251
|
Kaushik MS, Singh P, Tiwari B, Mishra AK. Ferric Uptake Regulator (FUR) protein: properties and implications in cyanobacteria. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1134-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
252
|
Sarsekeyeva F, Zayadan BK, Usserbaeva A, Bedbenov VS, Sinetova MA, Los DA. Cyanofuels: biofuels from cyanobacteria. Reality and perspectives. PHOTOSYNTHESIS RESEARCH 2015; 125:329-40. [PMID: 25702086 DOI: 10.1007/s11120-015-0103-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/16/2015] [Indexed: 05/04/2023]
Abstract
Cyanobacteria are represented by a diverse group of microorganisms that, by virtue of being a part of marine and freshwater phytoplankton, significantly contribute to the fixation of atmospheric carbon via photosynthesis. It is assumed that ancient cyanobacteria participated in the formation of earth's oil deposits. Biomass of modern cyanobacteria may be converted into bio-oil by pyrolysis. Modern cyanobacteria grow fast; they do not compete for agricultural lands and resources; they efficiently convert excessive amounts of CO2 into biomass, thus participating in both carbon fixation and organic chemical production. Many cyanobacterial species are easier to genetically manipulate than eukaryotic algae and other photosynthetic organisms. Thus, the cyanobacterial photosynthesis may be directed to produce carbohydrates, fatty acids, or alcohols as renewable sources of biofuels. Here we review the recent achievements in the developments and production of cyanofuels-biofuels produced from cyanobacterial biomass.
Collapse
Affiliation(s)
- Fariza Sarsekeyeva
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
253
|
[NiFe]-hydrogenase is essential for cyanobacterium Synechocystis sp. PCC 6803 aerobic growth in the dark. Sci Rep 2015. [PMID: 26215212 PMCID: PMC4517062 DOI: 10.1038/srep12424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 has a bidirectional [NiFe]-hydrogenase (Hox hydrogenase) which reversibly reduces protons to H2. This enzyme is composed of a hydrogenase domain and a diaphorase moiety, which is distinctly homologous to the NADH input module of mitochondrial respiratory Complex I. Hox hydrogenase physiological function is still unclear, since it is not required for Synechocystis fitness under standard growth conditions. We analyzed the phenotype under prolonged darkness of three Synechocystis knock-out strains, lacking either Hox hydrogenase (ΔHoxE-H) or one of the proteins responsible for the assembly of its NiFe active site (ΔHypA1 and ΔHypB1). We found that Hox hydrogenase is required for Synechocystis growth under this condition, regardless of the functional status of its catalytic site, suggesting an additional role beside hydrogen metabolism. Moreover, quantitative proteomic analyses revealed that the expression levels of several subunits of the respiratory NADPH/plastoquinone oxidoreductase (NDH-1) are reduced when Synechocystis is grown in the dark. Our findings suggest that the Hox hydrogenase could contribute to electron transport regulation when both photosynthetic and respiratory pathways are down-regulated, and provide a possible explanation for the close evolutionary relationship between mitochondrial respiratory Complex I and cyanobacterial [NiFe]-hydrogenases.
Collapse
|
254
|
Menezes AA, Cumbers J, Hogan JA, Arkin AP. Towards synthetic biological approaches to resource utilization on space missions. J R Soc Interface 2015; 12:20140715. [PMID: 25376875 PMCID: PMC4277073 DOI: 10.1098/rsif.2014.0715] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
This paper demonstrates the significant utility of deploying non-traditional biological techniques to harness available volatiles and waste resources on manned missions to explore the Moon and Mars. Compared with anticipated non-biological approaches, it is determined that for 916 day Martian missions: 205 days of high-quality methane and oxygen Mars bioproduction with Methanobacterium thermoautotrophicum can reduce the mass of a Martian fuel-manufacture plant by 56%; 496 days of biomass generation with Arthrospira platensis and Arthrospira maxima on Mars can decrease the shipped wet-food mixed-menu mass for a Mars stay and a one-way voyage by 38%; 202 days of Mars polyhydroxybutyrate synthesis with Cupriavidus necator can lower the shipped mass to three-dimensional print a 120 m3 six-person habitat by 85% and a few days of acetaminophen production with engineered Synechocystis sp. PCC 6803 can completely replenish expired or irradiated stocks of the pharmaceutical, thereby providing independence from unmanned resupply spacecraft that take up to 210 days to arrive. Analogous outcomes are included for lunar missions. Because of the benign assumptions involved, the results provide a glimpse of the intriguing potential of ‘space synthetic biology’, and help focus related efforts for immediate, near-term impact.
Collapse
Affiliation(s)
- Amor A Menezes
- California Institute for Quantitative Biosciences, University of California, 2151 Berkeley Way, Berkeley, CA 94704-5230, USA
| | - John Cumbers
- NASA Ames Space Portal, NASA Ames Research Center, MS 555-2, Moffett Field, CA 94035, USA
| | - John A Hogan
- Bioengineering Branch, NASA Ames Research Center, MS 239-15, Moffett Field, CA 94035, USA
| | - Adam P Arkin
- E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 955-512L, Berkeley, CA 94720, USA Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
255
|
Hondo S, Takahashi M, Osanai T, Matsuda M, Hasunuma T, Tazuke A, Nakahira Y, Chohnan S, Hasegawa M, Asayama M. Genetic engineering and metabolite profiling for overproduction of polyhydroxybutyrate in cyanobacteria. J Biosci Bioeng 2015; 120:510-7. [PMID: 26055446 DOI: 10.1016/j.jbiosc.2015.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 11/15/2022]
Abstract
Genetic engineering and metabolite profiling for the overproduction of polyhydroxybutyrate (PHB), which is a carbon material in biodegradable plastics, were examined in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Transconjugants harboring cyanobacterial expression vectors that carried the pha genes for PHB biosynthesis were constructed. The overproduction of PHB by the engineering cells was confirmed through microscopic observations using Nile red, transmission electron microscopy (TEM), or nuclear magnetic resonance (NMR). We successfully recovered PHB from transconjugants prepared from nitrogen-depleted medium without sugar supplementation in which PHB reached approximately 7% (w/w) of the dry cell weight, showing a value of 12-fold higher productivity in the transconjugant than that in the control strain. We also measured the intracellular levels of acetyl-CoA, acetoacetyl-CoA, and 3-hydroxybutyryl-CoA (3HB-CoA), which are intermediate products for PHB. The results obtained indicated that these products were absent or at markedly low levels when cells were subjected to the steady-state growth phase of cultivation under nitrogen depletion for the overproduction of bioplastics. Based on these results, efficient factors were discussed for the overproduction of PHB in recombinant cyanobacteria.
Collapse
Affiliation(s)
- Sayaka Hondo
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0393, Japan
| | - Masatoshi Takahashi
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0393, Japan
| | - Takashi Osanai
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan; RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Yokohama 230-0045, Japan
| | - Mami Matsuda
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan; Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan; Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Kobe 657-8501, Japan
| | - Akio Tazuke
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0393, Japan
| | - Yoichi Nakahira
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0393, Japan
| | - Shigeru Chohnan
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0393, Japan
| | - Morifumi Hasegawa
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0393, Japan
| | - Munehiko Asayama
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0393, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
256
|
Zhang Y, Niu X, Shi M, Pei G, Zhang X, Chen L, Zhang W. Identification of a transporter Slr0982 involved in ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2015; 6:487. [PMID: 26052317 PMCID: PMC4440267 DOI: 10.3389/fmicb.2015.00487] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/04/2015] [Indexed: 01/31/2023] Open
Abstract
Cyanobacteria have been engineered to produce ethanol through recent synthetic biology efforts. However, one major challenge to the cyanobacterial systems for high-efficiency ethanol production is their low tolerance to the ethanol toxicity. With a major goal to identify novel transporters involved in ethanol tolerance, we constructed gene knockout mutants for 58 transporter-encoding genes of Synechocystis sp. PCC 6803 and screened their tolerance change under ethanol stress. The efforts allowed discovery of a mutant of slr0982 gene encoding an ATP-binding cassette transporter which grew poorly in BG11 medium supplemented with 1.5% (v/v) ethanol when compared with the wild type, and the growth loss could be recovered by complementing slr0982 in the Δslr0982 mutant, suggesting that slr0982 is involved in ethanol tolerance in Synechocystis. To decipher the tolerance mechanism involved, a comparative metabolomic and network-based analysis of the wild type and the ethanol-sensitive Δslr0982 mutant was performed. The analysis allowed the identification of four metabolic modules related to slr0982 deletion in the Δslr0982 mutant, among which metabolites like sucrose and L-pyroglutamic acid which might be involved in ethanol tolerance, were found important for slr0982 deletion in the Δslr0982 mutant. This study reports on the first transporter related to ethanol tolerance in Synechocystis, which could be a useful target for further tolerance engineering. In addition, metabolomic and network analysis provides important findings for better understanding of the tolerance mechanism to ethanol stress in Synechocystis.
Collapse
Affiliation(s)
- Yanan Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Xiangfeng Niu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Xiaoqing Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| |
Collapse
|
257
|
Khanna N, Lindblad P. Cyanobacterial hydrogenases and hydrogen metabolism revisited: recent progress and future prospects. Int J Mol Sci 2015; 16:10537-61. [PMID: 26006225 PMCID: PMC4463661 DOI: 10.3390/ijms160510537] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria have garnered interest as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms can utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical processes. Our limited understanding of the cellular hydrogen production pathway is a primary setback in the potential scale-up of this process. In this regard, the present review discusses the recent insight around ferredoxin/flavodoxin as the likely electron donor to the bidirectional Hox hydrogenase instead of the generally accepted NAD(P)H. This may have far reaching implications in powering solar driven hydrogen production. However, it is evident that a successful hydrogen-producing candidate would likely integrate enzymatic traits from different species. Engineering the [NiFe] hydrogenases for optimal catalytic efficiency or expression of a high turnover [FeFe] hydrogenase in these photo-autotrophs may facilitate the development of strains to reach target levels of biohydrogen production in cyanobacteria. The fundamental advancements achieved in these fields are also summarized in this review.
Collapse
Affiliation(s)
- Namita Khanna
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-75120, Sweden.
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-75120, Sweden.
| |
Collapse
|
258
|
Kopf M, Hess WR. Regulatory RNAs in photosynthetic cyanobacteria. FEMS Microbiol Rev 2015; 39:301-15. [PMID: 25934122 PMCID: PMC6596454 DOI: 10.1093/femsre/fuv017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/06/2015] [Accepted: 03/10/2015] [Indexed: 12/02/2022] Open
Abstract
Regulatory RNAs play versatile roles in bacteria in the coordination of gene expression during various physiological processes, especially during stress adaptation. Photosynthetic bacteria use sunlight as their major energy source. Therefore, they are particularly vulnerable to the damaging effects of excess light or UV irradiation. In addition, like all bacteria, photosynthetic bacteria must adapt to limiting nutrient concentrations and abiotic and biotic stress factors. Transcriptome analyses have identified hundreds of potential regulatory small RNAs (sRNAs) in model cyanobacteria such as Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, and in environmentally relevant genera such as Trichodesmium, Synechococcus and Prochlorococcus. Some sRNAs have been shown to actually contain μORFs and encode short proteins. Examples include the 40-amino-acid product of the sml0013 gene, which encodes the NdhP subunit of the NDH1 complex. In contrast, the functional characterization of the non-coding sRNA PsrR1 revealed that the 131 nt long sRNA controls photosynthetic functions by targeting multiple mRNAs, providing a paradigm for sRNA functions in photosynthetic bacteria. We suggest that actuatons comprise a new class of genetic elements in which an sRNA gene is inserted upstream of a coding region to modify or enable transcription of that region.
Collapse
Affiliation(s)
- Matthias Kopf
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
259
|
Lee DG, Kwon J, Eom CY, Kang YM, Roh SW, Lee KB, Choi JS. Directed analysis of cyanobacterial membrane phosphoproteome using stained phosphoproteins and titanium-enriched phosphopeptides. J Microbiol 2015; 53:279-87. [PMID: 25845541 DOI: 10.1007/s12275-015-5021-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
Abstract
Gel-free shotgun phosphoproteomics of unicellular cyanobacterium Synechocystis sp. PCC 6803 has not been reported up to now. The purpose of this study is to develop directed membrane phosphoproteomic method in Synechocystis sp. Total Synechocystis membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and phosphoprotein-stained gel bands were selectively subjected to in-gel trypsin digestion. The phosphorylation sites of the resulting peptides were determined by assigning the neutral loss of [M-H(3)PO(4)] to Ser, Thr, and Tyr residues using nano-liquid chromatography 7 Tesla Fourier transform mass spectrometry. As an initial application, 111 proteins and 33 phosphoproteins were identified containing 11 integral membrane proteins. Identified four unknown phosphoproteins with transmembrane helices were suggested to be involved in membrane migration or transporters based on BLASTP search annotations. The overall distribution of hydrophobic amino acids in pTyr was lower in frequency than that of pSer or pThr. Positively charged amino acids were abundantly revealed in the surrounding amino acids centered on pTyr. A directed shotgun membrane phosphoproteomic strategy provided insight into understanding the fundamental regulatory processes underlying Ser, Thr, and Tyr phosphorylation in multi-layered membranous cyanobacteria.
Collapse
Affiliation(s)
- Dong-Gi Lee
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 305-806, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
260
|
Schuergers N, Wilde A. Appendages of the cyanobacterial cell. Life (Basel) 2015; 5:700-15. [PMID: 25749611 PMCID: PMC4390875 DOI: 10.3390/life5010700] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/12/2015] [Accepted: 02/25/2015] [Indexed: 12/29/2022] Open
Abstract
Extracellular non-flagellar appendages, called pili or fimbriae, are widespread in gram-negative bacteria. They are involved in many different functions, including motility, adhesion, biofilm formation, and uptake of DNA. Sequencing data for a large number of cyanobacterial genomes revealed that most of them contain genes for pili synthesis. However, only for a very few cyanobacteria structure and function of these appendages have been analyzed. Here, we review the structure and function of type IV pili in Synechocystis sp. PCC 6803 and analyze the distribution of type IV pili associated genes in other cyanobacteria. Further, we discuss the role of the RNA-chaperone Hfq in pilus function and the presence of genes for the chaperone-usher pathway of pilus assembly in cyanobacteria.
Collapse
Affiliation(s)
- Nils Schuergers
- University of Freiburg, Institute of Biology III, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - Annegret Wilde
- University of Freiburg, Institute of Biology III, Schänzlestr. 1, 79104 Freiburg, Germany.
| |
Collapse
|
261
|
Plohnke N, Seidel T, Kahmann U, Rögner M, Schneider D, Rexroth S. The proteome and lipidome of Synechocystis sp. PCC 6803 cells grown under light-activated heterotrophic conditions. Mol Cell Proteomics 2015; 14:572-84. [PMID: 25561504 PMCID: PMC4349978 DOI: 10.1074/mcp.m114.042382] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/10/2014] [Indexed: 12/31/2022] Open
Abstract
Cyanobacteria are photoautotrophic prokaryotes with a plant-like photosynthetic machinery. Because of their short generation times, the ease of their genetic manipulation, and the limited size of their genome and proteome, cyanobacteria are popular model organisms for photosynthetic research. Although the principal mechanisms of photosynthesis are well-known, much less is known about the biogenesis of the thylakoid membrane, hosting the components of the photosynthetic, and respiratory electron transport chain in cyanobacteria. Here we present a detailed proteome analysis of the important model and host organism Synechocystis sp. PCC 6803 under light-activated heterotrophic growth conditions. Because of the mechanistic importance and severe changes in thylakoid membrane morphology under light-activated heterotrophic growth conditions, a focus was put on the analysis of the membrane proteome, which was supported by a targeted lipidome analysis. In total, 1528 proteins (24.5% membrane integral) were identified in our analysis. For 641 of these proteins quantitative information was obtained by spectral counting. Prominent changes were observed for proteins associated with oxidative stress response and protein folding. Because of the heterotrophic growth conditions, also proteins involved in carbon metabolism and C/N-balance were severely affected. Although intracellular thylakoid membranes were significantly reduced, only minor changes were observed in their protein composition. The increased proportion of the membrane-stabilizing sulfoqinovosyl diacyl lipids found in the lipidome analysis, as well as the increased content of lipids with more saturated acyl chains, are clear indications for a coordinated synthesis of proteins and lipids, resulting in stabilization of intracellular thylakoid membranes under stress conditions.
Collapse
Affiliation(s)
- Nicole Plohnke
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Tobias Seidel
- §Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Uwe Kahmann
- ¶Department of Molecular Cell Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Matthias Rögner
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Dirk Schneider
- §Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany;
| | - Sascha Rexroth
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany;
| |
Collapse
|
262
|
Ogawa T, Sonoike K. Dissection of respiration and photosynthesis in the cyanobacterium Synechocystis sp. PCC6803 by the analysis of chlorophyll fluorescence. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 144:61-7. [DOI: 10.1016/j.jphotobiol.2015.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
|
263
|
Gifford M, Liu J, Rittmann BE, Vannela R, Westerhoff P. Phosphorus recovery from microbial biofuel residual using microwave peroxide digestion and anion exchange. WATER RESEARCH 2015; 70:130-137. [PMID: 25528543 DOI: 10.1016/j.watres.2014.11.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/12/2014] [Accepted: 11/29/2014] [Indexed: 06/04/2023]
Abstract
Sustainable production of microalgae for biofuel requires efficient phosphorus (P) utilization, which is a limited resource and vital for global food security. This research tracks the fate of P through biofuel production and investigates P recovery from the biomass using the cyanobacterium Synechocystis sp. PCC 6803. Our results show that Synechocystis contained 1.4% P dry weight. After crude lipids were extracted (e.g., for biofuel processing), 92% of the intracellular P remained in the residual biomass, indicating phospholipids comprised only a small percentage of cellular P. We estimate a majority of the P is primarily associated with nucleic acids. Advanced oxidation using hydrogen peroxide and microwave heating released 92% of the cellular P into orthophosphate. We then recovered the orthophosphate from the digestion matrix using two different types of anion exchange resins. One resin impregnated with iron nanoparticles adsorbed 98% of the influent P through 20 bed volumes, but only released 23% during regeneration. A strong-base anion exchange resin adsorbed 87% of the influent P through 20 bed volumes and released 50% of it upon regeneration. This recovered P subsequently supported growth of Synechocystis. This proof-of-concept recovery process reduced P demand of biofuel microalgae by 54%.
Collapse
Affiliation(s)
- McKay Gifford
- Arizona State University, School of Sustainable Engineering and the Built Environment, Tempe, AZ 85287-5306, USA.
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Bruce E Rittmann
- Arizona State University, Swette Center for Environmental Biotechnology, Biodesign Institute, Tempe, AZ 85287-5701, USA
| | - Raveender Vannela
- Arizona State University, Swette Center for Environmental Biotechnology, Biodesign Institute, Tempe, AZ 85287-5701, USA
| | - Paul Westerhoff
- Arizona State University, School of Sustainable Engineering and the Built Environment, Tempe, AZ 85287-5306, USA
| |
Collapse
|
264
|
Los DA, Mironov KS. Modes of Fatty Acid desaturation in cyanobacteria: an update. Life (Basel) 2015; 5:554-67. [PMID: 25809965 PMCID: PMC4390868 DOI: 10.3390/life5010554] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 11/16/2022] Open
Abstract
Fatty acid composition of individual species of cyanobacteria is conserved and it may be used as a phylogenetic marker. The previously proposed classification system was based solely on biochemical data. Today, new genomic data are available, which support a need to update a previously postulated FA-based classification of cyanobacteria. These changes are necessary in order to adjust and synchronize biochemical, physiological and genomic data, which may help to establish an adequate comprehensive taxonomic system for cyanobacteria in the future. Here, we propose an update to the classification system of cyanobacteria based on their fatty acid composition.
Collapse
Affiliation(s)
- Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street, Moscow 127276, Russia.
| | - Kirill S Mironov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street, Moscow 127276, Russia.
| |
Collapse
|
265
|
Yang Y, Feng J, Li T, Ge F, Zhao J. CyanOmics: an integrated database of omics for the model cyanobacterium Synechococcus sp. PCC 7002. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bau127. [PMID: 25632108 PMCID: PMC4309022 DOI: 10.1093/database/bau127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cyanobacteria are an important group of organisms that carry out oxygenic photosynthesis and play vital roles in both the carbon and nitrogen cycles of the Earth. The annotated genome of Synechococcus sp. PCC 7002, as an ideal model cyanobacterium, is available. A series of transcriptomic and proteomic studies of Synechococcus sp. PCC 7002 cells grown under different conditions have been reported. However, no database of such integrated omics studies has been constructed. Here we present CyanOmics, a database based on the results of Synechococcus sp. PCC 7002 omics studies. CyanOmics comprises one genomic dataset, 29 transcriptomic datasets and one proteomic dataset and should prove useful for systematic and comprehensive analysis of all those data. Powerful browsing and searching tools are integrated to help users directly access information of interest with enhanced visualization of the analytical results. Furthermore, Blast is included for sequence-based similarity searching and Cluster 3.0, as well as the R hclust function is provided for cluster analyses, to increase CyanOmics’s usefulness. To the best of our knowledge, it is the first integrated omics analysis database for cyanobacteria. This database should further understanding of the transcriptional patterns, and proteomic profiling of Synechococcus sp. PCC 7002 and other cyanobacteria. Additionally, the entire database framework is applicable to any sequenced prokaryotic genome and could be applied to other integrated omics analysis projects. Database URL: http://lag.ihb.ac.cn/cyanomics
Collapse
Affiliation(s)
- Yaohua Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China
| | - Jie Feng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China
| | - Tao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China
| | - Jindong Zhao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Science, Peking University, Beijing 100871, China
| |
Collapse
|
266
|
Osanai T, Shirai T, Iijima H, Kuwahara A, Suzuki I, Kondo A, Hirai MY. Alteration of cyanobacterial sugar and amino acid metabolism by overexpression hik8, encoding a KaiC-associated histidine kinase. Environ Microbiol 2015; 17:2430-40. [PMID: 25403325 DOI: 10.1111/1462-2920.12715] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/08/2014] [Indexed: 11/28/2022]
Abstract
Cyanobacteria possess circadian clocks consisting of KaiABC proteins, and circadian rhythm must closely relate to the primary metabolism. A histidine kinase, SasA, interacts with KaiC to transduce circadian signals and widely regulates transcription in Synechococcus sp. PCC 7942, although the involvement of SasA in primary metabolism has not been demonstrated at metabolite levels. Here, we generated a strain overexpressing hik8 (HOX80), an orthologue of SasA in Synechocystis sp. PCC 6803. HOX80 grew slowly under light conditions and lost viability under continuous dark conditions. Transcript levels of genes related to sugar catabolism remained higher in HOX80 under dark conditions. Metabolomic analysis revealed that under light conditions, glycogen was undetectable in HOX80, and there were decreased levels of metabolites of sugar catabolism and increased levels of amino acids, compared with those in the wild-type strain. HOX80 exhibited aberrant degradation of SigE proteins after a light-to-dark transition and immunoprecipitation analysis revealed that Hik8 directly interacts with KaiC1. The results of this study demonstrate that overexpression of hik8 widely alters sugar and amino acid metabolism, revealing the involvement of Hik8 in primary metabolism under both light and dark conditions in this cyanobacterium.
Collapse
Affiliation(s)
- Takashi Osanai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Tomokazu Shirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroko Iijima
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ayuko Kuwahara
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Akihiko Kondo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokkodai, Nada, Kobe, 657-8501
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
267
|
Zavřel T, Sinetova MA, Búzová D, Literáková P, Červený J. Characterization of a model cyanobacteriumSynechocystissp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Eng Life Sci 2015. [DOI: 10.1002/elsc.201300165] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Tomáš Zavřel
- Faculty of Science, Department of Experimental Biology; Masaryk University; Brno Czech Republic
| | - Maria A. Sinetova
- Laboratory of Intracellular Regulation, Institute of Plant Physiology; Russian Academy of Sciences; Moscow Russian Federation
| | - Diana Búzová
- Department of Adaptation Biotechnologies, Global Change Research Centre; Academy of Science of the Czech Republic; Drásov Czech Republic
| | - Petra Literáková
- Department of Adaptation Biotechnologies, Global Change Research Centre; Academy of Science of the Czech Republic; Drásov Czech Republic
| | - Jan Červený
- Department of Adaptation Biotechnologies, Global Change Research Centre; Academy of Science of the Czech Republic; Drásov Czech Republic
| |
Collapse
|
268
|
Heng RL, Sy KC, Pilon L. Absorption and scattering by bispheres, quadspheres, and circular rings of spheres and their equivalent coated spheres. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2015; 32:46-60. [PMID: 26366489 DOI: 10.1364/josaa.32.000046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study demonstrates that the absorption and scattering cross sections and asymmetry factor of randomly oriented and optically soft bispheres, quadspheres, and circular rings of spheres, with either monodisperse or polydisperse monomers, can be approximated by an equivalent coated sphere with identical volume and average projected area. This approximation could also apply to the angle-dependent scattering matrix elements for monomer size parameter less than 0.1. However, it quickly deteriorated with increasing monomer number and/or size parameter. It was shown to be superior to previously proposed approximations considering a volume equivalent homogeneous sphere and a coated sphere with identical volume and surface area. These results provide a rapid and accurate way of predicting the radiation characteristics of bispheres, quadspheres, and rings of spheres representative of various unicellular and multicellular cyanobacteria considered for producing food supplements, biofuels, and fertilizers. They could also be used in inverse methods for retrieving the monomers' optical properties, morphology, and/or concentration.
Collapse
|
269
|
Abstract
Microbes produce a huge array of secondary metabolites endowed with important ecological functions. These molecules, which can be catalogued as natural products, have long been exploited in medical fields as antibiotics, anticancer and anti-infective agents. Recent years have seen considerable advances in elucidating natural-product biosynthesis and many drugs used today are natural products or natural-product derivatives. The major contribution to recent knowledge came from application of genomics to secondary metabolism and was facilitated by all relevant genes being organised in a contiguous DNA segment known as gene cluster. Clustering of genes regulating biosynthesis in bacteria is virtually universal. Modular gene clusters can be mixed and matched during evolution to generate structural diversity in natural products. Biosynthesis of many natural products requires the participation of complex molecular machines known as polyketide synthases and non-ribosomal peptide synthetases. Discovery of new evolutionary links between the polyketide synthase and fatty acid synthase pathways may help to understand the selective advantages that led to evolution of secondary-metabolite biosynthesis within bacteria. Secondary metabolites confer selective advantages, either as antibiotics or by providing a chemical language that allows communication among species, with other organisms and their environment. Herewith, we discuss these aspects focusing on the most clinically relevant bioactive molecules, the thiotemplated modular systems that include polyketide synthases, non-ribosomal peptide synthetases and fatty acid synthases. We begin by describing the evolutionary and physiological role of marine natural products, their structural/functional features, mechanisms of action and biosynthesis, then turn to genomic and metagenomic approaches, highlighting how the growing body of information on microbial natural products can be used to address fundamental problems in environmental evolution and biotechnology.
Collapse
|
270
|
Rogalski M, do Nascimento Vieira L, Fraga HP, Guerra MP. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology. FRONTIERS IN PLANT SCIENCE 2015; 6:586. [PMID: 26284102 PMCID: PMC4520007 DOI: 10.3389/fpls.2015.00586] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/15/2015] [Indexed: 05/20/2023]
Abstract
During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100-220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field.
Collapse
Affiliation(s)
- Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosa, Brazil
| | - Leila do Nascimento Vieira
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Centro de Ciências Agrárias, Universidade Federal de Santa CatarinaFlorianópolis, Brazil
| | - Hugo P. Fraga
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Centro de Ciências Agrárias, Universidade Federal de Santa CatarinaFlorianópolis, Brazil
| | - Miguel P. Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Centro de Ciências Agrárias, Universidade Federal de Santa CatarinaFlorianópolis, Brazil
- *Correspondence: Miguel P. Guerra, Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 Florianópolis, SC 88034-000, Brazil,
| |
Collapse
|
271
|
Das D. Engineering Spirulina for Enhanced Medicinal Application. ALGAL BIOREFINERY: AN INTEGRATED APPROACH 2015. [PMCID: PMC7123989 DOI: 10.1007/978-3-319-22813-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cyanobacteria are prokaryotes which can perform photosynthesis like higher plants. Their genomic organisation is very simple and thus is suitable for the study of detailed photosynthesis mechanism at a molecular level also for many other genomic manipulations relevant to benefit of living organisms. This unicellular alga, Spirulina has a thin thread like elongated structure and classified under Cyanobacteriaceae which is blue green in colour. Under microscope it looks like bunch of bright helical threads (Fig. 11.1).
Collapse
Affiliation(s)
- Debabrata Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
272
|
rre37 Overexpression alters gene expression related to the tricarboxylic acid cycle and pyruvate metabolism in Synechocystis sp. PCC 6803. ScientificWorldJournal 2014; 2014:921976. [PMID: 25614900 PMCID: PMC4295605 DOI: 10.1155/2014/921976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/22/2014] [Accepted: 11/23/2014] [Indexed: 11/23/2022] Open
Abstract
The tricarboxylic acid (TCA) cycle and pyruvate metabolism of cyanobacteria are unique and important from the perspectives of biology and biotechnology research. Rre37, a response regulator induced by nitrogen depletion, activates gene expression related to sugar catabolism. Our previous microarray analysis has suggested that Rre37 controls the transcription of genes involved in sugar catabolism, pyruvate metabolism, and the TCA cycle. In this study, quantitative real-time PCR was used to measure the transcript levels of 12 TCA cycle genes and 13 pyruvate metabolism genes. The transcripts of 6 genes (acnB, icd, ppc, pyk1, me, and pta) increased after 4 h of nitrogen depletion in the wild-type GT strain but the induction was abolished by rre37 overexpression. The repression of gene expression of fumC, ddh, and ackA caused by nitrogen depletion was abolished by rre37 overexpression. The expression of me was differently affected by rre37 overexpression, compared to the other 24 genes. These results indicate that Rre37 differently controls the genes of the TCA cycle and pyruvate metabolism, implying the key reaction of the primary in this unicellular cyanobacterium.
Collapse
|
273
|
Gao L, Ge H, Huang X, Liu K, Zhang Y, Xu W, Wang Y. Systematically ranking the tightness of membrane association for peripheral membrane proteins (PMPs). Mol Cell Proteomics 2014; 14:340-53. [PMID: 25505158 DOI: 10.1074/mcp.m114.044800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Large-scale quantitative evaluation of the tightness of membrane association for nontransmembrane proteins is important for identifying true peripheral membrane proteins with functional significance. Herein, we simultaneously ranked more than 1000 proteins of the photosynthetic model organism Synechocystis sp. PCC 6803 for their relative tightness of membrane association using a proteomic approach. Using multiple precisely ranked and experimentally verified peripheral subunits of photosynthetic protein complexes as the landmarks, we found that proteins involved in two-component signal transduction systems and transporters are overall tightly associated with the membranes, whereas the associations of ribosomal proteins are much weaker. Moreover, we found that hypothetical proteins containing the same domains generally have similar tightness. This work provided a global view of the structural organization of the membrane proteome with respect to divergent functions, and built the foundation for future investigation of the dynamic membrane proteome reorganization in response to different environmental or internal stimuli.
Collapse
Affiliation(s)
- Liyan Gao
- From the ‡State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China
| | - Haitao Ge
- §State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xiahe Huang
- From the ‡State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China
| | - Kehui Liu
- From the ‡State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China
| | - Yuanya Zhang
- From the ‡State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China
| | - Wu Xu
- ¶Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70504
| | - Yingchun Wang
- From the ‡State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China;
| |
Collapse
|
274
|
Micallef ML, D'Agostino PM, Al-Sinawi B, Neilan BA, Moffitt MC. Exploring cyanobacterial genomes for natural product biosynthesis pathways. Mar Genomics 2014; 21:1-12. [PMID: 25482899 DOI: 10.1016/j.margen.2014.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/22/2014] [Accepted: 11/23/2014] [Indexed: 11/26/2022]
Abstract
Cyanobacteria produce a vast array of natural products, some of which are toxic to human health, while others possess potential pharmaceutical activities. Genome mining enables the identification and characterisation of natural product gene clusters; however, the current number of cyanobacterial genomes remains low compared to other phyla. There has been a recent effort to rectify this issue by increasing the number of sequenced cyanobacterial genomes. This has enabled the identification of biosynthetic gene clusters for structurally diverse metabolites, including non-ribosomal peptides, polyketides, ribosomal peptides, UV-absorbing compounds, alkaloids, terpenes and fatty acids. While some of the identified biosynthetic gene clusters correlate with known metabolites, genome mining also highlights the number and diversity of clusters for which the product is unknown (referred to as orphan gene clusters). A number of bioinformatic tools have recently been developed in order to predict the products of orphan gene clusters; however, in some cases the complexity of the cyanobacterial pathways makes the prediction problematic. This can be overcome by the use of mass spectrometry-guided natural product genome mining, or heterologous expression. Application of these techniques to cyanobacterial natural product gene clusters will be explored.
Collapse
Affiliation(s)
- Melinda L Micallef
- School of Science and Health, University of Western Sydney, Campbelltown, NSW 2560, Australia
| | - Paul M D'Agostino
- School of Science and Health, University of Western Sydney, Campbelltown, NSW 2560, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Bakir Al-Sinawi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Michelle C Moffitt
- School of Science and Health, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
275
|
Yang H, Liao L, Bo T, Zhao L, Sun X, Lu X, Norling B, Huang F. Slr0151 in Synechocystis sp. PCC 6803 is required for efficient repair of photosystem II under high-light condition. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1136-50. [PMID: 25146729 DOI: 10.1111/jipb.12275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/18/2014] [Indexed: 05/06/2023]
Abstract
Cyanobacteria are ancient photosynthetic prokaryotes that have adapted successfully to adverse environments including high-light irradiation. Although it is known that the repair of photodamaged photosystem II (PSII) in the organisms is a highly regulated process, our knowledge of the molecular components that regulate each step of the process is limited. We have previously identified a hypothetical protein Slr0151 in the membrane fractions of cyanobacterium Synechocystis sp. PCC 6803. Here, we report that Slr0151 is involved in PSII repair of the organism. We generated a mutant strain (Δslr0151) lacking the protein Slr0151 and analyzed its characteristics under normal and high-light conditions. Targeted deletion of slr0151 resulted in decreased PSII activity in Synechocystis. Moreover, the mutant exhibited increased photoinhibition due to impairment of PSII repair under high-light condition. Further analysis using in vivo radioactive labeling and 2-D blue native/sodium dodecylsulfate polyacrylamide gel electrophoresis indicated that the PSII repair cycle was hindered at the levels of D1 synthesis and disassembly and/or assembly of PSII in the mutant. Protein interaction assays demonstrated that Slr0151 interacts with D1 and CP43 proteins. Taken together, these results indicate that Slr0151 plays an important role in regulating PSII repair in the organism under high-light stress condition.
Collapse
Affiliation(s)
- Haomeng Yang
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
276
|
Mähler N, Cheregi O, Funk C, Netotea S, Hvidsten TR. Synergy: a web resource for exploring gene regulation in Synechocystis sp. PCC6803. PLoS One 2014; 9:e113496. [PMID: 25420108 PMCID: PMC4242644 DOI: 10.1371/journal.pone.0113496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022] Open
Abstract
Despite being a highly studied model organism, most genes of the cyanobacterium Synechocystis sp. PCC 6803 encode proteins with completely unknown function. To facilitate studies of gene regulation in Synechocystis, we have developed Synergy (http://synergy.plantgenie.org), a web application integrating co-expression networks and regulatory motif analysis. Co-expression networks were inferred from publicly available microarray experiments, while regulatory motifs were identified using a phylogenetic footprinting approach. Automatically discovered motifs were shown to be enriched in the network neighborhoods of regulatory proteins much more often than in the neighborhoods of non-regulatory genes, showing that the data provide a sound starting point for studying gene regulation in Synechocystis. Concordantly, we provide several case studies demonstrating that Synergy can be used to find biologically relevant regulatory mechanisms in Synechocystis. Synergy can be used to interactively perform analyses such as gene/motif search, network visualization and motif/function enrichment. Considering the importance of Synechocystis for photosynthesis and biofuel research, we believe that Synergy will become a valuable resource to the research community.
Collapse
Affiliation(s)
- Niklas Mähler
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Christiane Funk
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Sergiu Netotea
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Computational Life Science Cluster, Umeå University, Umeå, Sweden
| | - Torgeir R. Hvidsten
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
277
|
Hintzpeter J, Martin H, Maser E. Reduction of lipid peroxidation products and advanced glycation end‐product precursors by cyanobacterial aldo‐keto reductase AKR3G1—a founding member of the AKR3G subfamily. FASEB J 2014; 29:263-73. [DOI: 10.1096/fj.14-258327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jan Hintzpeter
- Institute of Toxicology and Pharmacology for Natural ScientistsUniversity Medical School Schleswig‐HolsteinCampus KielKielGermany
| | - Hans‐Joerg Martin
- Institute of Toxicology and Pharmacology for Natural ScientistsUniversity Medical School Schleswig‐HolsteinCampus KielKielGermany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural ScientistsUniversity Medical School Schleswig‐HolsteinCampus KielKielGermany
| |
Collapse
|
278
|
Billis K, Billini M, Tripp HJ, Kyrpides NC, Mavromatis K. Comparative transcriptomics between Synechococcus PCC 7942 and Synechocystis PCC 6803 provide insights into mechanisms of stress acclimation. PLoS One 2014; 9:e109738. [PMID: 25340743 PMCID: PMC4207680 DOI: 10.1371/journal.pone.0109738] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/13/2014] [Indexed: 12/13/2022] Open
Abstract
Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 are model cyanobacteria from which the metabolism and adaptive responses of other cyanobacteria are inferred. Using stranded and 5' enriched libraries, we measured the gene expression response of cells transferred from reference conditions to stress conditions of decreased inorganic carbon, increased salinity, increased pH, and decreased illumination at 1-h and 24-h after transfer. We found that the specific responses of the two strains were by no means identical. Transcriptome profiles allowed us to improve the structural annotation of the genome i.e. identify possible missed genes (including anti-sense), alter gene coordinates and determine transcriptional units (operons). Finally, we predicted associations between proteins of unknown function and biochemical pathways by revealing proteins of known functions that are co-regulated with the unknowns. Future studies of these model organisms will benefit from the cataloging of their responses to environmentally relevant stresses, and improvements in their genome annotations found here.
Collapse
Affiliation(s)
- Konstantinos Billis
- Microbial Genome and Metagenome Program, DOE-Joint Genome Institute, Walnut Creek, California, United States of America
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Billini
- Microbial Genome and Metagenome Program, DOE-Joint Genome Institute, Walnut Creek, California, United States of America
- Group of Prokaryotic Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Faculty of Biology, Philipps-Universität, Marburg, Germany
| | - H. James Tripp
- Microbial Genome and Metagenome Program, DOE-Joint Genome Institute, Walnut Creek, California, United States of America
| | - Nikos C. Kyrpides
- Microbial Genome and Metagenome Program, DOE-Joint Genome Institute, Walnut Creek, California, United States of America
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Konstantinos Mavromatis
- Microbial Genome and Metagenome Program, DOE-Joint Genome Institute, Walnut Creek, California, United States of America
- Computational Biology Group, Celgene Corp, San Francisco, California, United States of America
| |
Collapse
|
279
|
Arai S, Okochi M, Hanai T, Honda H. Micro-compartmentalized cultivation of cyanobacteria for mutant screening using glass slides with highly water-repellent mark. ACTA ACUST UNITED AC 2014; 4:151-155. [PMID: 28435803 PMCID: PMC5374263 DOI: 10.1016/j.btre.2014.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 11/29/2022]
Abstract
The droplet culture of cyanobacteria showed little toxicity using dodecane. The oil phase protects the medium from drying and increases CO2 supply. Single cell encapsulation and culture can be a powerful tool in mutant selection.
Photosynthetic microorganisms such as cyanobacteria have attracted attention for their potential to produce biofuels and biochemicals directly from CO2. Cell isolation by colony has conventionally been used for selecting target cells. Colony isolation methods require a significant amount of time for cultivation, and the colony-forming ratio is potentially low for cyanobacteria. Here, we overcome such limitations by encapsulating and culturing cells in droplets with an overlay of dodecane using glass slides printed with highly water-repellent mark. In the compartmentalized culture, the oil phase protects the small volume of culture medium from drying and increases the CO2 supply. Since a difference in cell growth was observed with and without the addition of antibiotics, this compartmentalized culture method could be a powerful tool for mutant selection.
Collapse
Affiliation(s)
- Sayuri Arai
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Mina Okochi
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Taizo Hanai
- Laboratory for Bioinformatics, Graduate School of Systems Life Sciences, Kyusyu University, 804 Westwing, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Honda
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
280
|
Wang Z, Cui X, Wang C, Huang J, Geng D. Biotransformation of 6-deoxypseudoanisatin by Synechocystis sp. PCC6803. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2014. [DOI: 10.1016/j.jtcms.2014.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
281
|
Chardonnet S, Sakr S, Cassier-Chauvat C, Le Maréchal P, Chauvat F, Lemaire SD, Decottignies P. First proteomic study of S-glutathionylation in cyanobacteria. J Proteome Res 2014; 14:59-71. [PMID: 25208982 DOI: 10.1021/pr500625a] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glutathionylation, the reversible post-translational formation of a mixed disulfide between a cysteine residue and glutathione (GSH), is a crucial mechanism for signal transduction and regulation of protein function. Until now this reversible redox modification was studied mainly in eukaryotic cells. Here we report a large-scale proteomic analysis of glutathionylation in a photosynthetic prokaryote, the model cyanobacterium Synechocystis sp. PCC6803. Treatment of acellular extracts with N,N-biotinyl glutathione disulfide (BioGSSG) induced glutathionylation of numerous proteins, which were subsequently isolated by affinity chromatography on streptavidin columns and identified by nano LC-MS/MS analysis. Potential sites of glutathionylation were also determined for 125 proteins following tryptic cleavage, streptavidin-affinity purification, and mass spectrometry analysis. Taken together the two approaches allowed the identification of 383 glutathionylatable proteins that participate in a wide range of cellular processes and metabolic pathways such as carbon and nitrogen metabolisms, cell division, stress responses, and H2 production. In addition, the glutathionylation of two putative targets, namely, peroxiredoxin (Sll1621) involved in oxidative stress tolerance and 3-phosphoglycerate dehydrogenase (Sll1908) acting on amino acids metabolism, was confirmed by biochemical studies on the purified recombinant proteins. These results suggest that glutathionylation constitutes a major mechanism of global regulation of the cyanobacterial metabolism under oxidative stress conditions.
Collapse
|
282
|
Watabe K, Mimuro M, Tsuchiya T. Development of a high-frequency in vivo transposon mutagenesis system for Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. ACTA ACUST UNITED AC 2014; 55:2017-26. [DOI: 10.1093/pcp/pcu128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
283
|
Tillich UM, Wolter N, Schulze K, Kramer D, Brödel O, Frohme M. High-throughput cultivation and screening platform for unicellular phototrophs. BMC Microbiol 2014; 14:239. [PMID: 25223876 PMCID: PMC4172822 DOI: 10.1186/s12866-014-0239-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-throughput cultivation and screening methods allow a parallel, miniaturized and cost efficient processing of many samples. These methods however, have not been generally established for phototrophic organisms such as microalgae or cyanobacteria. RESULTS In this work we describe and test high-throughput methods with the model organism Synechocystis sp. PCC6803. The required technical automation for these processes was achieved with a Tecan Freedom Evo 200 pipetting robot. The cultivation was performed in 2.2 ml deepwell microtiter plates within a cultivation chamber outfitted with programmable shaking conditions, variable illumination, variable temperature, and an adjustable CO2 atmosphere. Each microtiter-well within the chamber functions as a separate cultivation vessel with reproducible conditions. The automated measurement of various parameters such as growth, full absorption spectrum, chlorophyll concentration, MALDI-TOF-MS, as well as a novel vitality measurement protocol, have already been established and can be monitored during cultivation. Measurement of growth parameters can be used as inputs for the system to allow for periodic automatic dilutions and therefore a semi-continuous cultivation of hundreds of cultures in parallel. The system also allows the automatic generation of mid and long term backups of cultures to repeat experiments or to retrieve strains of interest. CONCLUSIONS The presented platform allows for high-throughput cultivation and screening of Synechocystis sp. PCC6803. The platform should be usable for many phototrophic microorganisms as is, and be adaptable for even more. A variety of analyses are already established and the platform is easily expandable both in quality, i.e. with further parameters to screen for additional targets and in quantity, i.e. size or number of processed samples.
Collapse
Affiliation(s)
- Ulrich M Tillich
- />Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 16-2001, D-15745 Wildau, Germany
- />Institute of Biology, Humboldt-University Berlin, Berlin, Germany
| | - Nick Wolter
- />Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 16-2001, D-15745 Wildau, Germany
| | - Katja Schulze
- />Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 16-2001, D-15745 Wildau, Germany
| | - Dan Kramer
- />Cyano biotech GmbH, Magnusstrasse 11, D-12489 Berlin, Germany
| | - Oliver Brödel
- />Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 16-2001, D-15745 Wildau, Germany
| | - Marcus Frohme
- />Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 16-2001, D-15745 Wildau, Germany
| |
Collapse
|
284
|
Oh SE, Yeung C, Babaei-Rad R, Zhao R. Cosuppression of the chloroplast localized molecular chaperone HSP90.5 impairs plant development and chloroplast biogenesis in Arabidopsis. BMC Res Notes 2014; 7:643. [PMID: 25216779 PMCID: PMC4168064 DOI: 10.1186/1756-0500-7-643] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND HSP90.5 is a chloroplast localized HSP90 family molecular chaperone in Arabidopsis, and it has been implicated in plant abiotic stress resistance, photomorphogenesis and nuclear-encoded protein import into the chloroplast. However, how these processes are controlled by HSP90 is not well understood. To understand the role of HSP90.5 in chloroplast function and biogenesis, in this study, we generated transgenic Arabidopsis plants that overexpress a C-terminally FLAG-tagged HSP90.5. By characterizing three HSP90.5 cosuppression lines, we demonstrated the essential role of HSP90.5 in plant growth and chloroplast biogenesis. RESULTS Immunoblotting and quantitative PCR analyses revealed three independent HSP90.5 cosuppressing transgenic lines. All three cosuppression lines displayed a certain degree of variegated phenotype in photosynthetic tissues, and the cosuppression did not affect the expression of cytosolic HSP90 isoforms. HSP90.5 cosuppression was shown to be developmentally regulated and occurred mostly at late developmental stage in adult leaves and inflorescence tissues. HSP90.5 cosuppression also caused significantly reduced rosette leaf growth, transient starch storage, but did not affect rosette leaf initiation or inflorescence production, although the fertility was reduced. Isolation of chloroplasts and size exclusion chromatography analysis indicated that the FLAG at the HSP90.5 C-terminus does not affect its proper chloroplast localization and dimerization. Finally, transmission electron microscopy indicated that chloroplast development in HSP90.5 cosuppression leaves was significantly impaired and the integrity of chloroplast is highly correlated to the expression level of HSP90.5. CONCLUSION We thoroughly characterized three HSP90.5 cosuppression lines, and demonstrated that properly controlled expression of HSP90.5 is required for plant growth and development in many tissues, and especially essential for chloroplast thylakoid formation. Since the homozygote of HSP90.5 knockout mutant is embryonically lethal, this study provides transgenic lines that mimic the conditional knockout line or siRNA line of the essential HSP90.5 gene in Arabidopsis.
Collapse
Affiliation(s)
- Saehong E Oh
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Scarborough, Ontario M1C 1A4 Canada
| | - Christine Yeung
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Scarborough, Ontario M1C 1A4 Canada
| | - Rebecca Babaei-Rad
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Scarborough, Ontario M1C 1A4 Canada
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Scarborough, Ontario M1C 1A4 Canada
| |
Collapse
|
285
|
Dörrich AK, Mitschke J, Siadat O, Wilde A. Deletion of the Synechocystis sp. PCC 6803 kaiAB1C1 gene cluster causes impaired cell growth under light-dark conditions. MICROBIOLOGY-SGM 2014; 160:2538-2550. [PMID: 25139948 DOI: 10.1099/mic.0.081695-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In contrast to Synechococcus elongatus PCC 7942, few data exist on the timing mechanism of the widely used cyanobacterium Synechocystis sp. PCC 6803. The standard kaiAB1C1 operon present in this organism was shown to encode a functional KaiC protein that interacted with KaiA, similar to the S. elongatus PCC 7942 clock. Inactivation of this operon in Synechocystis sp. PCC 6803 resulted in a mutant with a strong growth defect when grown under light-dark cycles, which was even more pronounced when glucose was added to the growth medium. In addition, mutants showed a bleaching phenotype. No effects were detected in mutant cells grown under constant light. Microarray experiments performed with cells grown for 1 day under a light-dark cycle revealed many differentially regulated genes with known functions in the ΔkaiABC mutant in comparison with the WT. We identified the genes encoding the cyanobacterial phytochrome Cph1 and the light-repressed protein LrtA as well as several hypothetical ORFs with a complete inverse behaviour in the light cycle. These transcripts showed a stronger accumulation in the light but a weaker accumulation in the dark in ΔkaiABC cells in comparison with the WT. In general, we found a considerable overlap with microarray data obtained for hik31 and sigE mutants. These genes are known to be important regulators of cell metabolism in the dark. Strikingly, deletion of the ΔkaiABC operon led to a much stronger phenotype under light-dark cycles in Synechocystis sp. PCC 6803 than in Synechococcus sp. PCC 7942.
Collapse
Affiliation(s)
- Anja K Dörrich
- Institute for Microbiology and Molecular Biology, Justus-Liebig-University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Jan Mitschke
- Institute of Biology III, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Olga Siadat
- Institute of Biology III, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| |
Collapse
|
286
|
Wu ZB. Analysis of correlation structures in the Synechocystis PCC6803 genome. Comput Biol Chem 2014; 53 Pt A:49-58. [PMID: 25199594 DOI: 10.1016/j.compbiolchem.2014.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 11/26/2022]
Abstract
Transfer of nucleotide strings in the Synechocystis sp. PCC6803 genome is investigated to exhibit periodic and non-periodic correlation structures by using the recurrence plot method and the phase space reconstruction technique. The periodic correlation structures are generated by periodic transfer of several substrings in long periodic or non-periodic nucleotide strings embedded in the coding regions of genes. The non-periodic correlation structures are generated by non-periodic transfer of several substrings covering or overlapping with the coding regions of genes. In the periodic and non-periodic transfer, some gaps divide the long nucleotide strings into the substrings and prevent their global transfer. Most of the gaps are either the replacement of one base or the insertion/reduction of one base. In the reconstructed phase space, the points generated from two or three steps for the continuous iterative transfer via the second maximal distance can be fitted by two lines. It partly reveals an intrinsic dynamics in the transfer of nucleotide strings. Due to the comparison of the relative positions and lengths, the substrings concerned with the non-periodic correlation structures are almost identical to the mobile elements annotated in the genome. The mobile elements are thus endowed with the basic results on the correlation structures.
Collapse
Affiliation(s)
- Zuo-Bing Wu
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
287
|
Zhao J, Gao F, Zhang J, Ogawa T, Ma W. NdhO, a subunit of NADPH dehydrogenase, destabilizes medium size complex of the enzyme in Synechocystis sp. strain PCC 6803. J Biol Chem 2014; 289:26669-26676. [PMID: 25107904 DOI: 10.1074/jbc.m114.553925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Two mutants that grew faster than the wild-type (WT) strain under high light conditions were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in ssl1690 encoding NdhO. Deletion of ndhO increased the activity of NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET), while overexpression decreased the activity. Although deletion and overexpression of ndhO did not have significant effects on the amount of other subunits such as NdhH, NdhI, NdhK, and NdhM in the cells, the amount of these subunits in the medium size NDH-1 (NDH-1M) complex was higher in the ndhO-deletion mutant and much lower in the overexpression strain than in the WT. NdhO strongly interacts with NdhI and NdhK but not with other subunits. NdhI interacts with NdhK and the interaction was blocked by NdhO. The blocking may destabilize the NDH-1M complex and repress the NDH-CET activity. When cells were transferred from growth light to high light, the amounts of NdhI and NdhK increased without significant change in the amount of NdhO, thus decreasing the relative amount of NdhO. This might have decreased the blocking, thereby stabilizing the NDH-1M complex and increasing the NDH-CET activity under high light conditions.
Collapse
Affiliation(s)
- Jiaohong Zhao
- College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Fudan Gao
- College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Jingsong Zhang
- College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Teruo Ogawa
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Weimin Ma
- College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and.
| |
Collapse
|
288
|
Uchiyama J, Asakura R, Moriyama A, Kubo Y, Shibata Y, Yoshino Y, Tahara H, Matsuhashi A, Sato S, Nakamura Y, Tabata S, Ohta H. Sll0939 is induced by Slr0967 in the cyanobacterium Synechocystis sp. PCC6803 and is essential for growth under various stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:36-43. [PMID: 24629663 DOI: 10.1016/j.plaphy.2014.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/10/2014] [Indexed: 06/03/2023]
Abstract
In this study, the genes expressed in response to low pH stress were identified in the unicellular cyanobacterium Synechocystis sp. PCC 6803 using DNA microarrays. The expression of slr0967 and sll0939 constantly increased throughout 4-h acid stress conditions. Overexpression of these two genes under the control of the trc promoter induced the cells to become tolerant to acid stress. The Δslr0967 and Δsll0939 mutant cells exhibited sensitivity to osmotic and salt stress, whereas the trc mutants of these genes exhibited tolerance to these types of stress. Microarray analysis of the Δslr0967 mutant under acid stress conditions showed that expression of the high light-inducible protein ssr2595 (HliB) and the two-component response regulator slr1214 (rre15) were out of regulation due to gene inactivation, whereas they were upregulated by acid stress in the wild-type cells. Microarray analysis and real-time quantitative reverse transcription-polymerase chain reaction analysis showed that the expression of sll0939 was significantly repressed in the slr0967 deletion mutant. These results suggest that sll0939 is directly involved in the low pH tolerance of Synechocystis sp. PCC 6803 and that slr0967 may be essential for the induction of acid stress-responsive genes.
Collapse
Affiliation(s)
- Junji Uchiyama
- Research Center for RNA Science, RIST, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Ryosuke Asakura
- Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Atsushi Moriyama
- Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Yuko Kubo
- Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Yousuke Shibata
- Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Yuka Yoshino
- Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Hiroko Tahara
- Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Ayumi Matsuhashi
- Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | | | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hisataka Ohta
- Research Center for RNA Science, RIST, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan.
| |
Collapse
|
289
|
Tillich UM, Wolter N, Franke P, Dühring U, Frohme M. Screening and genetic characterization of thermo-tolerant Synechocystis sp. PCC6803 strains created by adaptive evolution. BMC Biotechnol 2014; 14:66. [PMID: 25029912 PMCID: PMC4110520 DOI: 10.1186/1472-6750-14-66] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/10/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Temperature tolerance is an important aspect for commercial scale outdoor cultivation of microalgae and cyanobacteria. While various genes are known to be related to Synechocystis sp. PCC6803's heat shock response, there is very limited published data concerning the specific genes involved in long term thermal tolerance. We have previously used random mutagenesis and adaptive evolution to generate a mixture of strains of Synechocystis sp. PCC6803 with significantly increased thermal tolerance. The genetic modifications leading to the phenotypes of the newly generated strains are the focus of this work. RESULTS We used a custom screening platform, based on 96-deepwell microplate culturing in an in house designed cultivation chamber integrated in a liquid handling robot for screening and selection; in addition we also used a more conventional system. The increased thermal tolerances of the isolated monoclonal strains were validated in larger bioreactors and their whole genomes sequenced. Comparison of the sequence information to the parental wild type identified various mutations responsible for the enhanced phenotypes. Among the affected genes identified are clpC, pnp, pyk2, sigF, nlpD, pyrR, pilJ and cya1. CONCLUSIONS The applied methods (random mutagenesis, in vivo selection, screening, validation, whole genome sequencing) were successfully applied to identify various mutations, some of which are very unlikely to have been identified by other approaches. Several of the identified mutations are found in various strains and (due to their distribution) are likely to have occurred independently. This, coupled with the relatively low number of affected genes underscores the significance of these specific mutations to convey thermal tolerance in Synechocystis.
Collapse
Affiliation(s)
- Ulrich M Tillich
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Bahnhofstraße 1, 16-2001, D-15745 Wildau, Germany
- Institute of Biology, Humboldt-University Berlin, Berlin, Germany
| | - Nick Wolter
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Bahnhofstraße 1, 16-2001, D-15745 Wildau, Germany
| | - Philipp Franke
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Bahnhofstraße 1, 16-2001, D-15745 Wildau, Germany
| | - Ulf Dühring
- Algenol Biofuels Germany GmbH, Berlin, Germany
| | - Marcus Frohme
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Bahnhofstraße 1, 16-2001, D-15745 Wildau, Germany
| |
Collapse
|
290
|
Zhang J, Gao F, Zhao J, Ogawa T, Wang Q, Ma W. NdhP is an exclusive subunit of large complex of NADPH dehydrogenase essential to stabilize the complex in Synechocystis sp. strain PCC 6803. J Biol Chem 2014; 289:18770-81. [PMID: 24847053 PMCID: PMC4081920 DOI: 10.1074/jbc.m114.553404] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/05/2014] [Indexed: 12/22/2022] Open
Abstract
Two major complexes of NADPH dehydrogenase (NDH-1) have been identified in cyanobacteria. A large complex (NDH-1L) contains NdhD1 and NdhF1, which are absent in a medium size complex (NDH-1M). They play important roles in respiration, cyclic electron transport around photosystem I, and CO2 acquisition. Two mutants sensitive to high light for growth and impaired in NDH-1-mediated cyclic electron transfer were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in sml0013 encoding NdhP, a single transmembrane small subunit of the NDH-1 complex. During prolonged incubation of the wild type thylakoid membrane with n-dodecyl β-d-maltoside (DM), about half of the NDH-1L was disassembled to NDH-1M and the rest decomposed completely without forming NDH-1M. In the ndhP deletion mutant (ΔndhP), disassembling of NDH-1L to NDH-1M occurred even on ice, and decomposition to a small piece occurred at room temperature much faster than in the wild type. Deletion of the C-terminal tail of NdhP gave the same result. The C terminus of NdhP was tagged by YFP-His6. Blue native gel electrophoresis of the DM-treated thylakoid membrane of this strain and Western analysis using the antibody against GFP revealed that NdhP-YFP-His6 was exclusively confined to NDH-1L. During prolonged incubation of the thylakoid membrane of the tagged strain with DM at room temperature, NDH-1L was partially disassembled to NDH-1M and the 160-kDa band containing NdhP-YFP-His6 and possibly NdhD1 and NdhF1. We therefore conclude that NdhP, especially its C-terminal tail, is essential to assemble NdhD1 and NdhF1 and stabilize the NDH-1L complex.
Collapse
Affiliation(s)
- Jingsong Zhang
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Fudan Gao
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Jiaohong Zhao
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Teruo Ogawa
- the Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Quanxi Wang
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Weimin Ma
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| |
Collapse
|
291
|
Hernández-Prieto MA, Semeniuk TA, Futschik ME. Toward a systems-level understanding of gene regulatory, protein interaction, and metabolic networks in cyanobacteria. Front Genet 2014; 5:191. [PMID: 25071821 PMCID: PMC4079066 DOI: 10.3389/fgene.2014.00191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/11/2014] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteria are essential primary producers in marine ecosystems, playing an important role in both carbon and nitrogen cycles. In the last decade, various genome sequencing and metagenomic projects have generated large amounts of genetic data for cyanobacteria. This wealth of data provides researchers with a new basis for the study of molecular adaptation, ecology and evolution of cyanobacteria, as well as for developing biotechnological applications. It also facilitates the use of multiplex techniques, i.e., expression profiling by high-throughput technologies such as microarrays, RNA-seq, and proteomics. However, exploration and analysis of these data is challenging, and often requires advanced computational methods. Also, they need to be integrated into our existing framework of knowledge to use them to draw reliable biological conclusions. Here, systems biology provides important tools. Especially, the construction and analysis of molecular networks has emerged as a powerful systems-level framework, with which to integrate such data, and to better understand biological relevant processes in these organisms. In this review, we provide an overview of the advances and experimental approaches undertaken using multiplex data from genomic, transcriptomic, proteomic, and metabolomic studies in cyanobacteria. Furthermore, we summarize currently available web-based tools dedicated to cyanobacteria, i.e., CyanoBase, CyanoEXpress, ProPortal, Cyanorak, CyanoBIKE, and CINPER. Finally, we present a case study for the freshwater model cyanobacteria, Synechocystis sp. PCC6803, to show the power of meta-analysis, and the potential to extrapolate acquired knowledge to the ecologically important marine cyanobacteria genus, Prochlorococcus.
Collapse
Affiliation(s)
| | - Trudi A Semeniuk
- Systems Biology and Bioinformatics Laboratory, IBB-CBME, University of Algarve Faro, Portugal
| | - Matthias E Futschik
- Systems Biology and Bioinformatics Laboratory, IBB-CBME, University of Algarve Faro, Portugal ; Centre of Marine Sciences, University of Algarve Faro, Portugal
| |
Collapse
|
292
|
Kiyota H, Hirai MY, Ikeuchi M. NblA1/A2-Dependent Homeostasis of Amino Acid Pools during Nitrogen Starvation in Synechocystis sp. PCC 6803. Metabolites 2014; 4:517-31. [PMID: 24983765 PMCID: PMC4192677 DOI: 10.3390/metabo4030517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/14/2014] [Accepted: 06/23/2014] [Indexed: 01/21/2023] Open
Abstract
Nutrient balance is important for photosynthetic growth and biomass production in microalgae. Here, we investigated and compared metabolic responses of amino acid pools to nitrogen and sulfur starvation in a unicellular model cyanobacterium, Synechocystis sp. PCC 6803, and its mutant nblA1/A2. It is known that NblA1/A2-dependent and -independent breakdown of abundant photosynthetic phycobiliproteins and other cellular proteins supply nutrients to the organism. However, the contribution of the NblA1/A2-dependent nutrient supply to amino acid pool homeostasis has not been studied. Our study demonstrates that changes in the pool size of many amino acids during nitrogen starvation can be categorized as NblA1/A2-dependent (Gln, Glu, glutathione, Gly, Ile, Leu, Met, Phe, Pro, Ser, Thr, Tyr and Val) and NblA1/A2-independent (Ala, Asn, Lys, and Trp). We also report unique changes in amino acid pool sizes during sulfur starvation in wild type and the mutant and found a generally marked increase in the Lys pool in cyanobacteria during nutrient starvation. In conclusion, the NblA1/A2-dependent protein turnover contributes to the maintenance of many amino acid pools during nitrogen starvation.
Collapse
Affiliation(s)
- Hiroshi Kiyota
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Masahiko Ikeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
293
|
Kopf M, Klähn S, Pade N, Weingärtner C, Hagemann M, Voß B, Hess WR. Comparative genome analysis of the closely related Synechocystis strains PCC 6714 and PCC 6803. DNA Res 2014; 21:255-66. [PMID: 24408876 PMCID: PMC4060947 DOI: 10.1093/dnares/dst055] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/28/2013] [Indexed: 11/14/2022] Open
Abstract
Synechocystis sp. PCC 6803 is the most popular cyanobacterial model for prokaryotic photosynthesis and for metabolic engineering to produce biofuels. Genomic and transcriptomic comparisons between closely related bacteria are powerful approaches to infer insights into their metabolic potentials and regulatory networks. To enable a comparative approach, we generated the draft genome sequence of Synechocystis sp. PCC 6714, a closely related strain of 6803 (16S rDNA identity 99.4%) that also is amenable to genetic manipulation. Both strains share 2838 protein-coding genes, leaving 845 unique genes in Synechocystis sp. PCC 6803 and 895 genes in Synechocystis sp. PCC 6714. The genetic differences include a prophage in the genome of strain 6714, a different composition of the pool of transposable elements, and a ∼ 40 kb genomic island encoding several glycosyltransferases and transport proteins. We verified several physiological differences that were predicted on the basis of the respective genome sequence. Strain 6714 exhibited a lower tolerance to Zn(2+) ions, associated with the lack of a corresponding export system and a lowered potential of salt acclimation due to the absence of a transport system for the re-uptake of the compatible solute glucosylglycerol. These new data will support the detailed comparative analyses of this important cyanobacterial group than has been possible thus far. Genome information for Synechocystis sp. PCC 6714 has been deposited in Genbank (accession no AMZV01000000).
Collapse
Affiliation(s)
- Matthias Kopf
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Stephan Klähn
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Nadin Pade
- Plant Physiology, Institute for Life Sciences, University of Rostock, Einsteinstr. 3, D-18059 Rostock, Germany
| | - Christian Weingärtner
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Martin Hagemann
- Plant Physiology, Institute for Life Sciences, University of Rostock, Einsteinstr. 3, D-18059 Rostock, Germany
| | - Björn Voß
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| |
Collapse
|
294
|
Yodsang P, Pothipongsa A, Mäenpää P, Incharoensakdi A. Involvement of polyamine binding protein D (PotD) of Synechocystis sp. PCC 6803 in spermidine uptake and excretion. Curr Microbiol 2014; 69:417-22. [PMID: 24828249 DOI: 10.1007/s00284-014-0605-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/06/2014] [Indexed: 01/12/2023]
Abstract
The in vivo function of polyamine binding protein D (PotD) in Synechocystis sp. PCC 6803 for the transport of spermidine was investigated using Synechocystis mutant disrupted in potD gene. The growth rate of potD mutant was similar to that of wild-type when grown in BG11 medium. However, the mutant exhibited severely reduced growth compared to the wild-type when BG11 medium was supplemented with 0.5 mM spermidine. The mutant accumulated a higher spermidine level than the wild-type when grown in the medium with or without spermidine. Transport experiments revealed that the mutant had a reduction in both the uptake and the excretion of spermidine. Moreover, [(14)C]spermidine-loaded wild-type and mutant cells showed a decrease of [(14)C]spermidine excretion when the assay medium contained exogenous spermidine. These data suggest that PotD is involved in both the uptake and the excretion of spermidine in Synechocystis cells.
Collapse
Affiliation(s)
- Panutda Yodsang
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
295
|
Jones PR. Genetic instability in cyanobacteria - an elephant in the room? Front Bioeng Biotechnol 2014; 2:12. [PMID: 25152885 PMCID: PMC4126474 DOI: 10.3389/fbioe.2014.00012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/18/2014] [Indexed: 11/13/2022] Open
Abstract
Many research groups are interested in engineering the metabolism of cyanobacteria with the objective to convert solar energy, CO2, and water (perhaps also N2) into commercially valuable products. Toward this objective, many challenges stand in the way before sustainable production can be realized. One of these challenges, potentially, is genetic instability. Although only a handful of reports of this phenomenon are available in the scientific literature, it does appear to be a real issue that so far has not been studied much in cyanobacteria. With this brief perspective, I wish to raise the awareness of this potential issue and hope to inspire future studies on the topic as I believe it will make an important contribution to enabling sustainable large-scale biotechnology in the future using aquatic photobiological microorganisms.
Collapse
Affiliation(s)
- Patrik R Jones
- Department of Life Sciences, Imperial College London , London , UK
| |
Collapse
|
296
|
Zhang S, Shen G, Li Z, Golbeck JH, Bryant DA. Vipp1 is essential for the biogenesis of Photosystem I but not thylakoid membranes in Synechococcus sp. PCC 7002. J Biol Chem 2014; 289:15904-14. [PMID: 24764304 DOI: 10.1074/jbc.m114.555631] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The biogenesis of thylakoid membranes in cyanobacteria is presently not well understood, but the vipp1 gene product has been suggested to play an important role in this process. Previous studies in Synechocystis sp. PCC 6803 reported that vipp1 (sll0617) was essential. By constructing a fully segregated null mutant in vipp1 (SynPCC7002_A0294) in Synechococcus sp. PCC 7002, we show that Vipp1 is not essential. Spectroscopic studies revealed that Photosystem I (PS I) was below detection limits in the vipp1 mutant, but Photosystem II (PS II) was still assembled and was active. Thylakoid membranes were still observed in vipp1 mutant cells and resembled those in a psaAB mutant that completely lacks PS I. When the vipp1 mutation was complemented with the orthologous vipp1 gene from Synechocystis sp. PCC 6803 that was expressed from the strong P(cpcBA) promoter, PS I content and activities were restored to normal levels, and cells again produced thylakoids that were indistinguishable from those of wild type. Transcription profiling showed that psaAB transcripts were lower in abundance in the vipp1 mutant. However, when the yfp gene was expressed from the P(psaAB) promoter in the presence and the absence of Vipp1, no difference in YFP expression was observed, which shows that Vipp1 is not a transcription factor for the psaAB genes. This study shows that thylakoids are still produced in the absence of Vipp1 and that normal thylakoid biogenesis in Synechococcus sp. PCC 7002 requires expression and biogenesis of PS I, which in turn requires Vipp1.
Collapse
Affiliation(s)
- Shuyi Zhang
- From the Department of Biochemistry and Molecular Biology and
| | - Gaozhong Shen
- From the Department of Biochemistry and Molecular Biology and
| | - Zhongkui Li
- From the Department of Biochemistry and Molecular Biology and
| | - John H Golbeck
- From the Department of Biochemistry and Molecular Biology and the Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Donald A Bryant
- From the Department of Biochemistry and Molecular Biology and the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
297
|
Rakleova G, Pouneva I, Dobrev N, Tchorbadjieva M. Differentially Secreted Proteins of Antarctic and Mesophilic Strains ofSynechocystis SalinaandChlorella Vulgarisafter UV-B and Temperature Stress Treatment. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2013.0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
298
|
Huang S, Chen L, Te R, Qiao J, Wang J, Zhang W. Complementary iTRAQ proteomics and RNA-seq transcriptomics reveal multiple levels of regulation in response to nitrogen starvation in Synechocystis sp. PCC 6803. MOLECULAR BIOSYSTEMS 2014; 9:2565-74. [PMID: 23942477 DOI: 10.1039/c3mb70188c] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequential adaptation to environmental stress needs complex regulation at different cellular levels in cyanobacteria. To uncover the regulatory mechanism in response to nitrogen starvation, we investigated the genome-wide correlation between protein abundance and gene expression in a model cyanobacterium Synechocystis sp. PCC 6803 using complementary quantitative iTRAQ proteomics and RNA-seq transcriptomics. Consistent with the cell growth inhibition, proteomic analysis indicated phase-dependent down-regulation of proteins related to nitrogen metabolism, ribosome complexes, glycolysis pathway and tricarboxylic acid (TCA) cycles by nitrogen starvation. Transcriptomic analysis also showed that genes related to "Photosynthesis", "Protein synthesis" and "Energy metabolism" were significantly down-regulated by nitrogen starvation. Interestingly, the concordance between protein abundances and their corresponding mRNAs exhibited a functional categories-dependent pattern, with some categories, such as "Protein synthesis" and "Energy metabolism", having a relatively high correlation, while others even with numerous discordant changes in protein-mRNA pairs, indicated divergent regulation of transcriptional and post-transcriptional processes. In particular, an increased abundance of proteins related to "Photosynthesis" upon nitrogen starvation was found to be reversely correlated with the down-regulation of their corresponding mRNAs. In addition, two metabolic modules highly correlated with nitrogen starvation were identified by a co-expression network analysis, and were found to contain mostly photosynthetic proteins and hypothetical proteins, respectively. We further confirmed the involvement of the photosynthetic genes in nitrogen starvation tolerance by constructing and analyzing the psbV gene deletion mutant.
Collapse
Affiliation(s)
- Siqiang Huang
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China.
| | | | | | | | | | | |
Collapse
|
299
|
Mass spectroscopy locates the extrinsic proteins of photosystem II. Proc Natl Acad Sci U S A 2014; 111:4359-60. [DOI: 10.1073/pnas.1402022111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
300
|
Miura T, Nishizawa A, Nishizawa T, Asayama M, Takahashi H, Shirai M. Construction of a stepwise gene integration system by transient expression of actinophage R4 integrase in cyanobacterium Synechocystis sp. PCC 6803. Mol Genet Genomics 2014; 289:615-23. [DOI: 10.1007/s00438-014-0838-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/26/2014] [Indexed: 02/04/2023]
|