissue compartments by immunohistochemistry. Wnt-4 (a Wingless-like morphogenic gene involved in MG development), ERbeta and ERbeta2 mRNA were evaluated by RT-PCR analysis. Serum levels of mammotrophic hormones were measured. In comparison to nulliparous and primiparous rats, multiparous animals exhibited decreased luminal cell proliferation and PR levels, whereas alpha-lactalbumin, ERalpha, ERbeta and ERbeta2 expression were increased. In myoepithelial cells, while parity induced a decrease in proliferative activity, subsequent pregnancies and lactations lead to an increased state of differentiation. Our results showed that at least two periods of pregnancy and lactation were necessary to modify the studied parameters. The lower proliferative activity and higher differentiation state of the multiparous MG are associated with both a decreased PR expression and increased ERalpha and ERbeta expression. Since ERbeta and/or ERbeta2 isoform expression was related to parity history, results suggest that the decreased proliferative activity and PR expression observed in the MG of multiparous animals may be associated with overexpression of ERbeta and/or the ERbeta2 isoform, thereby antagonizing the proliferative effects associated with ERalpha.
Collapse
Affiliation(s)
- Laura Kass
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, C.C. 242, (3000) Santa Fe, Argentina
| | | | | | | | | | | | | |
Collapse
|
267
|
Abstract
Homeobox genes do not generally function alone to determine cell fate and morphogenesis. Rather it is the distinct combination of various members of the homeobox family of genes and their spatiotemporal patterns of expression that determine cell identity and function. Functional redundancy often makes it difficult to clearly discern the role of any one given homeobox gene. The roles that Msx1 and Msx2 play in branching morphogenesis of the mammary gland are only now becoming more evident. Many signaling pathways and transcription factors are implicated in how these homeobox genes correctly determine the morphological development of the gland. Overexpression of Msx1 and Msx2 may also be involved in tumorigenesis. Additional studies are needed to elucidate the roles of these genes in both breast development and cancer.
Collapse
Affiliation(s)
- Kennichi Satoh
- Molecular and Cellular Endocrinology Section, Mammary Biology and Tumorigenesis Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
268
|
Lewis MT, Veltmaat JM. Next stop, the twilight zone: hedgehog network regulation of mammary gland development. J Mammary Gland Biol Neoplasia 2004; 9:165-81. [PMID: 15300011 DOI: 10.1023/b:jomg.0000037160.24731.35] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The hedgehog signal transduction network is a critical mediator of cell-cell communication during embryonic development. Evidence also suggests that properly regulated hedgehog network function is required in some adult organs for stem cell maintenance or renewal. Mutation, or misexpression, of network genes is implicated in the development of several different types of cancer, particularly that of skin, brain, lung, and pancreas. Recent studies in the mouse mammary gland have demonstrated roles for hedgehog network genes at virtually every phase of mammary gland development where it regulates such diverse processes as embryonic mammary gland induction, establishment of ductal histoarchitecture, and functional differentiation in lactation. Further, studies suggest a role for misregulated network function in the progression of breast cancer.
Collapse
|
269
|
Gourdou I, Paly J, Hue-Beauvais C, Pessemesse L, Clark J, Djiane J. Expression by Transgenesis of a Constitutively Active Mutant Form of the Prolactin Receptor Induces Premature Abnormal Development of the Mouse Mammary Gland and Lactation Failure1. Biol Reprod 2004; 70:718-28. [PMID: 14613905 DOI: 10.1095/biolreprod.103.019448] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Prolactin (PRL) initiates signal transduction by inducing homodimerization of PRL receptor (PRL-R). We have previously developed a mutant form of the PRL-R in which a part of the extracellular domain is deleted. This receptor constitutively activates protein gene transcription. We examined the oligomerization of the mutant PRL-R using two differently epitope-tagged receptors in a coimmunoprecipitation assay. It was shown that mutant receptor dimers were formed in a ligand-independent manner, which may explain the constitutive activity on milk protein gene expression. To study the biological activity of this mutant PRL-R on mammary gland development, we generated two lines of transgenic mice expressing the corresponding cDNA specifically in the mammary epithelial cells. For both transgenic lines, the mammary gland of 8-wk-old virgin mice was overdeveloped with numerous dilated ductal and alveolar structures, whereas only a limited duct network was present in wild-type animals at the same age. During pregnancy, the ducts and alveoli of transgenic mice were more developed than those of control animals. At parturition, the transgenic animals failed to lactate and nourish their offspring, and the involution of the mammary gland was strongly delayed. In conclusion, the expression of a constitutively active PRL-R by transgenesis induces a premature and abnormal mammary development and impairs terminal differentiation and milk production at the end of pregnancy.
Collapse
Affiliation(s)
- Isabelle Gourdou
- Unité d'Endocrinologie Moléculaire, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France.
| | | | | | | | | | | |
Collapse
|
270
|
Abstract
The ovarian steroids estrogen and progesterone (E(2) and P) are essential for normal mammary gland growth and development; however, the mechanisms by which they influence the proliferative activity of the mammary epithelium remain unclear. Mammary epithelial cells cells expressing the receptors for E(2) and P (ER and PR respectively) are separate from, although often adjacent to, those capable of proliferating, implying that the ovarian steroids act indirectly via paracrine or juxtacrine growth factors to stimulate entry into the cell cycle. A large number of candidate factors have been identified in a variety of different experimental systems, and it appears that transforming growth factor beta may play a role in preventing proliferation of steroid receptor-containing cells. Dysregulation of the strict inverse relationship between ERalpha expression and proliferation is detectable in premalignant human breast lesions, indicating that it might be essential to the tumorigenic process. Challenges for the future include determining which of the candidates identified as being mediators of the effects of E(2) are physiologically and clinically relevant as well as finding out how ERalpha-containing cells become proliferative during tumorigenesis. Answering these questions could greatly increase our understanding of the factors controlling mammary gland development and the processes leading to cancer formation.
Collapse
|
271
|
Abstract
Breast epithelial stem cells are thought to be the primary targets in the aetiology of breast cancer. As breast cancers are predominantly oestrogen and progesterone receptor-positive (ERalpha/PR+), we investigated the biology of ERalpha/PR+ cells and their relationship to stem cells in normal human breast epithelium. Several complementary approaches were used to characterize the stem-cell population and relate it to ERalpha/PR+ cells, including dual label colocalization on tissue sections, isolation of a Hoechst dye-effluxing 'side population' using flow cytometry, and examination of DNA label retention. The intermediate or suprabasal population suggested by others to be breast stem cells comprises ERalpha/PR+ cells that coexpress the putative stem-cell markers including cytokeratin 19. Human breast epithelial cells with Hoechst dye-effluxing 'side population' properties characteristic of mammary stem cells in mice were demonstrated by lack of expression of myoepithelial and luminal cell-specific antigens such as CALLA and MUC1 to be undifferentiated cells. Using DNA radiolabelling of human tissue implanted into athymic nude mice, a population of label-retaining putative stem cells (LRC) were shown to be enriched for cells expressing the putative stem-cell markers p21CIP1/WAF1 and Musashi-1, which, interestingly, were expressed in separate subpopulations of ERalpha/PR+ cells. Finally, expression patterns of Musashi-1 and Notch-1 in relation to ERalpha/PR+ and adjacent proliferating cells suggest that the evolutionarily conserved Delta/Notch signalling pathway regulates asymmetric division of the putative stem-cell population. The data suggest a model in which ERalpha/PR+ cells scattered through the epithelium are stem cells that self-renew through asymmetric cell division and generate patches of transit amplifying and differentiated cells. ERalpha/PR+ breast cancers exhibit loss of the two key regulators of asymmetric cell division, Musashi-1 and Notch-1 and thus may arise from symmetric division of the ERalpha/PR+ stem cell.
Collapse
Affiliation(s)
- Robert B Clarke
- Breast Biology Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Withington, Manchester, UK.
| | | | | | | |
Collapse
|
272
|
Srivastava S, Matsuda M, Hou Z, Bailey JP, Kitazawa R, Herbst MP, Horseman ND. Receptor activator of NF-kappaB ligand induction via Jak2 and Stat5a in mammary epithelial cells. J Biol Chem 2003; 278:46171-8. [PMID: 12952963 DOI: 10.1074/jbc.m308545200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolactin (PRL) is the primary hormone that, in conjunction with local factors, leads to lobuloalveolar development during pregnancy. Recently, receptor activator of NF-kappaB ligand (RANKL) has been identified as one of the effector molecules essential for lobuloalveolar development. The molecular mechanisms by which PRL may induce RANKL expression have not been carefully examined. Here we report that RANKL expression in the mammary gland is developmentally regulated and dependent on PRL and progesterone, whereas its receptor RANK (receptor activator of NF-kappaB) and decoy receptor osteoprotegerin (OPG) are constitutively expressed at all stages in both normal (PRL+/-) and prolactin knockout (PRL-/-) mice. In vitro, PRL markedly increased RANKL expression in primary mammary epithelial cells and RANKL-luciferase reporter activity in CHOD6 cells, which constitutively express the PRL receptor. We identified a gamma-interferon activation sequence (GAS) in the region between residues -965 to -725 of the RANKL promoter, which conferred a PRL response. Using dominant negative mutants of recombinant Jak2 and Stat5 in CHOD6 cells, and by reconstituting the Jak2/Stat5 pathway in COS7 cells, we determined that Jak2 and Stat5a are essential for the PRL-induced RANKL expression in mammary gland.
Collapse
MESH Headings
- Animals
- Carrier Proteins/chemistry
- Carrier Proteins/metabolism
- Cell Line
- Cells, Cultured
- DNA-Binding Proteins/chemistry
- Dose-Response Relationship, Drug
- Epithelial Cells/metabolism
- Female
- Genes, Dominant
- Glycoproteins/biosynthesis
- Interferon-gamma/metabolism
- Janus Kinase 2
- Ligands
- Luciferases/metabolism
- Mammary Glands, Animal/metabolism
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Knockout
- Milk Proteins
- Models, Genetic
- Mutagenesis, Site-Directed
- Mutation
- Osteoprotegerin
- Plasmids/metabolism
- Prolactin/metabolism
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins
- RANK Ligand
- RNA, Messenger/metabolism
- Receptor Activator of Nuclear Factor-kappa B
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Tumor Necrosis Factor
- STAT5 Transcription Factor
- Time Factors
- Trans-Activators/chemistry
- Transfection
Collapse
Affiliation(s)
- Sunil Srivastava
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267-0576, USA
| | | | | | | | | | | | | |
Collapse
|
273
|
Conneely OM, Mulac-Jericevic B, Lydon JP. Progesterone-dependent regulation of female reproductive activity by two distinct progesterone receptor isoforms. Steroids 2003; 68:771-8. [PMID: 14667967 DOI: 10.1016/s0039-128x(03)00126-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The steroid hormone, progesterone, is a central coordinator of all aspects of female reproductive activity. The physiological effects of progesterone are mediated by interaction of the hormone with specific intracellular progesterone receptors (PRs) that are expressed from a single gene as two protein isoforms and that are members of the nuclear receptor superfamily of transcription factors. Analysis of the structural and functional relationships of each isoform using in vitro systems has demonstrated that the PR-A and PR-B proteins have different transcription activation properties when liganded to progesterone. More recently, selective ablation of the PR-A and PR-B proteins in mice had facilitated examination of the contribution of the individual PR isoforms to the pleiotropic reproductive activities of progesterone. Analysis of the phenotypic consequences of these mutations on female reproductive function has provided proof of concept that the distinct transcriptional responses to PR-A and PR-B observed in cell-based transactivation assays are reflected in a distinct tissue-selective contribution of the individual isoforms to the reproductive activities of progesterone. In PR-A knock-out mice, in which the expression of the PR-A isoform is selectively ablated (PRAKO), the PR-B isoform functions in a tissue-specific manner to mediate a subset of the reproductive functions of PRs. Ablation of PR-A does not affect response of the mammary gland or thymus to progesterone but results in severe abnormalities in ovarian and uterine function leading to female infertility. More recent studies using PR-B knock-out (PRBKO) mice have shown that ablation of PR-B does not affect either ovarian, uterine or thymic responses to progesterone but results in reduced mammary ductal morphogenesis and alveologenesis during pregnancy. Thus, PR-A is both necessary and sufficient to elicit the progesterone-dependent reproductive responses necessary for female fertility, while the PR-B isoform is required to elicit normal proliferative and differentiative responses of the mammary gland to progesterone. This review will summarize our current understanding of the selective contribution of the two PR isoforms to progesterone action.
Collapse
Affiliation(s)
- Orla M Conneely
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, M-511, Houston, TX 77030, USA.
| | | | | |
Collapse
|
274
|
Ismail PM, Amato P, Soyal SM, DeMayo FJ, Conneely OM, O'Malley BW, Lydon JP. Progesterone involvement in breast development and tumorigenesis--as revealed by progesterone receptor "knockout" and "knockin" mouse models. Steroids 2003; 68:779-87. [PMID: 14667968 DOI: 10.1016/s0039-128x(03)00133-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In light of recent clinical trials, the debate concerning the risks and benefits of progestin-based postmenopausal hormone replacement therapy (HRT) has reached a renewed level of urgency. Irrespective of the position taken, the consensus is that more basic research needs to be performed to address progesterone's fundamental role in mammary development and tumorigenesis. Towards this end, the progesterone receptor knockout (PRKO) mouse demonstrated that progesterone is essential for pregnancy-associated mammary gland ductal side-branching and alveologenesis and that these morphological changes are dependent on progesterone-induced mammary epithelial proliferation. Importantly, the PRKO mouse showed that the progesterone-proliferative signal significantly contributes to mammary tumor susceptibility in an established mammary tumor model. Insight into the cellular mechanism(s) by which progesterone affects mammary morphogenesis has been disclosed by a new PR-LacZ knockin mouse, which revealed that PR's spatial expression pattern undergoes precise choreographed distributional changes that precede key stages in postnatal mammary development. In the case of early pregnancy, the segregation of cells undergoing progesterone-induced proliferation from those that express PR implicates a paracrine mode of action for progesterone-induced mammary epithelial proliferation, whereas the preparturient decline of PR expression underscores the need to remove this signal for full functional differentiation of this tissue. Our findings support the proposal that the mammary gland's normal response to the progesterone-signal is dependent upon specific spatial organizational patterns of PR expression and that derailment in these cellular processes may contribute to abnormal mammary development, including cancer. This review concludes by emphasizing the need to identify the downstream molecular targets that mediate progesterone's effects in this tissue. Identification of such targets will not only enhance our mechanistic understanding of progesterone's role in mammary development and cancer, but may also facilitate the formulation of new design strategies in breast cancer diagnosis and/or treatment.
Collapse
Affiliation(s)
- Preeti M Ismail
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
275
|
Abstract
Despite recent gains in our knowledge of the hormonal control of proliferation and differentiation in the rodent mammary gland, the factors regulating these processes in the human are poorly understood. We have developed a model in which intact normal human breast tissue is grafted subcutaneously into adult female athymic nude mice and treated with oestrogen (E) and/or progesterone (P) at human physiological serum levels. We have shown that (i) E and not P is the major epithelial cell mitogen in the adult non-pregnant, non-lactating breast, (ii) E induces progesterone receptor (PR) expression and (iii) PR expression is maximally induced at low E concentrations while a higher amount of E is required to stimulate proliferation. These data raised the question of whether one cell type demonstrated two different responses to the two different E concentrations or whether PR expression and proliferation occurred in separate cell populations. Using dual label immunofluorescence, we showed that steroid receptor expression and proliferation (Ki67 antigen) are detected in separate cell populations in normal human breast epithelium, and that cells expressing the oestrogen receptor-alpha (ERalpha) invariably contained the PR. We also reported that this separation between steroid receptor expression and proliferation observed in the normal human epithelium is disrupted at an early stage in breast tumourigenesis. One interpretation supported by our recent findings is that some ERalpha/PR-positive epithelial cells are quiescent breast stem cells that act as "steroid hormone sensors". Such hormone sensor cells might secrete positive or negative paracrine/juxtacrine factors dependent on the prevailing E or P concentration to influence the proliferative activity of adjacent ERalpha/PR-negative epithelial cells.
Collapse
Affiliation(s)
- Robert B Clarke
- Breast Biology Group, Clinical Research Department, Christie Hospital, Manchester M20 4BX, UK.
| |
Collapse
|
276
|
Hadsell DL, Bonnette S, George J, Torres D, Klimentidis Y, Klementidis Y, Gao S, Haney PM, Summy-Long J, Soloff MS, Parlow AF, Sirito M, Sawadogo M. Diminished milk synthesis in upstream stimulatory factor 2 null mice is associated with decreased circulating oxytocin and decreased mammary gland expression of eukaryotic initiation factors 4E and 4G. Mol Endocrinol 2003; 17:2251-67. [PMID: 12907752 DOI: 10.1210/me.2002-0031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previous studies have suggested that upstream stimulatory factors (USFs) regulate genes involved with cell cycle progression. Because of the relationship of USFs to an important oncogene in breast cancer, c-myc, we chose to determine the importance of USF to normal mammary gland development in the mouse. Expression of USF in the mammary gland throughout development demonstrated only modest changes. Mutation of the Usf2 gene was associated with reduced fertility in females, but had no effect on prepartum mammary gland development. However, lactation performance in Usf2-/- females was only half of that observed in Usf2+/+ females, and both lactose and nitrogen were decreased in milk from Usf2-/- dams. This decrease was associated with diminished mammary tissue wet weight and luminal area by d 9 of lactation and with a decreased protein-DNA ratio. This decrease was associated with reduced abundance of the eukaryotic initiation factors eIF4E and eIF4G. Blood oxytocin concentrations on d 9 postpartum were also lower in Usf2-/- mice than Usf2+/+ mice. In contrast, the mutation had no effect on blood prolactin concentrations, mammary cell proliferation or apoptosis, mammary tissue oxytocin receptors, or milk protein gene expression. The mutation had only modest effects on maternal behavior. These data support the idea that USF is important to physiological processes necessary for the establishment and maintenance of normal lactation and suggest that USF-2 may impact lactation through both systemic and mammary cell-specific mechanisms.
Collapse
Affiliation(s)
- Darryl L Hadsell
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Guan Y, Rubenstein NM, Failor KL, Woo PL, Firestone GL. Glucocorticoids control beta-catenin protein expression and localization through distinct pathways that can be uncoupled by disruption of signaling events required for tight junction formation in rat mammary epithelial tumor cells. Mol Endocrinol 2003; 18:214-27. [PMID: 14551262 DOI: 10.1210/me.2003-0014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In Con8 rat mammary epithelial tumor cells, the synthetic glucocorticoid dexamethasone stimulates the remodeling of tight junctions and adherens junctions before formation of highly sealed tight junctions. In this study, the expression and localization of key components of the apical junction were examined as potential targets of glucocorticoid signaling. Western blot and RT-PCR demonstrated that dexamethasone up-regulated beta-catenin protein and transcript expression and nearly ablated beta-catenin phosphorylation under conditions that led to a significant increase in monolayer transepithelial resistance. Indirect immunofluorescence revealed that dexamethasone treatment also caused beta-catenin to localize predominantly at the cell membrane rather than the nucleus. The glucocorticoid regulation of beta-catenin expression and localization was not a consequence of dexamethasone inhibition of cell growth, because both responses were unaltered in the presence of hydroxyurea. The steroid induction of beta-catenin expression and localization can be uncoupled by altering the function of signaling pathways needed for tight junction formation. Expression of dominant-negative RasN17 abolished dexamethasone up-regulation of beta-catenin protein expression without affecting its localization at the membrane. In contrast, exogenous treatment or constitutive production of TGFalpha abolished the dexamethasone-induced alteration of beta-catenin localization without affecting the dexamethasone stimulation of beta-catenin expression. Taken together, our results demonstrate that glucocorticoids control beta-catenin at two distinct levels of cellular regulation that differ in their cell signaling requirements for the glucocorticoid regulation of mammary epithelial junctional dynamics.
Collapse
Affiliation(s)
- Yi Guan
- Department of Molecular and Cell Biology, 591 LSA, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | | | | | | | | |
Collapse
|
278
|
Lanz RB, Chua SS, Barron N, Söder BM, DeMayo F, O'Malley BW. Steroid receptor RNA activator stimulates proliferation as well as apoptosis in vivo. Mol Cell Biol 2003; 23:7163-76. [PMID: 14517287 PMCID: PMC230309 DOI: 10.1128/mcb.23.20.7163-7176.2003] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Revised: 05/08/2003] [Accepted: 07/07/2003] [Indexed: 11/20/2022] Open
Abstract
Steroid receptor RNA activator (SRA) is an RNA that coactivates steroid hormone receptor-mediated transcription in vitro. Its expression is strongly up-regulated in many human tumors of the breast, uterus, and ovary, suggesting a potential role in pathogenesis. To assess SRA function in vivo, a transgenic-mouse model was generated to enable robust human SRA expression by using the transcriptional activity of the mouse mammary tumor virus long terminal repeat. Transgenic SRA was expressed in the nuclei of luminal epithelial cells of the mammary gland and tissues of the male accessory sex glands. Distinctive evidence for SRA function in vivo was obtained from the elevated levels of estrogen-controlled expression of progesterone receptor in transgenic mammary glands. Although overexpression of SRA showed strong promoting activities on cellular proliferation and differentiation, no alterations progressed to malignancy. Epithelial hyperplasia was accompanied by increased apoptosis, and preneoplastic lesions were cleared by focal degenerative transformations. In bitransgenic mice, SRA also antagonized ras-induced tumor formation. This work indicates that although coactivation of steroid-dependent transcription by SRA is accompanied by a proliferative response, overexpression is not in itself sufficient to induce turmorigenesis. Our results underline an intricate relationship between the different physiological roles of steroid receptors in conjunction with the RNA activator in the regulation of development, tissue homeostasis, and reproduction.
Collapse
Affiliation(s)
- Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
279
|
Abstract
The Eph family of receptor tyrosine kinases and their membrane-bound ligands, the ephrins, play a central role in pattern formation during embryonic development and there is growing evidence that they are also instrumental in the control of tissue dynamics in the adult. The mammary gland is a paradigm for morphogenic processes occurring in the adult, since the gland develops predominantly postnatally and is subjected to continuous cyclic remodeling according to functional demands. Thus, pattern formation and the establishment of a functional organ structure are permanent themes in the mammary gland life cycle. In this paper we summarize the experimental evidence and discuss possible mechanisms by which Ephs and ephrins are modulating mammary epithelial cell adhesion, communication, and migration. Furthermore, we speculate on the different aspects of their influence on normal mammary gland development, function, and carcinogenesis.
Collapse
|
280
|
Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci U S A 2003; 100:9744-9. [PMID: 12897242 PMCID: PMC187836 DOI: 10.1073/pnas.1732707100] [Citation(s) in RCA: 416] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Progesterone (P) regulates female reproduction via two nuclear receptors, PR-A and PR-B. Although both receptors display overlapping and distinct transcription regulatory properties, their individual physiological roles are unclear. To address the physiological role of PR-A, we generated a mouse model in which expression of PR-B was specifically ablated (PRBKO-/-). We show that selective activation of PR-A in PRBKO-/- mice is sufficient to elicit normal ovarian and uterine responses to P but results in reduced mammary gland morphogenesis. In the absence of PR-B, pregnancy-associated ductal sidebranching and lobuloalveolar development are markedly reduced due to decreased ductal and alveolar epithelial cell proliferation and decreased survival of alveolar epithelium. In an effort to elucidate the molecular genetic signaling pathways that are differentially regulated by PRs in the mammary gland, we have identified receptor activator of nuclear factor kappa B ligand (RANKL) as a paracrine mediator of P-dependent alveologenesis. Further, we demonstrate that the defects in PRBKO-/- mice are associated with an inability of PR-A to activate the RANKL signaling pathway in response to P. Our data indicate that functional interaction between PR-A and PR-B is not required for reproductive activity and that selective modulation of PR-A activity by progestin agonists may have a protective effect against both uterine and mammary gland hyperplasias.
Collapse
Affiliation(s)
- Biserka Mulac-Jericevic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
281
|
Naylor MJ, Ginsburg E, Iismaa TP, Vonderhaar BK, Wynick D, Ormandy CJ. The neuropeptide galanin augments lobuloalveolar development. J Biol Chem 2003; 278:29145-52. [PMID: 12759342 DOI: 10.1074/jbc.m303746200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammary lobuloalveolar development during pregnancy is controlled by ovarian sex steroids and pituitary prolactin release. In organ culture these hormones are incapable of reproducing the density and size of lobuloalveoli seen in mice, suggesting the existence of other undiscovered factors. We showed previously that galanin knockout mice fail to lactate sufficiently for pup survival following their first pregnancy. Here we demonstrate that prolactin treatment of galanin knockout mice allows pup survival but does not completely rescue lobuloalveolar development or reduced milk protein expression. When galanin was used in combination with prolactin in mammary organ culture, larger and more numerous lobules were produced than with prolactin alone. Galanin alone produced sustained activation of STAT5a and the induction of milk protein expression but did not induce lobulogenesis. Examination of the transcriptional interaction between galanin and prolactin using oligonucleotide microarrays demonstrated synergistic and antagonistic modes of interaction between these hormones. These data establish a new role for galanin as a hormone augmenting mammary development during pregnancy in concert with prolactin.
Collapse
Affiliation(s)
- Matthew J Naylor
- Development Group, Cancer Research Program and Neurobiology Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | |
Collapse
|
282
|
Visvader JE, Lindeman GJ. Transcriptional regulators in mammary gland development and cancer. Int J Biochem Cell Biol 2003; 35:1034-51. [PMID: 12672473 DOI: 10.1016/s1357-2725(03)00030-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mammary gland represents a remarkable developmental system for the study of genetic programs underlying proliferation, differentiation and inductive tissue interactions. Mammary gland ontogeny occurs predominantly in the adult and involves a complex cycle of morphogenesis, with the continuous production, differentiation and apoptosis of mammary epithelial cells occurring with each pregnancy. Perturbations in pathways controlling any of these processes may lead to neoplasia. Substantial progress has been made in defining signaling pathways important for mammopoiesis, in particular those that mediate the effects of peptide and steroid hormones. However, much less is known about the transcriptional regulators that dictate cell specificity, proliferation and differentiation within the mammary gland. This review will discuss recent insights into the transcriptional networks important for mammary gland development and consider how deregulation of specific transcription factors contributes to the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Jane E Visvader
- VBCRC Laboratory, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Vic Parkville 3050, Australia.
| | | |
Collapse
|
283
|
Yin YJ, Salah Z, Grisaru-Granovsky S, Cohen I, Even-Ram SC, Maoz M, Uziely B, Peretz T, Bar-Shavit R. Human protease-activated receptor 1 expression in malignant epithelia: a role in invasiveness. Arterioscler Thromb Vasc Biol 2003; 23:940-4. [PMID: 12637343 DOI: 10.1161/01.atv.0000066878.27340.22] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While protease-activated receptors (PARs) play a traditional role in vascular biology, they emerge with surprisingly new assignments in tumor biology. PAR1 expression correlates with the invasion properties of breast carcinoma, whereas human PAR1 antisense reduces their ability to migrate through Matrigel. Part of the molecular mechanism of PAR1 invasion involves the formation of focal contact complexes on PAR1 activation. PAR1 induces angiogenesis in animal models in vivo and exhibits an oncogenic phenotype of enhanced ductal complexity when overexpressed in mouse mammary glands.
Collapse
Affiliation(s)
- Yong-Jun Yin
- Department of Oncology, Hadassah-University Hospital, POB 12000, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Hatsell S, Rowlands T, Hiremath M, Cowin P. Beta-catenin and Tcfs in mammary development and cancer. J Mammary Gland Biol Neoplasia 2003; 8:145-58. [PMID: 14635791 DOI: 10.1023/a:1025944723047] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Beta-catenin regulates cell-cell adhesion and transduces signals from many pathways to regulate the transcriptional activities of Tcf/Lef DNA binding factors. Gene ablation and transgenic expression studies strongly support the concept that beta-catenin together with Lef/Tcf factors act as a switch to determine cell fate and promote cell survival and proliferation at several stages during mammary gland development. Mice expressing the negative regulator of Wnt/beta-catenin signaling (K14-Dkk) fail to form mammary buds, and those lacking Lef-1 show an early arrest in this process at stage E13.5. Stabilized deltaN89beta-catenin initiates precocious alveologenesis during pubertal development, and negative regulators of endogenous beta-catenin signaling suppress normal alveologenesis during pregnancy. Stabilized beta-catenin induces hyperplasia and mammary tumors in mice. Each of the beta-catenin-induced phenotypes is accompanied by upregulation of the target genes cyclin D1 and c-myc. Cyclin D1, however, is dispensable for tumor formation and the initiation of alveologenesis but is essential for later alveolar expansion.
Collapse
Affiliation(s)
- Sarah Hatsell
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
285
|
Abstract
There is now strong evidence that the stem cells of many tissues reside in specialized structures termed niches. The stem cell niche functions to house and regulate symmetric and asymmetric mitosis of stem cells in mammalian skin, mouse and human bone marrow, mouse brain, gut, and hair follicle, and Drosophila ovary and testis. This regulation is effected through the action of various signaling pathways such as Notch, Hedgehog, Wnt and others. The hormones of the estrous cycle, pregnancy and lactation that initiate growth in mouse mammary epithelium appear to act at a paracrine level to regulate mitosis through Notch receptors. Previous work has established that the putative stem cells of the mammary epithelium in several animal species reside near the basement membrane and never make contact with the ductal lumen. We show that these putative stem cells are found in anatomically specialized places created by the cytoplasmic extensions and modifications of neighboring differentiated cells. Such specializations may help to regulate stem cell activity by modulating molecular traffic to putative stem cells and contact with signaling molecules in the basement membrane. The histological characteristics of these putative niches vary as to the kinds of relationships the cells can have with the basement membrane and neighboring cells and as to how many stem or progenitor cells they may contain. This suggests a plasticity that may be relevant to the response of niches to tissue demands, such as wound healing, the periodic growth and regression of mammary epithelium, the process of mammary tumorigenesis therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- G Chepko
- Lombardi Cancer Center, Georgetown University, W412 NRB 3970 Reservoir Rd. NW, Washington, DC 20007, USA.
| | | |
Collapse
|
286
|
Zhang J, Brewer S, Huang J, Williams T. Overexpression of transcription factor AP-2alpha suppresses mammary gland growth and morphogenesis. Dev Biol 2003; 256:127-45. [PMID: 12654297 DOI: 10.1016/s0012-1606(02)00119-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AP-2 transcription factors are key regulators of mouse embryonic development. Aberrant expression of these genes has also been linked to the progression of human breast cancer. Here, we have investigated the role of the AP-2 gene family in the postnatal maturation of the mouse mammary gland. Analysis of AP-2 RNA and protein levels demonstrates that these genes are expressed in the mammary glands of virgin and pregnant mice. Subsequently, AP-2 expression declines during lactation and then is reactivated during involution. The AP-2alpha and AP-2gamma proteins are localized in the ductal epithelium, as well as in the terminal end buds, suggesting that they may influence growth of the ductal network. We have tested this hypothesis by targeting AP-2alpha expression to the mouse mammary gland using the MMTV promoter. Our studies indicate that overexpression of AP-2alpha inhibits mammary gland growth and morphogenesis, and this coincides with a rise in PTHrP expression. Alveolar budding is severely curtailed in transgenic virgin mice, while lobuloalveolar development and functional differentiation are inhibited during pregnancy and lactation, respectively. Our studies strongly support a role for the AP-2 proteins in regulating the proliferation and differentiation of mammary gland epithelial cells in both mouse and human.
Collapse
Affiliation(s)
- J Zhang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
287
|
Conneely OM, Jericevic BM, Lydon JP. Progesterone receptors in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 2003; 8:205-14. [PMID: 14635795 DOI: 10.1023/a:1025952924864] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The steroid hormone, progesterone (P), is a central coordinator of all aspects of female reproductive activity and plays a key role in pregnancy-associated mammary gland morphogenesis and mammary tumorigenesis. The effects of P on the mammary gland are mediated by two structurally and functionally distinct nuclear receptors PR-A and PR-B that arise from a single gene. Null mutation of both receptors in PR knockout (PRKO) mice has demonstrated a critical role for PRs in mediating pregnancy-associated mammary ductal branching and lobuloalveolar differentiation and in initiation of mammary tumors in response to carcinogen. Analysis of the molecular genetic pathways disrupted in PRKO mice has recently yielded important insights into the molecular mechanisms of regulation of mammary gland morphogenesis by PRs. In addition to its essential role in regulating proliferative and differentiative responses of the adult mammary gland during pregnancy, P plays a critical role in the protection against mammary tumorigenesis afforded by early parity. Thus, the effects of P on postnatal developmental plasticity of the mammary gland differ between young and adult glands. This review will summarize recent advances in our understanding of 1) the molecular mechanisms by which PRs mediate pregnancy-associated mammary gland morphogenesis, 2) the role of PRs in mediating tumorigenic responses of the adult mammary gland to carcinogen, and 3) the role of P in long-term protection of the juvenile mammary gland against tumorigenesis. In addition, we will summarize recent insights into the isoform selective contributions to some of these activities of PRs obtained from comparative analysis of P-dependent mammary gland development in PR isoform specific knockout mice lacking either the PR-A (PRAKO) or PR-B (PRBKO).
Collapse
Affiliation(s)
- Orla M Conneely
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
288
|
Gigliotti AP, Johnson PF, Sterneck E, DeWille JW. Nulliparous CCAAT/enhancer binding proteindelta (C/EBPdelta) knockout mice exhibit mammary gland ductal hyperlasia. Exp Biol Med (Maywood) 2003; 228:278-85. [PMID: 12626772 DOI: 10.1177/153537020322800306] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CCAAT/Enhancer binding proteins (C/EBPs) are a family of nuclear proteins that function in the control of cell growth, death, and differentiation. We previously reported that C/EBPdelta plays a key role in mammary epithelial cell G(0) growth arrest. In this report, we investigated the role of C/EBPdelta in mammary gland development and function using female mice homozygous for a targeted deletion of C/EBPdelta (C/EBPdelta -/-). C/EBPdelta -/- females develop normally and exhibit normal reproductive and lactational performance. Adult nulliparous C/EBPdelta -/- females, however, exhibit mammary epithelial cell growth control defects. The mean number of mammary ductal branches is significantly higher in adult nulliparous C/EBPdelta -/- females compared with C/EBPdelta +/+ (wild-type control) females (66.8 +/- 5.2 vs 42.9 +/- 6.3 branch points/field, P < 0.01). In addition, the mean total mammary gland cellular volume occupied by epithelium is significantly higher in adult nulliparous C/EBPdelta -/- females compared with C/EBPdelta +/+ controls (29.0 +/- 1.4 vs 20.4 +/- 1.3, P < 0.001). Our results showed that the BrdU labeling index was significantly higher in mammary epithelial cells from nulliparous C/EBPdelta -/- females compared with C/EBPdelta +/+ controls during the proestrus/estrus (4.55 +/- 0.70 vs 2.14 +/- 0.43, P < 0.01) and metestrus/diestrus (6.92 +/- 0.75 vs 3.98 +/- 0.43 P < 0.01) phases of the estrus cycle. In contrast, the percentage of mammary epithelial cells undergoing apoptosis during both phases of the estrus cycle did not differ between C/EBPdelta -/- and C/EBPdelta +/+ females. The increased epithelial cell content and proliferative capacity was restricted to the nulliparous C/EBPdelta -/- females as no differences in mammary gland morphology, ductal branching or total epithelial content were observed between multiparous C/EBPdelta -/- and C/EBPdelta +/+ females. These results demonstrate that C/EBPdelta plays a novel role in mammary epithelial cell growth control that appears to be restricted to the nulliparous mammary gland.
Collapse
Affiliation(s)
- Andrew P Gigliotti
- Department of Veterinary Biosciences and Division of Molecular Biology and Cancer Genetics, Ohio State Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
289
|
Naylor MJ, Lockefeer JA, Horseman ND, Ormandy CJ. Prolactin regulates mammary epithelial cell proliferation via autocrine/paracrine mechanism. Endocrine 2003; 20:111-4. [PMID: 12668875 DOI: 10.1385/endo:20:1-2:111] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Accepted: 12/09/2002] [Indexed: 11/11/2022]
Abstract
Prolactin (PRL) is essential for a number of developmental events in the mammary gland. Work with PRL and PRL receptor knockout mice has shown that PRL indirectly regulates ductal side branching during puberty and directly controls lobuloalveolar development and lactogenesis during pregnancy. Anterior pituitary or placental PRL is thought to be responsible for these functions via an endocrine mechanism; however, PRL is also produced in a number of extrapituitary sites including the mammary gland. The physiologic relevance of mammary PRL remains unknown. In this study we utilized mammary recombination in Rag1(-/-) hosts, to determine whether mammary PRL plays a role in the regulation of mammary gland development. Mammary glands formed with the PRL gene deleted from either the epithelium, stroma, or both displayed normal development, on the basis of whole mount and hematoxylin and eosin histology, during puberty and lactation. At the end of pregnancy, a 2.8-fold decrease in bromodeoxyuridine incorporation was observed in the epithelial cells of mammary glands formed using PRL knockout epithelium compared with those formed using wildtype epithelium. No balancing alteration in the rates of apoptosis was detected. Thus, mammary-derived PRL influences mammary epithelial cell proliferation via an autocrine/paracrine mechanism, establishing a physiologic function for mammary PRL during mammopoiesis.
Collapse
Affiliation(s)
- Mathew J Naylor
- Cancer Research Program, The Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia.
| | | | | | | |
Collapse
|
290
|
Metz RP, Kaeck M, Stacewicz-Sapuntzakis M, Mitrenga T, McCarty H, Schedin P. Adolescent vitamin A intake alters susceptibility to mammary carcinogenesis in the Sprague-Dawley rat. Nutr Cancer 2003; 42:78-90. [PMID: 12235654 DOI: 10.1207/s15327914nc421_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We tested the hypothesis that adolescent dietary vitamin A intake impacts mammary gland development and subsequent sensitivity to carcinogenesis. Sprague-Dawley rats were fed a purified diet that was vitamin A deficient, adequate (2.2 mg retinyl palmitate/kg diet), or supranutritional (16 mg retinyl palmitate/kg diet) from 21 to 63 days of age, the period of adolescent mammary gland development. At 73 days of age, rats were given 1-methyl-1-nitrosourea (25 mg/kg body wt i.p.) and monitored for mammary tumors. Tumors appeared earlier and more frequently in rats fed vitamin A-deficient or -supplemented diets. Vitamin A deficiency during adolescence was associated with alveolar mammary gland development and precocious milk protein expression, while supplementation was associated with ductal gland development and suppression of milk protein expression. Differences in circulating estradiol and mammary gland estrogen receptor-alpha, and estrogen-responsive progesterone receptor mRNA were not observed, suggesting that the effects of vitamin A on mammary gland development and carcinogenesis are estrogen independent. Mammary expression of another hormone receptor that regulates milk protein expression, the glucocorticoid receptor, was also unaffected. These results demonstrate that vitamin A intake during adolescence alters mammary gland differentiation and indicate that a narrow range of vitamin A intake during adolescence protects against carcinogenesis.
Collapse
Affiliation(s)
- Richard P Metz
- Center for Cancer Causation and Prevention, AMC Cancer Research Center, Lakewood, CO 80214, USA
| | | | | | | | | | | |
Collapse
|
291
|
Grimm SL, Seagroves TN, Kabotyanski EB, Hovey RC, Vonderhaar BK, Lydon JP, Miyoshi K, Hennighausen L, Ormandy CJ, Lee AV, Stull MA, Wood TL, Rosen JM. Disruption of steroid and prolactin receptor patterning in the mammary gland correlates with a block in lobuloalveolar development. Mol Endocrinol 2002; 16:2675-91. [PMID: 12456789 DOI: 10.1210/me.2002-0239] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Targeted deletion of the bZIP transcription factor, CCAAT/enhancer binding protein-beta (C/EBPbeta), was shown previously to result in aberrant ductal morphogenesis and decreased lobuloalveolar development, accompanied by an altered pattern of progesterone receptor (PR) expression. Here, similar changes in the level and pattern of prolactin receptor (PrlR) expression were observed while screening for differentially expressed genes in C/EBPbeta(null) mice. PR patterning was also altered in PrlR(null) mice, as well as in mammary tissue transplants from both PrlR(null) and signal transducer and activator of transcription (Stat) 5a/b-deficient mice, with concomitant defects in hormone-induced proliferation. Down-regulation of PR and activation of Stat5 phosphorylation were seen after estrogen and progesterone treatment in both C/EBPbeta(null) and wild-type mice, indicating that these signaling pathways were functional, despite the failure of steroid hormones to induce proliferation. IGF binding protein-5, IGF-II, and insulin receptor substrate-1 all displayed altered patterns and levels of expression in C/EBPbeta(null) mice, suggestive of a change in the IGF signaling axis. In addition, small proline-rich protein (SPRR2A), a marker of epidermal differentiation, and keratin 6 were misexpressed in the mammary epithelium of C/EBPbeta(null) mice. Together, these data suggest that C/EBPbeta is a master regulator of mammary epithelial cell fate and that the correct spatial pattern of PR and PrlR expression is a critical determinant of hormone-regulated cell proliferation.
Collapse
MESH Headings
- Animals
- CCAAT-Enhancer-Binding Protein-beta/deficiency
- CCAAT-Enhancer-Binding Protein-beta/genetics
- CCAAT-Enhancer-Binding Protein-beta/physiology
- Cell Differentiation/drug effects
- Cell Division/drug effects
- Cornified Envelope Proline-Rich Proteins
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Epidermal Cells
- Epithelial Cells/cytology
- Estradiol/administration & dosage
- Female
- Gene Expression Regulation
- In Situ Hybridization
- Insulin Receptor Substrate Proteins
- Insulin-Like Growth Factor Binding Protein 5/genetics
- Insulin-Like Growth Factor II/genetics
- Mammary Glands, Animal/chemistry
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/transplantation
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Milk Proteins
- Phosphoproteins/genetics
- Phosphorylation
- Phosphotyrosine/metabolism
- Progesterone/administration & dosage
- Prolactin/pharmacology
- Protein Precursors/genetics
- RNA, Messenger/analysis
- Receptors, Progesterone/analysis
- Receptors, Progesterone/genetics
- Receptors, Progesterone/physiology
- Receptors, Prolactin/deficiency
- Receptors, Prolactin/genetics
- Receptors, Prolactin/physiology
- STAT5 Transcription Factor
- Signal Transduction
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Trans-Activators/physiology
Collapse
Affiliation(s)
- Sandra L Grimm
- Department of Molecular and Cellular Biology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Brisken C, Ayyannan A, Nguyen C, Heineman A, Reinhardt F, Tan J, Dey SK, Dotto GP, Weinberg RA, Jan T. IGF-2 is a mediator of prolactin-induced morphogenesis in the breast. Dev Cell 2002; 3:877-87. [PMID: 12479812 DOI: 10.1016/s1534-5807(02)00365-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mechanisms by which prolactin controls proliferation of mammary epithelial cells (MECs) and morphogenesis of the breast epithelium are poorly understood. We show that cyclin D1(-/-) MECs fail to proliferate in response to prolactin and identify IGF-2 as a downstream target of prolactin signaling that lies upstream of cyclin D1 transcription. Ectopic IGF-2 expression restores alveologenesis in prolactin receptor(-/-) epithelium. Alveologenesis is retarded in IGF-2-deficient MECs. IGF-2 and prolactin receptor mRNAs colocalize in the mammary epithelium. Prolactin induces IGF-2 mRNA and IGF-2 induces cyclin D1 protein in primary MECs. Thus, IGF-2 is a mediator of prolactin-induced alveologenesis; prolactin, IGF-2, and cyclin D1, all of which are overexpressed in breast cancers, are components of a developmental pathway in the mammary gland.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Carcinoma/genetics
- Carrier Proteins
- Cell Division/genetics
- Cells, Cultured
- Cyclin D1/deficiency
- Cyclin D1/genetics
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Female
- Gene Expression Regulation, Developmental/genetics
- Genes/drug effects
- Genes/genetics
- Genetic Testing
- Insulin-Like Growth Factor II/genetics
- Insulin-Like Growth Factor II/metabolism
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/embryology
- Mammary Glands, Animal/metabolism
- Membrane Glycoproteins
- Mice
- Mice, Knockout
- Oligonucleotide Array Sequence Analysis
- Progesterone/metabolism
- Progesterone/pharmacology
- Prolactin/genetics
- Prolactin/metabolism
- Prolactin/pharmacology
- RANK Ligand
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Activator of Nuclear Factor-kappa B
- Receptors, Progesterone/deficiency
- Receptors, Progesterone/genetics
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Cathrin Brisken
- Department of Surgical Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Brisken C, Socolovsky M, Lodish HF, Weinberg R. The signaling domain of the erythropoietin receptor rescues prolactin receptor-mutant mammary epithelium. Proc Natl Acad Sci U S A 2002; 99:14241-5. [PMID: 12381781 PMCID: PMC137868 DOI: 10.1073/pnas.222549599] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2002] [Indexed: 11/18/2022] Open
Abstract
The cytokine hormones prolactin and erythropoietin mediate tissue-specific developmental outcomes by activating their cognate receptors, prolactin receptor (PrlR) and erythropoietin receptor (EpoR), respectively. The EpoR is essential for red blood cell formation, whereas a principal function of PrlR is in the development of the mammary gland during pregnancy and lactation [Ormandy, C., et al. (1997) Genes Dev. 11, 167-178]. The instructive model of differentiation proposes that such distinct, cytokine-dependent developmental outcomes are a result of cytokine receptor-unique signals that bring about induction of lineage-specific genes. This view was challenged by our finding that an exogenously expressed PrlR could rescue EpoR(-/-) erythroid progenitors and mediate their differentiation into red blood cells. Together with similar findings in other hematopoietic lineages, this suggested that cytokine receptors do not play an instructive role in hematopoietic differentiation. Here, we show that these findings are not limited to the hematopoietic system but are of more general relevance to cytokine-dependent differentiation. We demonstrate that the developmental defect of PrlR(-/-) mammary epithelium is rescued by an exogenously expressed chimeric receptor (prl-EpoR) containing the PrlR extracellular domain joined to the EpoR transmembrane and intracellular domains. Like the wild-type PrlR, the prl-EpoR rescued alveologenesis and milk secretion in PrlR(-/-) mammary epithelium. These results suggest that, in cell types as unrelated as erythrocytes and mammary epithelial cells, cytokine receptors employ similar, generic signals that permit the expression of predetermined, tissue-specific differentiation programs.
Collapse
Affiliation(s)
- Cathrin Brisken
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
294
|
Gallagher RCJ, Hay T, Meniel V, Naughton C, Anderson TJ, Shibata H, Ito M, Clevers H, Noda T, Sansom OJ, Mason JO, Clarke AR. Inactivation of Apc perturbs mammary development, but only directly results in acanthoma in the context of Tcf-1 deficiency. Oncogene 2002; 21:6446-57. [PMID: 12226748 DOI: 10.1038/sj.onc.1205892] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2002] [Revised: 07/17/2002] [Accepted: 07/18/2002] [Indexed: 11/09/2022]
Abstract
Apc (adenomatous polyposis coli) encodes a tumour suppressor gene that is mutated in the majority of colorectal cancers. Recent evidence has also implicated Apc mutations in the aetiology of breast tumours. Apc is a component of the canonical Wnt signal transduction pathway, of which one target is Tcf-1. In the mouse, mutations of both Apc and Tcf-1 have been implicated in mammary tumorigenesis. We have conditionally inactivated Apc in both the presence and absence of Tcf-1 to examine the function of these genes in both normal and neoplastic development. Mice harbouring mammary-specific mutations in Apc show markedly delayed development of the mammary ductal network. During lactation, the mice develop multiple metaplastic growths which, surprisingly, do not spontaneously progress to neoplasia up to a year following their induction. However, additional deficiency of Tcf-1 completely blocks normal mammary development and results in acanthoma.
Collapse
Affiliation(s)
- Ronald C J Gallagher
- Department of Biomedical Sciences, University of Edinburgh, Medical School, Teviot Place, Edinburgh EH8 9AG, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Ahola TM, Manninen T, Alkio N, Ylikomi T. G protein-coupled receptor 30 is critical for a progestin-induced growth inhibition in MCF-7 breast cancer cells. Endocrinology 2002; 143:3376-84. [PMID: 12193550 DOI: 10.1210/en.2001-211445] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The issue of how progesterone affects mammary gland growth is controversial, and the mechanism governing the effects of the hormone remains mostly unknown. We have previously shown that G protein-coupled receptor 30 (GPR30) is a progestin target gene whose expression correlates with progestin-induced growth inhibition in breast cancer cells. In this study, we investigate the role of GPR30 in regulating cell proliferation and mediating progestin-induced growth inhibition. When progestin failed to inhibit the growth of MCF-7 cells and instead stimulated growth, GPR30 was down-regulated. In this way, the inhibitory or stimulatory affects that progestin has on proliferation correlated with the level of expression of GPR30. Transient expression of GPR30 resulted in a marked inhibition of cell proliferation independent of estrogen treatment. GPR30 antisense was used to evaluate the role of GPR30 expression in progestin-induced growth inhibition. A diminished GPR30 mRNA expression by the antisense stimulated growth. Interestingly, GPR30 antisense abrogated the growth inhibitory effect of progestin and progesterone. Indeed, progestin induced 1) a reduction in cell proliferation, 2) G1-phase arrest, and 3) down-regulation of cyclin D1 was diminished. These data suggest that the orphan receptor, GPR30, is important for the inhibitory effect of progestin on growth.
Collapse
Affiliation(s)
- Tytti M Ahola
- Department of Cell Biology, Medical School, 33014 University of Tampere, Finland.
| | | | | | | |
Collapse
|
296
|
Naylor MJ, Ormandy CJ. Mouse strain-specific patterns of mammary epithelial ductal side branching are elicited by stromal factors. Dev Dyn 2002; 225:100-5. [PMID: 12203726 DOI: 10.1002/dvdy.10133] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Variations in mammary ductal side branching patterns are known to occur between different strains of mice and this is related to the rate of spontaneous mammary cancers, which are increased in those strains which show highly side-branched mammary architecture. The cause of the variation in ductal side branching between mouse strains is unknown, but epithelial, stromal, and endocrine factors have been implicated. To define the mammary elements responsible for controlling strain-specific ductal side branching patterns, we formed recombined mammary glands from epithelial and stroma elements taken from highly side-branched 129 and poorly side-branched C57BL/6J mammary glands and transplanted them to Rag1(-/-) hosts on the inbred C57BL/6J background. When 129 epithelium was recombined with C57BL/6J stroma the poorly side-branched C57BL/6J pattern was observed. C57BL/6J epithelium recombined with 129 stroma resulted in development of the highly side- branched pattern, as did 129 epithelium recombined with 129 stroma. All transplants used the same C57BL/6J endocrine background, demonstrating that strain differences in the mammary stroma are responsible for the strain-specific ductal side branching patterns and that strain differences in epithelium or endocrine background play no part. Genes currently known to influence side branching by means of the stroma include activin/inhibin, epidermal growth factor receptor (EGFR), Wnt-2, Wnt-5a, and Wnt-6. Of these, Wnt-5a mRNA expression was decreased in 129 mammary glands compared with C57BL/6J mammary glands, but in F2 129:C57BL/6J animals Wnt-5a mRNA expression level did not correlate with the highly variable side branching patterns observed. These experiments exclude variation in the expression level of known candidate genes as the mechanism responsible. Regardless of underlying mechanism, transplantation without regard to the genetic background of the stromal donor, whether inbred or mixed, will compromise experiments with side branching and associated gene expression endpoints.
Collapse
Affiliation(s)
- Matthew J Naylor
- Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| | | |
Collapse
|
297
|
Kingsley-Kallesen M, Mukhopadhyay SS, Wyszomierski SL, Schanler S, Schütz G, Rosen JM. The mineralocorticoid receptor may compensate for the loss of the glucocorticoid receptor at specific stages of mammary gland development. Mol Endocrinol 2002; 16:2008-18. [PMID: 12198239 DOI: 10.1210/me.2002-0103] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To study the role of glucocorticoid receptor (GR) at different stages of mammary gland development, mammary anlage were rescued from GR-/- mice by transplantation into the cleared fat pad of wild-type mice. In virgin mice, GR-/- outgrowths displayed abnormal ductal morphogenesis characterized by distended lumena, multiple layers of luminal epithelial cells in some regions along the ducts, and increased periductal stroma. In contrast, the loss of GR did not result in overt phenotypic changes in mammary gland development during pregnancy, lactation, and involution. Surprisingly, despite the known synergism between glucocorticoids and prolactin in the regulation of milk protein gene expression, whey acidic protein and beta-casein mRNA levels were unaffected in GR-/- transplants as compared with wild-type transplants. That mineralocorticoid receptor (MR) might compensate for the loss of GR was suggested by the detection of MR in the mammary gland at d 1 of lactation. This hypothesis was tested using explant cultures derived from the GR-/- transplants in which the mineralocorticoid fludrocortisone was able to synergistically induce beta-casein gene expression in the presence of prolactin and insulin. These studies suggest that MR may compensate for the absence of GR at some, but not at all stages of mammary gland development.
Collapse
Affiliation(s)
- Michelle Kingsley-Kallesen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA
| | | | | | | | | | | |
Collapse
|
298
|
Conneely OM, Jericevic BM. Progesterone regulation of reproductive function through functionally distinct progesterone receptor isoforms. Rev Endocr Metab Disord 2002; 3:201-9. [PMID: 12215715 DOI: 10.1023/a:1020020308980] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Orla M Conneely
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | | |
Collapse
|
299
|
Clarke R, Howell A, Anderson E. Control of Proliferation in the Normal and Neoplastic Breast. Breast Cancer 2002. [DOI: 10.1201/b14039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
300
|
Capuco AV, Ellis S, Wood DL, Akers RM, Garrett W. Postnatal mammary ductal growth: three-dimensional imaging of cell proliferation, effects of estrogen treatment, and expression of steroid receptors in prepubertal calves. Tissue Cell 2002; 34:143-54. [PMID: 12182807 DOI: 10.1016/s0040-8166(02)00024-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cows may provide insights into mammary development that are not easily obtained using mouse models. Mammary growth in control and estrogen-treated calves was investigated to evaluate general patterns of proliferation and relationship to estrogen receptor (ER) expression. After in vivo labeling with bromodeoxyuridine (BrdU), serial histological sections of mammary tissue were used to generate three-dimensional reconstructions. BrdU-labeled cells were present throughout the highly branched terminal ducts. ER and progesterone receptors (PR) were colocalized in nuclei of ductal epithelial cells. However, basal cells and epithelial cells that were located in the central region of epithelial cords and those that lined the lumen of patent ducts were ER- and PR-negative, as were stromal cells. Cells along the basal portion of the epithelium were not myoepithelial. ER in mammary epithelial cells but not stromal cells is analogous to patterns in human breast but contrasts with localization in murine mammary gland. After estrogen stimulation, 99% of BrdU-labeled (and Ki67-labeled) epithelial cells were ER-negative. Data suggest that proliferation in response to estrogen treatment was initiated within ER-positive epithelial cells of the developing mammary gland and the signal was propagated in paracrine fashion to stromal elements and ER-negative epithelial cells.
Collapse
Affiliation(s)
- A V Capuco
- Gene Evaluation and Mapping Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | | | | | | | | |
Collapse
|