251
|
Erol A. Retrograde regulation due to mitochondrial dysfunction may be an important mechanism for carcinogenesis. Med Hypotheses 2005; 65:525-9. [PMID: 15905043 DOI: 10.1016/j.mehy.2005.03.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 03/03/2005] [Indexed: 11/29/2022]
Abstract
Mitochondrial dysfunction has crucial importance in carcinogenesis. Due to several reasons, it may lead to insufficiency in the electron transport chain, which activates a series of cytosolic proteins. These proteins are transported to the nucleus and promote the activation of genes leading to intracellular diverse metabolic, regulatory, signalization and stress-related pathways. Retrograde regulation is the general term for mitochondrial signaling, and is broadly defined as cellular responses to alterations in functional state of mitochondria. This signaling pathway is triggered by mitochondrial dysfunction. The retrograde response is not a simple On-Off switch, but rather it responds in a continuous manner to the changing metabolic needs of the cell. Communication between mitochondria and the nucleus is important for a variety of cellular processes such as carbohydrate and nitrogen metabolism, cell cycle and proliferation, and cell growth and morphogenesis. As a result of retrograde regulation, the cell, actually a component of the multicellular organism, transforms to a unicellular lifestyle and initiates a developing course, independent of the systemic structure. This transformed cell runs metabolic regulations effectively in order to utilize all energy depots, mainly the adipose tissue of the multicellular organism. The most important one is the active utilization of glyoxylate cycle, through which the malign cells supply glucose from fats. Continuously acting glycolysis and gluconeogenesis, fatty acid oxidation and de novo lipogenesis constitute futile cycles. This in turn causes cachexia by maintaining the organism in constant negative energy balance. Mitochondria-to-nucleus stress signaling activates some of the genes implicated in tumor progression and tumor cell metastasis. Retrograde regulation also renders the cell more resistant to apoptosis. It is becoming clearer which genes control the retrograde response in human cells. Most probably, MYC is one of the transcription factors necessary for this response.
Collapse
Affiliation(s)
- Adnan Erol
- Silivri City Hospital, Department of Internal Medicine, Ali Cetinkaya Cad, 34930 Silivri, Istanbul, Turkey.
| |
Collapse
|
252
|
Augustin S, Nolden M, Müller S, Hardt O, Arnold I, Langer T. Characterization of peptides released from mitochondria: evidence for constant proteolysis and peptide efflux. J Biol Chem 2004; 280:2691-9. [PMID: 15556950 DOI: 10.1074/jbc.m410609200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conserved ATP-dependent proteases ensure the quality control of mitochondrial proteins and control essential steps in mitochondrial biogenesis. Recent studies demonstrated that non-assembled mitochondrially encoded proteins are degraded to peptides and amino acids that are released from mitochondria. Here, we have characterized peptides extruded from mitochondria by mass spectrometry and identified 270 peptides that are exported in an ATP- and temperature-dependent manner. The peptides originate from 51 mitochondrially and nuclearly encoded proteins localized mainly in the matrix and inner membrane, indicating that peptides generated by the activity of all known mitochondrial ATP-dependent proteases can be released from the organelle. Pulse-labeling experiments in logarithmically growing yeast cells revealed that approximately 6-12% of preexisting and newly imported proteins is degraded and contribute to this peptide pool. Under respiring conditions, we observed an increased proteolysis of newly imported proteins that suggests a higher turnover rate of respiratory chain components and thereby rationalizes the predominant appearance of representatives of this functional class in the detected peptide pool. These results demonstrated a constant efflux of peptides from mitochondria and provided new insight into the stability of the mitochondrial proteome and the efficiency of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Steffen Augustin
- Institut für Genetik and Zentrum für Molekulare Medizin, Universität zu Köln, 50674 Köln, Germany
| | | | | | | | | | | |
Collapse
|
253
|
Zhang X, Kolaczkowska A, Devaux F, Panwar SL, Hallstrom TC, Jacq C, Moye-Rowley WS. Transcriptional regulation by Lge1p requires a function independent of its role in histone H2B ubiquitination. J Biol Chem 2004; 280:2759-70. [PMID: 15528187 DOI: 10.1074/jbc.m408333200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae cells that have lost their mitochondrial genome (rho(0)) strongly induce transcription of multidrug resistance genes, including the ATP-binding cassette transporter gene PDR5. PDR5 induction in rho(0) cells requires the presence of the zinc cluster transcription factor Pdr3p. The PDR3 gene is positively autoregulated in rho(0) cells by virtue of the presence of two binding sites for Pdr3p in its promoter. We identify the novel protein Lge1p as a required participant in the rho(0) activation of PDR3 and PDR5 expression. Lge1p is a nuclear protein that has been found to play a role in ubiquitination of histone H2B at Lys(123). This ubiquitination requires the presence of the ubiquitin-conjugating enzyme Rad6p and the ubiquitin ligase Bre1p. Interestingly, rho(0) strains lacking Lge1p failed to induce PDR3 transcription, but induction was still seen in Deltarad6, Deltabre1, and H2B-K123R mutant strains. Microarray experiments also confirmed that the pattern of gene expression changes seen in cells lacking Lge1p, Bre1p, or Rad6p or containing the H2B-K123R mutant as the only form of H2B share some overlap but are distinct. These findings provide a strong argument that Lge1p has roles in gene regulation independent of its participation in the Rad6p-dependent ubiquitination of H2B.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
254
|
Borghouts C, Benguria A, Wawryn J, Jazwinski SM. Rtg2 protein links metabolism and genome stability in yeast longevity. Genetics 2004; 166:765-77. [PMID: 15020466 PMCID: PMC1470750 DOI: 10.1534/genetics.166.2.765] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial dysfunction induces a signaling pathway, which culminates in changes in the expression of many nuclear genes. This retrograde response, as it is called, extends yeast replicative life span. It also results in a marked increase in the cellular content of extrachromosomal ribosomal DNA circles (ERCs), which can cause the demise of the cell. We have resolved the conundrum of how these two molecular mechanisms of yeast longevity operate in tandem. About 50% of the life-span extension elicited by the retrograde response involves processes other than those that counteract the deleterious effects of ERCs. Deletion of RTG2, a gene that plays a central role in relaying the retrograde response signal to the nucleus, enhances the generation of ERCs in cells with (grande) or in cells without (petite) fully functional mitochondria, and it curtails the life span of each. In contrast, overexpression of RTG2 diminishes ERC formation in both grandes and petites. The excess Rtg2p did not augment the retrograde response, indicating that it was not engaged in retrograde signaling. FOB1, which is known to be required for ERC formation, and RTG2 were found to be in converging pathways for ERC production. RTG2 did not affect silencing of ribosomal DNA in either grandes or petites, which were similar to each other in the extent of silencing at this locus. Silencing of ribosomal DNA increased with replicative age in either the presence or the absence of Rtg2p, distinguishing silencing and ERC accumulation. Our results indicate that the suppression of ERC production by Rtg2p requires that it not be in the process of transducing the retrograde signal from the mitochondrion. Thus, RTG2 lies at the nexus of cellular metabolism and genome stability, coordinating two pathways that have opposite effects on yeast longevity.
Collapse
Affiliation(s)
- Corina Borghouts
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans 70112, USA
| | | | | | | |
Collapse
|
255
|
Gohil VM, Hayes P, Matsuyama S, Schägger H, Schlame M, Greenberg ML. Cardiolipin Biosynthesis and Mitochondrial Respiratory Chain Function Are Interdependent. J Biol Chem 2004; 279:42612-8. [PMID: 15292198 DOI: 10.1074/jbc.m402545200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiolipin (CL) is an acidic phospholipid present almost exclusively in membranes harboring respiratory chain complexes. We have previously shown that, in Saccharomyces cerevisiae, CL provides stability to respiratory chain supercomplexes and CL synthase enzyme activity is reduced in several respiratory complex assembly mutants. In the current study, we investigated the interdependence of the mitochondrial respiratory chain and CL biosynthesis. Pulse-labeling experiments showed that in vivo CL biosynthesis was reduced in respiratory complexes III (ubiquinol:cytochrome c oxidoreductase) and IV (cytochrome c oxidase) and oxidative phosphorylation complex V (ATP synthase) assembly mutants. CL synthesis was decreased in the presence of CCCP, an inhibitor of oxidative phosphorylation that reduces the pH gradient but not by valinomycin or oligomycin, both of which reduce the membrane potential and inhibit ATP synthase, respectively. The inhibitors had no effect on phosphatidylglycerol biosynthesis or CRD1 gene expression. These results are consistent with the hypothesis that in vivo CL biosynthesis is regulated at the level of CL synthase activity by the DeltapH component of the proton-motive force generated by the functional electron transport chain. This is the first report of regulation of phospholipid biosynthesis by alteration of subcellular compartment pH.
Collapse
Affiliation(s)
- Vishal M Gohil
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|
256
|
Valadi A, Granath K, Gustafsson L, Adler L. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J Biol Chem 2004; 279:39677-85. [PMID: 15210723 DOI: 10.1074/jbc.m403310200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During anaerobiosis Saccharomyces cerevisiae strongly increases glycerol production to provide for non-respiratory oxidation of NADH to NAD(+). We here report that respiratory-deficient cells become strictly dependent on the Gpd2p isoform of the NAD(+)-linked glycerol-3-phosphate dehydrogenase (Gpd). The growth inhibition of respiratory incompetent cox18Delta cells lacking GPD2 is reversed by the addition of acetoin, an alternative sink for NADH oxidation. Growth is also restored by addition of lysine or glutamic acid/glutamine, the synthesis of which involves production of mitochondrial NADH. Lysine produced a stronger growth stimulating effect than glutamic acid consistent with an upregulated expression of the IDP3 gene for peroxisomal synthesis of the glutamate precursor alpha-ketoglutarate. Gpd2p is known to be a cytosolic protein but possesses a classical mitochondrial presequence, which we show is sufficient for mitochondrial targeting. A partial mitochondrial localization of Gpd2p will provide for establishment of intramitochondrial redox balance under non-respiratory conditions. Gpd1p, the other Gpd isoform, is partly cytosolic and partly peroxisomal and becomes more strictly peroxisomal in respiratory-deficient mutants. The different cellular distribution of Gpd1p and Gpd2p thus appears to be the main reason Gpd1p cannot substitute for Gpd2p in cox18Deltagpd2Delta cells, despite similar kinetic characteristics of the two iso-enzymes.
Collapse
Affiliation(s)
- Asa Valadi
- Department of Cell and Molecular Biology/Microbiology, Box 462, SE-405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
257
|
Singh KK, Rasmussen AK, Rasmussen LJ. Genome-wide analysis of signal transducers and regulators of mitochondrial dysfunction in Saccharomyces cerevisiae. Ann N Y Acad Sci 2004; 1011:284-98. [PMID: 15126304 DOI: 10.1007/978-3-662-41088-2_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Mitochondrial dysfunction is a hallmark of cancer cells. However, genetic response to mitochondrial dysfunction during carcinogenesis is unknown. To elucidate genetic response to mitochondrial dysfunction we used Saccharomyces cerevisiae as a model system. We analyzed genome-wide expression of nuclear genes involved in signal transduction and transcriptional regulation in a wild-type yeast and a yeast strain lacking the mitochondrial genome (rho(0)). Our analysis revealed that the gene encoding cAMP-dependent protein kinase subunit 3 (PKA3) was upregulated. However, the gene encoding cAMP-dependent protein kinase subunit 2 (PKA2) and the VTC1, PTK2, TFS1, CMK1, and CMK2 genes, involved in signal transduction, were downregulated. Among the known transcriptional factors, OPI1, MIG2, INO2, and ROX1 belonged to the upregulated genes, whereas MSN4, MBR1, ZMS1, ZAP1, TFC3, GAT1, ADR1, CAT8, and YAP4 including RFA1 were downregulated. RFA1 regulates DNA repair genes at the transcriptional level. RFA is also involved directly in DNA recombination, DNA replication, and DNA base excision repair. Downregulation of RFA1 in rho(0) cells is consistent with our finding that mitochondrial dysfunction leads to instability of the nuclear genome. Together, our data suggest that gene(s) involved in mitochondria-to-nucleus communication play a role in mutagenesis and may be implicated in carcinogenesis.
Collapse
Affiliation(s)
- Keshav K Singh
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | |
Collapse
|
258
|
Dunn CD, Jensen RE. Suppression of a defect in mitochondrial protein import identifies cytosolic proteins required for viability of yeast cells lacking mitochondrial DNA. Genetics 2004; 165:35-45. [PMID: 14504216 PMCID: PMC1462761 DOI: 10.1093/genetics/165.1.35] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The TIM22 complex, required for the insertion of imported polytopic proteins into the mitochondrial inner membrane, contains the nonessential Tim18p subunit. To learn more about the function of Tim18p, we screened for high-copy suppressors of the inability of tim18Delta mutants to live without mitochondrial DNA (mtDNA). We identified several genes encoding cytosolic proteins, including CCT6, SSB1, ICY1, TIP41, and PBP1, which, when overproduced, rescue the mtDNA dependence of tim18Delta cells. Furthermore, these same plasmids rescue the petite-negative phenotype of cells lacking other components of the mitochondrial protein import machinery. Strikingly, disruption of the genes identified by the different suppressors produces cells that are unable to grow without mtDNA. We speculate that loss of mtDNA leads to a lowered inner membrane potential, and subtle changes in import efficiency can no longer be tolerated. Our results suggest that increased amounts of Cct6p, Ssb1p, Icy1p, Tip41p, and Pbp1p help overcome the problems resulting from a defect in protein import.
Collapse
Affiliation(s)
- Cory D Dunn
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
259
|
Farina F, Uccelletti D, Goffrini P, Butow RA, Abeijon C, Palleschi C. Alterations of O-glycosylation, cell wall, and mitochondrial metabolism in Kluyveromyces lactis cells defective in KlPmr1p, the Golgi Ca2+-ATPase. Biochem Biophys Res Commun 2004; 318:1031-8. [PMID: 15147977 DOI: 10.1016/j.bbrc.2004.04.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Indexed: 11/16/2022]
Abstract
In yeast the P-type Ca(2+)-ATPase of the Golgi apparatus, Pmr1p, is the most important player in calcium homeostasis. In Kluyveromyces lactis KlPMR1 inactivation leads to pleiotropic phenotypes, including reduced N-glycosylation and altered cell wall morphogenesis. To study the physiology of K. lactis when KlPMR1 was inactivated microarrays containing all Saccharomyces cerevisiae coding sequences were utilized. Alterations in O-glycosylation, consistent with the repression of KlPMT2, were found and a terminal N-acetylglucosamine in the O-glycans was identified. Klpmr1Delta cells showed increased expression of PIRs, proteins involved in cell wall maintenance, suggesting that responses to cell wall weakening take place in K. lactis. We found over-expression of KlPDA1 and KlACS2 genes involved in the Acetyl-CoA synthesis and down-regulation of KlIDP1, KlACO1, and KlSDH2 genes involved in respiratory metabolism. Increases in oxygen consumption and succinate dehydrogenase activity were also observed in mutant cells. The described approach highlighted the unexpected involvement of KlPMR1 in energy-yielding processes.
Collapse
Affiliation(s)
- Francesca Farina
- Department of Developmental and Cell Biology, University of Rome La Sapienza, Piazza Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
260
|
Abstract
Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus that influences many cellular and organismal activities under both normal and pathophysiological conditions. In yeast it is used as a sensor of mitochondrial dysfunction that initiates readjustments of carbohydrate and nitrogen metabolism. In both yeast and animal cells, retrograde signaling is linked to TOR signaling, but the precise connections are unclear. In mammalian cells, mitochondrial dysfunction sets off signaling cascades through altered Ca(2+) dynamics, which activate factors such as NFkappaB, NFAT, and ATF. Retrograde signaling also induces invasive behavior in otherwise nontumorigenic cells implying a role in tumor progression.
Collapse
Affiliation(s)
- Ronald A Butow
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
261
|
Kuzmin EV, Karpova OV, Elthon TE, Newton KJ. Mitochondrial Respiratory Deficiencies Signal Up-regulation of Genes for Heat Shock Proteins. J Biol Chem 2004; 279:20672-7. [PMID: 15016808 DOI: 10.1074/jbc.m400640200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The consequences of mitochondrial dysfunction are not limited to the development of oxidative stress or initiation of apoptosis but can result in the establishment of stress tolerance. Using maize mitochondrial mutants, we show that permanent mitochondrial deficiencies trigger novel Ca(2+)-independent signaling pathways, leading to constitutive expression of genes for molecular chaperones, heat shock proteins (HSPs) of different classes. The signaling to activate hsp genes appears to originate from a reduced mitochondrial transmembrane potential. Upon depolarization of mitochondrial membranes in transient assays, gene induction for mitochondrial HSPs occurred more rapidly than that for cytosolic HSPs. We also demonstrate that in the nematode Caenorhabditis elegans transcription of hsp genes can be induced by RNA interference of nuclear respiratory genes. In both organisms, activation of hsp genes in response to mitochondrial impairment is distinct from their responses to heat shock and is not associated with oxidative stress. Thus, mitochondria-to-nucleus signaling to express a hsp gene network is apparently a widespread retrograde mechanism to facilitate cell defense and survival.
Collapse
Affiliation(s)
- Evgeny V Kuzmin
- Department of Biological Sciences, 324 Tucker Hall, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
262
|
SINGH KESHAVK, RASMUSSEN ANNEKARIN, RASMUSSEN LENEJUEL. Genome-Wide Analysis of Signal Transducers and Regulators of Mitochondrial Dysfunction inSaccharomyces cerevisiae. Ann N Y Acad Sci 2004. [DOI: 10.1196/annals.1293.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
263
|
Wang X, McMahon MA, Shelton SN, Nampaisansuk M, Ballard JL, Goodman JM. Multiple targeting modules on peroxisomal proteins are not redundant: discrete functions of targeting signals within Pmp47 and Pex8p. Mol Biol Cell 2004; 15:1702-10. [PMID: 14742703 PMCID: PMC379268 DOI: 10.1091/mbc.e03-11-0810] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 01/05/2004] [Accepted: 01/10/2004] [Indexed: 11/11/2022] Open
Abstract
Several peroxisomal proteins have two nonoverlapping targeting signals. These signals have been termed "redundant" because targeting can still occur with only one signal. We now report that separate targeting motifs within both Pmp47 and Pex8 provide complementary function. Pmp47 is an ATP translocator that contains six transmembrane domains (TMDs). We had previously shown that the TMD2 region (termed TMD2R, consisting of TMD2 and a short adjacent segment of cytosolic loop) was required for targeting to proliferated peroxisomes in Saccharomyces cerevisiae. We now report that the analogous TMD4R, which cannot target to proliferated peroxisomes, targets at least as well, or much better (depending on strain and growth conditions) in cells containing only basal (i.e., nonproliferated) peroxisomes. These data suggest differences in the targeting pathway among peroxisome populations. Pex8p, a peripheral protein facing the matrix, contains a typical carboxy terminal targeting sequence (PTS1) that has been shown to be nonessential for targeting, indicating the existence of a second targeting domain (not yet defined in S. cerevisiae); thus, its function was unknown. We show that targeting to basal peroxisomes, but not to proliferated peroxisomes, is more efficient with the PTS1 than without it. Our results indicate that multiple targeting signals within peroxisomal proteins extend coverage among heterogeneous populations of peroxisomes and increase efficiency of targeting in some metabolic states.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | | | |
Collapse
|
264
|
Hansson A, Hance N, Dufour E, Rantanen A, Hultenby K, Clayton DA, Wibom R, Larsson NG. A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts. Proc Natl Acad Sci U S A 2004; 101:3136-41. [PMID: 14978272 PMCID: PMC365756 DOI: 10.1073/pnas.0308710100] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We performed global gene expression analyses in mouse hearts with progressive respiratory chain deficiency and found a metabolic switch at an early disease stage. The tissue-specific mitochondrial transcription factor A (Tfam) knockout mice of this study displayed a progressive heart phenotype with depletion of mtDNA and an accompanying severe decline of respiratory chain enzyme activities along with a decreased mitochondrial ATP production rate. These characteristics were observed after 2 weeks of age and became gradually more severe until the terminal stage occurred at 10-12 weeks of age. Global gene expression analyses with microarrays showed that a metabolic switch occurred early in the progression of cardiac mitochondrial dysfunction. A large number of genes encoding critical enzymes in fatty acid oxidation showed decreased expression whereas several genes encoding glycolytic enzymes showed increased expression. These alterations are consistent with activation of a fetal gene expression program, a well-documented phenomenon in cardiac disease. An increase in mitochondrial mass was not observed until the disease had reached an advanced stage. In contrast to what we have earlier observed in respiratory chain-deficient skeletal muscle, the increased mitochondrial biogenesis in respiratory chain-deficient heart muscle did not increase the overall mitochondrial ATP production rate. The observed switch in metabolism is unlikely to benefit energy homeostasis in the respiratory chain-deficient hearts and therefore likely aggravates the disease. It can thus be concluded that at least some of the secondary gene expression alterations in mitochondrial cardiomyopathy do not compensate but rather directly contribute to heart failure progression.
Collapse
Affiliation(s)
- Anna Hansson
- Departments of Medical Nutrition and Biosciences and Laboratory Medicine and Clinical Research Center, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden; and Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789
| | - Nicole Hance
- Departments of Medical Nutrition and Biosciences and Laboratory Medicine and Clinical Research Center, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden; and Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789
| | - Eric Dufour
- Departments of Medical Nutrition and Biosciences and Laboratory Medicine and Clinical Research Center, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden; and Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789
| | - Anja Rantanen
- Departments of Medical Nutrition and Biosciences and Laboratory Medicine and Clinical Research Center, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden; and Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789
| | - Kjell Hultenby
- Departments of Medical Nutrition and Biosciences and Laboratory Medicine and Clinical Research Center, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden; and Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789
| | - David A. Clayton
- Departments of Medical Nutrition and Biosciences and Laboratory Medicine and Clinical Research Center, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden; and Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789
| | - Rolf Wibom
- Departments of Medical Nutrition and Biosciences and Laboratory Medicine and Clinical Research Center, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden; and Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789
| | - Nils-Göran Larsson
- Departments of Medical Nutrition and Biosciences and Laboratory Medicine and Clinical Research Center, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden; and Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
265
|
Ohlmeier S, Kastaniotis AJ, Hiltunen JK, Bergmann U. The Yeast Mitochondrial Proteome, a Study of Fermentative and Respiratory Growth. J Biol Chem 2004; 279:3956-79. [PMID: 14597615 DOI: 10.1074/jbc.m310160200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae is able to switch from fermentation to respiration (diauxic shift) with major changes in metabolic activity. This phenomenon has been previously studied on the transcriptional level. Here we present a parallel analysis of the yeast mitochondrial proteome and the corresponding transcriptional activity in cells grown on glucose (fermentation) and glycerol (respiration). A two-dimensional reference gel for this organelle proteome was established (available at www.biochem.oulu.fi/proteomics/), which contains about 800 intense spots. From 459 spots 253 individual proteins were identified, among them low abundant and hydrophobic proteins, and 37 proteins previously deemed hypothetical, with partially unknown cellular localization. After the diauxic shift, mitochondrial levels of only 18 proteins were changed (17 increased, with 1 decreased), among them proteins involved in the tricarboxylic acid cycle (Sdh1p, Sdh2p, and Sdh4p) and the respiratory chain (Cox4p, Cyb2p, and Qcr7p), proteins contributing to other respiratory pathways (Ach1p, Adh2p, Ald4p, Cat2p, Icl2p, and Pdh1p), and two proteins with unknown function (Om45p and Ybr230p). Apart from an overall increase in mitochondrial protein mass, the mitochondrial proteome remains remarkably constant, even in a major metabolic adaptation. This seemingly disagrees with results of the DNA microarray analyses, where a rather heterogenous up- or down-regulation of genes encoding mitochondrial proteins implies large changes in the proteome. We propose that the discrepancy between proteome and transcriptional regulation, apart from different translation efficiency, indicates a changed turnover rate of proteins in different physiological conditions.
Collapse
Affiliation(s)
- Steffen Ohlmeier
- Biocenter Oulu and Department of Biochemistry, P. O. Box 3000, University of Oulu, Oulu FIN-90014, Finland.
| | | | | | | |
Collapse
|
266
|
Borghouts C, Benguria A, Wawryn J, Jazwinski SM. Rtg2 Protein Links Metabolism and Genome Stability in Yeast Longevity. Genetics 2004. [DOI: 10.1093/genetics/166.2.765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Mitochondrial dysfunction induces a signaling pathway, which culminates in changes in the expression of many nuclear genes. This retrograde response, as it is called, extends yeast replicative life span. It also results in a marked increase in the cellular content of extrachromsomal ribosomal DNA circles (ERCs), which can cause the demise of the cell. We have resolved the conundrum of how these two molecular mechanisms of yeast longevity operate in tandem. About 50% of the life-span extension elicited by the retrograde response involves processes other than those that counteract the deleterious effects of ERCs. Deletion of RTG2, a gene that plays a central role in relaying the retrograde response signal to the nucleus, enhances the generation of ERCs in cells with (grande) or in cells without (petite) fully functional mitochondria, and it curtails the life span of each. In contrast, overexpression of RTG2 diminishes ERC formation in both grandes and petites. The excess Rtg2p did not augment the retrograde response, indicating that it was not engaged in retrograde signaling. FOB1, which is known to be required for ERC formation, and RTG2 were found to be in converging pathways for ERC production. RTG2 did not affect silencing of ribosomal DNA in either grandes or petites, which were similar to each other in the extent of silencing at this locus. Silencing of ribosomal DNA increased with replicative age in either the presence or the absence of Rtg2p, distinguishing silencing and ERC accumulation. Our results indicate that the suppression of ERC production by Rtg2p requires that it not be in the process of transducing the retrograde signal from the mitochondrion. Thus, RTG2 lies at the nexus of cellular metabolism and genome stability, coordinating two pathways that have opposite effects on yeast longevity.
Collapse
Affiliation(s)
| | | | - Jaroslaw Wawryn
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - S Michal Jazwinski
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
267
|
Rosenfeld E, Beauvoit B. Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae. Yeast 2004; 20:1115-44. [PMID: 14558145 DOI: 10.1002/yea.1026] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Saccharomyces cerevisiae is a facultative anaerobe devoid of mitochondrial alternative oxidase. In this yeast, the structure and biogenesis of the respiratory chain, on the one hand, and the functional interactions of oxidative phosphorylation with the cellular energetic metabolism, on the other, are well documented. However, to our knowledge, the molecular aspects and the physiological roles of the non-respiratory pathways that utilize molecular oxygen have not yet been reviewed. In this paper, we review the various non-respiratory pathways in a global context of utilization of molecular oxygen in S. cerevisiae. The roles of these pathways are examined as a function of environmental conditions, using either physiological, biochemical or molecular data. Special attention is paid to the characterization of the so-called 'cyanide-resistant respiration' that is induced by respiratory deficiency, catabolic repression and oxygen limitation during growth. Finally, several aspects of oxygen sensing are discussed.
Collapse
Affiliation(s)
- Eric Rosenfeld
- Laboratoire de Génie Protéique et Cellulaire, Bâtiment Marie Curie, Pôle Sciences et Technologies, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1, France.
| | | |
Collapse
|
268
|
Moye-Rowley WS. Transcriptional control of multidrug resistance in the yeast Saccharomyces. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 73:251-79. [PMID: 12882520 DOI: 10.1016/s0079-6603(03)01008-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A major problem in chemotherapeutic treatment of many pathological conditions including cancer and fungal infections is the development of a multidrug-resistant state in the target cell. Saccharomyces cerevisiae cells can be isolated that have single genetic alterations that cause the resulting mutant strains to become tolerant of a wide range of compounds that would otherwise be toxic. These mutant cells are referred to as having a pleiotropic drug-resistant (Pdr) phenotype. Studies of these Pdr cells have demonstrated that mutations either within genes encoding transcriptional regulators or in their regulatory inputs lead to overexpression of downstream transporter proteins with associated multidrug resistance. This review is aimed at providing a framework for understanding the networks modulating expression of PDR genes in S. cerevisiae.
Collapse
Affiliation(s)
- W Scott Moye-Rowley
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
269
|
Galloni M. Bonsaï, a ribosomal protein S15 homolog, involved in gut mitochondrial activity and systemic growth. Dev Biol 2004; 264:482-94. [PMID: 14651932 DOI: 10.1016/j.ydbio.2003.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The regulation of cellular growth is crucial in the control of cell proliferation. While most of the metabolic energy necessary to sustain growth is produced in mitochondria, the regulation of mitochondrial activity and its implications for growth have remained unexplored. Here, a gene named bonsaï is described, which is essential for normal growth in Drosophila. The Bonsaï protein bears strong homology to prokaryotic ribosomal protein S15 and localizes to mitochondria, suggesting a role in mitochondrial protein translation. Accordingly, bonsaï mutants have defective mitochondrial activity, but surprisingly, only the gut appears affected. Consistent with these observations, bonsaï is predominantly expressed in the gut. These results show that bonsaï plays a preponderant role in gut mitochondria. Although gut mitochondrial respiration is altered in bonsaï mutants, the digestive process appears normal, suggesting that a gut function other than digestion is impaired in the mutants. Cytochrome c oxidase, a respiratory chain enzyme partly encoded by the mitochondrial genome, is found to be active in bonsaï mutants. This suggests that mitochondrial translation is not abolished in the mutants. Altogether, these observations suggest that mitochondrial activity is regulated at the tissue-specific level and that this regulation has profound implications for growth and development.
Collapse
Affiliation(s)
- Mireille Galloni
- INSERM-UM2 E343, Université Montpellier 2, C.C. 103, Place Eugène Bataillon, 34095 Montpellier, France.
| |
Collapse
|
270
|
Rhoads DM, Vanlerberghe GC. Mitochondria-Nucleus Interactions: Evidence for Mitochondrial Retrograde Communication in Plant Cells. PLANT MITOCHONDRIA: FROM GENOME TO FUNCTION 2004. [DOI: 10.1007/978-1-4020-2400-9_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
271
|
Palková Z, Vachova L. Ammonia signaling in yeast colony formation. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:229-72. [PMID: 12696594 DOI: 10.1016/s0074-7696(05)25006-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Multicellular structures formed by microorganisms possess various properties, which make them interesting in terms of processes that occur in tissues of higher eukaryotes. These include processes important for morphogenesis and development of multicellular structures as well as those evoked by stress, starvation, and aging. Investigation of colonies created by simple nonmotile yeast cells revealed the existence of various regulators involved in their development. One of the identified signaling compounds, unprotonated volatile ammonia, is produced by colonies in pulses and seems to represent a long-distance signal notifying the colony population of incoming nutrient starvation. This alarm evokes changes in colonies that are important for their long-term survival. Models of the action of ammonia on yeast cells as well as the routes of its production are proposed. Interestingly, ammonia/ammonium also act as a signaling molecule in other organisms. Ammonia regulates several steps of the multicellular development of Dictyostelium discoideum and evidence indicates that ammonia/ammonium plays a role in neural tissues of higher eukaryotes.
Collapse
Affiliation(s)
- Zdena Palková
- Department of Genetics and Microbiology, Charles University, 12844 Prague 2, Czech Republic.
| | | |
Collapse
|
272
|
Powers T, Dilova I, Chen CY, Wedaman K. Yeast TOR signaling: a mechanism for metabolic regulation. Curr Top Microbiol Immunol 2003; 279:39-51. [PMID: 14560950 DOI: 10.1007/978-3-642-18930-2_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Understanding how cell growth is regulated in response to environmental signals remains a challenging biological problem. Recent studies indicate the TOR (target of rapamycin) kinase acts within an intracellular regulatory network used by eukaryotic cells to regulate their growth according to nutrient availability. This network affects all aspects of gene expression, including transcription, translation, and protein stability, making TOR an excellent candidate as a global regulator of cellular activity. Here we review our recent studies of two specific transcriptional outputs controlled by TOR in the budding yeast, S. cerevisiae: (1) positive regulation of genes involved in ribosome biogenesis, and (2) negative regulation of genes required for de novo biosynthesis of glutamate and glutamine. These studies have raised the important issue as to how diverse nutritional cues can pass through a common signaling pathway and yet ultimately generate distinct transcriptional responses.
Collapse
Affiliation(s)
- T Powers
- Section of Molecular and Cellular Biology, Center for Genetics and Development, Division of Biological Sciences, University of California Davis, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
273
|
Bryan BA, McGrew E, Lu Y, Polymenis M. Evidence for control of nitrogen metabolism by a START-dependent mechanism in Saccharomyces cerevisiae. Mol Genet Genomics 2003; 271:72-81. [PMID: 14648201 DOI: 10.1007/s00438-003-0957-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 11/03/2003] [Indexed: 10/26/2022]
Abstract
It is generally thought that cell growth and metabolism regulate cell division and not vice versa. Here, we examined Saccharomyces cerevisiae cells growing under conditions of continuous culture in a chemostat. We found that loss of G1 cyclins, or inactivation of the cyclin-dependent kinase Cdc28p, reduced the activity of glutamate synthase (Glt1p), a key enzyme in nitrogen assimilation. We also present evidence indicating that the G1 cyclin-dependent control of Glt1p may involve Jem1p, a DnaJ-type chaperone. Our results suggest that completion of START may be linked to nitrogen metabolism.
Collapse
Affiliation(s)
- B A Bryan
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
274
|
Liu Z, Sekito T, Spírek M, Thornton J, Butow RA. Retrograde signaling is regulated by the dynamic interaction between Rtg2p and Mks1p. Mol Cell 2003; 12:401-11. [PMID: 14536080 DOI: 10.1016/s1097-2765(03)00285-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Activation of retrograde signaling (RS) by mitochondrial dysfunction or by inhibition of TOR kinases in yeast results in nuclear accumulation of the transcription factors, Rtg1p and Rtg3p. This process requires Rtg2p, a novel cytoplasmic protein with an N-terminal ATP binding domain. We show that Rtg2p controls RS by reversibly binding a negative regulator, Mks1p. The inhibitory form of Mks1p is phosphorylated and complexed with the 14-3-3 proteins, Bmh1p and Bmh2p, which are also negative regulators of RS. A hypophosphorylated form of Mks1p bound to Rtg2p is inactive. Point mutations in the Rtg2p ATP binding domain simultaneously block RS and Mks1p-Rtg2p interaction. We propose that activation of RS via mitochondrial dysfunction and TOR inhibition intersect at the Rtg2p-Mks1p switch.
Collapse
Affiliation(s)
- Zhengchang Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
275
|
Guaragnella N, Butow RA. ATO3 encoding a putative outward ammonium transporter is an RTG-independent retrograde responsive gene regulated by GCN4 and the Ssy1-Ptr3-Ssy5 amino acid sensor system. J Biol Chem 2003; 278:45882-7. [PMID: 12966084 DOI: 10.1074/jbc.m309301200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Respiratory deficient yeast cells such as rhoo petites activate an inter-organelle signaling pathway called retrograde regulation. This results in changes in the expression of a subset of nuclear genes leading to major reconfigurations of metabolism that enable cells to adapt to the respiratory deficient state. Previous studies have focused on the role of three positive regulatory factors in the retrograde pathway, Rtg1p, Rtg2p, and Rtg3p, which are essential for both basal and elevated expressions of some, but not all, retrograde responsive genes. Here we characterize the retrograde regulation of one of those genes, ATO3, whose elevated expression in rhoo petites is largely independent of RTG gene function. ATO3 encodes a member of the YaaH family of proteins that is a putative outward ammonium transporter. We show that Ato3p-green fluorescent protein is preferentially localized to the plasma membrane of mother cells. rhoo petites express more Ato3p-green fluorescent protein in their plasma membrane than do rho+ cells, consistent with the elevated level of ATO3 transcripts in rhoo cells. We find that ATO3 expression has two levels of control, both of which are connected to amino acid sensing and regulation. The first involves GCN4, which is required for the bulk of ATO3 expression. The second involves the Ssy1-Ptr3-Ssy5 amino acid sensor system, which is preferentially required for elevated ATO3 expression in rhoo cells. We propose that ATO3 is induced in rhoo cells to eliminate the excess ammonia that arises because of a potential defect in ammonia assimilation in those cells.
Collapse
Affiliation(s)
- Nicoletta Guaragnella
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | |
Collapse
|
276
|
Arnould T, Mercy L, Houbion A, Vankoningsloo S, Renard P, Pascal T, Ninane N, Demazy C, Raes M. mtCLIC is up-regulated and maintains a mitochondrial membrane potential in mtDNA-depleted L929 cells. FASEB J 2003; 17:2145-7. [PMID: 12958156 DOI: 10.1096/fj.03-0075fje] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To explain why mitochondrial DNA (mtDNA)-depleted or rho0 cells still keep a mitochondrial membrane potential (Delta(psi)m) in the absence of respiration, several hypotheses have been proposed. The principal and well accepted one involves a reverse of action for ANT combined to F1-ATPase activity. However, the existence of other putative electrogenic channels has been speculated. Here, using mRNA differential display reverse transcriptase-polymerase chain reaction on L929 mtDNA-depleted cells, we identified mtCLIC as a differentially expressed gene in cells deprived from mitochondrial ATP production. Mitochondrial chloride intracellular channel (mtCLIC), a member of a recently discovered and expanding family of chloride intracellular channels, is up-regulated in mtDNA-depleted and rho0 cells. We showed that its expression is dependent on CREB and p53 and is sensitive to calcium and tumor necrosis factor alpha. Interestingly, up- or down-regulation of mtCLIC protein expression changes Delta(psi)m whereas the chloride channel inhibitor NPPB reduces the Delta(psi)m in mtDNA-depleted L929 cells, measured with the fluorescent probe rhodamine 123. Finally, we demonstrated that purified mitochondria from mtDNA-depleted cells incorporate, in a NPPB-sensitive manner, more 36chloride than parental mitochondria. These findings suggest that mtCLIC could be involved in mitochondrial membrane potential generation in mtDNA-depleted cells, a feature required to prevent apoptosis and to drive continuous protein import into mitochondria.
Collapse
Affiliation(s)
- T Arnould
- Laboratoire de Biochimie et Biologie Cellulaire, University of Namur (F.U.N.D.P), 61 rue de Bruxelles, 5000 Namur, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Bauer BE, Rossington D, Mollapour M, Mamnun Y, Kuchler K, Piper PW. Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3189-95. [PMID: 12869194 DOI: 10.1046/j.1432-1033.2003.03701.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of yeasts to grow in the presence of weak organic acid preservatives is an important cause of food spoilage. Many of the determinants of acetate resistance in Saccharomyces cerevisiae differ from the determinants of resistance to the more lipophilic sorbate and benzoate. Interestingly, we show in this study that hypersensitivity to both acetate and sorbate results when the cells have auxotrophic requirements for aromatic amino acids. In tryptophan biosynthetic pathway mutants, this weak acid hypersensitivity is suppressed by supplementing the medium with high levels of tryptophan or, in the case of sorbate sensitivity, by overexpressing the Tat2p high affinity tryptophan permease. Weak acid stress therefore inhibits uptake of aromatic amino acids from the medium. This allows auxotrophic requirements for these amino acids to strongly influence the resistance phenotypes of mutant strains. This property must be taken into consideration when using these phenotypes to attribute functional assignments to genes. We show that the acetate sensitivity phenotype previously ascribed to yeast mutants lacking the Pdr12p and Azr1p plasma membrane transporters is an artefact arising from the use of trp1 mutant strains. These transporters do not confer resistance to high acetate levels and, in prototrophs, their presence is actually detrimental for this resistance.
Collapse
Affiliation(s)
- Bettina E Bauer
- Department of Molecular Genetics, University and BioCenter of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
278
|
Gray CH, Ines Borges-Walmsley M, Evans GJ, Walmsley AR. The pfr1 gene from the human pathogenic fungus Paracoccidioides brasiliensis encodes a half-ABC transporter that is transcribed in response to treatment with fluconazole. Yeast 2003; 20:865-80. [PMID: 12868056 DOI: 10.1002/yea.1013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated a gene that encodes a half-ABC-transporter, designated Pfr1, from the dimorphic human pathogenic fungus Paracoccidioides brasiliensis, which has high identity with members of the ABC-superfamily involved in multidrug resistance. The pfr1 gene is predicted to encode a 827 amino acid protein that, in common with mammalian Mdr1, has a TM-NBD topology. The transcription of the pfr1 gene is induced by the triazole drug fluconazole but not by amphotericin B, suggesting a role in transport-mediated azole resistance. However, Pfr1 has greatest identity to the mitochondrial ABC transporters Mdl1 and Mdl2 from Saccharomyces cerevisiae and mammalian ABC-me, with identities of 47.2%, 40.6% and 39.5%, respectively, over the length of these proteins. Furthermore, the N-terminus of Pfr1 is rich in positively charged residues, a feature of mitochondrial targeting sequences. Considering these features, it seems likely that Pfr1 is a mitochondrial protein. Previous studies have revealed that the acquisition of azole resistance in S. cerevisiae is linked to mitochondrial loss and, conversely, that mitochondrial dysfunction can lead to the upregulation of PDR transporters mediated by the transcription factor Pdr3. Our studies suggest that a mitochondrial ABC transporter is induced as part of the cellular response to drug treatment. The promoter region of pfr1 contains a PDRE-like consensus sequence to which Pdr3 binds, which may be the element responsible for the upregulation of Pfr1 in response to fluconazole. The nucleotide binding domain of Pfr1 was expressed and purified from Escherichia coli and shown to retain ATPase activity, consistent with Pfr1 functioning as a homodimeric transport ATPase.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/genetics
- Adenosine Triphosphatases/metabolism
- Amino Acid Sequence
- Antifungal Agents/pharmacology
- Base Sequence
- Cloning, Molecular
- Drug Resistance, Fungal
- Fluconazole/pharmacology
- Fungal Proteins/biosynthesis
- Fungal Proteins/genetics
- Genes, Fungal/drug effects
- Genes, Fungal/genetics
- Genes, Fungal/physiology
- Humans
- Mitochondria/genetics
- Mitochondria/metabolism
- Molecular Sequence Data
- Paracoccidioides/drug effects
- Paracoccidioides/genetics
- Paracoccidioides/metabolism
- Phylogeny
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Transcription, Genetic/physiology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Christopher H Gray
- Centre for Infectious Diseases, Wolfson Research Institute, University of Durham, Queen's Campus, Stockton-on-Tees TS17 6BH, UK
| | | | | | | |
Collapse
|
279
|
Rottensteiner H, Wabnegger L, Erdmann R, Hamilton B, Ruis H, Hartig A, Gurvitz A. Saccharomyces cerevisiae PIP2 mediating oleic acid induction and peroxisome proliferation is regulated by Adr1p and Pip2p-Oaf1p. J Biol Chem 2003; 278:27605-11. [PMID: 12748191 DOI: 10.1074/jbc.m304097200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae genes involved in fatty acid degradation contain in their promoters oleate response elements (OREs) and type 1 upstream activation sequences (UAS1s) that bind Pip2p-Oaf1p and Adr1p, respectively. The promoter of the PIP2 gene was found to contain a potential UAS1 that consists of a tandem array of CYCCRR half-sites in an overlapping arrangement with a previously characterized ORE. Electrophoretic mobility shift analysis demonstrated that Adr1p bound to UAS1PIP2, and Northern analysis in combination with a lacZ reporter gene confirmed that Adr1p influenced the transcription of PIP2. Immunoprecipitation showed that, in adr1delta mutant cells grown on oleic acid, Pip2p was less abundant compared with the corresponding wild-type. In addition, the amount of Pip2p-Oaf1p that bound to a target ORE in vitro was reduced in mutant extracts compared with the wild-type. Transcription of the oleic acid-inducible genes SPS19 and CTA1, which rely on both Pip2p-Oaf1p and Adr1p for their regulation, was reduced in adr1delta mutant cells. However, by ectopically restoring levels of Pip2p in adr1delta cells grown on oleic acid medium, transcription of both genes increased 2-fold compared with the control. This partial suppression of the adr1delta mutant phenotype was additionally manifested by moderate utilization of oleic acid. Hence, both the expression as well as the action of the two transcription factors, Adr1p and Pip2p-Oaf1p, are interconnected, which allows for an elaborate control of fatty acid-inducible genes.
Collapse
|
280
|
Teyssier E, Hirokawa G, Tretiakova A, Jameson B, Kaji A, Kaji H. Temperature-sensitive mutation in yeast mitochondrial ribosome recycling factor (RRF). Nucleic Acids Res 2003; 31:4218-26. [PMID: 12853640 PMCID: PMC165964 DOI: 10.1093/nar/gkg449] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The yeast protein Rrf1p encoded by the FIL1 nuclear gene bears significant sequence similarity to Escherichia coli ribosome recycling factor (RRF). Here, we call FIL1 Ribosome Recycling Factor of yeast, RRF1. Its gene product, Rrf1p, was localized in mitochondria. Deletion of RRF1 leads to a respiratory incompetent phenotype and to instability of the mitochondrial genome (conversion to rho(-)/rho(0) cytoplasmic petites). Yeast with intact mitochondria and with deleted genomic RRF1 that harbors a plasmid carrying RRF1 was prepared from spores of heterozygous diploid yeast. Such yeast with a mutated allele of RRF1, rrf1-L209P, grew on a non-fermentable carbon source at 30 but not at 36 degrees C, where mitochondrial but not total protein synthesis was 90% inhibited. We propose that Rrf1p is essential for mitochondrial protein synthesis and acts as a RRF in mitochondria.
Collapse
Affiliation(s)
- Emeline Teyssier
- Department of Biochemistry and Molecular Pharmacology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107-5541, USA
| | | | | | | | | | | |
Collapse
|
281
|
Young ET, Dombek KM, Tachibana C, Ideker T. Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J Biol Chem 2003; 278:26146-58. [PMID: 12676948 DOI: 10.1074/jbc.m301981200] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADR1 and CAT8 encode carbon source-responsive transcriptional regulators that cooperatively control expression of genes involved in ethanol utilization. These transcription factors are active only after the diauxic transition, when glucose is depleted and energy-generating metabolism has shifted to the aerobic oxidation of non-fermentable carbon sources. The Snf1 protein kinase complex is required for activation of their downstream target genes described previously. Using DNA microarrays, we determined the extent to which these three factors collaborate in regulating the expression of the yeast genome after glucose depletion. The expression of 108 genes is significantly decreased in the absence of ADR1. The importance of ADR1 during the diauxic transition is illustrated by the observation that expression of almost one-half of the 40 most highly glucose-repressed genes is ADR1-dependent. ADR1-dependent genes fall into a variety of functional classes with carbon metabolism containing the largest number of members. Most of the genes in this class are involved in the oxidation of different non-fermentable carbon sources. These microarray data show that ADR1 coordinates the biochemical pathways that generate acetyl-CoA and NADH from non-fermentable substrates. Only a small number of ADR1-dependent genes are also CAT8-dependent. However, nearly one-half of the ADR1-dependent genes are also dependent on the Snf1 protein kinase for derepression. Many more genes are SNF1-dependent than are either ADR1- or CAT8-dependent suggesting that SNF1 plays a broader role in gene expression than either ADR1 or CAT8. The largest class of SNF1-dependent genes encodes regulatory proteins that could extend SNF1 dependence to additional pathways.
Collapse
Affiliation(s)
- Elton T Young
- Department of Biochemistry, the University of Washington, Seattle, Washington 98195-7350, USA.
| | | | | | | |
Collapse
|
282
|
Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston R, Cohen BA, Johnston M. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 2003; 301:71-6. [PMID: 12775844 DOI: 10.1126/science.1084337] [Citation(s) in RCA: 634] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The sifting and winnowing of DNA sequence that occur during evolution cause nonfunctional sequences to diverge, leaving phylogenetic footprints of functional sequence elements in comparisons of genome sequences. We searched for such footprints among the genome sequences of six Saccharomyces species and identified potentially functional sequences. Comparison of these sequences allowed us to revise the catalog of yeast genes and identify sequence motifs that may be targets of transcriptional regulatory proteins. Some of these conserved sequence motifs reside upstream of genes with similar functional annotations or similar expression patterns or those bound by the same transcription factor and are thus good candidates for functional regulatory sequences.
Collapse
Affiliation(s)
- Paul Cliften
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Oettl K, Höfler G, Ness GC, Sattler W, Malle E. An apparent decrease in cholesterol biosynthesis in peroxisomal-defective Chinese hamster ovary cells is related to impaired mitochondrial oxidation. Biochem Biophys Res Commun 2003; 305:957-63. [PMID: 12767923 DOI: 10.1016/s0006-291x(03)00855-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent data suggest that impaired mitochondrial activities in Zellweger fibroblasts are related to defective peroxisome biogenesis and vice versa. To investigate the contribution of functional mitochondria to cholesterol biosynthesis, radioactive precursor molecules that form acetyl-CoA via beta-oxidation-independent (pyruvate) or -dependent (palmitate and octanoate) pathways were used. Production of both 14C-labeled cholesterol and 14C-labeled CO(2) from these radioactive tracers was significantly impaired in peroxisomal-defective ZR-82 Chinese hamster ovary cells in comparison to controls. In contrast, cholesterol synthesis from acetate--a tracer directly converted to acetyl-CoA without the involvement of mitochondrial activities--was threefold higher in ZR-82 cells than in controls. Pathways further contributing to cellular cholesterol homeostasis, i.e., receptor-mediated binding of exogenous lipoprotein-associated cholesterol as well as intracellular mobilization of cholesteryl ester deposits were similar in ZR-82 and controls. From these findings, we propose that peroxisomal dysfunction in ZR-82 cells is tightly coupled to impaired mitochondrial activities, e.g., defective mitochondrial beta-oxidation and formation of acetyl-CoA from short chain fatty acids resulting in a decreased rate of CO(2) production, and an apparent decrease in cholesterol biosynthesis. Actually, cholesterol biosynthesis from acetate is increased in the peroxisomal-defective cells. This explains previous conflicting conclusions.
Collapse
Affiliation(s)
- Karl Oettl
- Institute of Medical Biochemistry and Molecular Biology, Karl-Franzens University Graz, Harrachgasse 21, Graz A-8010, Austria
| | | | | | | | | |
Collapse
|
284
|
Schüller HJ. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 2003; 43:139-60. [PMID: 12715202 DOI: 10.1007/s00294-003-0381-8] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2002] [Revised: 01/20/2003] [Accepted: 01/21/2003] [Indexed: 11/30/2022]
Abstract
Although sugars are clearly the preferred carbon sources of the yeast Saccharomyces cerevisiae, nonfermentable substrates such as ethanol, glycerol, lactate, acetate or oleate can also be used for the generation of energy and cellular biomass. Several regulatory networks of glucose repression (carbon catabolite repression) are involved in the coordinate biosynthesis of enzymes required for the utilization of nonfermentable substrates. Positively and negatively acting complexes of pleiotropic regulatory proteins have been characterized. The Snf1 (Cat1) protein kinase complex, together with its regulatory subunit Snf4 (Cat3) and alternative beta-subunits Sip1, Sip2 or Gal83, plays an outstanding role for the derepression of structural genes which are repressed in the presence of a high glucose concentration. One molecular function of the Snf1 complex is deactivation by phosphorylation of the general glucose repressor Mig1. In addition to regulation of alternative sugar fermentation, Mig1 also influences activators of respiration and gluconeogenesis, although to a lesser extent. Snf1 is also required for conversion of specific regulatory factors into transcriptional activators. This review summarizes regulatory cis-acting elements of structural genes of the nonfermentative metabolism, together with the corresponding DNA-binding proteins (Hap2-5, Rtg1-3, Cat8, Sip4, Adr1, Oaf1, Pip2), and describes the molecular interactions among general regulators and pathway-specific factors. In addition to the influence of the carbon source at the transcriptional level, mechanisms of post-transcriptional control such as glucose-regulated stability of mRNA are also discussed briefly.
Collapse
Affiliation(s)
- Hans-Joachim Schüller
- Institut für Mikrobiologie, Abteilung Genetik und Biochemie, Ernst-Moritz-Arndt-Universität, Jahnstrasse 15a, 17487 Greifswald, Germany.
| |
Collapse
|
285
|
Abdelnoor RV, Yule R, Elo A, Christensen AC, Meyer-Gauen G, Mackenzie SA. Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc Natl Acad Sci U S A 2003; 100:5968-73. [PMID: 12730382 PMCID: PMC156310 DOI: 10.1073/pnas.1037651100] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Indexed: 12/31/2022] Open
Abstract
The plant mitochondrial genome is retained in a multipartite structure that arises by a process of repeat-mediated homologous recombination. Low-frequency ectopic recombination also occurs, often producing sequence chimeras, aberrant ORFs, and novel subgenomic DNA molecules. This genomic plasticity may distinguish the plant mitochondrion from mammalian and fungal types. In plants, relative copy number of recombination-derived subgenomic DNA molecules within mitochondria is controlled by nuclear genes, and a genomic shifting process can result in their differential copy number suppression to nearly undetectable levels. We have cloned a nuclear gene that regulates mitochondrial substoichiometric shifting in Arabidopsis. The CHM gene was shown to encode a protein related to the MutS protein of Escherichia coli that is involved in mismatch repair and DNA recombination. We postulate that the process of substoichiometric shifting in plants may be a consequence of ectopic recombination suppression or replication stalling at ectopic recombination sites to effect molecule-specific copy number modulation.
Collapse
Affiliation(s)
- Ricardo V Abdelnoor
- Plant Science Initiative, School of Biological Sciences and Beadle Center for Genetics Research, University of Nebraska, Lincoln, NE 68588-0660, USA
| | | | | | | | | | | |
Collapse
|
286
|
Hatzixanthis K, Mollapour M, Seymour I, Bauer BE, Krapf G, Schüller C, Kuchler K, Piper PW. Moderately lipophilic carboxylate compounds are the selective inducers of the Saccharomyces cerevisiae Pdr12p ATP-binding cassette transporter. Yeast 2003; 20:575-85. [PMID: 12734796 DOI: 10.1002/yea.981] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae displays very strong induction of a single ATP-binding cassette (ABC) transporter, Pdr12p, when stressed with certain weak organic acids. This is a plasma membrane pump catalysing active efflux of the organic acid anion from the cell. Pdr12p action probably allows S. cerevisiae to maintain lower intracellular levels of several weak organic acid preservatives than would be expected on the basis of the free equilibration of the acid across the cell membrane. This in turn facilitates growth in the presence of these preservatives and therefore yeast spoilage of food materials. Pdr12p appears to confer resistance to those carboxylic acids that, to a reasonable degree, partition into both the lipid bilayer and aqueous phases. Its gene (PDR12) is strongly induced by sorbate, benzoate and certain other moderately lipophilic carboxylate compounds, but not by organic alcohols or high levels of acetate. PDR12 induction reflects the operation of a previously uncharacterized S. cerevisiae stress response, for which the induction signal is probably a high intracellular pool of the organic acid anion.
Collapse
Affiliation(s)
- Kostas Hatzixanthis
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | | | | | | | |
Collapse
|
287
|
James TC, Campbell S, Donnelly D, Bond U. Transcription profile of brewery yeast under fermentation conditions. J Appl Microbiol 2003; 94:432-48. [PMID: 12588552 DOI: 10.1046/j.1365-2672.2003.01849.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Yeast strains, used in the brewing industry, experience distinctive physiological conditions. During a brewing fermentation, yeast are exposed to anaerobic conditions, high pressure, high specific gravity and low temperatures. The purpose of this study was to examine the global gene expression profile of yeast subjected to brewing stress. METHODS AND RESULTS We have carried out a microarray analysis of a typical brewer's yeast during the course of an 8-day fermentation in 15 degrees P wort. We used the probes derived from Saccharomyces cerevisiae genomic DNA on the chip and RNA isolated from three stages of brewing. This analysis shows a high level of expression of genes involved in fatty acid and ergosterol biosynthesis early in fermentation. Furthermore, genes involved in respiration and mitochondrial protein synthesis also show higher levels of expression. CONCLUSIONS Surprisingly, we observed a complete repression of many stress response genes and genes involved in protein synthesis throughout the 8-day period compared with that at the start of fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY This microarray data set provides an analysis of gene expression under brewing fermentation conditions. The data provide an insight into the various metabolic processes altered or activated by brewing conditions of growth. This study leads to future experiments whereby selective alterations in brewing conditions could be introduced to take advantage of the changing transcript profile to improve the quality of the brew.
Collapse
Affiliation(s)
- T C James
- Moyne Institute for Preventive Medicine, Microbiology Department, Trinity College, University of Dublin, Dublin 2, Ireland
| | | | | | | |
Collapse
|
288
|
McCammon MT, Epstein CB, Przybyla-Zawislak B, McAlister-Henn L, Butow RA. Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes. Mol Biol Cell 2003; 14:958-72. [PMID: 12631716 PMCID: PMC151572 DOI: 10.1091/mbc.e02-07-0422] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To understand the many roles of the Krebs tricarboxylic acid (TCA) cycle in cell function, we used DNA microarrays to examine gene expression in response to TCA cycle dysfunction. mRNA was analyzed from yeast strains harboring defects in each of 15 genes that encode subunits of the eight TCA cycle enzymes. The expression of >400 genes changed at least threefold in response to TCA cycle dysfunction. Many genes displayed a common response to TCA cycle dysfunction indicative of a shift away from oxidative metabolism. Another set of genes displayed a pairwise, alternating pattern of expression in response to contiguous TCA cycle enzyme defects: expression was elevated in aconitase and isocitrate dehydrogenase mutants, diminished in alpha-ketoglutarate dehydrogenase and succinyl-CoA ligase mutants, elevated again in succinate dehydrogenase and fumarase mutants, and diminished again in malate dehydrogenase and citrate synthase mutants. This pattern correlated with previously defined TCA cycle growth-enhancing mutations and suggested a novel metabolic signaling pathway monitoring TCA cycle function. Expression of hypoxic/anaerobic genes was elevated in alpha-ketoglutarate dehydrogenase mutants, whereas expression of oxidative genes was diminished, consistent with a heme signaling defect caused by inadequate levels of the heme precursor, succinyl-CoA. These studies have revealed extensive responses to changes in TCA cycle function and have uncovered new and unexpected metabolic networks that are wired into the TCA cycle.
Collapse
Affiliation(s)
- Mark T McCammon
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 78229-3900, USA.
| | | | | | | | | |
Collapse
|
289
|
|
290
|
Abstract
The metabolic characteristics of a yeast cell determine its life span. Depending on conditions, stress resistance can have either a salutary or a deleterious effect on longevity. Gene dysregulation increases with age, and countering it increases life span. These three determinants of yeast longevity may be interrelated, and they are joined by a potential fourth, genetic stability. These factors can also operate in phylogenetically diverse species. Adult longevity seems to borrow features from the genetic programs of dormancy to provide the metabolic and stress resistance resources necessary for extended survival. Both compensatory and preventive mechanisms determine life span, while epigenetic factors and the element of chance contribute to the role that genes and environment play in aging.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans 70112, USA.
| |
Collapse
|
291
|
Parveen M, Momose Y, Kitagawa E, Kurita S, Kodama O, Iwahashi H. Bioassay of Pesticide Lindane Using Yeast-DNA Microarray Technology. CHEM-BIO INFORMATICS JOURNAL 2003. [DOI: 10.1273/cbij.3.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Meher Parveen
- National Institute of Advanced Industrial Science and Technology
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Yuko Momose
- National Institute of Advanced Industrial Science and Technology
| | - Emiko Kitagawa
- National Institute of Advanced Industrial Science and Technology
| | - Sakiko Kurita
- National Institute of Advanced Industrial Science and Technology
| | - Osamu Kodama
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Hitoshi Iwahashi
- National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
292
|
Chen OS, Hemenway S, Kaplan J. Genetic analysis of iron citrate toxicity in yeast: implications for mammalian iron homeostasis. Proc Natl Acad Sci U S A 2002; 99:16922-7. [PMID: 12471153 PMCID: PMC139245 DOI: 10.1073/pnas.232392299] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deletion of the yeast homologue of frataxin, YFH1, results in mitochondrial iron accumulation and respiratory deficiency (petite formation). We used a genetic screen to identify mutants that modify iron-associated defects in respiratory activity in Deltayfh1 cells. A deletion in the peroxisomal citrate synthase CIT2 in Deltayfh1 cells decreased the rate of petite formation. Conversely, overexpression of CIT2 in Deltayfh1 cells increased the rate of respiratory loss. Citrate toxicity in Deltayfh1 cells was dependent on iron but was independent of mitochondrial respiration. Citrate toxicity was not restricted to iron-laden mitochondria but also occurred when iron accumulated in cytosol because of impaired vacuolar iron storage. These results suggest that high levels of citrate may promote iron-mediated tissue damage.
Collapse
Affiliation(s)
- Opal S Chen
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
293
|
Pray-Grant MG, Schieltz D, McMahon SJ, Wood JM, Kennedy EL, Cook RG, Workman JL, Yates JR, Grant PA. The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol Cell Biol 2002; 22:8774-86. [PMID: 12446794 PMCID: PMC139885 DOI: 10.1128/mcb.22.24.8774-8786.2002] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SAGA complex is a conserved histone acetyltransferase-coactivator that regulates gene expression in Saccharomyces cerevisiae. SAGA contains a number of subunits known to function in transcription including Spt and Ada proteins, the Gcn5 acetyltransferase, a subset of TATA-binding-protein-associated factors (TAF(II)s), and Tra1. Here we report the identification of SLIK (SAGA-like), a complex related in composition to SAGA. Notably SLIK uniquely contains the protein Rtg2, linking the function of SLIK to the retrograde response pathway. Yeast harboring mutations in both SAGA and SLIK complexes displays synthetic phenotypes more severe than those of yeast with mutation of either complex alone. We present data indicating that distinct forms of the SAGA complex may regulate specific subsets of genes and that SAGA and SLIK have multiple partly overlapping activities, which play a critical role in transcription by RNA polymerase II.
Collapse
Affiliation(s)
- Marilyn G Pray-Grant
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Abstract
The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis.
Collapse
Affiliation(s)
- Bhaskar S Mandavilli
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
295
|
Delsite R, Kachhap S, Anbazhagan R, Gabrielson E, Singh KK. Nuclear genes involved in mitochondria-to-nucleus communication in breast cancer cells. Mol Cancer 2002; 1:6. [PMID: 12495447 PMCID: PMC149409 DOI: 10.1186/1476-4598-1-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Accepted: 11/12/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The interaction of nuclear and mitochondrial genes is an essential feature in maintenance of normal cellular function. Of 82 structural subunits that make up the oxidative phosphorylation system in the mitochondria, mitochondrial DNA (mtDNA) encodes 13 subunits and rest of the subunits are encoded by nuclear DNA. Mutations in mitochondrial genes encoding the 13 subunits have been reported in a variety of cancers. However, little is known about the nuclear response to impairment of mitochondrial function in human cells. RESULTS We isolated a Rho0 (devoid of mtDNA) derivative of a breast cancer cell line. Our study suggests that depletion of mtDNA results in oxidative stress, causing increased lipid peroxidation in breast cancer cells. Using a cDNA microarray we compared differences in the nuclear gene expression profile between a breast cancer cell line (parental Rho+) and its Rho0 derivative impaired in mitochondrial function. Expression of several nuclear genes involved in cell signaling, cell architecture, energy metabolism, cell growth, apoptosis including general transcription factor TFIIH, v-maf, AML1, was induced in Rho0 cells. Expression of several genes was also down regulated. These include phospholipase C, agouti related protein, PKC gamma, protein tyrosine phosphatase C, phosphodiestarase 1A (cell signaling), PIBF1, cytochrome p450, (metabolism) and cyclin dependent kinase inhibitor p19, and GAP43 (cell growth and differentiation). CONCLUSIONS Mitochondrial impairment in breast cancer cells results in altered expression of nuclear genes involved in signaling, cellular architecture, metabolism, cell growth and differentiation, and apoptosis. These genes may mediate the cross talk between mitochondria and the nucleus.
Collapse
Affiliation(s)
- Robert Delsite
- Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Bunting-Blaustein Cancer Research Building, 1650 Orleans Street, Room 143, Baltimore, MD 21231, USA
- Present address: Department of Radiation Oncology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - Sushant Kachhap
- Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Bunting-Blaustein Cancer Research Building, 1650 Orleans Street, Room 143, Baltimore, MD 21231, USA
| | - Ramaswamy Anbazhagan
- Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Bunting-Blaustein Cancer Research Building, 1650 Orleans Street, Room 143, Baltimore, MD 21231, USA
| | - Edward Gabrielson
- Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Bunting-Blaustein Cancer Research Building, 1650 Orleans Street, Room 143, Baltimore, MD 21231, USA
| | - Keshav K Singh
- Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Bunting-Blaustein Cancer Research Building, 1650 Orleans Street, Room 143, Baltimore, MD 21231, USA
| |
Collapse
|
296
|
Djajanegara I, Finnegan PM, Mathieu C, McCabe T, Whelan J, Day DA. Regulation of alternative oxidase gene expression in soybean. PLANT MOLECULAR BIOLOGY 2002; 50:735-42. [PMID: 12374304 DOI: 10.1023/a:1019942720636] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Soybean (Glycine max cv. Stevens) suspension cells were used to investigate the expression of the alternative oxidase (Aox) multigene family. Suspension cells displayed very high rates of cyanide-insensitive respiration, but Aox3 was the only isoform detected in untreated cells. Incubation with antimycin A, citrate, salicylic acid or at low temperature (10 degrees C) specifically induced the accumulation of the Aox1 isoform. Aox2 was not observed under any conditions in the cells. Increases in Aox1 protein correlated with increases in Aox1 mRNA. Treatment of soybean cotyledons with norflurazon also induced expression of Aox1. Reactive oxygen species (ROS) were detected upon incubation of cells with antimycin, salicylic acid or at low temperature, but not during incubation with citrate. Aox1 induction by citrate, but not by antimycin, was prevented by including the protein kinase inhibitor staurosporine in the medium. The results suggest that multiple pathways exist in soybean to regulate expression of Aox genes and that Aox1 specifically is induced by a variety of stress and metabolic conditions via at least two independent signal transduction pathways.
Collapse
Affiliation(s)
- Ira Djajanegara
- Plant Molecular Biology Group, School of Biomedical and Chemical Sciences, University of Western Australia, Crawley, Australia
| | | | | | | | | | | |
Collapse
|
297
|
Palková Z, Devaux F, Icicová M, Mináriková L, Le Crom S, Jacq C. Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 2002; 13:3901-14. [PMID: 12429834 PMCID: PMC133602 DOI: 10.1091/mbc.e01-12-0149] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
On solid substrate, growing yeast colonies alternately acidify and alkalinize the medium. Using morphological, cytochemical, genetic, and DNA microarray approaches, we characterized six temporal steps in the "acid-to-alkali" colony transition. This transition is connected with the production of volatile ammonia acting as starvation signal between colonies. We present evidence that the three membrane proteins Ato1p, Ato2p, and Ato3p, members of the YaaH family, are involved in ammonia production in Saccharomyces cerevisiae colonies. The acid-to-alkali transition is connected with decrease of mitochondrial oxidative catabolism and by peroxisome activation, which in parallel with activation of biosynthetic pathways contribute to decrease the general stress level in colonies. These metabolic features characterize a novel survival strategy used by yeast under starvation conditions prevalent in nature.
Collapse
Affiliation(s)
- Zdena Palková
- Department of Genetics and Microbiology, Charles University, Vinicná 5, 12844 Prague 2, Czech Republic.
| | | | | | | | | | | |
Collapse
|
298
|
Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 2002; 298:799-804. [PMID: 12399584 DOI: 10.1126/science.1075090] [Citation(s) in RCA: 1860] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have determined how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiae associate with genes across the genome in living cells. Just as maps of metabolic networks describe the potential pathways that may be used by a cell to accomplish metabolic processes, this network of regulator-gene interactions describes potential pathways yeast cells can use to regulate global gene expression programs. We use this information to identify network motifs, the simplest units of network architecture, and demonstrate that an automated process can use motifs to assemble a transcriptional regulatory network structure. Our results reveal that eukaryotic cellular functions are highly connected through networks of transcriptional regulators that regulate other transcriptional regulators.
Collapse
Affiliation(s)
- Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Cox KH, Tate JJ, Cooper TG. Cytoplasmic compartmentation of Gln3 during nitrogen catabolite repression and the mechanism of its nuclear localization during carbon starvation in Saccharomyces cerevisiae. J Biol Chem 2002; 277:37559-66. [PMID: 12140287 PMCID: PMC4381914 DOI: 10.1074/jbc.m204879200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Regulated intracellular localization of Gln3, the transcriptional activator responsible for nitrogen catabolite repression (NCR)-sensitive transcription, permits Saccharomyces cerevisiae to utilize good nitrogen sources (e.g. glutamine and ammonia) in preference to poor ones (e.g. proline). During nitrogen starvation or growth in medium containing a poor nitrogen source, Gln3 is nuclear and NCR-sensitive transcription is high. However, when cells are grown in excess nitrogen, Gln3 is localized to the cytoplasm with a concomitant decrease in gene expression. Treating cells with the Tor protein inhibitor, rapamycin, mimics nitrogen starvation. Recently, carbon starvation has been reported to cause nuclear localization of Gln3 and increased NCR-sensitive transcription. Here we show that nuclear localization of Gln3 during carbon starvation derives from its indirect effects on nitrogen metabolism, i.e. Gln3 does not move into the nucleus of carbon-starved cells if glutamine rather than ammonia is provided as the nitrogen source. In addition, these studies have clearly shown Gln3 is not uniformly distributed in the cytoplasm, but rather localizes to punctate or tubular structures. Analysis of these images by deconvolution microscopy suggests that Gln3 is concentrated in or associated with a highly structured system in the cytosol, one that is possibly vesicular in nature. This finding may impact significantly on how we view (i) the mechanism by which Tor regulates the intracellular localization of Gln3 and (ii) how proteins move into and out of the nucleus.
Collapse
Affiliation(s)
- Kathleen H. Cox
- Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163
| | - Jennifer J. Tate
- Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163
| | - Terrance G. Cooper
- Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163
| |
Collapse
|
300
|
Bhattacharyya S, Rolfsmeier ML, Dixon MJ, Wagoner K, Lahue RS. Identification of RTG2 as a modifier gene for CTG*CAG repeat instability in Saccharomyces cerevisiae. Genetics 2002; 162:579-89. [PMID: 12399373 PMCID: PMC1462295 DOI: 10.1093/genetics/162.2.579] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trinucleotide repeats (TNRs) undergo frequent mutations in families affected by TNR diseases and in model organisms. Much of the instability is conferred in cis by the sequence and length of the triplet tract. Trans-acting factors also modulate TNR instability risk, on the basis of such evidence as parent-of-origin effects. To help identify trans-acting modifiers, a screen was performed to find yeast mutants with altered CTG.CAG repeat mutation frequencies. The RTG2 gene was identified as one such modifier. In rtg2 mutants, expansions of CTG.CAG repeats show a modest increase in rate, depending on the starting tract length. Surprisingly, contractions were suppressed in an rtg2 background. This creates a situation in a model system where expansions outnumber contractions, as in humans. The rtg2 phenotype was apparently specific for CTG.CAG repeat instability, since no changes in mutation rate were observed for dinucleotide repeats or at the CAN1 reporter gene. This feature sets rtg2 mutants apart from most other mutants that affect genetic stability both for TNRs and at other DNA sequences. It was also found that RTG2 acts independently of its normal partners RTG1 and RTG3, suggesting a novel function of RTG2 that helps modify CTG.CAG repeat mutation risk.
Collapse
Affiliation(s)
- Saumitri Bhattacharyya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-6805, USA
| | | | | | | | | |
Collapse
|