251
|
Haslam SM, Julien S, Burchell JM, Monk CR, Ceroni A, Garden OA, Dell A. Characterizing the glycome of the mammalian immune system. Immunol Cell Biol 2008; 86:564-73. [PMID: 18725885 DOI: 10.1038/icb.2008.54] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The outermost layer of all immune cells, the glycocalyx, is composed of a complex mixture of glycoproteins, glycolipids and lectins, which specifically recognize particular glycan epitopes. As the glycocalyx is the cell's primary interface with the external environment many biologically significant events can be attributed to glycan recognition. For this reason the rapidly expanding glycomics field is being increasingly recognized as an important component in our quest to better understand the functioning of the immune system. In this review, we highlight the current status of immune cell glycomics, with particular attention being paid to T- and B-lymphocytes and dendritic cells. We also describe the strategies and methodologies used to define immune cell glycomes.
Collapse
Affiliation(s)
- Stuart M Haslam
- Division of Molecular Biosciences, Imperial College London, and Breast Cancer Biology Group, Guy's Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
252
|
Gurer C, Strowig T, Brilot F, Pack M, Trumpfheller C, Arrey F, Park CG, Steinman RM, Münz C. Targeting the nuclear antigen 1 of Epstein-Barr virus to the human endocytic receptor DEC-205 stimulates protective T-cell responses. Blood 2008; 112:1231-9. [PMID: 18519810 PMCID: PMC2515117 DOI: 10.1182/blood-2008-03-148072] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 05/03/2008] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) express many endocytic receptors that deliver antigens for major histocompatibility class (MHC) I and II presentation to CD8(+) and CD4(+) T cells, respectively. Here, we show that targeting Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) to one of them, the human multilectin DEC-205 receptor, in the presence of the DC maturation stimulus poly(I:C), expanded EBNA1-specific CD4(+) and CD8(+) memory T cells, and these lymphocytes could control the outgrowth of autologous EBV-infected B cells in vitro. In addition, using a novel mouse model with reconstituted human immune system components, we demonstrated that vaccination with alphaDEC-205-EBNA1 antibodies primed EBNA1-specific IFN-gamma-secreting T cells and also induced anti-EBNA1 antibodies in a subset of immunized mice. Because EBNA1 is the one EBV antigen that is expressed in all proliferating cells infected with this virus, our data suggest that DEC-205 targeting should be explored as a vaccination approach against symptomatic primary EBV infection and against EBV-associated malignancies.
Collapse
Affiliation(s)
- Cagan Gurer
- Laboratory of Viral Immunobiology, Christopher H Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Vliet SJ, García‐Vallejo JJ, Kooyk Y. Dendritic cells and C‐type lectin receptors: coupling innate to adaptive immune responses. Immunol Cell Biol 2008; 86:580-7. [DOI: 10.1038/icb.2008.55] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sandra J Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical CenterAmsterdamThe Netherlands
| | - Juan J García‐Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical CenterAmsterdamThe Netherlands
| | - Yvette Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
254
|
Khoo US, Chan KYK, Chan VSF, Lin CLS. DC-SIGN and L-SIGN: the SIGNs for infection. J Mol Med (Berl) 2008; 86:861-74. [PMID: 18458800 PMCID: PMC7079906 DOI: 10.1007/s00109-008-0350-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 03/01/2008] [Accepted: 03/05/2008] [Indexed: 12/16/2022]
Abstract
Two closely related trans-membrane C-type lectins dendritic cell-specific intracellular adhesion molecules (ICAM)-3 grabbing non-integrin (DC-SIGN or CD209) and liver/lymph node-specific ICAM-3 grabbing non-integrin (L-SIGN also known as DC-SIGNR, CD209L or CLEC4M) directly recognize a wide range of micro-organisms of major impact on public health. Both genes have long been considered to share similar overall structure and ligand-binding characteristics. This review presents more recent biochemical and structural studies, which show that they have distinct ligand-binding properties and different physiological functions. Of importance in both these genes is the presence of an extra-cellular domain consisting of an extended neck region encoded by tandem repeats that support the carbohydrate-recognition domain, which plays a crucial role in influencing the pathogen-binding properties of these receptors. The notable difference between these two genes is in this extra-cellular domain. Whilst the tandem-neck-repeat region remains relatively constant size for DC-SIGN, there is considerable polymorphism for L-SIGN. Homo-oligomerization of the neck region of L-SIGN has been shown to be important for high-affinity ligand binding, and heterozygous expression of the polymorphic variants of L-SIGN in which neck lengths differ could thus affect ligand-binding affinity. Functional studies on the effect of this tandem-neck-repeat region on pathogen-binding, as well as genetic association studies for various infectious diseases and among different populations, are discussed. Worldwide demographic data of the tandem-neck-repeat region showing distinct differences in the neck-region allele and genotype distribution among different ethnic groups are presented. These findings support the neck region as an excellent candidate acting as a functional target for selective pressures exerted by pathogens.
Collapse
Affiliation(s)
- Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, University Pathology Building, Hong Kong, SAR, China.
| | | | | | | |
Collapse
|
255
|
Sancho D, Mourão-Sá D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, Carlyle JR, Reis e Sousa C. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest 2008; 118:2098-110. [PMID: 18497879 DOI: 10.1172/jci34584] [Citation(s) in RCA: 422] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 04/16/2008] [Indexed: 01/07/2023] Open
Abstract
The mouse CD8alpha+ DC subset excels at cross-presentation of antigen, which can elicit robust CTL responses. A receptor allowing specific antigen targeting to this subset and its equivalent in humans would therefore be useful for the induction of antitumor CTLs. Here, we have characterized a C-type lectin of the NK cell receptor group that we named DC, NK lectin group receptor-1 (DNGR-1). DNGR-1 was found to be expressed in mice at high levels by CD8+ DCs and at low levels by plasmacytoid DCs but not by other hematopoietic cells. Human DNGR-1 was also restricted in expression to a small subset of blood DCs that bear similarities to mouse CD8alpha+ DCs. The selective expression pattern and observed endocytic activity of DNGR-1 suggested that it could be used for antigen targeting to DCs. Consistent with this notion, antigen epitopes covalently coupled to an antibody specific for mouse DNGR-1 were selectively cross-presented by CD8alpha+ DCs in vivo and, when given with adjuvants, induced potent CTL responses. When the antigens corresponded to tumor-expressed peptides, treatment with the antibody conjugate and adjuvant could prevent development or mediate eradication of B16 melanoma lung pseudometastases. We conclude that DNGR-1 is a novel, highly specific marker of mouse and human DC subsets that can be exploited for CTL cross-priming and tumor therapy.
Collapse
Affiliation(s)
- David Sancho
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
256
|
Murphy JE, Vohra RS, Dunn S, Holloway ZG, Monaco AP, Homer-Vanniasinkam S, Walker JH, Ponnambalam S. Oxidised LDL internalisation by the LOX-1 scavenger receptor is dependent on a novel cytoplasmic motif and is regulated by dynamin-2. J Cell Sci 2008; 121:2136-47. [PMID: 18544637 DOI: 10.1242/jcs.020917] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The LOX-1 scavenger receptor recognises pro-atherogenic oxidised low-density lipoprotein (OxLDL) particles and is implicated in atherosclerotic plaque formation, but this mechanism is not well understood. Here we show evidence for a novel clathrin-independent and cytosolic-signal-dependent pathway that regulates LOX-1-mediated OxLDL internalisation. Cell surface labelling in the absence or presence of OxLDL ligand showed that LOX-1 is constitutively internalised from the plasma membrane and its half-life is not altered upon ligand binding and trafficking. We show that LOX-1-mediated OxLDL uptake is disrupted by overexpression of dominant-negative dynamin-2 but unaffected by CHC17 or mu2 (AP2) depletion. Site-directed mutagenesis revealed a conserved and novel cytoplasmic tripeptide motif (DDL) that regulates LOX-1-mediated endocytosis of OxLDL. Taken together, these findings indicate that LOX-1 is internalised by a clathrin-independent and dynamin-2-dependent pathway and is thus likely to mediate OxLDL trafficking in vascular tissues.
Collapse
Affiliation(s)
- Jane E Murphy
- Endothelial Cell Biology Unit, Leeds Institute of Genetics, Health & Therapeutics, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Irache JM, Salman HH, Gamazo C, Espuelas S. Mannose-targeted systems for the delivery of therapeutics. Expert Opin Drug Deliv 2008; 5:703-24. [DOI: 10.1517/17425247.5.6.703] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
258
|
Higgins DM, Sanchez-Campillo J, Rosas-Taraco AG, Higgins JR, Lee EJ, Orme IM, Gonzalez-Juarrero M. Relative levels of M-CSF and GM-CSF influence the specific generation of macrophage populations during infection with Mycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2008; 180:4892-900. [PMID: 18354213 DOI: 10.4049/jimmunol.180.7.4892] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Members of the CSF cytokine family play important roles in macrophage recruitment and activation. However, the role of M-CSF in pulmonary infection with Mycobacterium tuberculosis is not clear. In this study, we show the lungs of mice infected with M. tuberculosis displayed a progressive decrease in M-CSF in contrast to increasing levels of GM-CSF. Restoring pulmonary M-CSF levels during infection resulted in a significant decrease in the presence of foamy macrophages and increased expression of CCR7 and MHC class II, specifically on alveolar macrophages. In response to M-CSF, alveolar macrophages also increased their T cell-stimulating capacity and expression of DEC-205. These studies show that the levels of expression of M-CSF and GM-CSF participate in the progression of macrophages into foamy cells and that these cytokines are important factors in the differentiation and regulation of expression of dendritic cell-associated markers on alveolar macrophages. In addition, these studies demonstrate that M-CSF may have a role in the adaptive immune response to infection with M. tuberculosis.
Collapse
Affiliation(s)
- David M Higgins
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | |
Collapse
|
259
|
Tacken PJ, Joosten B, Reddy A, Wu D, Eek A, Laverman P, Kretz-Rommel A, Adema GJ, Torensma R, Figdor CG. No Advantage of Cell-Penetrating Peptides over Receptor-Specific Antibodies in Targeting Antigen to Human Dendritic Cells for Cross-Presentation. THE JOURNAL OF IMMUNOLOGY 2008; 180:7687-96. [DOI: 10.4049/jimmunol.180.11.7687] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
260
|
Mahnke K, Bedke T, Enk AH. Regulatory conversation between antigen presenting cells and regulatory T cells enhance immune suppression. Cell Immunol 2008; 250:1-13. [PMID: 18313653 DOI: 10.1016/j.cellimm.2008.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 01/16/2008] [Accepted: 01/17/2008] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Treg) were originally described by their suppressive function exerted on effector T cells, but recent evidence also reveals interactions with antigen presenting cells (APCs). In general, all major subpopulations of APCs, i.e., dendritic cells (DC), B cells and monocytes/macrophages (Mvarphi), respond to exposure to Treg by down regulation of their antigen presenting function, upregulation of immunosuppressive molecules and secretion of immunosuppressive cytokines. Thus, Treg gain influence on the innate immune system and are able to augment their immunosuppressive capacities by blocking the effective priming of T effector cells by APCs. Conversely, APCs have an important role in nurturing peripheral Treg populations, since it has been shown that immature DC, as well as alternatively activated Mvarphi, are able to induce Treg de novo. These properties are dependent on the expression of surface molecules (CTLA-4, F4/80) and the production of soluble factors such as IL-10 and Indoleamine 2,3-dioxygenase by the APC subpopulations. On the whole, the mutual interaction of Treg and APCs enables Treg to sustain their immunosuppressive functions which, in healthy individuals, may be crucial for the maintenance of peripheral tolerance.
Collapse
Affiliation(s)
- Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Vosstrasse 11, D-69115 Heidelberg, Germany.
| | | | | |
Collapse
|
261
|
Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol 2008; 20:89-95. [DOI: 10.1016/j.coi.2007.12.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 12/06/2007] [Indexed: 12/30/2022]
|
262
|
Adams EW, Ratner DM, Seeberger PH, Hacohen N. Carbohydrate-mediated targeting of antigen to dendritic cells leads to enhanced presentation of antigen to T cells. Chembiochem 2008; 9:294-303. [PMID: 18186095 PMCID: PMC2700842 DOI: 10.1002/cbic.200700310] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Indexed: 01/10/2023]
Abstract
The unique therapeutic value of dendritic cells (DCs) for the treatment of allergy, autoimmunity and transplant rejection is predicated upon our ability to selectively deliver antigens, drugs or nucleic acids to DCs in vivo. Here we describe a method for delivering whole protein antigens to DCs based on carbohydrate-mediated targeting of DC-expressed lectins. A series of synthetic carbohydrates was chemically-coupled to a model antigen, ovalbumin (OVA), and each conjugate was evaluated for its ability to increase the efficiency of antigen presentation by murine DCs to OVA-specific T cells (CD4(+) and CD8(+)). In vitro data are presented that demonstrate that carbohydrate modification of OVA leads to a 50-fold enhancement of presentation of antigenic peptide to CD4(+) T cells. A tenfold enhancement is observed for CD8(+) T cells; this indicates that the targeted lectin(s) can mediate cross-presentation of antigens on MHC class I. Our data indicate that the observed enhancements in antigen presentation are unique to OVA that is conjugated to complex oligosaccharides, such as a high-mannose nonasaccharide, but not to monosaccharides. Taken together, our data suggest that a DC targeting strategy that is based upon carbohydrate-lectin interactions is a promising approach for enhancing antigen presentation via class I and class II molecules.
Collapse
Affiliation(s)
- Eddie W Adams
- Center for Immunology and Inflammatory Diseases and Division of Rheumatology, Allergy and Immununology, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
263
|
Abstract
The impetus for the discovery of dendritic cells in 1972 was to understand immunogenicity, the capacity of an antigenic substance to provoke immunity. During experiments to characterize "accessory" cells that enhanced immunity, we spotted unusual stellate cells in mouse spleen. They had a distinct capacity to form and retract processes or dendrites and were named dendritic cells (DC). DC proved to be different from other cell types and to be peculiarly immunogenic when loaded with antigens. When Langerhans cells were studied, immunogenicity was found to involve two steps: antigen presentation by immature DC and maturation to elicit immunity. Antigen-bearing DC were also immunogenic in vivo and were therefore termed "nature's adjuvants". Several labs then learned to generate large numbers of DC from progenitors, which accelerated DC research. Tolerogenicity via DC, including the control of foxp3(+) suppressor T cells, was recently discovered. Two areas of current research that I find intriguing are to identify mechanisms for antigen uptake and processing, and for the control of different types of immunity and tolerance. These subjects should be studied in vivo with clinically relevant antigens, so that the activities of DC can be better integrated into the prevention and treatment of disease in patients.
Collapse
Affiliation(s)
- Ralph M Steinman
- The Rockefeller University and Chris Browne Center for Immunology and Immune Disease, New York, NY 10021-6399, USA.
| |
Collapse
|
264
|
Pereira CF, Torensma R, Hebeda K, Kretz-Rommel A, Faas SJ, Figdor CG, Adema GJ. In vivo targeting of DC-SIGN-positive antigen-presenting cells in a nonhuman primate model. J Immunother 2007; 30:705-14. [PMID: 17893563 DOI: 10.1097/cji.0b013e31812e6256] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In vivo targeting of antigen-presenting cells (APCs) with antigens coupled to antibodies directed against APC-specific endocytic receptors is a simple and a promising approach to induce or modulate immune responses against those antigens. In a recent in vitro study, we have shown that targeting of APCs with an antigen coupled to an antibody directed against the endocytic receptor DC-SIGN effectively induces a specific immune response against that antigen. The aim of the present study was to determine the ability of the murine antihuman DC-SIGN antibody AZN-D1 to target APCs in a cynomolgus macaque model after its administration in vivo. Immunohistochemical analysis demonstrated that macaques injected intravenously with AZN-D1 have AZN-D1-targeted APCs in all lymph nodes (LNs) tested and in the liver. DC-SIGN-positive cells were mainly located in the medullary sinuses of the LNs and in the hepatic sinusoids in the liver. No unlabeled DC-SIGN molecules were found in the LN of AZN-D1-injected macaques. Morphologic criteria and staining of sequential LN sections with a panel of antibodies indicated that the DC-SIGN-targeted cells belong to the myeloid lineage of APCs. In conclusion, this is the first study that shows specific targeting of APCs in vivo by using antibodies directed against DC-SIGN.
Collapse
Affiliation(s)
- Cândida F Pereira
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
265
|
Röck J, Schneider E, Grün J, Grützkau A, Küppers R, Schmitz J, Winkels G. CD303 (BDCA-2) signals in plasmacytoid dendritic cellsvia a BCR-like signalosome involving Syk, Slp65 and PLCγ2. Eur J Immunol 2007; 37:3564-75. [DOI: 10.1002/eji.200737711] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
266
|
Tacken PJ, de Vries IJM, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 2007; 7:790-802. [PMID: 17853902 DOI: 10.1038/nri2173] [Citation(s) in RCA: 590] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The realization that dendritic cells (DCs) orchestrate innate and adaptive immune responses has stimulated research on harnessing DCs to create more effective vaccines. Early clinical trials exploring autologous DCs that were loaded with antigens ex vivo to induce T-cell responses have provided proof of principle. Here, we discuss how direct targeting of antigens to DC surface receptors in vivo might replace laborious and expensive ex vivo culturing, and facilitate large-scale application of DC-based vaccination therapies.
Collapse
Affiliation(s)
- Paul J Tacken
- Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Tumour Immunology, Postbox 9101, Nijmegen, 6500HB, Netherlands
| | | | | | | |
Collapse
|
267
|
Kato M, Khan S, d’Aniello E, McDonald KJ, Hart DNJ. The Novel Endocytic and Phagocytic C-Type Lectin Receptor DCL-1/CD302 on Macrophages Is Colocalized with F-Actin, Suggesting a Role in Cell Adhesion and Migration. THE JOURNAL OF IMMUNOLOGY 2007; 179:6052-63. [DOI: 10.4049/jimmunol.179.9.6052] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
268
|
Ohteki T. The dynamics of dendritic cell: mediated innate immune regulation. Allergol Int 2007; 56:209-14. [PMID: 17646738 DOI: 10.2332/allergolint.r-07-148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Indexed: 12/29/2022] Open
Abstract
After taking up pathogen-derived antigens, dendritic cells (DCs) leave peripheral organs and migrate into sentinel lymph nodes via afferent lymphatic vessels. During this process, they undergo maturation and produce proinflammatory cytokines, which leads to efficient antigen (Ag) presentation and activation of the innate and acquired immune systems. Recent evidence indicates that DC subsets cooperate to activate the innate immune system. It is becoming clear that the total DC population is composed of a network of DC subsets with distinct functions that are critical for sensing pathogens and orchestrating immune responses.
Collapse
Affiliation(s)
- Toshiaki Ohteki
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan.
| |
Collapse
|
269
|
Mellman I. Private Lives: Reflections and Challenges in Understanding the Cell Biology of the Immune System. Science 2007; 317:625-7. [PMID: 17673653 DOI: 10.1126/science.1142955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The immune system comprises a variety of cell types whose activities must be carefully regulated to act as a coherent unit for the purpose of host defense. To perform their autonomous functions, immune cells must rely on the same basic organizational features that apply to all cells, although immune cells often exhibit remarkable degrees of specialization and adaptation. The study of these specializations has lagged behind advances in understanding the immune response and cell biology individually. As a result, there are great opportunities, but also great challenges, for new conceptual discoveries by taking a more cell-biological approach to probing the function of the immune system.
Collapse
Affiliation(s)
- Ira Mellman
- Department of Research Oncology, Genentech, 1 DNA Way, Mail Stop 212, South San Francisco, CA 94080-4990, USA.
| |
Collapse
|
270
|
van Vliet SJ, Aarnoudse CA, Broks-van den Berg VCM, Boks M, Geijtenbeek TBH, van Kooyk Y. MGL-mediated internalization and antigen presentation by dendritic cells: A role for tyrosine-5. Eur J Immunol 2007; 37:2075-81. [PMID: 17616966 DOI: 10.1002/eji.200636838] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Professional antigen-presenting cells are essential for the initiation of adaptive immune responses; however, they also play a vital role in the maintenance of tolerance towards self-antigens. C-type lectins can function as antigen receptors by capturing carbohydrate ligands for processing and presentation. Here, we focused on the dendritic cell (DC)-expressed macrophage galactose-type lectin (MGL), a C-type lectin with a unique specificity for terminal GalNAc residues, such as the tumor-associated Tn antigen. Soluble model antigens are efficiently internalized by MGL and subsequently presented to responder CD4+ T cells. The tyrosine-5 residue in the YENF motif, present in the MGL cytoplasmic domain, was essential for the MGL-mediated endocytosis in CHO cells. In conclusion, MGL contributes to the antigen processing and presentation capacities of DC and may provide a suitable target for the initiation of anti-tumor immune responses.
Collapse
Affiliation(s)
- Sandra J van Vliet
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
271
|
Abstract
The specificity and high affinity binding of antibodies provides these molecules with ideal properties for delivering a payload to target cells. This concept has been commercialized for cancer therapies using toxin- or radionucleotide-conjugated antibodies that are designed to selectively deliver cytotoxic molecules to cancer cells. Exploiting the same effective characteristics of antibodies, antibody-targeted vaccines (ATV) are designed to deliver disease-specific antigens to professional antigen-presenting cells (APCs), thus enabling the host's immune system to recognize and eliminate malignant or infected cells through adaptive immunity. The concept of ATVs has been in development for many years, and recently has entered clinical trials. Early studies with ATVs focused on the ability to induce humoral immunity in the absence of adjuvants. More recently, ATVs targeted to C-type lectin receptors have been exploited for induction of potent helper and cytolytic T-cell responses. To maximize their stimulatory capacity, the ATVs are being evaluated with a variety of adjuvants or other immunostimulatory agents. In the absence of co-administered immunostimulatory signals, APC-targeting can induce antigen-specific tolerance and, thus, may also be exploited in developing specific treatments for autoimmune and allergic diseases, or for preventing transplant rejection. The successful clinical application of this new class of antibody-based products will clearly depend on using appropriate combinations with other strategies that influence the immune system.
Collapse
Affiliation(s)
- T Keler
- Celldex Therapeutics Inc, Phillipsburg, NJ 08865, USA.
| | | | | | | |
Collapse
|
272
|
de Bakker BI, de Lange F, Cambi A, Korterik JP, van Dijk EMHP, van Hulst NF, Figdor CG, Garcia-Parajo MF. Nanoscale Organization of the Pathogen Receptor DC-SIGN Mapped by Single-Molecule High-Resolution Fluorescence Microscopy. Chemphyschem 2007; 8:1473-80. [PMID: 17577901 DOI: 10.1002/cphc.200700169] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
DC-SIGN, a C-type lectin exclusively expressed on dendritic cells (DCs), plays an important role in pathogen recognition by binding with high affinity to a large variety of microorganisms. Recent experimental evidence points to a direct relation between the function of DC-SIGN as a viral receptor and its spatial arrangement on the plasma membrane. We have investigated the nanoscale organization of fluorescently labeled DC-SIGN on intact isolated DCs by means of near-field scanning optical microscopy (NSOM) combined with single-molecule detection. Fluorescence spots of different intensity and size have been directly visualized by optical means with a spatial resolution of less than 100 nm. Intensity- and size-distribution histograms of the DC-SIGN fluorescent spots confirm that approximately 80 % of the receptors are organized in nanosized domains randomly distributed on the cell membrane. Intensity-size correlation analysis revealed remarkable heterogeneity in the molecular packing density of the domains. Furthermore, we have mapped the intermolecular organization within a dense cluster by means of sequential NSOM imaging combined with discrete single-molecule photobleaching. In this way we have determined the spatial coordinates of 13 different individual dyes, with a localization accuracy of 6 nm. Our experimental observations are all consistent with an arrangement of DC-SIGN designed to maximize its chances of binding to a wide range of microorganisms. Our data also illustrate the potential of NSOM as an ultrasensitive, high-resolution technique to probe nanometer-scale organization of molecules on the cell membrane.
Collapse
Affiliation(s)
- Bärbel I de Bakker
- Applied Optics Group, Faculty of Science & Technology, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
273
|
Lange C, Dürr M, Doster H, Melms A, Bischof F. Dendritic cell-regulatory T-cell interactions control self-directed immunity. Immunol Cell Biol 2007; 85:575-81. [PMID: 17592494 DOI: 10.1038/sj.icb.7100088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In addition to their immunostimulatory capacity, dendritic cells (DCs) play a crucial role in central and peripheral tolerance mechanisms. In the absence of an infection, immature DCs constantly take up, process and present self-antigens to specific T cells, which leads to the induction of T-cell anergy or deletion. In recent years, several additional mechanisms have been identified by which DCs constantly downregulate immune responses to maintain immunological tolerance. Among these are the complex interactions between several DC subtypes and different types of regulatory T cells. In this review, we summarize recent key findings and concepts in this field.
Collapse
Affiliation(s)
- Christian Lange
- Department of General Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Strasse 3, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
274
|
He LZ, Crocker A, Lee J, Mendoza-Ramirez J, Wang XT, Vitale LA, O'Neill T, Petromilli C, Zhang HF, Lopez J, Rohrer D, Keler T, Clynes R. Antigenic targeting of the human mannose receptor induces tumor immunity. THE JOURNAL OF IMMUNOLOGY 2007; 178:6259-67. [PMID: 17475854 DOI: 10.4049/jimmunol.178.10.6259] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pattern recognition receptors are preferentially expressed on APCs allowing selective uptake of pathogens for the initiation of antimicrobial immunity. In particular, C-type lectin receptors, including the mannose receptor (MR), facilitate APC-mediated adsorptive endocytosis of microbial glyconjugates. We have investigated the potential of antigenic targeting to the MR as a means to induce Ag-specific humoral and cellular immunity. hMR transgenic (hMR Tg) mice were generated to allow specific targeting with the anti-hMR Ab, B11. We show that hMR targeting induced both humoral and cellular antigenic specific immunity. Immunization of hMR Tg mice with B11 mAbs induced potent humoral responses independent of adjuvant. Injection of hMR Tg mice with mouse anti-hMR Ab clone 19.2 elicited anti-Id-specific humoral immunity while non-Tg mice were unresponsive. B11-OVA fusion proteins (B11-OVA) were efficiently presented to OVA-specific CD4 and CD8 T cells in MR Tg, but not in non-Tg, mice. Effector differentiation of responding T cells in MR Tg mice was significantly enhanced with concomitant immunization with the TLR agonist, CpG. Administration of both CpG and B11-OVA to hMR Tg mice induced OVA-specific tumor immunity while WT mice remained unprotected. These studies support the clinical development of immunotherapeutic approaches in cancer using pattern recognition receptor targeting systems for the selective delivery of tumor Ags to APCs.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antibodies, Neoplasm/biosynthesis
- Antigens/immunology
- Antigens/metabolism
- Cross-Priming/genetics
- Cross-Priming/immunology
- Humans
- Immunoglobulin G/biosynthesis
- Insulin-Like Growth Factor II/metabolism
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mannose Receptor
- Mannose-Binding Lectins/biosynthesis
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/immunology
- Mannose-Binding Lectins/metabolism
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- Li-Zhen He
- Celldex Therapeutics, Bloomsbury, NJ 08804, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Wintermeyer P, Wands JR. Vaccines to prevent chronic hepatitis C virus infection: current experimental and preclinical developments. J Gastroenterol 2007; 42:424-32. [PMID: 17671756 DOI: 10.1007/s00535-007-2057-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/07/2007] [Indexed: 02/04/2023]
Affiliation(s)
- Philip Wintermeyer
- The Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | |
Collapse
|
276
|
Burgdorf S, Kautz A, Böhnert V, Knolle PA, Kurts C. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science 2007; 316:612-6. [PMID: 17463291 DOI: 10.1126/science.1137971] [Citation(s) in RCA: 490] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mechanisms that allow antigen-presenting cells (APCs) to selectively present extracellular antigen to CD8+ effector T cells (cross-presentation) or to CD4+ T helper cells are not fully resolved. We demonstrated that APCs use distinct endocytosis mechanisms to simultaneously introduce soluble antigen into separate intracellular compartments, which were dedicated to presentation to CD8+ or CD4+ T cells. Specifically, the mannose receptor supplied an early endosomal compartment distinct from lysosomes, which was committed to cross-presentation. These findings imply that antigen does not require intracellular diversion to access the cross-presentation pathway, because it can enter the pathway already during endocytosis.
Collapse
Affiliation(s)
- Sven Burgdorf
- Institute of Molecular Medicine and Experimental Immunology, Friedrich-Wilhelms-Universität, Bonn, Germany.
| | | | | | | | | |
Collapse
|
277
|
Badiee A, Davies N, McDonald K, Radford K, Michiue H, Hart D, Kato M. Enhanced delivery of immunoliposomes to human dendritic cells by targeting the multilectin receptor DEC-205. Vaccine 2007; 25:4757-66. [PMID: 17512099 DOI: 10.1016/j.vaccine.2007.04.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/29/2007] [Accepted: 04/09/2007] [Indexed: 11/18/2022]
Abstract
Dendritic cells (DC) are specialized white blood cells that initiate and direct immune responses. Targeting DC surface proteins to deliver liposomes carrying antigens has demonstrated potential for eliciting antigen-specific immune responses. To evaluate this strategy in preclinical studies, we prepared anti-human DEC-205 immunoliposomes (anti-hDEC-205 iLPSM) and compared their uptake by monocyte-derived DC (MoDC) and blood DC (BDC) with conventional liposomes (cLPSM). Antibody conjugation increased the number of immature MoDC taking up liposomes to 70-80%, regardless of the antibody coupled, whereas less than 20% endocytosed cLPSM. Anti-hDEC-205-IgG specifically increased cell uptake by 15% and the total iLPSM uptake six-fold. The non-specific iLPSM uptake was unlikely to be Fc receptor-mediated as excess immunoglobulins failed to block the uptake. Only a small population (7-24%) of mature MoDC took up cLPSM and control iLPSM. In contrast, approximately 70% of mature MoDC took up anti-hDEC-205 iLPSM, endocytosing 10-fold more iLPSM than the control iLPSM. Anti-hDEC-205 iLPSM uptake by CD1c+ BDC was similar to the immature MoDC, but was five-fold increased compared to the control iLPSM. Confocal microscopy confirmed that the anti-hDEC-205 iLPSM were phagocytosed by DC and available for antigen processing. Thus, DEC-205 is an effective target for delivering liposomes to human DC.
Collapse
Affiliation(s)
- Ali Badiee
- School of Pharmacy, University of Queensland, St. Lucia, Qld 4172, Australia
| | | | | | | | | | | | | |
Collapse
|
278
|
Mahnke K, Johnson TS, Ring S, Enk AH. Tolerogenic dendritic cells and regulatory T cells: a two-way relationship. J Dermatol Sci 2007; 46:159-67. [PMID: 17428639 DOI: 10.1016/j.jdermsci.2007.03.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 03/05/2007] [Indexed: 12/27/2022]
Abstract
At first glance, dendritic cells (DCs) and regulatory T cells (Tregs) do not have much in common. DCs are characterized by their unsurpassed T cell stimulatory capacity, whereas Tregs are marked by the ability to suppress proliferation of effector T cells. However, only mature/activated DCs stimulate T cell proliferation, whereas immature DCs induce Tregs. This provides a means by which peripheral tolerance is maintained: in the absence of inflammation and disease, DCs encounter apoptotic cells and "self" detritus in peripheral tissues. Thus, DCs constantly sample the peripheral environment and, accordingly, the presentation of "self" by these steady state DCs results in induction of suppressive Tregs. Vice versa, Tregs are able to affect DC development, preventing maturation and inducing IL-10, as well as immunosuppressive molecules of the B7-H family, in DCs. Therefore, these novel findings establish a mutual interaction between DCs and Tregs for the upkeep of immunosuppression: immature DCs induce Tregs and inversely Tregs prepare DCs to become immunosuppressive, thereby extending the immunosuppressive function of Tregs. The possible means of cellular interactions as well as the consequences for tolerance and immunity are discussed in this review.
Collapse
Affiliation(s)
- Karsten Mahnke
- University Hospital Heidelberg, Department of Dermatology, Vossstrasse 3, D-69115 Heidelberg, Germany
| | | | | | | |
Collapse
|
279
|
McKenzie EJ, Taylor PR, Stillion RJ, Lucas AD, Harris J, Gordon S, Martinez-Pomares L. Mannose Receptor Expression and Function Define a New Population of Murine Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:4975-83. [PMID: 17404279 DOI: 10.4049/jimmunol.178.8.4975] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In vitro the mannose receptor (MR) mediates Ag internalization by dendritic cells (DC) and favors the presentation of mannosylated ligands to T cells. However, in vivo MR seems to play a role not in Ag presentation but in the homeostatic clearance of endogenous ligands, which could have the secondary benefit of reducing the levels of endogenous Ag available for presentation to the adaptive immune system. We have now observed that while MR(+) cells are consistently absent from T cell areas of spleen and mesenteric lymph nodes (LN), peripheral LN of untreated adult mice contain a minor population of MR(+)MHCII(+) in the paracortex. This novel MR(+) cell population can be readily identified by flow cytometry and express markers characteristic of DC. Furthermore, these MR(+) DC-like cells located in T cell areas can be targeted with MR ligands (anti-MR mAb). Numbers of MR(+)MHCII(+) cells in the paracortex are increased upon stimulation of the innate immune system and, accordingly, the amount of anti-MR mAb reaching MR(+)MHCII(+) cells in T cell areas is dramatically enhanced under these conditions. Our results indicate that the MR can act as an Ag-acquisition system in a DC subpopulation restricted to lymphoid organs draining the periphery. Moreover, the effect of TLR agonists on the numbers of these MR(+) DC suggests that the immunogenicity of MR ligands could be under the control of innate stimulation. In accordance with these observations, ligands highly specific for the MR elicit enhanced humoral responses in vivo only when administered in combination with endotoxin.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antigen Presentation
- Dendritic Cells/physiology
- Flow Cytometry
- Immunity, Innate
- Immunization
- Immunoglobulin G/biosynthesis
- Lectins, C-Type/analysis
- Lectins, C-Type/immunology
- Lectins, C-Type/physiology
- Lipopolysaccharides/pharmacology
- Mannose Receptor
- Mannose-Binding Lectins/analysis
- Mannose-Binding Lectins/immunology
- Mannose-Binding Lectins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Rats
- Receptors, Cell Surface/analysis
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/physiology
- Skin/cytology
Collapse
Affiliation(s)
- Emma J McKenzie
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
280
|
Abstract
Chemokines are a small group of related chemo-attractant peptides that play an essential role in the homeostatic maintenance of the immune system. They control the recruitment of cells needed for the induction and activation of innate and adaptive immune responses. However, tumors also utilize chemokines to actively progress and evade immunosurveillance. In fact, chemokines are involved directly or indirectly in almost every aspect of tumorigenesis. They mediate survival and metastatic spread of tumors, promote new blood vessel formation (neovascularization) and induce an immunosuppressive microenvironment via recruitment of immunosuppressive cells. As a result, a number of therapeutic strategies have been proposed to target almost every step of the chemokine/chemokine receptor involvement in tumors. Yet, despite occasional success stories, most of them appear to be ineffective or impractical, presumably due to 'nonspecific' harm of cells needed for the elimination of tumor escapees and maintenance of immunological memory. The strategy would only be effective if it also promoted antitumor adaptive immune responses capable of combating a residual disease and tumor relapse.
Collapse
Affiliation(s)
- Chiara Dell’Agnola
- Chiara Dell’Agnola, MD, Research Assistant, Department of Clinical and Experimental Medicine, Division of Oncology, University of Verona, Ospedale Policlinico GB Rossi, Piazzale Ludovico Scuro 10, 37134 Verona, Italy, Tel.: +39 045 812 8121 (office), +39 045 812 8502 (secretary), Fax: +39 045 802 7410,
| | - Arya Biragyn
- Arya Biragyn, PhD, Head, Principal Investigator, Immunotherapeutics Unit, Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA, Tel.: +1 410 558 8680, Fax: +1 410 558 8284,
| |
Collapse
|
281
|
Kim R, Emi M, Tanabe K, Arihiro K. Potential functional role of plasmacytoid dendritic cells in cancer immunity. Immunology 2007; 121:149-57. [PMID: 17371541 PMCID: PMC2265944 DOI: 10.1111/j.1365-2567.2007.02579.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs), as well as myeloid dendritic cells (mDCs), have a dual role not only in initiating immune responses but also in inducing tolerance to exogenous and endogenous antigens. Tumour antigens originate from endogenous self-antigens, which are poorly immunogenic and also subject to change during tumour progression. In general, tumour antigens derived from apoptotic cells are captured by immature mDCs, antigen presentation by which is most likely to result in immune tolerance. In contrast, tumour antigens may be taken up by pDCs through Toll-like receptor 9 (TLR9) via receptor-mediated endocytosis. TLR9-dependent activation of pDCs results in the secretion of pro-inflammatory cytokines such as interleukin (IL)-12 and type I interferons (IFNs) through a MyD88-dependent pathway. Type I IFNs also activate mDCs for T-cell priming. Although pDCs recruited to the tumour site are implicated in facilitating tumour growth via immune suppression, they can be released from the tumour as a result of cell death caused by primary systemic chemotherapy, and can then be activated through TLR9. Thus, synergistically with mDCs, pDCs may also play a crucial role in mediating cancer immunity. In this review, the potential functional duality and plasticity of pDCs mediated by TLR9 ligation in cancer immunity will be discussed.
Collapse
Affiliation(s)
- Ryungsa Kim
- International Radiation Information Center, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | | | | | | |
Collapse
|
282
|
Wang J, Zhang Y, Wei J, Zhang X, Zhang B, Zhu Z, Zou W, Wang Y, Mou Z, Ni B, Wu Y. Lewis X oligosaccharides targeting to DC-SIGN enhanced antigen-specific immune response. Immunology 2007; 121:174-82. [PMID: 17371544 PMCID: PMC2265933 DOI: 10.1111/j.1365-2567.2007.02554.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dendritic cell-specific intercellular-adhesion-molecule-grabbing non-integrin (DC-SIGN) is a potential target receptor for vaccination purposes. In the present study, we employed Lewis X (Le(x)) oligosaccharides, which mimic natural ligands, to target ovalbumin (OVA) to human dendritic cells (DCs) via DC-SIGN, to investigate the effect of this DC-SIGN-targeting strategy on the OVA-specific immune response. We demonstrated that Le(x) oligosaccharides could enhance the OVA-specific immune response as determined by enzyme-linked immunospot assay (ELISPOT), intracellular interferon-gamma staining and (51)Cr-release assay. An almost 300-fold lower dose of Le(x)-OVA induced balanced interferon-gamma-secreting cells compared to OVA alone. Furthermore, secretion of interleukin-10, a reported mediator of immune suppression related to DC-SIGN, was not increased by Le(x)-OVA, either alone or together with sCD40L-stimulated groups. A blocking antibody against DC-SIGN (12507) reduced the numbers of interferon-gamma-secreting cells during Le(x)-OVA stimulation, yet it did not prevent Le(x) oligosaccharides from promoting the secretion of interleukin-10 that was induced by ultra-pure lipopolysaccharide. These results suggested that the strategy of DC-SIGN targeting mediated by Le(x) oligosaccharides could promote a T-cell response. This DC-targeting may imply a novel vaccination strategy.
Collapse
Affiliation(s)
- Jingxue Wang
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| | - Yongmin Zhang
- Ecole Normale Supérieure, Département de Chimie, CNRS UMR 8642Paris, France
| | - Jing Wei
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| | - Xiaoping Zhang
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| | - Bei Zhang
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| | - Zhenyuan Zhu
- Ecole Normale Supérieure, Département de Chimie, CNRS UMR 8642Paris, France
| | - Wei Zou
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| | - Yiqin Wang
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| | - Zhirong Mou
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| | - Bin Ni
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| | - Yuzhang Wu
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| |
Collapse
|
283
|
Sabatté J, Maggini J, Nahmod K, Amaral MM, Martínez D, Salamone G, Ceballos A, Giordano M, Vermeulen M, Geffner J. Interplay of pathogens, cytokines and other stress signals in the regulation of dendritic cell function. Cytokine Growth Factor Rev 2007; 18:5-17. [PMID: 17321783 DOI: 10.1016/j.cytogfr.2007.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs) are the only antigen-presenting cell capable of activating naïve T lymphocytes, and hence they play a crucial role in the induction of adaptive immunity. Immature DCs sample and process antigens, and efficiently sense a large variety of signals from the surrounding environment. Upon activation, they become capable to activate naïve T cells and to direct the differentiation and polarization of effector T lymphocytes. It is becoming increasingly clear that different signals are able to determine distinct programs of DC differentiation and different forms of immunity and tolerance. In the past few years many advances have been made in addressing the action exerted by pathogen-associated molecular patterns (PAMPs), cytokines, chemokines, and other less characterized stress molecules on the activity of DCs. In this review we focus on the multiplicity of innate signals able to modulate the functional profile of DCs.
Collapse
Affiliation(s)
- Juan Sabatté
- Institute of Haematological Research, National Academy of Medicine and National Reference Centre for AIDS, Department of Microbiology, Buenos Aires University School of Medicine, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Hatsukari I, Singh P, Hitosugi N, Messmer D, Valderrama E, Teichberg S, Chaung W, Gross E, Schmidtmayerova H, Singhal PC. DEC-205-mediated internalization of HIV-1 results in the establishment of silent infection in renal tubular cells. J Am Soc Nephrol 2007; 18:780-7. [PMID: 17287423 DOI: 10.1681/asn.2006121307] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
HIV-1 infection of renal cells has been proposed to play a role in HIV-1-associated nephropathy. Renal biopsy data further suggest that renal tubular cells may serve as reservoir for HIV-1. The mechanism by which HIV-1 enters these cells has not been identified. Renal tubular cells do not express any of the known HIV-1 receptors, and our results confirmed lack of the expression of CD4, CCR5, CXCR4, DC-SIGN, or mannose receptors in tubular cells. The aim of this study, therefore, was to determine the mechanism that enables viral entry into renal tubular cells. An in vitro model was used to study the HIV-1 infection of human kidney tubular (HK2) cells and to identify the receptor that enables the virus to enter these cells. Results of these studies demonstrate that the C-type lectin DEC-205 acts as an HIV-1 receptor in HK2 cells. Interaction of HIV-1 with DEC-205 results in the internalization of the virus and establishment of a nonproductive infection. HIV-1-specific strong-stop DNA is detected in the infected HK2 cells for at least 7 d, and the virus can be transmitted in trans to sensitive target cells. HIV-1 entry is blocked by pretreatment with specific anti-DEC-205 antibody. Moreover, expression of DEC-205 in cells that lack the DEC-205 receptors renders them susceptible to HIV-1 infection. These findings suggest that DEC-205 acts as an HIV-1 receptor that mediates internalization of the virus into renal tubular cells, from which the virus can be rescued and disseminated by encountering immune cells.
Collapse
Affiliation(s)
- Ikusuke Hatsukari
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
van Liempt E, van Vliet SJ, Engering A, García Vallejo JJ, Bank CMC, Sanchez-Hernandez M, van Kooyk Y, van Die I. Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation. Mol Immunol 2007; 44:2605-15. [PMID: 17241663 DOI: 10.1016/j.molimm.2006.12.012] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 12/11/2022]
Abstract
In schistosomiasis, a parasitic disease caused by helminths, the parasite eggs induce a T helper 2 cell (T(H)2) response in the host. Here, the specific role of human monocyte-derived dendritic cells (DCs) in initiation and polarization of the egg-specific T cell responses was examined. We demonstrate that immature DCs (iDCs) pulsed with schistosome soluble egg antigens (SEA) do not show an increase in expression of co-stimulatory molecules or cytokines, indicating that no conventional maturation was induced. The ability of SEA to affect the Toll-like receptor (TLR) induced maturation of iDCs was examined by copulsing the DCs with SEA and TLR-ligands. SEA suppressed both the maturation of iDCs induced by poly-I:C and LPS, as indicated by a decrease in co-stimulatory molecule expression and production of IL-12, IL-6 and TNF-alpha. In addition, SEA suppressed T(H)1 responses induced by the poly-I:C-pulsed DCs, and skewed the LPS-induced mixed response towards a T(H)2 response. Immature DCs rapidly internalized SEA through the C-type lectins DC-SIGN, MGL and the mannose receptor and the antigens were targeted to MHC class II-positive lysosomal compartments. The internalization of SEA by multiple C-type lectins may be important to regulate the response of the iDCs to TLR-induced signals.
Collapse
Affiliation(s)
- Ellis van Liempt
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
286
|
Fallas JL, Yi W, Draghi NA, O'Rourke HM, Denzin LK. Expression Patterns of H2-O in Mouse B Cells and Dendritic Cells Correlate with Cell Function. THE JOURNAL OF IMMUNOLOGY 2007; 178:1488-97. [PMID: 17237397 DOI: 10.4049/jimmunol.178.3.1488] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the endosomes of APCs, the MHC class II-like molecule H2-M catalyzes the exchange of class II-associated invariant chain peptides (CLIP) for antigenic peptides. H2-O is another class II-like molecule that modulates the peptide exchange activity of H2-M. Although the expression pattern of H2-O in mice has not been fully evaluated, H2-O is expressed by thymic epithelial cells, B cells, and dendritic cells (DCs). In this study, we investigated H2-O, H2-M, and I-A(b)-CLIP expression patterns in B cell subsets during B cell development and activation. H2-O was first detected in the transitional 1 B cell subset and high levels were maintained in marginal zone and follicular B cells. H2-O levels were down-regulated specifically in germinal center B cells. Unexpectedly, we found that mouse B cells may have a pool of H2-O that is not associated with H2-M. Additionally, we further evaluate H2-O and H2-M interactions in mouse DCs, as well as H2-O expression in bone marrow-derived DCs. We also evaluated H2-O, H2-M, I-A(b), and I-A(b)-CLIP expression in splenic DC subsets, in which H2-O expression levels varied among the splenic DC subsets. Although it has previously been shown that H2-O modifies the peptide repertoire, H2-O expression did not alter DC presentation of a number of endogenous and exogenous Ags. Our further characterization of H2-O expression in DCs, as well as the identification of a potential free pool of H2-O in mouse splenic B cells, suggest that H2-O may have a yet to be elucidated role in immune responses.
Collapse
Affiliation(s)
- Jennifer L Fallas
- Cell Biology and Genetics Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
287
|
Chan T, Chen Z, Hao S, Xu S, Yuan J, Saxena A, Qureshi M, Zheng C, Xiang J. Enhanced T-cell immunity induced by dendritic cells with phagocytosis of heat shock protein 70 gene-transfected tumor cells in early phase of apoptosis. Cancer Gene Ther 2007; 14:409-20. [PMID: 17235354 DOI: 10.1038/sj.cgt.7701025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The dual role of heat shock protein 70 (HSP70), as antigenic peptide chaperone and danger signal, makes it especially important in dendritic cell (DC)-based vaccination. In this study, we investigated the impacts of apoptotic transgenic MCA/HSP tumor cells expressing HSP70 on DC maturation, T-cell stimulation and vaccine efficacy. We found that DCs with phagocytosis of MCA/HSP in early phase of apoptosis expressed more pMHC I complexes, stimulated stronger cytotoxic T lymphocyte (CTL) responses (40% specific killing at an E:T cell ratio of 50) and induced immune protection in 90% of mice against MCA tumor cell challenge, compared with 25% specific CTL killing activity and 60% immune protection seen in mice immunized with DC with phagocytosis of MCA/HSP in late phase of apoptosis (P<0.05). Similar results were confirmed in another EG7 tumor model also expressing HSP70. Taken together, our data demonstrate that HSP70 on apoptotic tumor cells stimulate DC maturation, and DC with phagocytosis of apoptotic tumor cells expressing HSP70 in early phase of apoptosis more efficiently induced tumor-specific CTL responses and immunity than DCs with phagocytosis of apoptotic tumor cells in late phase of apoptosis. These results may have an important impact in designing DC-based antitumor vaccines.
Collapse
Affiliation(s)
- T Chan
- Research Unit, Saskatchewan Cancer Agency, Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Proudfoot O, Apostolopoulos V, Pietersz GA. Receptor-Mediated Delivery of Antigens to Dendritic Cells: Anticancer Applications. Mol Pharm 2007; 4:58-72. [PMID: 17228857 DOI: 10.1021/mp0601087] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, there has been a surge of interest in the use of ex vivo antigen-pulsed dendritic cells (DCs) in the immunotherapy for cancer. DCs are powerful adjuvants with the ability to prime naive CD4+ and CD8+ T cells. As antigen sources, various preparations, including peptides, proteins, crude tumor lysates, and DCs transfected or transformed with various viruses, have been used. These procedures that involve the isolation of patient DCs and reintroduction after in vitro manipulation are time-consuming and expensive. The DC populations used frequently in ex vivo clinical studies are IL-4 and GM-CSF cultured DCs that may not represent the in vivo DC populations. An attractive method of targeting in vivo DCs is to utilize various ligands or antibodies that bind discrete populations of DCs. These cell surface receptors will direct the antigen to different antigen processing pathways depending on the targeted receptor to induce cytotoxic T cell or T helper responses. This review will discuss the various approaches and receptors that have been used for antigen targeting that may eventually be translated to alternative DC-based immunotherapies.
Collapse
Affiliation(s)
- Owen Proudfoot
- Bio-Organic and Medicinal Chemistry Laboratory, Burnet Institute at Austin, Studley Road, Heidelberg, Victoria 3084, Australia
| | | | | |
Collapse
|
289
|
Charalambous A, Oks M, Nchinda G, Yamazaki S, Steinman RM. Dendritic cell targeting of survivin protein in a xenogeneic form elicits strong CD4+ T cell immunity to mouse survivin. THE JOURNAL OF IMMUNOLOGY 2007; 177:8410-21. [PMID: 17142738 DOI: 10.4049/jimmunol.177.12.8410] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To determine whether strong CD4+ T cell immunity could be induced to a nonmutated self protein that is important for tumorigenesis, we selectively targeted the xenogeneic form of survivin, a survival protein overexpressed in tumors, to maturing dendritic cells in lymphoid tissues. Dendritic cell targeting via the DEC205 receptor in the presence of anti-CD40 and poly(I:C) as maturation stimuli, induced strong human and mouse survivin-specific CD4+ T cell responses, as determined by IFN-gamma, TNF-alpha, and IL-2 production, as well as the development of lytic MHC class II-restricted T cells and memory. Immunity was enhanced further by depletion of CD25+foxp3+ cells before vaccination. anti-DEC205-human survivin was superior in inducing CD4+ T cell responses relative to other approaches involving survivin plasmid DNA or survivin peptides with adjuvants. However, we were unable to induce CD8+ T cell immunity to survivin by two doses of DEC205-targeted survivin or the other strategies. Therefore, significant CD4+ T cell immunity to a self protein that is overexpressed in most human cancers can be induced by DEC205 targeting of the Ag in its xenogeneic form to maturing DCs.
Collapse
Affiliation(s)
- Anna Charalambous
- Laboratory of Cellular Physiology and Immunology, Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
290
|
Xiang SD, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram PL, Plebanski M. Pathogen recognition and development of particulate vaccines: does size matter? Methods 2007; 40:1-9. [PMID: 16997708 DOI: 10.1016/j.ymeth.2006.05.016] [Citation(s) in RCA: 460] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 05/05/2006] [Indexed: 01/08/2023] Open
Abstract
The use of particulate carriers holds great promise for the development of effective and affordable recombinant vaccines. Rational development requires a detailed understanding of particle up-take and processing mechanisms to target cellular pathways capable of stimulating the required immune responses safely. These mechanisms are in turn based on how the host has evolved to recognize and process pathogens. Pathogens, as well as particulate vaccines, come in a wide range of sizes and biochemical compositions. Some of these also provide 'danger signals' so that antigen 'senting cells (APC), usually dendritic cells (DC), acquire specific stimulatory activity. Herein, we provide an overview of the types of particles currently under investigation for the formulation of vaccines, discuss cellular uptake mechanisms (endocytosis, macropinocytosis, phagocytosis, clathrin-dependent and/or caveloae-mediated) for pathogens and particles of different sizes, as well as antigen possessing and presentation by APC in general, and DC in particular. Since particle size and composition can influence the immune response, inducing humoral and/or cellular immunity, activating CD8 T cells and/or CD4 T cells of T helper 1 and/or T helper 2 type, particle characteristics have a major impact on vaccine efficacy. Recently developed methods for the formulation of particulate vaccines are presented in this issue of Methods, showcasing a range of "cutting edge" particulate vaccines that employ particles ranging from nano to micro-sized. This special issue of Methods further addresses practical issues of production, affordability, reproducibility and stability of formulation, and also includes a discussion of the economic and regulatory challenges encountered in developing vaccines for veterinary use and for common Third World infectious diseases.
Collapse
Affiliation(s)
- Sue D Xiang
- Vaccine and Infectious Diseases Laboratory, Burnet Institute at Austin, Studley Road, Heidelberg, Vic. 3084, Australia
| | | | | | | | | | | | | |
Collapse
|
291
|
Altin JG, Parish CR. Liposomal vaccines--targeting the delivery of antigen. Methods 2007; 40:39-52. [PMID: 16997712 DOI: 10.1016/j.ymeth.2006.05.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 05/05/2006] [Indexed: 01/05/2023] Open
Abstract
Vaccines that can prime the adaptive immune system for a quick and effective response against a pathogen or tumor cells, require the generation of antigen (Ag)-specific memory T and B cells. The unique ability of dendritic cells (DCs) to activate naïve T cells, implies a key role for DCs in this process. The generation of tumor-specific CD8(+) cytotoxic T cells (CTLs) is dependent on both T cell stimulation with Ag (peptide-MHC-complexes) and costimulation. Interestingly, tumor cells that lack expression of T cell costimulatory molecules become highly immunogenic when transfected to express such molecules on their surface. Adoptive immunotherapy with Ag-pulsed DCs also is a strategy showing promise as a treatment for cancer. The use of such cell-based vaccines, however, is cumbersome and expensive to use clinically, and/or may carry risks due to genetic manipulations. Liposomes are particulate vesicular lipid structures that can incorporate Ag, immunomodulatory factors and targeting molecules, and hence can serve as potent vaccines. Similarly, Ag-containing plasma membrane vesicles (PMV) derived from tumor cells can be modified to incorporate a T cell costimulatory molecule to provide both TCR stimulation, and costimulation. PMVs also can be modified to contain IFN-gamma and molecules for targeting DCs, permitting delivery of both Ag and a DC maturation signal for initiating an effective immune response. Our results show that use of such agents as vaccines can induce potent anti-tumor immune responses and immunotherapeutic effects in tumor models, and provide a strategy for the development of effective vaccines and immunotherapies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Joseph G Altin
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia.
| | | |
Collapse
|
292
|
Butler M, Morel AS, Jordan WJ, Eren E, Hue S, Shrimpton RE, Ritter MA. Altered expression and endocytic function of CD205 in human dendritic cells, and detection of a CD205-DCL-1 fusion protein upon dendritic cell maturation. Immunology 2006; 120:362-71. [PMID: 17163964 PMCID: PMC2265885 DOI: 10.1111/j.1365-2567.2006.02512.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
CD205 (DEC-205) is a member of the macrophage mannose receptor family of C-type lectins. These molecules are known to mediate a wide variety of biological functions including the capture and internalization of ligands for subsequent processing and presentation by dendritic cells. Although its ligands await identification, the endocytic properties of CD205 make it an ideal target for those wishing to design vaccines and targeted immunotherapies. We present a detailed analysis of CD205 expression, distribution and endocytosis in human monocyte-derived dendritic cells undergoing lipopolysaccharide-induced maturation. Unlike other members of the macrophage mannose receptor family, CD205 was up-regulated upon dendritic cell maturation. This increase was a result of de novo synthesis as well as a redistribution of molecules from endocytic compartments to the cell surface. Furthermore, the endocytic capacity of CD205 was abrogated and small amounts of the recently identified CD205-DCL-1 fusion protein were detected in mature DC. Our results suggest that CD205 has two distinct functions -- one as an endocytic receptor on immature dendritic cells and a second as a non-endocytic molecule on mature dendritic cells -- and further highlight its potential as an immuno-modulatory target for vaccine and immunotherapy development.
Collapse
MESH Headings
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Cell Differentiation/immunology
- Cells, Cultured
- Dendritic Cells/immunology
- Down-Regulation/immunology
- Endocytosis/immunology
- Humans
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Leukocytes, Mononuclear/immunology
- Lipopolysaccharides/immunology
- Mannose Receptor
- Mannose-Binding Lectins/metabolism
- Minor Histocompatibility Antigens
- Monocytes/immunology
- Oncogene Proteins, Fusion/metabolism
- Polymerase Chain Reaction/methods
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Receptors, Mitogen/metabolism
- Translocation, Genetic/immunology
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Matt Butler
- Department of Immunology, Imperial College London, Faculty of Medicine, Hammersmith Campus, London, UK.
| | | | | | | | | | | | | |
Collapse
|
293
|
Robinson MJ, Sancho D, Slack EC, LeibundGut-Landmann S, Reis e Sousa C. Myeloid C-type lectins in innate immunity. Nat Immunol 2006; 7:1258-65. [PMID: 17110942 DOI: 10.1038/ni1417] [Citation(s) in RCA: 397] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
C-type lectins expressed on myeloid cells comprise a family of proteins that share a common structural motif, and some act as receptors in pathogen recognition. But just as the presence of leucine-rich repeats alone is not sufficient to define a Toll-like receptor, the characterization of C-type lectin receptors in innate immunity requires the identification of accompanying signaling motifs. Here we focus on the known signaling pathways of myeloid C-type lectins and on their possible functions as autonomous activating or inhibitory receptors involved in innate responses to pathogens or self.
Collapse
Affiliation(s)
- Matthew J Robinson
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3PX, United Kingdom
| | | | | | | | | |
Collapse
|
294
|
Blander JM. Coupling Toll-like receptor signaling with phagocytosis: potentiation of antigen presentation. Trends Immunol 2006; 28:19-25. [PMID: 17126600 DOI: 10.1016/j.it.2006.11.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/03/2006] [Accepted: 11/14/2006] [Indexed: 01/22/2023]
Abstract
Much attention has focused on the role of co-stimulation in dictating tolerance versus immunity to internalized antigens, with the assumption that the presentation of antigen-derived peptides by MHC molecules occurs constitutively. Here, I highlight our new appreciation for the regulated presentation of phagocytosed antigens by MHC class II molecules as a direct result of controlling phagosome maturation by Toll-like receptors. I discuss how the mode of antigen delivery into dendritic cells coupled with the right type of signal transduction pathway can impact greatly not only the co-stimulatory context in which the antigen is presented to naive T cells (signal 2) but MHC-II presentation of the antigen and formation of the T-cell receptor ligand (signal 1) itself.
Collapse
Affiliation(s)
- J Magarian Blander
- Center for Immunobiology, Mount Sinai School of Medicine, NY 10029, USA.
| |
Collapse
|
295
|
Hao S, Bai O, Li F, Yuan J, Laferte S, Xiang J. Mature dendritic cells pulsed with exosomes stimulate efficient cytotoxic T-lymphocyte responses and antitumour immunity. Immunology 2006; 120:90-102. [PMID: 17073943 PMCID: PMC2265880 DOI: 10.1111/j.1365-2567.2006.02483.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exosomes (EXO) derived from dendritic cells (DC), which express major histocompatibility complex (MHC) and costimulatory molecules, have been used for antitumour vaccines. However, they are still less effective by showing only prophylatic immunity in animal models or very limited immune responses in clinical trials. In this study, we showed that ovalbumin (OVA) protein-pulsed DC (DC(OVA))-derived EXO (EXO(OVA)) displayed MHC class I-OVA I peptide (pMHC I) complexes, CD11c, CD40, CD80, CCR7, DEC205, Toll-like receptor 4 (TLR4), TLR9, MyD88 and DC-SIGN molecules, but at a lower level than DC(OVA). EXO(OVA) can be taken up by DC through LFA-1/CD54 and C-type lectin/mannose (glucosamine)-rich C-type lectin receptor (CLR) interactions. Mature DC pulsed with EXO(OVA), which were referred to as mDC(EXO), expressed a higher level of pMHC I, MHC II, and costimulatory CD40, CD54 and CD80 than DC(OVA). The mDC(EXO) could more strongly stimulate OVA-specific CD8(+) T-cell proliferation in vitro and in vivo, and more efficiently induce OVA-specific cytotoxic T-lymphocyte responses, antitumour immunity and CD8(+) T-cell memory in vivo than EXO(OVA) and DC(OVA). In addition, mDC(EXO) could also more efficiently eradicate established tumours. Therefore, mature DC pulsed with EXO may represent a new, highly effective DC-based vaccine for the induction of antitumour immunity.
Collapse
Affiliation(s)
- Siguo Hao
- Research Unit, Division of Health Research, Saskatchewan Cancer Agency, Departments of Oncology and Immunology, College of Medicine, University of SaskatchewanSaskatoon, Saskatchewan, Canada
| | - Ou Bai
- Research Unit, Division of Health Research, Saskatchewan Cancer Agency, Departments of Oncology and Immunology, College of Medicine, University of SaskatchewanSaskatoon, Saskatchewan, Canada
| | - Fang Li
- Research Unit, Division of Health Research, Saskatchewan Cancer Agency, Departments of Oncology and Immunology, College of Medicine, University of SaskatchewanSaskatoon, Saskatchewan, Canada
| | - Jinying Yuan
- Research Unit, Division of Health Research, Saskatchewan Cancer Agency, Departments of Oncology and Immunology, College of Medicine, University of SaskatchewanSaskatoon, Saskatchewan, Canada
| | - Suzanne Laferte
- Department of Biochemistry, College of Medicine, University of SaskatchewanSaskatoon, Saskatchewan, Canada
| | - Jim Xiang
- Research Unit, Division of Health Research, Saskatchewan Cancer Agency, Departments of Oncology and Immunology, College of Medicine, University of SaskatchewanSaskatoon, Saskatchewan, Canada
| |
Collapse
|
296
|
Abstract
The innate immune system provides many ways to quickly resist infection. The two best-studied defenses in dendritic cells (DCs) are the production of protective cytokines-like interleukin (IL)-12 and type I interferons-and the activation and expansion of innate lymphocytes. IL-12 and type I interferons influence distinct steps in the adaptive immune response of lymphocytes, including the polarization of T-helper type 1 (Th1) CD4+ T cells, the development of cytolytic T cells and memory, and the antibody response. DCs have many other innate features that do not by themselves provide innate resistance but are critical for the induction of adaptive immunity. We have emphasized three intricate and innate properties of DCs that account for their sentinel and sensor roles in the immune system: (1) special mechanisms for antigen capture and processing, (2) the capacity to migrate to defined sites in lymphoid organs, especially the T cell areas, to initiate immunity, and (3) their rapid differentiation or maturation in response to a variety of stimuli ranging from Toll-like receptor (TLR) ligands to many other nonmicrobial factors such as cytokines, innate lymphocytes, and immune complexes. The combination of innate defenses and innate physiological properties allows DCs to serve as a major link between innate and adaptive immunity. DCs and their subsets contribute to many subjects that are ripe for study including memory, B cell responses, mucosal immunity, tolerance, and vaccine design. DC biology should continue to be helpful in understanding pathogenesis and protection in the setting of prevalent clinical problems.
Collapse
Affiliation(s)
- R M Steinman
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10021-6399, USA.
| | | |
Collapse
|
297
|
Arruda LB, Sim D, Chikhlikar PR, Maciel M, Akasaki K, August JT, Marques ETA. Dendritic cell-lysosomal-associated membrane protein (LAMP) and LAMP-1-HIV-1 gag chimeras have distinct cellular trafficking pathways and prime T and B cell responses to a diverse repertoire of epitopes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:2265-75. [PMID: 16887987 DOI: 10.4049/jimmunol.177.4.2265] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag processing is a critical step in defining the repertoire of epitope-specific immune responses. In the present study, HIV-1 p55Gag Ag was synthesized as a DNA plasmid with either lysosomal-associated membrane protein-1 (LAMP/gag) or human dendritic cell-LAMP (DC-LAMP/gag) and used to immunize mice. Analysis of the cellular trafficking of these two chimeras demonstrated that both molecules colocalized with MHC class II molecules but differed in their overall trafficking to endosomal/lysosomal compartments. Following DNA immunization, both chimeras elicited potent Gag-specific T and B cell immune responses in mice but differ markedly in their IL-4 and IgG1/IgG2a responses. The DC-LAMP chimera induced a stronger Th type 1 response. ELISPOT analysis of T cell responses to 122 individual peptides encompassing the entire p55gag sequence (15-aa peptides overlapping by 11 residues) showed that DNA immunization with native gag, LAMP/gag, or DC-LAMP/gag induced responses to identical immunodominant CD4+ and CD8+ peptides. However, LAMP/gag and DC-LAMP/gag plasmids also elicited significant responses to 23 additional cryptic epitopes that were not recognized after immunization with native gag DNA. The three plasmids induced T cell responses to a total of 39 distinct peptide sequences, 13 of which were induced by all three DNA constructs. Individually, DC-LAMP/gag elicited the most diverse response, with a specific T cell response against 35 peptides. In addition, immunization with LAMP/gag and DC-LAMP/gag chimeras also promoted Ab secretion to an increased number of epitopes. These data indicate that LAMP-1 and DC-LAMP Ag chimeras follow different trafficking pathways, induce distinct modulatory immune responses, and are able to present cryptic epitopes.
Collapse
Affiliation(s)
- Luciana B Arruda
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
298
|
Carter RW, Thompson C, Reid DM, Wong SYC, Tough DF. Preferential Induction of CD4+ T Cell Responses through In Vivo Targeting of Antigen to Dendritic Cell-Associated C-Type Lectin-1. THE JOURNAL OF IMMUNOLOGY 2006; 177:2276-84. [PMID: 16887988 DOI: 10.4049/jimmunol.177.4.2276] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Targeting of Ags and therapeutics to dendritic cells (DCs) has immense potential for immunotherapy and vaccination. Because DCs are heterogeneous, optimal targeting strategies will require knowledge about functional specialization among DC subpopulations and identification of molecules for targeting appropriate DCs. We characterized the expression of a fungal recognition receptor, DC-associated C-type lectin-1 (Dectin-1), on mouse DC subpopulations and investigated the ability of an anti-Dectin-1 Ab to deliver Ag for the stimulation of immune responses. Dectin-1 was shown to be expressed on CD8alpha-CD4-CD11b+ DCs found in spleen and lymph nodes and dermal DCs present in skin and s.c. lymph nodes. Injection of Ag-anti-Dectin-1 conjugates induced CD4+ and CD8+ T cell and Ab responses at low doses where free Ag failed to elicit a response. Notably, qualitatively different immune responses were generated by targeting Ag to Dectin-1 vs CD205, a molecule expressed on CD8alpha+CD4-CD11b- DCs, dermal DCs, and Langerhans cells. Unlike anti-Dectin-1, anti-CD205 conjugates failed to elicit an Ab response. Moreover, when conjugates were injected i.v., anti-Dectin-1 stimulated a much stronger CD4+ T cell response and a much weaker CD8+ T cell response than anti-CD205. The results reveal Dectin-1 as a potential targeting molecule for immunization and have implications for the specialization of DC subpopulations.
Collapse
Affiliation(s)
- Robert W Carter
- Edward Jenner Institute for Vaccine Research, Compton, Newbury, Berkshire, United Kingdom
| | | | | | | | | |
Collapse
|
299
|
van Duivenvoorde LM, van Mierlo GJD, Boonman ZFHM, Toes REM. Dendritic cells: vehicles for tolerance induction and prevention of autoimmune diseases. Immunobiology 2006; 211:627-32. [PMID: 16920501 DOI: 10.1016/j.imbio.2006.05.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adaptive immune responses are orchestrated by specialized professional antigen-presenting cells (APCs), the dendritic cells (DCs), which play crucial roles as initiators and modulators of adaptive immune responses. A main feature of DCs is their phenotypic and functional plasticity. In the absence of any inflammation or pathogenic elements, most DCs in peripheral tissues and lymphoid organs have a resting, immature phenotype characterized by high endocytic capacity and low surface expression of MHC- and costimulatory molecules. However, upon interaction with microbial ligands, pro-inflammatory cytokines or CD40Ligand, DCs rapidly acquire an activated phenotype. These mature DCs have a very efficient T cell-priming ability as a consequence of upregulation of MHC- and costimulatory molecules on their cell surface. For this reason, DC-based vaccines have been used successfully to combat infections and malignancies. Nonetheless, evidence is accumulating that, especially immature, or semi-matured, DCs also have a potent ability to tolerize T cells or prevent undesired immune reactions. Therefore, current and prospective strategies to promote the inherent tolerogenic potential of DCs are a rational approach for the therapy of autoimmune diseases such as rheumatoid arthritis (RA). This review summarizes some aspects of the intriguing ability of DCs to steer the outcome of immunity and their potency to modulate the outcome of various pathological conditions.
Collapse
|
300
|
Wainszelbaum MJ, Proctor BM, Pontow SE, Stahl PD, Barbieri MA. IL4/PGE2 induction of an enlarged early endosomal compartment in mouse macrophages is Rab5-dependent. Exp Cell Res 2006; 312:2238-51. [PMID: 16650848 DOI: 10.1016/j.yexcr.2006.03.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 03/18/2006] [Accepted: 03/21/2006] [Indexed: 01/05/2023]
Abstract
The endosomal compartment and the plasma membrane form a complex partnership that controls signal transduction and trafficking of different molecules. The specificity and functionality of the early endocytic pathway are regulated by a growing number of Rab GTPases, particularly Rab5. In this study, we demonstrate that IL4 (a Th-2 cytokine) and prostaglandin E2 (PGE2) synergistically induce Rab5 and several Rab effector proteins, including Rin1 and EEA1, and promote the formation of an enlarged early endocytic (EEE) compartment. Endosome enlargement is linked to a substantial induction of the mannose receptor (MR), a well-characterized macrophage endocytic receptor. Both MR levels and MR-mediated endocytosis are enhanced approximately 7-fold. Fluid-phase endocytosis is also elevated in treated cells. Light microscopy and fractionation studies reveal that MR colocalizes predominantly with Rab5a and partially with Rab11, an endosomal recycling pathway marker. Using retroviral expression of Rab5a:S34N, a dominant negative mutant, and siRNA Rab5a silencing, we demonstrate that Rab5a is essential for the large endosome phenotype and for localization of MR in these structures. We speculate that the EEE is maintained by activated Rab5, and that the EEE phenotype is part of some macrophage developmental program such as cell fusion, a characteristic of IL4-stimulated cells.
Collapse
Affiliation(s)
- Marisa J Wainszelbaum
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid, Campus Box 8228, Saint Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|