251
|
Giansanti P, Strating JRPM, Defourny KAY, Cesonyte I, Bottino AMS, Post H, Viktorova EG, Ho VQT, Langereis MA, Belov GA, Nolte-'t Hoen ENM, Heck AJR, van Kuppeveld FJM. Dynamic remodelling of the human host cell proteome and phosphoproteome upon enterovirus infection. Nat Commun 2020; 11:4332. [PMID: 32859902 PMCID: PMC7455705 DOI: 10.1038/s41467-020-18168-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
The group of enteroviruses contains many important pathogens for humans, including poliovirus, coxsackievirus, rhinovirus, as well as newly emerging global health threats such as EV-A71 and EV-D68. Here, we describe an unbiased, system-wide and time-resolved analysis of the proteome and phosphoproteome of human cells infected with coxsackievirus B3. Of the ~3,200 proteins quantified throughout the time course, a large amount (~25%) shows a significant change, with the majority being downregulated. We find ~85% of the detected phosphosites to be significantly regulated, implying that most changes occur at the post-translational level. Kinase-motif analysis reveals temporal activation patterns of certain protein kinases, with several CDKs/MAPKs immediately active upon the infection, and basophilic kinases, ATM, and ATR engaging later. Through bioinformatics analysis and dedicated experiments, we identify mTORC1 signalling as a major regulation network during enterovirus infection. We demonstrate that inhibition of mTORC1 activates TFEB, which increases expression of lysosomal and autophagosomal genes, and that TFEB activation facilitates the release of virions in extracellular vesicles via secretory autophagy. Our study provides a rich framework for a system-level understanding of enterovirus-induced perturbations at the protein and signalling pathway levels, forming a base for the development of pharmacological inhibitors to treat enterovirus infections. Here, Giansanti et al. perform a system-wide and time-resolved characterization of the changes in the host cell proteome and phosphoproteome of cells infected with the enterovirus coxsackievirus B3 during a full round of replication and identify mTORC1 signalling as a major regulation network during virus infection.
Collapse
Affiliation(s)
- Piero Giansanti
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Technical University, Munich, Germany
| | - Jeroen R P M Strating
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.,Viroclinics Biosciences, Rotterdam, The Netherlands
| | - Kyra A Y Defourny
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Ieva Cesonyte
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Alexia M S Bottino
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ekaterina G Viktorova
- Department of Veterinary Medicine, University of Maryland and VA-MD College of Veterinary Medicine, College Park, MD, 20742, USA
| | - Vien Quang Tri Ho
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.,Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Martijn A Langereis
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.,MSD Animal Health, Boxmeer, The Netherlands
| | - George A Belov
- Department of Veterinary Medicine, University of Maryland and VA-MD College of Veterinary Medicine, College Park, MD, 20742, USA
| | - Esther N M Nolte-'t Hoen
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands. .,Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Frank J M van Kuppeveld
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.
| |
Collapse
|
252
|
Nakamura Y, Morrow DH, Nathanson AJ, Henley JM, Wilkinson KA, Moss SJ. Phosphorylation on Ser-359 of the α2 subunit in GABA type A receptors down-regulates their density at inhibitory synapses. J Biol Chem 2020; 295:12330-12342. [PMID: 32620552 PMCID: PMC7458806 DOI: 10.1074/jbc.ra120.014303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Indexed: 11/06/2022] Open
Abstract
GABA type A receptors (GABAARs) mediate fast synaptic inhibition and are trafficked to functionally diverse synapses. However, the precise molecular mechanisms that regulate the synaptic targeting of these receptors are unclear. Whereas it has been previously shown that phosphorylation events in α4, β, and γ subunits of GABAARs govern their function and trafficking, phosphorylation of other subunits has not yet been demonstrated. Here, we show that the α2 subunit of GABAARs is phosphorylated at Ser-359 and enables dynamic regulation of GABAAR binding to the scaffolding proteins gephyrin and collybistin. We initially identified Ser-359 phosphorylation by MS analysis, and additional experiments revealed that it is regulated by the activities of cAMP-dependent protein kinase (PKA) and the protein phosphatase 1 (PP1) and/or PP2A. GST-based pulldowns and coimmunoprecipitation experiments demonstrate preferential binding of both gephyrin and collybistin to WT and an S359A phosphonull variant, but not to an S359D phosphomimetic variant. Furthermore, the decreased capacity of the α2 S359D variant to bind collybistin and gephyrin decreased the density of synaptic α2-containing GABAAR clusters and caused an absence of α2 enrichment in the axon initial segment. These results suggest that PKA-mediated phosphorylation and PP1/PP2A-dependent dephosphorylation of the α2 subunit play a role in the dynamic regulation of GABAAR accumulation at inhibitory synapses, thereby regulating the strength of synaptic inhibition. The MS data have been deposited to ProteomeXchange, with the data set identifier PXD019597.
Collapse
Affiliation(s)
- Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, United Kingdom
| | - Danielle H. Morrow
- Department of Neuroscience, Tufts University, School of Medicine, Boston, Massachusetts, USA
| | - Anna J. Nathanson
- Department of Neuroscience, Tufts University, School of Medicine, Boston, Massachusetts, USA
| | - Jeremy M. Henley
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, United Kingdom
| | - Kevin A. Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, United Kingdom
| | - Stephen J. Moss
- Department of Neuroscience, Tufts University, School of Medicine, Boston, Massachusetts, USA,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom,For correspondence: S. J. Moss,
| |
Collapse
|
253
|
Marker Identification of the Grade of Dysplasia of Intraductal Papillary Mucinous Neoplasm in Pancreatic Cyst Fluid by Quantitative Proteomic Profiling. Cancers (Basel) 2020; 12:cancers12092383. [PMID: 32842508 PMCID: PMC7565268 DOI: 10.3390/cancers12092383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
Abstract
The incidence of patients with pancreatic cystic lesions, particularly intraductal papillary mucinous neoplasm (IPMN), is increasing. Current guidelines, which primarily consider radiological features and laboratory data, have had limited success in predicting malignant IPMN. The lack of a definitive diagnostic method has led to low-risk IPMN patients undergoing unnecessary surgeries. To address this issue, we discovered IPMN marker candidates by analyzing pancreatic cystic fluid by mass spectrometry. A total of 30 cyst fluid samples, comprising IPMN dysplasia and other cystic lesions, were evaluated. Mucus was removed by brief sonication, and the resulting supernatant was subjected to filter-aided sample preparation and high-pH peptide fractionation. Subsequently, the samples were analyzed by LC-MS/MS. Using several bioinformatics tools, such as gene ontology and ingenuity pathway analysis, we detailed IPMNs at the molecular level. Among the 5834 proteins identified in our dataset, 364 proteins were differentially expressed between IPMN dysplasia. The 19 final candidates consistently increased or decreased with greater IPMN malignancy. CD55 was validated in an independent cohort by ELISA, Western blot, and IHC, and the results were consistent with the MS data. In summary, we have determined the characteristics of pancreatic cyst fluid proteins and discovered potential biomarkers for IPMN dysplasia.
Collapse
|
254
|
VanDeusen HR, Ramroop JR, Morel KL, Bae SY, Sheahan AV, Sychev Z, Lau NA, Cheng LC, Tan VM, Li Z, Petersen A, Lee JK, Park JW, Yang R, Hwang JH, Coleman I, Witte ON, Morrissey C, Corey E, Nelson PS, Ellis L, Drake JM. Targeting RET Kinase in Neuroendocrine Prostate Cancer. Mol Cancer Res 2020; 18:1176-1188. [PMID: 32461304 PMCID: PMC7415621 DOI: 10.1158/1541-7786.mcr-19-1245] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/01/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
The increased treatment of metastatic castration-resistant prostate cancer (mCRPC) with second-generation antiandrogen therapies (ADT) has coincided with a greater incidence of lethal, aggressive variant prostate cancer (AVPC) tumors that have lost dependence on androgen receptor (AR) signaling. These AR-independent tumors may also transdifferentiate to express neuroendocrine lineage markers and are termed neuroendocrine prostate cancer (NEPC). Recent evidence suggests kinase signaling may be an important driver of NEPC. To identify targetable kinases in NEPC, we performed global phosphoproteomics comparing several AR-independent to AR-dependent prostate cancer cell lines and identified multiple altered signaling pathways, including enrichment of RET kinase activity in the AR-independent cell lines. Clinical NEPC patient samples and NEPC patient-derived xenografts displayed upregulated RET transcript and RET pathway activity. Genetic knockdown or pharmacologic inhibition of RET kinase in multiple mouse and human models of NEPC dramatically reduced tumor growth and decreased cell viability. Our results suggest that targeting RET in NEPC tumors with high RET expression could be an effective treatment option. Currently, there are limited treatment options for patients with aggressive neuroendocrine prostate cancer and none are curative. IMPLICATIONS: Identification of aberrantly expressed RET kinase as a driver of tumor growth in multiple models of NEPC provides a significant rationale for testing the clinical application of RET inhibitors in patients with AVPC.
Collapse
Affiliation(s)
- Halena R VanDeusen
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Johnny R Ramroop
- Departments of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Katherine L Morel
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Song Yi Bae
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Anjali V Sheahan
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zoi Sychev
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Nathan A Lau
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Larry C Cheng
- Graduate Program in Quantitative Biomedicine, School of Graduate Studies, Rutgers University, New Brunswick, New Jersey
| | - Victor M Tan
- Graduate Program in Quantitative Biomedicine, School of Graduate Studies, Rutgers University, New Brunswick, New Jersey
| | - Zhen Li
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Ashley Petersen
- Division of Biostatistics, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - John K Lee
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Jung Wook Park
- Department of Pathology, Duke School of Medicine, Duke University, Durham, North Carolina
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, California
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Justin H Hwang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Owen N Witte
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, California
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Leigh Ellis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Justin M Drake
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, Minnesota.
- Department of Urology, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
255
|
Ehmsen S, Pedersen MH, Wang G, Terp MG, Arslanagic A, Hood BL, Conrads TP, Leth-Larsen R, Ditzel HJ. Increased Cholesterol Biosynthesis Is a Key Characteristic of Breast Cancer Stem Cells Influencing Patient Outcome. Cell Rep 2020; 27:3927-3938.e6. [PMID: 31242424 DOI: 10.1016/j.celrep.2019.05.104] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/01/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor eradication may be greatly improved by targeting cancer stem cells (CSCs), as they exhibit resistance to conventional therapy. To gain insight into the unique biology of CSCs, we developed patient-derived xenograft tumors (PDXs) from ER- breast cancers from which we isolated mammospheres that are enriched for CSCs. Comparative global proteomic analysis was performed on patient tumor tissues and corresponding PDXs and mammospheres. Mammospheres exhibited increased expression of proteins associated with de novo cholesterol synthesis. The clinical relevance of increased cholesterol biosynthesis was verified in a large breast cancer cohort showing correlation with shorter relapse-free survival. RNAi and chemical inhibition of the cholesterol biosynthesis pathway reduced mammosphere formation, which could be rescued by a downstream metabolite. Our findings identify the cholesterol biosynthesis pathway as central for CSC propagation and a potential therapeutic target, as well as providing a mechanistic explanation for the therapeutic benefit of statins in breast cancer.
Collapse
Affiliation(s)
- Sidse Ehmsen
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark; Department of Oncology, Odense University Hospital, 5000 Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5000 Odense, Denmark
| | - Martin H Pedersen
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark
| | - Guisong Wang
- Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Annandale, VA 22003, USA
| | - Mikkel G Terp
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark
| | - Amina Arslanagic
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark
| | - Brian L Hood
- Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Annandale, VA 22003, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Annandale, VA 22003, USA; Inova Schar Cancer Institute, Inova Center for Personalized Health, Fairfax, VA 22031, USA
| | - Rikke Leth-Larsen
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark; Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark.
| | - Henrik J Ditzel
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark; Department of Oncology, Odense University Hospital, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5000 Odense, Denmark.
| |
Collapse
|
256
|
Mustafa G, Hasan M, Yamaguchi H, Hitachi K, Tsuchida K, Komatsu S. A comparative proteomic analysis of engineered and bio synthesized silver nanoparticles on soybean seedlings. J Proteomics 2020; 224:103833. [PMID: 32450145 DOI: 10.1016/j.jprot.2020.103833] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Nanoparticles (NPs) are synthesized by different methods and response mechanism of plants varied towards NPs based on their origin. To study the effects of bio synthesized (BS) and chemically synthesized (CS) silver NPs on soybean, a gel-free/ label-free proteomic technique was used. Length of root and hypocotyl was enhanced by BS compared to CS silver NPs. 10 ppm BS silver NPs enhanced the length of root and hypocotyl compared to 1 and 50 ppm. A total of 190 and 173 differentially changed proteins were identified in BS and CS silver NPs treated soybean, respectively. Twenty proteins commonly changed between BS and CS silver NPs treated soybean. Differentially-changed proteins were associated with protein-degradation and stress according to functional categorization. From proteomics, abundances of peroxidases were increased under CS silver NPs. Immunoblot analysis depicted that accumulation of ascorbate peroxidase, glutathione reductase, and peroxiredoxin remained unchanged under both BS and CS silver NPs. ATP content decreased under CS silver NPs compared to BS silver NPs. ADH activity increased in CS silver NPs treated soybean. These results suggest that BS silver NPs enhanced the growth of soybean by regulating proteins related to protein-degradation and ATP contents, which are negatively affected by CS silver NPs. BIOLOGICAL SIGNIFICANCE: This study highlighted the response mechanism of soybean towards bio synthesized (BS) and chemically synthesized (CS) silver nanoparticles (NPs) using a gel-free/ label-free proteomics technique. Length of root and hypocotyl was enhanced by BS silver NPs compared to CS silver NPs. 10 ppm BS silver NPs enhanced the length of root and hypocotyl compared to other concentrations. Differentially changed proteins were associated with protein degradation and stress. From the proteomics, the abundances of peroxidases were increased under CS silver NPs. Immunoblot analysis depicted that accumulation of ascorbate peroxidase, glutathione reductase, and peroxiredoxin remained unchanged under both BS and CS silver NPs. ATP content decreased under CS silver NPs compared to BS silver NPs. ADH activity increased in CS silver NPs compared to BS silver NPs treated soybean. These results suggest that the BS silver NPs enhanced the growth of soybean by regulating the proteins related to protein degradation and ATP contents, which are negatively affected by the CS silver NPs.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| | - Murtaza Hasan
- Department of Biochemistry and Biotechnology, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
257
|
Tremp AZ, Saeed S, Sharma V, Lasonder E, Dessens JT. Plasmodium berghei LAPs form an extended protein complex that facilitates crystalloid targeting and biogenesis. J Proteomics 2020; 227:103925. [PMID: 32736136 PMCID: PMC7487766 DOI: 10.1016/j.jprot.2020.103925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/21/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022]
Abstract
Passage of malaria parasites through mosquitoes involves multiple developmental transitions, from gametocytes that are ingested with the blood meal, through to sporozoites that are transmitted by insect bite to the host. During the transformation from gametocyte to oocyst, the parasite forms a unique transient organelle named the crystalloid, which is involved in sporozoite formation. In Plasmodium berghei, a complex of six LCCL domain-containing proteins (LAPs) reside in the crystalloid and are required for its biogenesis. However, little else is known about the molecular mechanisms that underlie the crystalloid's role in sporogony. In this study, we have used transgenic parasites stably expressing LAP3 fused to GFP, combined with GFP affinity pulldown and high accuracy mass spectrometry, to identify an extended LAP interactome of some fifty proteins. We show that many of these are targeted to the crystalloid, including members of two protein families with CPW-WPC and pleckstrin homology-like domains, respectively. Our findings indicate that the LAPs are part of an intricate protein complex, the formation of which facilitates both crystalloid targeting and biogenesis. Significance Reducing malaria parasite transmission by mosquitoes is a key component of malaria eradication and control strategies. This study sheds important new light on the molecular composition of the crystalloid, an enigmatic parasite organelle that is essential for sporozoite formation and transmission from the insect to the vertebrate host. Our findings provide new mechanistic insight into how proteins are delivered to the crystalloid, and indicate that the molecular mechanisms that underlie crystalloid function are complex, involving several protein families unique to Plasmodium and closely related organisms. The new crystalloid proteins identified will form a useful starting point for studies aimed at unravelling how the crystalloid organelle facilitates sporogony and transmission. A Plasmodium berghei LAP3 interactome of some 50 proteins was determined. Many proteins in the interactome constitute known or novel crystalloid proteins. The interactome includes protein families with PH-like and CPW-WPC domains.
Collapse
Affiliation(s)
- Annie Z Tremp
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Sadia Saeed
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Vikram Sharma
- School of Biomedical Sciences, Faculty of Health, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - Edwin Lasonder
- School of Biomedical Sciences, Faculty of Health, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK; Department of Applied Sciences, Faculty of Life and Health Sciences, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST, UK
| | - Johannes T Dessens
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
258
|
Flosbach M, Oberle SG, Scherer S, Zecha J, von Hoesslin M, Wiede F, Chennupati V, Cullen JG, List M, Pauling JK, Baumbach J, Kuster B, Tiganis T, Zehn D. PTPN2 Deficiency Enhances Programmed T Cell Expansion and Survival Capacity of Activated T Cells. Cell Rep 2020; 32:107957. [PMID: 32726622 PMCID: PMC7408006 DOI: 10.1016/j.celrep.2020.107957] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/20/2020] [Accepted: 07/02/2020] [Indexed: 01/18/2023] Open
Abstract
Manipulating molecules that impact T cell receptor (TCR) or cytokine signaling, such as the protein tyrosine phosphatase non-receptor type 2 (PTPN2), has significant potential for advancing T cell-based immunotherapies. Nonetheless, it remains unclear how PTPN2 impacts the activation, survival, and memory formation of T cells. We find that PTPN2 deficiency renders cells in vivo and in vitro less dependent on survival-promoting cytokines, such as interleukin (IL)-2 and IL-15. Remarkably, briefly ex vivo-activated PTPN2-deficient T cells accumulate in 3- to 11-fold higher numbers following transfer into unmanipulated, antigen-free mice. Moreover, the absence of PTPN2 augments the survival of short-lived effector T cells and allows them to robustly re-expand upon secondary challenge. Importantly, we find no evidence for impaired effector function or memory formation. Mechanistically, PTPN2 deficiency causes broad changes in the expression and phosphorylation of T cell expansion and survival-associated proteins. Altogether, our data underline the therapeutic potential of targeting PTPN2 in T cell-based therapies to augment the number and survival capacity of antigen-specific T cells.
Collapse
Affiliation(s)
- Markus Flosbach
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Susanne G Oberle
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Stefanie Scherer
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany; Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jana Zecha
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Madlaina von Hoesslin
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Florian Wiede
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Vijaykumar Chennupati
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jolie G Cullen
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Markus List
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Josch K Pauling
- ZD.B Junior Research Group LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany; Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
259
|
A Lactococcal Phage Protein Promotes Viral Propagation and Alters the Host Proteomic Response During Infection. Viruses 2020; 12:v12080797. [PMID: 32722163 PMCID: PMC7472136 DOI: 10.3390/v12080797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
The lactococcal virulent phage p2 is a model for studying the Skunavirus genus, the most prevalent group of phages causing milk fermentation failures in cheese factories worldwide. This siphophage infects Lactococcus lactis MG1363, a model strain used to study Gram-positive lactic acid bacteria. The structural proteins of phage p2 have been thoroughly described, while most of its non-structural proteins remain uncharacterized. Here, we developed an integrative approach, making use of structural biology, genomics, physiology, and proteomics to provide insights into the function of ORF47, the most conserved non-structural protein of unknown function among the Skunavirus genus. This small phage protein, which is composed of three α-helices, was found to have a major impact on the bacterial proteome during phage infection and to significantly reduce the emergence of bacteriophage-insensitive mutants.
Collapse
|
260
|
Blume JE, Manning WC, Troiano G, Hornburg D, Figa M, Hesterberg L, Platt TL, Zhao X, Cuaresma RA, Everley PA, Ko M, Liou H, Mahoney M, Ferdosi S, Elgierari EM, Stolarczyk C, Tangeysh B, Xia H, Benz R, Siddiqui A, Carr SA, Ma P, Langer R, Farias V, Farokhzad OC. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat Commun 2020; 11:3662. [PMID: 32699280 PMCID: PMC7376165 DOI: 10.1038/s41467-020-17033-7] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 06/02/2020] [Indexed: 02/08/2023] Open
Abstract
Large-scale, unbiased proteomics studies are constrained by the complexity of the plasma proteome. Here we report a highly parallel protein quantitation platform integrating nanoparticle (NP) protein coronas with liquid chromatography-mass spectrometry for efficient proteomic profiling. A protein corona is a protein layer adsorbed onto NPs upon contact with biofluids. Varying the physicochemical properties of engineered NPs translates to distinct protein corona patterns enabling differential and reproducible interrogation of biological samples, including deep sampling of the plasma proteome. Spike experiments confirm a linear signal response. The median coefficient of variation was 22%. We screened 43 NPs and selected a panel of 5, which detect more than 2,000 proteins from 141 plasma samples using a 96-well automated workflow in a pilot non-small cell lung cancer classification study. Our streamlined workflow combines depth of coverage and throughput with precise quantification based on unique interactions between proteins and NPs engineered for deep and scalable quantitative proteomic studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Marwin Ko
- Seer, Inc., Redwood City, CA, 94065, USA
| | - Hope Liou
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | | | | | | | | | | | - Ryan Benz
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Philip Ma
- Seer, Inc., Redwood City, CA, 94065, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vivek Farias
- Sloan School and Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Omid C Farokhzad
- Seer, Inc., Redwood City, CA, 94065, USA.
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
261
|
Xiao Y, Clima R, Busch J, Rabien A, Kilic E, Villegas SL, Timmermann B, Attimonelli M, Jung K, Meierhofer D. Decreased Mitochondrial DNA Content Drives OXPHOS Dysregulation in Chromophobe Renal Cell Carcinoma. Cancer Res 2020; 80:3830-3840. [PMID: 32694149 DOI: 10.1158/0008-5472.can-20-0754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/25/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022]
Abstract
Chromophobe renal cell carcinoma (chRCC) and renal oncocytoma are closely related, rare kidney tumors. Mutations in complex I (CI)-encoding genes play an important role in dysfunction of the oxidative phosphorylation (OXPHOS) system in renal oncocytoma, but are less frequently observed in chRCC. As such, the relevance of OXPHOS status and role of CI mutations in chRCC remain unknown. To address this issue, we performed proteome and metabolome profiling as well as mitochondrial whole-exome sequencing to detect mitochondrial alterations in chRCC tissue specimens. Multiomic analysis revealed downregulation of electron transport chain (ETC) components in chRCC that differed from the expression profile in renal oncocytoma. A decrease in mitochondrial (mt)DNA content, rather than CI mutations, was the main cause for reduced OXPHOS in chRCC. There was a negative correlation between protein and transcript levels of nuclear DNA- but not mtDNA-encoded ETC complex subunits in chRCC. In addition, the reactive oxygen species scavenger glutathione (GSH) was upregulated in chRCC due to decreased expression of proteins involved in GSH degradation. These results demonstrate that distinct mechanisms of OXPHOS exist in chRCC and renal oncocytoma and that expression levels of ETC complex subunits can serve as a diagnostic marker for this rare malignancy. SIGNIFICANCE: These findings establish potential diagnostic markers to distinguish malignant chRCC from its highly similar but benign counterpart, renal oncocytoma.
Collapse
Affiliation(s)
- Yi Xiao
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rosanna Clima
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari, Bari, Italy.,Department of Medical and Surgical Sciences-DIMEC, Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Jonas Busch
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anja Rabien
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute for Urologic Research, Berlin, Germany
| | - Ergin Kilic
- Institut für Pathologie am Klinikum Leverkusen, Leverkusen, Germany.,Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sonia L Villegas
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Marcella Attimonelli
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Klaus Jung
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute for Urologic Research, Berlin, Germany
| | | |
Collapse
|
262
|
Milivojevic M, Che X, Bateman L, Cheng A, Garcia BA, Hornig M, Huber M, Klimas NG, Lee B, Lee H, Levine S, Montoya JG, Peterson DL, Komaroff AL, Lipkin WI. Plasma proteomic profiling suggests an association between antigen driven clonal B cell expansion and ME/CFS. PLoS One 2020; 15:e0236148. [PMID: 32692761 PMCID: PMC7373296 DOI: 10.1371/journal.pone.0236148] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an unexplained chronic, debilitating illness characterized by fatigue, sleep disturbances, cognitive dysfunction, orthostatic intolerance and gastrointestinal problems. Using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), we analyzed the plasma proteomes of 39 ME/CFS patients and 41 healthy controls. Logistic regression models, with both linear and quadratic terms of the protein levels as independent variables, revealed a significant association between ME/CFS and the immunoglobulin heavy variable (IGHV) region 3-23/30. Stratifying the ME/CFS group based on self-reported irritable bowel syndrome (sr-IBS) status revealed a significant quadratic effect of immunoglobulin lambda constant region 7 on its association with ME/CFS with sr-IBS whilst IGHV3-23/30 and immunoglobulin kappa variable region 3-11 were significantly associated with ME/CFS without sr-IBS. In addition, we were able to predict ME/CFS status with a high degree of accuracy (AUC = 0.774-0.838) using a panel of proteins selected by 3 different machine learning algorithms: Lasso, Random Forests, and XGBoost. These algorithms also identified proteomic profiles that predicted the status of ME/CFS patients with sr-IBS (AUC = 0.806-0.846) and ME/CFS without sr-IBS (AUC = 0.754-0.780). Our findings are consistent with a significant association of ME/CFS with immune dysregulation and highlight the potential use of the plasma proteome as a source of biomarkers for disease.
Collapse
Affiliation(s)
- Milica Milivojevic
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Xiaoyu Che
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Lucinda Bateman
- Bateman Horne Center, Salt Lake City, UT, United States of America
| | - Aaron Cheng
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Benjamin A. Garcia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Manuel Huber
- German Research Center for Environmental Health, Institute for Health Economics and Health Care Management, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nancy G. Klimas
- Institute for Neuro Immune Medicine, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
- Miami VA Medical Center, Miami, FL, United States of America
| | - Bohyun Lee
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Hyoungjoo Lee
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Susan Levine
- Levine Clinic, New York, NY, United States of America
| | - Jose G. Montoya
- Palo Alto Medical Foundation, Jack S. Remington Laboratory for Specialty Diagnostics of Toxoplasmosis, Palo Alto, CA, United States of America
| | - Daniel L. Peterson
- Sierra Internal Medicine at Incline Village, Incline Village, NV, United States of America
| | - Anthony L. Komaroff
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| |
Collapse
|
263
|
Rabouw HH, Visser LJ, Passchier TC, Langereis MA, Liu F, Giansanti P, van Vliet ALW, Dekker JG, van der Grein SG, Saucedo JG, Anand AA, Trellet ME, Bonvin AMJJ, Walter P, Heck AJR, de Groot RJ, van Kuppeveld FJM. Inhibition of the integrated stress response by viral proteins that block p-eIF2-eIF2B association. Nat Microbiol 2020; 5:1361-1373. [PMID: 32690955 DOI: 10.1038/s41564-020-0759-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/22/2020] [Indexed: 11/09/2022]
Abstract
Eukaryotic cells, when exposed to environmental or internal stress, activate the integrated stress response (ISR) to restore homeostasis and promote cell survival. Specific stress stimuli prompt dedicated stress kinases to phosphorylate eukaryotic initiation factor 2 (eIF2). Phosphorylated eIF2 (p-eIF2) in turn sequesters the eIF2-specific guanine exchange factor eIF2B to block eIF2 recycling, thereby halting translation initiation and reducing global protein synthesis. To circumvent stress-induced translational shutdown, viruses encode ISR antagonists. Those identified so far prevent or reverse eIF2 phosphorylation. We now describe two viral proteins-one from a coronavirus and the other from a picornavirus-that have independently acquired the ability to counteract the ISR at its very core by acting as a competitive inhibitor of p-eIF2-eIF2B interaction. This allows continued formation of the eIF2-GTP-Met-tRNAi ternary complex and unabated global translation at high p-eIF2 levels that would otherwise cause translational arrest. We conclude that eIF2 and p-eIF2 differ in their interaction with eIF2B to such effect that p-eIF2-eIF2B association can be selectively inhibited.
Collapse
Affiliation(s)
- Huib H Rabouw
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Linda J Visser
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Tim C Passchier
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Martijn A Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Fan Liu
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.,Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Piero Giansanti
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Arno L W van Vliet
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - José G Dekker
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Susanne G van der Grein
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jesús G Saucedo
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Aditya A Anand
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Mikael E Trellet
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Raoul J de Groot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
264
|
Li M, Hameed I, Cao D, He D, Yang P. Integrated Omics Analyses Identify Key Pathways Involved in Petiole Rigidity Formation in Sacred Lotus. Int J Mol Sci 2020; 21:ijms21145087. [PMID: 32708483 PMCID: PMC7404260 DOI: 10.3390/ijms21145087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/23/2022] Open
Abstract
Sacred lotus (Nelumbo nucifera Gaertn.) is a relic aquatic plant with two types of leaves, which have distinct rigidity of petioles. Here we assess the difference from anatomic structure to the expression of genes and proteins in two petioles types, and identify key pathways involved in petiole rigidity formation in sacred lotus. Anatomically, great variation between the petioles of floating and vertical leaves were observed. The number of collenchyma cells and thickness of xylem vessel cell wall was higher in the initial vertical leaves’ petiole (IVP) compared to the initial floating leaves’ petiole (IFP). Among quantified transcripts and proteins, 1021 and 401 transcripts presented 2-fold expression increment (named DEGs, genes differentially expressed between IFP and IVP) in IFP and IVP, 421 and 483 proteins exhibited 1.5-fold expression increment (named DEPs, proteins differentially expressed between IFP and IVP) in IFP and IVP, respectively. Gene function and pathway enrichment analysis displayed that DEGs and DEPs were significantly enriched in cell wall biosynthesis and lignin biosynthesis. In consistent with genes and proteins expressions in lignin biosynthesis, the contents of lignin monomers precursors were significantly different in IFP and IVP. These results enable us to understand lotus petioles rigidity formation better and provide valuable candidate genes information on further investigation.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (M.L.); (D.H.)
| | - Ishfaq Hameed
- Departments of Botany, University of Chitral, Chitral 17200, Khyber Pukhtunkhwa, Pakistan;
| | - Dingding Cao
- Institue of Oceanography, Minjiang University, Fuzhou 350108, China;
| | - Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (M.L.); (D.H.)
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (M.L.); (D.H.)
- Correspondence:
| |
Collapse
|
265
|
Site-specific ubiquitination of pathogenic huntingtin attenuates its deleterious effects. Proc Natl Acad Sci U S A 2020; 117:18661-18669. [PMID: 32675242 DOI: 10.1073/pnas.2007667117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a progressive incurable neurodegenerative disorder characterized by motor and neuropsychiatric symptoms. It is caused by expansion of a cytosine-adenine-guanine triplet in the N-terminal domain of exon 1 in the huntingtin (HTT) gene that codes for an expanded polyglutamine stretch in the protein product which becomes aggregation prone. The mutant Htt (mHtt) aggregates are associated with components of the ubiquitin-proteasome system, suggesting that mHtt is marked for proteasomal degradation and that, for reasons still debated, are not properly degraded. We used a novel HD rat model, proteomic analysis, and long-term live neuronal imaging to characterize the effects of ubiquitination on aggregation of mHtt and subsequent cellular responses. We identified two lysine residues, 6 and 9, in the first exon of mHtt that are specifically ubiquitinated in striatal and cortical brain tissues of mHtt-transgenic animals. Expression of mHtt exon 1 lacking these ubiquitination sites in cortical neurons and cultured cells was found to slow aggregate appearance rates and reduce their size but at the same time increase the number of much smaller and less visible ones. Importantly, expression of this form of mHtt was associated with elevated death rates. Proteomic analysis indicated that cellular reactions to mHtt expression were weaker in cells expressing the lysineless protein, possibly implying a reduced capacity to cope with the proteotoxic stress. Taken together, the findings suggest a novel role for ubiquitination-attenuation of the pathogenic effect of mHtt.
Collapse
|
266
|
The Bartonella autotransporter BafA activates the host VEGF pathway to drive angiogenesis. Nat Commun 2020; 11:3571. [PMID: 32678094 PMCID: PMC7366657 DOI: 10.1038/s41467-020-17391-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
Pathogenic bacteria of the genus Bartonella can induce vasoproliferative lesions during infection. The underlying mechanisms are unclear, but involve secretion of an unidentified mitogenic factor. Here, we use functional transposon-mutant screening in Bartonella henselae to identify such factor as a pro-angiogenic autotransporter, called BafA. The passenger domain of BafA induces cell proliferation, tube formation and sprouting of microvessels, and drives angiogenesis in mice. BafA interacts with vascular endothelial growth factor (VEGF) receptor-2 and activates the downstream signaling pathway, suggesting that BafA functions as a VEGF analog. A BafA homolog from a related pathogen, Bartonella quintana, is also functional. Our work unveils the mechanistic basis of vasoproliferative lesions observed in bartonellosis, and we propose BafA as a key pathogenic factor contributing to bacterial spread and host adaptation. Pathogenic bacteria of the genus Bartonella can induce vasoproliferative lesions during infection. Here, Tsukamoto et al. show that this effect is caused by a secreted protein that induces cell proliferation and angiogenesis by acting as an analog of the host’s vascular endothelial growth factor (VEGF).
Collapse
|
267
|
Seo G, Han H, Vargas RE, Yang B, Li X, Wang W. MAP4K Interactome Reveals STRN4 as a Key STRIPAK Complex Component in Hippo Pathway Regulation. Cell Rep 2020; 32:107860. [PMID: 32640226 PMCID: PMC7382313 DOI: 10.1016/j.celrep.2020.107860] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/29/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) constitute a mammalian STE20-like serine/threonine kinase subfamily. Recent studies provide substantial evidence for MAP4K family kinases in the Hippo pathway regulation, suggesting a broad role of MAP4Ks in human physiology and diseases. However, a comprehensive analysis of the regulators and effectors for this key kinase family has not been fully achieved. Using a proteomic approach, we define the protein-protein interaction network for human MAP4K family kinases and reveal diverse cellular signaling events involving this important kinase family. Through it, we identify a STRIPAK complex component, STRN4, as a generic binding partner for MAP4Ks and a key regulator of the Hippo pathway in endometrial cancer development. Taken together, the results of our study not only generate a rich resource for further characterizing human MAP4K family kinases in numerous biological processes but also dissect the STRIPAK-mediated regulation of MAP4Ks in the Hippo pathway.
Collapse
Affiliation(s)
- Gayoung Seo
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Rebecca Elizabeth Vargas
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Bing Yang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Xu Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China.
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
268
|
Silva JM, Wippel HH, Santos MDM, Verissimo DCA, Santos RM, Nogueira FCS, Passos GAR, Sprengel SL, Borba LAB, Carvalho PC, Fischer JDSDG. Proteomics pinpoints alterations in grade I meningiomas of male versus female patients. Sci Rep 2020; 10:10335. [PMID: 32587372 PMCID: PMC7316823 DOI: 10.1038/s41598-020-67113-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Meningiomas are among the most common primary tumors of the central nervous system (CNS) and originate from the arachnoid or meningothelial cells of the meninges. Surgery is the first option of treatment, but depending on the location and invasion patterns, complete removal of the tumor is not always feasible. Reports indicate many differences in meningiomas from male versus female patients; for example, incidence is higher in females, whereas males usually develop the malignant and more aggressive type. With this as motivation, we used shotgun proteomics to compare the proteomic profile of grade I meningioma biopsies of male and female patients. Our results listed several differentially abundant proteins between the two groups; some examples are S100-A4 and proteins involved in RNA splicing events. For males, we identified enriched pathways for cell-matrix organization and for females, pathways related to RNA transporting and processing. We believe our findings contribute to the understanding of the molecular differences between grade I meningiomas of female and male patients.
Collapse
Affiliation(s)
- Janaína M Silva
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Paraná, Curitiba, Brazil
| | - Helisa H Wippel
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Paraná, Curitiba, Brazil
| | - Marlon D M Santos
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Paraná, Curitiba, Brazil
| | - Denildo C A Verissimo
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Paraná, Curitiba, Brazil
- Clinical Hospital of the Federal University of Paraná, Paraná, Brazil
| | - Renata M Santos
- Laboratory of Protein Chemistry, Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Laboratory of Protein Chemistry, Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Sergio L Sprengel
- Clinical Hospital of the Federal University of Paraná, Paraná, Brazil
| | - Luis A B Borba
- Clinical Hospital of the Federal University of Paraná, Paraná, Brazil
- Hospital Universitário Evangélico Mackenzie, Paraná, Brazil
| | - Paulo C Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Paraná, Curitiba, Brazil.
| | - Juliana de S da G Fischer
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Paraná, Curitiba, Brazil.
| |
Collapse
|
269
|
Taylor SSZ, Jacobsen NL, Pontifex TK, Langlais P, Burt JM. Serine 319 phosphorylation is necessary and sufficient to induce a Cx37 conformation that leads to arrested cell cycling. J Cell Sci 2020; 133:jcs240721. [PMID: 32350069 PMCID: PMC7328134 DOI: 10.1242/jcs.240721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/14/2020] [Indexed: 11/20/2022] Open
Abstract
Connexin 37 (Cx37; protein product of GJA4) expression profoundly suppresses proliferation of rat insulinoma (Rin) cells in a manner dependent on gap junction channel (GJCh) functionality and the presence and phosphorylation status of its C-terminus (CT). In Rin cells, growth is arrested upon induced Cx37 expression and serine 319 (S319) is frequently phosphorylated. Here, we show that preventing phosphorylation at this site (alanine substitution; S319A) relieved Cx37 of its growth-suppressive effect whereas mimicking phosphorylation at this site (aspartate substitution; S319D) enhanced the growth-suppressive properties of Cx37. Like wild-type Cx37 (Cx37-WT), Cx37-S319D GJChs and hemichannels (HChs) preferred the closed state, rarely opening fully, and gated slowly. In contrast, Cx37-S319A channels preferred open states, opened fully and gated rapidly. These data indicate that phosphorylation-dependent conformational differences in Cx37 protein and channel function underlie Cx37-induced growth arrest versus growth-permissive phenotypes. That the closed state of Cx37-WT and Cx37-S319D GJChs and HChs favors growth arrest suggests that rather than specific permeants mediating cell cycle arrest, the closed conformation instead supports interaction of Cx37 with growth regulatory proteins that result in growth arrest.
Collapse
Affiliation(s)
| | - Nicole L Jacobsen
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Tasha K Pontifex
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Paul Langlais
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Janis M Burt
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
270
|
Zhong Z, Kobayashi T, Zhu W, Imai H, Zhao R, Ohno T, Rehman SU, Uemura M, Tian J, Komatsu S. Plant-derived smoke enhances plant growth through ornithine-synthesis pathway and ubiquitin-proteasome pathway in soybean. J Proteomics 2020; 221:103781. [PMID: 32294531 DOI: 10.1016/j.jprot.2020.103781] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/31/2020] [Accepted: 04/11/2020] [Indexed: 11/20/2022]
Abstract
To investigate the mechanism of promotive effect of plant-derived smoke on the soybean growth, a gel-free/label-free proteomics was performed. Smoke solutions were irrigated on soybean or supplied simultaneously with flooding stress. Morphological and physiological analyses were performed for the confirmation of proteomic result. Metabolomic change was investigated to correlate proteomic change with metabolism regulation. Under normal condition, the length of root including hypocotyl increased in soybean treated with 2000 ppm plant-derived smoke within 4 days, as well as nitric oxide content. Proteins related to protein synthesis especially arginine metabolism were altered; metabolites related to amino acid, carboxylic acids, and sugars were mostly altered. Integrated analysis of omics data indicated that plant-derived smoke regulated nitrogen‑carbon transformation through ornithine synthesis pathway and promoted soybean normal growth. Under flooding, the number of lateral roots increased with root tip degradation in soybean treated with smoke solutions. Proteins related to ubiquitin-proteasome pathway were altered and led to sacrifice-for-survival-mechanism-driven degradation of root tip in soybean, which enabled accumulation of metabolites and guaranteed lateral root development during soybean recovery after flooding. These findings suggest that plant-derived smoke improves early stage of growth in soybean with regulation of ornithine-synthesis pathway and ubiquitin-proteasome pathway. BIOLOGICAL SIGNIFICANCE: Plant-derived smoke plays a key role in crop growth, however, the understanding of soybean in response to smoke treatment remains premature. Therefore, gel-free/label-free proteomic analysis was used for comprehensive study on the dual effect of smoke to soybean under normal and flooding conditions. Under normal condition, plant-derived smoke regulated nitrogen‑carbon transformation through ornithine synthesis pathway and resulted in the increase of the length of root including hypocotyl in soybean within 4 days. Under flooding condition, plant-derived smoke induced inhibition of ubiquitin-proteasome pathway and led to sacrifice-for-survival-mechanism-driven degradation of root tip in soybean, which enabled accumulation of metabolites and promoted lateral root development during soybean recovery after flooding.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Tomoki Kobayashi
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Hiroyuki Imai
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| | - Rongyi Zhao
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Toshihisa Ohno
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Shafiq Ur Rehman
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China.
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
271
|
Reim A, Ackermann R, Font-Mateu J, Kammel R, Beato M, Nolte S, Mann M, Russmann C, Wierer M. Atomic-resolution mapping of transcription factor-DNA interactions by femtosecond laser crosslinking and mass spectrometry. Nat Commun 2020; 11:3019. [PMID: 32541649 PMCID: PMC7295792 DOI: 10.1038/s41467-020-16837-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
Transcription factors (TFs) regulate target genes by specific interactions with DNA sequences. Detecting and understanding these interactions at the molecular level is of fundamental importance in biological and clinical contexts. Crosslinking mass spectrometry is a powerful tool to assist the structure prediction of protein complexes but has been limited to the study of protein-protein and protein-RNA interactions. Here, we present a femtosecond laser-induced crosslinking mass spectrometry (fliX-MS) workflow, which allows the mapping of protein-DNA contacts at single nucleotide and up to single amino acid resolution. Applied to recombinant histone octamers, NF1, and TBP in complex with DNA, our method is highly specific for the mapping of DNA binding domains. Identified crosslinks are in close agreement with previous biochemical data on DNA binding and mostly fit known complex structures. Applying fliX-MS to cells identifies several bona fide crosslinks on DNA binding domains, paving the way for future large scale ex vivo experiments.
Collapse
Affiliation(s)
- Alexander Reim
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Roland Ackermann
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Straße 15, 07745, Jena, Germany
| | - Jofre Font-Mateu
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Robert Kammel
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Straße 15, 07745, Jena, Germany
| | - Miguel Beato
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- University Pompeu Fabra (UPF), 08002, Barcelona, Spain
| | - Stefan Nolte
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Straße 15, 07745, Jena, Germany
- Fraunhofer Institute for Applied Optics and Engineering (IOF), Albert-Einstein-Straße 7, 07745, Jena, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Christoph Russmann
- University of Applied Sciences and Arts Hildesheim/Holzminden/Goettingen (HAWK), Von-Ossietzky-Straße 99, 37085, Göttingen, Germany.
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
272
|
Sanderson MR, Badior KE, Fahlman RP, Wevrick R. The necdin interactome: evaluating the effects of amino acid substitutions and cell stress using proximity-dependent biotinylation (BioID) and mass spectrometry. Hum Genet 2020; 139:1513-1529. [PMID: 32529326 DOI: 10.1007/s00439-020-02193-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by the loss of function of a set of imprinted genes on chromosome 15q11-15q13. One of these genes, NDN, encodes necdin, a protein that is important for neuronal differentiation and survival. Loss of Ndn in mice causes defects in the formation and function of the nervous system. Necdin is a member of the melanoma-associated antigen gene (MAGE) protein family. The functions of MAGE proteins depend highly on their interactions with other proteins, and in particular MAGE proteins interact with E3 ubiquitin ligases and deubiquitinases to form MAGE-RING E3 ligase-deubiquitinase complexes. Here, we used proximity-dependent biotin identification (BioID) and mass spectrometry (MS) to determine the network of protein-protein interactions (interactome) of the necdin protein. This process yielded novel as well as known necdin-proximate proteins that cluster into a protein network. Next, we used BioID-MS to define the interactomes of necdin proteins carrying coding variants. Variant necdin proteins had interactomes that were distinct from wildtype necdin. BioID-MS is not only a useful tool to identify protein-protein interactions, but also to analyze the effects of variants of unknown significance on the interactomes of proteins involved in genetic disease.
Collapse
Affiliation(s)
| | - Katherine E Badior
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
273
|
Tombusvirus p19 Captures RNase III-Cleaved Double-Stranded RNAs Formed by Overlapping Sense and Antisense Transcripts in Escherichia coli. mBio 2020; 11:mBio.00485-20. [PMID: 32518184 PMCID: PMC7373196 DOI: 10.1128/mbio.00485-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antisense transcription is widespread in bacteria. By base pairing with overlapping sense RNAs, antisense RNAs (asRNA) can form double-stranded RNAs (dsRNA), which are cleaved by RNase III, a dsRNA endoribonuclease. The ectopic expression of plant Tombusvirus p19 in Escherichia coli stabilizes ∼21-nucleotide (nt) dsRNA RNase III decay intermediates, which enabled us to characterize otherwise highly unstable asRNA by deep sequencing of p19-captured dsRNA. RNase III-produced small dsRNA were formed at most bacterial genes in the bacterial genome and in a plasmid. Antisense transcription is widespread in bacteria. By base pairing with overlapping sense RNAs, antisense RNAs (asRNA) can form double-stranded RNAs (dsRNA), which are cleaved by RNase III, a dsRNA endoribonuclease. The ectopic expression of plant Tombusvirus p19 in Escherichia coli stabilizes ∼21-nucleotide (nt) dsRNA RNase III decay intermediates, which enabled us to characterize otherwise highly unstable asRNA by deep sequencing of p19-captured dsRNA. RNase III-produced small dsRNA were formed at most bacterial genes in the bacterial genome and in a plasmid. We classified the types of asRNA in genomic clusters producing the most abundant p19-captured dsRNA and confirmed RNase III regulation of asRNA and sense RNA decay at three type I toxin-antitoxin loci and at a coding gene, rsd. Furthermore, we provide potential evidence for the RNase III-dependent regulation of CspD protein by asRNA. The analysis of p19-captured dsRNA revealed an RNase III sequence preference for AU-rich sequences 3 nucleotides on either side of the cleavage sites and for GC-rich sequences in the 2-nt overhangs. Unexpectedly, GC-rich sequences were enriched in the middle section of p19-captured dsRNA, suggesting some unexpected sequence bias in p19 protein binding. Nonetheless, the ectopic expression of p19 is a sensitive method for identifying antisense transcripts and RNase III cleavage sites in dsRNA formed by overlapping sense and antisense transcripts in bacteria.
Collapse
|
274
|
Spatiotemporal proteomics uncovers cathepsin-dependent macrophage cell death during Salmonella infection. Nat Microbiol 2020; 5:1119-1133. [PMID: 32514074 PMCID: PMC7610801 DOI: 10.1038/s41564-020-0736-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/06/2020] [Indexed: 01/02/2023]
Abstract
The interplay between host and pathogen relies heavily on rapid protein synthesis and accurate protein targeting to ensure pathogen destruction. To gain insight into this dynamic interface, we combined click-chemistry with pulsed stable isotope labeling of amino acids in cell culture (pSILAC-AHA) to quantify the host proteome response during macrophage infection with the intracellular bacterial pathogen, Salmonella enterica Typhimurium (STm). We monitored newly synthesised proteins across different host cell compartments and infection stages. Within this rich resource, we detected aberrant trafficking of lysosomal proteases to the extracellular space and the nucleus. We verified active cathepsins re-traffic to the nucleus and are linked to cell death. Pharmacological cathepsin inhibition and nuclear-targeting of a cellular cathepsin inhibitor (Stefin B) suppressed STm-induced cell death. We demonstrate that cathepsin activity is required for pyroptotic cell death via the non-canonical inflammasome, and that LPS transfection into the host cytoplasm is sufficient to trigger active cathepsin accumulation in the host nucleus and cathepsin-dependent cell death. Finally, cathepsin inhibition reduced Gasdermin D expression, thus revealing an unexpected role for cathepsin activity in non-canonical inflammasome regulation. Overall, our study illustrates how resolving host proteome dynamics during infection can drive the discovery of biological mechanisms at the host-microbe interface.
Collapse
|
275
|
Bae JW, Kwon SC, Na Y, Kim VN, Kim JS. Chemical RNA digestion enables robust RNA-binding site mapping at single amino acid resolution. Nat Struct Mol Biol 2020; 27:678-682. [PMID: 32514175 DOI: 10.1038/s41594-020-0436-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
Abstract
RNA-binding sites (RBSs) can be identified by liquid chromatography and tandem mass spectrometry analyses of the protein-RNA conjugates created by crosslinking, but RBS mapping remains highly challenging due to the complexity of the formed RNA adducts. Here, we introduce RBS-ID, a method that uses hydrofluoride to fully cleave RNA into mono-nucleosides, thereby minimizing the search space to drastically enhance coverage and to reach single amino acid resolution. Moreover, the simple mono-nucleoside adducts offer a confident and quantitative measure of direct RNA-protein interaction. Using RBS-ID, we profiled ~2,000 human RBSs and probed Streptococcus pyogenes Cas9 to discover residues important for genome editing.
Collapse
Affiliation(s)
- Jong Woo Bae
- Center for RNA Research, Institute for Basic Science, Seoul, Korea.,School of Biological Sciences, Seoul National University, Seoul, Korea
| | - S Chul Kwon
- Center for RNA Research, Institute for Basic Science, Seoul, Korea.,School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yongwoo Na
- Center for RNA Research, Institute for Basic Science, Seoul, Korea.,School of Biological Sciences, Seoul National University, Seoul, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea. .,School of Biological Sciences, Seoul National University, Seoul, Korea.
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea. .,School of Biological Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
276
|
Herzog R, Wagner A, Wrettos G, Stampf K, Bromberger S, Sperl E, Kratochwill K. Improved Alignment and Quantification of Protein Signals in Two-Dimensional Western Blotting. J Proteome Res 2020; 19:2379-2390. [PMID: 32402202 DOI: 10.1021/acs.jproteome.0c00061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Western blotting is widely used for protein identification and quantification in research applications, but different protein species, resulting from alternative splicing and post-translational modifications, can often only be detected individually by two-dimensional gel electrophoresis and immunodetection by Western blotting (2D-WB). The additional separation by isoelectric focusing enables the detection of different protein species with the same specific antibody. Reliable assignment of signals from antibody-based detection to the total protein spot pattern of the original gel image is a challenge in 2D-WB, often resulting in ambiguous results. We therefore propose a reliable strategy for assignment of antibody signals from 2D-WB to the total protein spot pattern, using an imaging workflow in combination with a straightforward and easily reproducible image alignment strategy. The strategy employs vector-based alignment of protein spots and image contours in a stepwise manner. Our workflow is compatible with various protein visualization techniques, including prelabeling of proteins and poststaining of gels and membranes, as well as with chemiluminescent and fluorescent detection of bound antibody. Here, we provide a detailed description of potential applications and benefits of our workflow. We use experimental test settings with gold-standard stressors in combination with multiple staining and detection methods, as well as spike-in recombinant proteins. Our results demonstrate reliable attribution of signals to very similar heat shock proteins, phosphorylation patterns, and global analysis of proteins modified with O-linked N-acetylglucosamine (O-GlcNAc).
Collapse
Affiliation(s)
- Rebecca Herzog
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University, 1090 Vienna, Austria
| | - Anja Wagner
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University, 1090 Vienna, Austria
| | | | - Kathrin Stampf
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Sophie Bromberger
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Eva Sperl
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University, 1090 Vienna, Austria
| | - Klaus Kratochwill
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University, 1090 Vienna, Austria
| |
Collapse
|
277
|
Zhao B, Reilly CP, Davis C, Matouschek A, Reilly JP. Use of Multiple Ion Fragmentation Methods to Identify Protein Cross-Links and Facilitate Comparison of Data Interpretation Algorithms. J Proteome Res 2020; 19:2758-2771. [PMID: 32496805 DOI: 10.1021/acs.jproteome.0c00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple ion fragmentation methods involving collision-induced dissociation (CID), higher-energy collisional dissociation (HCD) with regular and very high energy settings, and electron-transfer dissociation with supplementary HCD (EThcD) are implemented to improve the confidence of cross-link identifications. Three different S. cerevisiae proteasome samples cross-linked by diethyl suberthioimidate (DEST) or bis(sulfosuccinimidyl)suberate (BS3) are analyzed. Two approaches are introduced to combine interpretations from the above four methods. Working with cleavable cross-linkers such as DEST, the first approach searches for cross-link diagnostic ions and consistency among the best interpretations derived from all four MS2 spectra associated with each precursor ion. Better agreement leads to a more definitive identification. Compatible with both cleavable and noncleavable cross-linkers such as BS3, the second approach multiplies scoring metrics from a number of fragmentation experiments to derive an overall best match. This significantly increases the scoring gap between the target and decoy matches. The validity of cross-links fragmented by HCD alone and identified by Kojak, MeroX, pLink, and Xi was evaluated using multiple fragmentation data. Possible ways to improve the identification credibility are discussed. Data are available via ProteomeXchange with identifier PXD018310.
Collapse
Affiliation(s)
- Bingqing Zhao
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Colin P Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Caroline Davis
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James P Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
278
|
Mohanty V, Pinto SM, Subbannayya Y, Najar MA, Murthy KB, Prasad TSK, Murthy KR. Digging Deeper for the Eye Proteome in Vitreous Substructures: A High-Resolution Proteome Map of the Normal Human Vitreous Base. ACTA ACUST UNITED AC 2020; 24:379-389. [DOI: 10.1089/omi.2020.0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Varshasnata Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sneha M. Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohd. Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Kalpana Babu Murthy
- Department of vitreo retina, Vittala International Institute of Ophthalmology, Bangalore, India
- Department of vitreo retina, Prabha Eye Clinic and Research Centre, Bangalore, India
| | | | - Krishna R. Murthy
- Department of vitreo retina, Vittala International Institute of Ophthalmology, Bangalore, India
- Department of vitreo retina, Prabha Eye Clinic and Research Centre, Bangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
279
|
Goh WWB, Wong L. The Birth of Bio-data Science: Trends, Expectations, and Applications. GENOMICS, PROTEOMICS & BIOINFORMATICS 2020; 18:5-15. [PMID: 32428604 PMCID: PMC7393550 DOI: 10.1016/j.gpb.2020.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/02/2019] [Accepted: 02/26/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Wilson Wen Bin Goh
- (1)School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Limsoon Wong
- (2)Department of Computer Science, National University of Singapore, Singapore 117417, Singapore.
| |
Collapse
|
280
|
Hoeijmakers WAM, Miao J, Schmidt S, Toenhake CG, Shrestha S, Venhuizen J, Henderson R, Birnbaum J, Ghidelli-Disse S, Drewes G, Cui L, Stunnenberg HG, Spielmann T, Bártfai R. Epigenetic reader complexes of the human malaria parasite, Plasmodium falciparum. Nucleic Acids Res 2020; 47:11574-11588. [PMID: 31728527 PMCID: PMC7145593 DOI: 10.1093/nar/gkz1044] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
Epigenetic regulatory mechanisms are central to the development and survival of all eukaryotic organisms. These mechanisms critically depend on the marking of chromatin domains with distinctive histone tail modifications (PTMs) and their recognition by effector protein complexes. Here we used quantitative proteomic approaches to unveil interactions between PTMs and associated reader protein complexes of Plasmodium falciparum, a unicellular parasite causing malaria. Histone peptide pull-downs with the most prominent and/or parasite-specific PTMs revealed the binding preference for 14 putative and novel reader proteins. Amongst others, they highlighted the acetylation-level-dependent recruitment of the BDP1/BDP2 complex and identified an PhD-finger protein (PHD 1, PF3D7_1008100) that could mediate a cross-talk between H3K4me2/3 and H3K9ac marks. Tagging and interaction proteomics of 12 identified proteins unveiled the composition of 5 major epigenetic complexes, including the elusive TBP-associated-factor complex as well as two distinct GCN5/ADA2 complexes. Furthermore, it has highlighted a remarkable degree of interaction between these five (sub)complexes. Collectively, this study provides an extensive inventory of PTM-reader interactions and composition of epigenetic complexes. It will not only fuel further explorations of gene regulation amongst ancient eukaryotes, but also provides a stepping stone for exploration of PTM-reader interactions for antimalarial drug development.
Collapse
Affiliation(s)
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sabine Schmidt
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg D-20359, Germany
| | | | - Sony Shrestha
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jeron Venhuizen
- Department of Molecular Biology, Radboud University, Nijmegen 6525 GA, the Netherlands
| | - Rob Henderson
- Department of Molecular Biology, Radboud University, Nijmegen 6525 GA, the Netherlands.,TropIQ Health Sciences, Nijmegen 6534 AT, the Netherlands
| | - Jakob Birnbaum
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg D-20359, Germany
| | | | - Gerard Drewes
- Cellzome GmbH, a GlaxoSmithKline Company, Heidelberg 69117, Germany
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hendrik Gerard Stunnenberg
- Department of Molecular Biology, Radboud University, Nijmegen 6525 GA, the Netherlands.,Princess Maxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
| | - Tobias Spielmann
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg D-20359, Germany
| | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, Nijmegen 6525 GA, the Netherlands
| |
Collapse
|
281
|
Complex Analysis of Retroposed Genes' Contribution to Human Genome, Proteome and Transcriptome. Genes (Basel) 2020; 11:genes11050542. [PMID: 32408516 PMCID: PMC7290577 DOI: 10.3390/genes11050542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Gene duplication is a major driver of organismal evolution. One of the main mechanisms of gene duplications is retroposition, a process in which mRNA is first transcribed into DNA and then reintegrated into the genome. Most gene retrocopies are depleted of the regulatory regions. Nevertheless, examples of functional retrogenes are rapidly increasing. These functions come from the gain of new spatio-temporal expression patterns, imposed by the content of the genomic sequence surrounding inserted cDNA and/or by selectively advantageous mutations, which may lead to the switch from protein coding to regulatory RNA. As recent studies have shown, these genes may lead to new protein domain formation through fusion with other genes, new regulatory RNAs or other regulatory elements. We utilized existing data from high-throughput technologies to create a complex description of retrogenes functionality. Our analysis led to the identification of human retroposed genes that substantially contributed to transcriptome and proteome. These retrocopies demonstrated the potential to encode proteins or short peptides, act as cis- and trans- Natural Antisense Transcripts (NATs), regulate their progenitors’ expression by competing for the same microRNAs, and provide a sequence to lncRNA and novel exons to existing protein-coding genes. Our study also revealed that retrocopies, similarly to retrotransposons, may act as recombination hot spots. To our best knowledge this is the first complex analysis of these functions of retrocopies.
Collapse
|
282
|
Ambrosino L, Colantuono C, Diretto G, Fiore A, Chiusano ML. Bioinformatics Resources for Plant Abiotic Stress Responses: State of the Art and Opportunities in the Fast Evolving -Omics Era. PLANTS 2020; 9:plants9050591. [PMID: 32384671 PMCID: PMC7285221 DOI: 10.3390/plants9050591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Abiotic stresses are among the principal limiting factors for productivity in agriculture. In the current era of continuous climate changes, the understanding of the molecular aspects involved in abiotic stress response in plants is a priority. The rise of -omics approaches provides key strategies to promote effective research in the field, facilitating the investigations from reference models to an increasing number of species, tolerant and sensitive genotypes. Integrated multilevel approaches, based on molecular investigations at genomics, transcriptomics, proteomics and metabolomics levels, are now feasible, expanding the opportunities to clarify key molecular aspects involved in responses to abiotic stresses. To this aim, bioinformatics has become fundamental for data production, mining and integration, and necessary for extracting valuable information and for comparative efforts, paving the way to the modeling of the involved processes. We provide here an overview of bioinformatics resources for research on plant abiotic stresses, describing collections from -omics efforts in the field, ranging from raw data to complete databases or platforms, highlighting opportunities and still open challenges in abiotic stress research based on -omics technologies.
Collapse
Affiliation(s)
- Luca Ambrosino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Na), Italy; (L.A.); (C.C.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), 80121 Naples, Italy
| | - Chiara Colantuono
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Na), Italy; (L.A.); (C.C.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), 80121 Naples, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.D.); (A.F.)
| | - Alessia Fiore
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.D.); (A.F.)
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Na), Italy; (L.A.); (C.C.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), 80121 Naples, Italy
- Correspondence: ; Tel.: +39-081-253-9492
| |
Collapse
|
283
|
Wright NR, Wulff T, Palmqvist EA, Jørgensen TR, Workman CT, Sonnenschein N, Rønnest NP, Herrgård MJ. Fluctuations in glucose availability prevent global proteome changes and physiological transition during prolonged chemostat cultivations of
Saccharomyces cerevisiae. Biotechnol Bioeng 2020; 117:2074-2088. [DOI: 10.1002/bit.27353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Naia R. Wright
- Novo Nordisk A/S Bagsværd Denmark
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Lyngby Denmark
- Department of Biotechnology and BiomedicineTechnical University of Denmark Lyngby Denmark
| | - Tune Wulff
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Lyngby Denmark
| | | | - Thomas R. Jørgensen
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Lyngby Denmark
| | - Christopher T. Workman
- Department of Biotechnology and BiomedicineTechnical University of Denmark Lyngby Denmark
| | - Nikolaus Sonnenschein
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Lyngby Denmark
- Department of Biotechnology and BiomedicineTechnical University of Denmark Lyngby Denmark
| | | | - Markus J. Herrgård
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Lyngby Denmark
- BioInnovation Institute København N Denmark
| |
Collapse
|
284
|
Limbutara K, Chou CL, Knepper MA. Quantitative Proteomics of All 14 Renal Tubule Segments in Rat. J Am Soc Nephrol 2020; 31:1255-1266. [PMID: 32358040 DOI: 10.1681/asn.2020010071] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous research has used RNA sequencing in microdissected kidney tubules or single cells isolated from the kidney to profile gene expression in each type of kidney tubule epithelial cell. However, because proteins, not mRNA molecules, mediate most cellular functions, it is desirable to know the identity and amounts of each protein species to understand function. Recent improvements in the sensitivity of mass spectrometers offered us the ability to quantify the proteins expressed in each of 14 different renal tubule segments from rat. METHODS We manually dissected kidney tubules from rat kidneys and subjected samples to protein mass spectrometry. We used the "proteomic ruler" technique to estimate the number of molecules of each protein per cell. RESULTS Over the 44 samples analyzed, the average number of quantified proteins per segment was 4234, accounting for at least 99% of protein molecules in each cell. We have made the data publicly available online at the Kidney Tubule Expression Atlas website (https://esbl.nhlbi.nih.gov/KTEA/). Protein abundance along the renal tubule for many commonly studied water and solute transport proteins and metabolic enzymes matched expectations from prior localization studies, demonstrating the overall reliability of the data. The site features a "correlated protein" function, which we used to identify cell type-specific transcription factors expressed along the renal tubule. CONCLUSIONS We identified and quantified proteins expressed in each of the 14 segments of rat kidney tubules and used the proteomic data that we obtained to create an online information resource, the Kidney Tubule Expression Atlas. This resource will allow users throughout the world to browse segment-specific protein expression data and download them for their own research.
Collapse
Affiliation(s)
- Kavee Limbutara
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
285
|
Cassidy KB, Bang S, Kurokawa M, Gerber SA. Direct regulation of Chk1 protein stability by E3 ubiquitin ligase HUWE1. FEBS J 2020; 287:1985-1999. [PMID: 31713291 PMCID: PMC7226928 DOI: 10.1111/febs.15132] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/19/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022]
Abstract
The HECT E3 ubiquitin ligase HUWE1 is required for a wide array of important functions in cell biology. Although HUWE1 is known to play a role in DNA damage signaling, the mechanism(s) that underlie this function remain elusive. HUWE1 regulates effectors of DNA replication and genotoxic stress tolerance. However, the loss of HUWE1 can also result in the accrual of significant endogenous DNA damage due to insufficient remediation of replication stress induced by an overabundance of key substrates. We discovered that HUWE1 depletion leads to a significant increase in levels of the single-strand break effector kinase Chk1, independent of the DNA damage response, activation of apical DNA damage repair (DDR) signaling kinases (ATM and ATR), and the tumor suppressor p53. We also identified multiple lysine residues on Chk1 that are polyubiquitinated by HUWE1 in vitro, many of which are within the kinase domain. HUWE1 knockdown also markedly prolonged the protein half-life of Chk1 in steady-state conditions and resulted in greater stabilization of Chk1 protein than depletion of Cul4A, an E3 ubiquitin ligase previously described to control Chk1 abundance. Moreover, prolonged replication stress induced by hydroxyurea or camptothecin resulted in a reduction of Chk1 protein levels, which was rescued by HUWE1 knockdown. Our study indicates that HUWE1 plays a significant role in the regulation of the DDR signaling pathway by directly modulating the abundance of Chk1 protein.
Collapse
Affiliation(s)
- Katelyn B. Cassidy
- Department of Molecular & Systems Biology, Geisel School of Medicine, Hanover, NH 03755
| | - Scott Bang
- Department of Biological Sciences, Kent State University, Kent, OH 44242
| | - Manabu Kurokawa
- Department of Molecular & Systems Biology, Geisel School of Medicine, Hanover, NH 03755
- Department of Biological Sciences, Kent State University, Kent, OH 44242
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756
| | - Scott A. Gerber
- Department of Molecular & Systems Biology, Geisel School of Medicine, Hanover, NH 03755
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756
| |
Collapse
|
286
|
Titz B, Szostak J, Sewer A, Phillips B, Nury C, Schneider T, Dijon S, Lavrynenko O, Elamin A, Guedj E, Tsin Wong E, Lebrun S, Vuillaume G, Kondylis A, Gubian S, Cano S, Leroy P, Keppler B, Ivanov NV, Vanscheeuwijck P, Martin F, Peitsch MC, Hoeng J. Multi-omics systems toxicology study of mouse lung assessing the effects of aerosols from two heat-not-burn tobacco products and cigarette smoke. Comput Struct Biotechnol J 2020; 18:1056-1073. [PMID: 32419906 PMCID: PMC7218232 DOI: 10.1016/j.csbj.2020.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/19/2020] [Indexed: 12/15/2022] Open
Abstract
Multi-omics systems toxicology study, comprising five omics data modalities. Multi-Omics Factor Analysis and multi-modality functional network interpretation. Cigarettes smoke (CS) induced complex immunoregulatory interactions across molecular layers. Aerosols from two heat-not-burn tobacco products had less impact on lungs than CS.
Cigarette smoke (CS) causes adverse health effects and, for smoker who do not quit, modified risk tobacco products (MRTPs) can be an alternative to reduce the risk of developing smoking-related diseases. Standard toxicological endpoints can lack sensitivity, with systems toxicology approaches yielding broader insights into toxicological mechanisms. In a 6-month systems toxicology study on ApoE−/− mice, we conducted an integrative multi-omics analysis to assess the effects of aerosols from the Carbon Heated Tobacco Product (CHTP) 1.2 and Tobacco Heating System (THS) 2.2—a potential and a candidate MRTP based on the heat-not-burn (HnB) principle—compared with CS at matched nicotine concentrations. Molecular exposure effects in the lungs were measured by mRNA/microRNA transcriptomics, proteomics, metabolomics, and lipidomics. Integrative data analysis included Multi-Omics Factor Analysis and multi-modality functional network interpretation. Across all five data modalities, CS exposure was associated with an increased inflammatory and oxidative stress response, and lipid/surfactant alterations. Upon HnB aerosol exposure these effects were much more limited or absent, with reversal of CS-induced effects upon cessation and switching to CHTP 1.2. Functional network analysis revealed CS-induced complex immunoregulatory interactions across the investigated molecular layers (e.g., itaconate, quinolinate, and miR-146) and highlighted the engagement of the heme–Hmox–bilirubin oxidative stress axis by CS. This work exemplifies how multi-omics approaches can be leveraged within systems toxicology studies and the generated multi-omics data set can facilitate the development of analysis methods and can yield further insights into the effects of toxicological exposures on the lung of mice.
Collapse
Key Words
- CHTP, Carbon Heated Tobacco Product
- COPD, chronic obstructive pulmonary disease
- CS, cigarette smoke
- Cigarette smoking
- Inhalation toxicology
- LC, liquid chromatography
- MOFA, Multi-Omics Factor Analysis
- MS, mass spectrometry
- Modified risk tobacco product (MRTP)
- Multi-omics
- PCSF, prize-collecting Steiner forest
- ROS, reactive oxygen species
- Systems toxicology
- THS, Tobacco Heating System
- cMRTP, candidate modified risk tobacco product
- sGCCA, sparse generalized canonical correlation analysis
Collapse
Affiliation(s)
- Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Justyna Szostak
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Blaine Phillips
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Catherine Nury
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Sophie Dijon
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Oksana Lavrynenko
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Ee Tsin Wong
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Stefan Lebrun
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Grégory Vuillaume
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Sylvain Gubian
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Stephane Cano
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | | | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | | | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
287
|
Pattipeiluhu R, Crielaard S, Klein-Schiphorst I, Florea BI, Kros A, Campbell F. Unbiased Identification of the Liposome Protein Corona using Photoaffinity-based Chemoproteomics. ACS CENTRAL SCIENCE 2020; 6:535-545. [PMID: 32342003 PMCID: PMC7181318 DOI: 10.1021/acscentsci.9b01222] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 04/14/2023]
Abstract
Protein adsorption to the surface of a nanoparticle can fundamentally alter the character, behavior, and fate of a nanoparticle in vivo. Current methods to capture the protein corona rely on physical separation techniques and are unable to resolve key, individual protein-nanoparticle interactions. As a result, the precise link between the "synthetic" and the "biological" identity of a nanoparticle remains unclear. Herein, we report an unbiased photoaffinity-based approach to capture, characterize, and quantify the protein corona of liposomes in their native state. Compared to conventional methods, our photoaffinity approach reveals markedly different interacting proteins as well as reduced total protein binding to liposome surfaces. Identified proteins do not follow protein abundancy patterns of human serum, as has been generally reported, but are instead dominated by soluble apolipoproteins-endogenous serum proteins that have evolved to recognize the lipidic surface of circulating lipoproteins. We believe our findings are the most accurate characterization of a liposome's biological identity but, more fundamentally, reveal liposome-protein binding is, in many cases, significantly less complex than previously thought.
Collapse
Affiliation(s)
- Roy Pattipeiluhu
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Stefan Crielaard
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Iris Klein-Schiphorst
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Bogdan I. Florea
- Bio-organic
Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Alexander Kros
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
- (A.K.)
| | - Frederick Campbell
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
- (F.C.)
| |
Collapse
|
288
|
Zhao T, Jia L, Li J, Ma C, Wu J, Shen J, Dang L, Zhu B, Li P, Zhi Y, Lan R, Xu Y, Hao Z, Chai Y, Li Q, Hu L, Sun S. Heterogeneities of Site-Specific N-Glycosylation in HCC Tumors With Low and High AFP Concentrations. Front Oncol 2020; 10:496. [PMID: 32426269 PMCID: PMC7212448 DOI: 10.3389/fonc.2020.00496] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is still one of the malignant tumors with high morbidity and mortality in China and worldwide. Although alpha-fetoprotein (AFP) as well as core fucosylated AFP-L3 have been widely used as important biomarkers for HCC diagnosis and evaluation, the AFP level shows a huge variation among HCC patient populations. In addition, the AFP level has also been proved to be associated with pathological grade, progression, and survival of HCC patients. Understanding the intrinsic heterogeneities of HCC associated with AFP levels is essential for the molecular mechanism studies of HCC with different AFP levels as well as for the potential early diagnosis and personalized treatment of HCC with AFP negative. In this study, an integrated N-glycoproteomic and proteomic analysis of low and high AFP levels of HCC tumors was performed to investigate the intrinsic heterogeneities of site-specific glycosylation associated with different AFP levels of HCC. By large-scale profiling and quantifying more than 4,700 intact N-glycopeptides from 20 HCC and 20 paired paracancer samples, we identified many commonly altered site-specific N-glycans from HCC tumors regardless of AFP levels, including decreased modifications by oligo-mannose and sialylated bi-antennary glycans, and increased modifications by bisecting glycans. By relative quantifying the intact N-glycopeptides between low and high AFP tumor groups, the great heterogeneities of site-specific N-glycans between two groups of HCC tumors were also uncovered. We found that several sialylated but not core fucosylated tri-antennary glycans were uniquely increased in low AFP level of HCC tumors, while many core fucosylated bi-antennary or hybrid glycans as well as bisecting glycans were uniquely increased in high AFP tumors. The data provide a valuable resource for future HCC studies regarding the mechanism, heterogeneities and new biomarker discovery.
Collapse
Affiliation(s)
- Ting Zhao
- College of Life Science, Northwest University, Xi'an, China
| | - Li Jia
- College of Life Science, Northwest University, Xi'an, China
| | - Jun Li
- College of Life Science, Northwest University, Xi'an, China
| | - Chen Ma
- College of Life Science, Northwest University, Xi'an, China
| | - Jingyu Wu
- College of Life Science, Northwest University, Xi'an, China
| | - Jiechen Shen
- College of Life Science, Northwest University, Xi'an, China
| | - Liuyi Dang
- College of Life Science, Northwest University, Xi'an, China
| | - Bojing Zhu
- College of Life Science, Northwest University, Xi'an, China
| | - Pengfei Li
- College of Life Science, Northwest University, Xi'an, China
| | - Yuan Zhi
- College of Life Science, Northwest University, Xi'an, China
| | - Rongxia Lan
- College of Life Science, Northwest University, Xi'an, China
| | - Yintai Xu
- College of Life Science, Northwest University, Xi'an, China
| | - Zhifang Hao
- College of Life Science, Northwest University, Xi'an, China
| | - Yichao Chai
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingshan Li
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liangshuo Hu
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shisheng Sun
- College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
289
|
Wojdyla K, Collier AJ, Fabian C, Nisi PS, Biggins L, Oxley D, Rugg-Gunn PJ. Cell-Surface Proteomics Identifies Differences in Signaling and Adhesion Protein Expression between Naive and Primed Human Pluripotent Stem Cells. Stem Cell Reports 2020; 14:972-988. [PMID: 32302559 PMCID: PMC7220956 DOI: 10.1016/j.stemcr.2020.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Naive and primed human pluripotent stem cells (hPSC) provide valuable models to study cellular and molecular developmental processes. The lack of detailed information about cell-surface protein expression in these two pluripotent cell types prevents an understanding of how the cells communicate and interact with their microenvironments. Here, we used plasma membrane profiling to directly measure cell-surface protein expression in naive and primed hPSC. This unbiased approach quantified over 1,700 plasma membrane proteins, including those involved in cell adhesion, signaling, and cell interactions. Notably, multiple cytokine receptors upstream of JAK-STAT signaling were more abundant in naive hPSC. In addition, functional experiments showed that FOLR1 and SUSD2 proteins are highly expressed at the cell surface in naive hPSC but are not required to establish human naive pluripotency. This study provides a comprehensive stem cell proteomic resource that uncovers differences in signaling pathway activity and has identified new markers to define human pluripotent states.
Collapse
Affiliation(s)
- Katarzyna Wojdyla
- Epigenetics Programme, The Babraham Institute, Cambridge, UK; Mass Spectrometry Facility, The Babraham Institute, Cambridge, UK
| | | | - Charlene Fabian
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Paola S Nisi
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Laura Biggins
- Bioinformatics Group, The Babraham Institute, Cambridge, UK
| | - David Oxley
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
290
|
Birnbaum J, Scharf S, Schmidt S, Jonscher E, Hoeijmakers WAM, Flemming S, Toenhake CG, Schmitt M, Sabitzki R, Bergmann B, Fröhlke U, Mesén-Ramírez P, Blancke Soares A, Herrmann H, Bártfai R, Spielmann T. A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science 2020; 367:51-59. [PMID: 31896710 DOI: 10.1126/science.aax4735] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/19/2019] [Accepted: 10/30/2019] [Indexed: 01/20/2023]
Abstract
Artemisinin and its derivatives (ARTs) are the frontline drugs against malaria, but resistance is jeopardizing their effectiveness. ART resistance is mediated by mutations in the parasite's Kelch13 protein, but Kelch13 function and its role in resistance remain unclear. In this study, we identified proteins located at a Kelch13-defined compartment. Inactivation of eight of these proteins, including Kelch13, rendered parasites resistant to ART, revealing a pathway critical for resistance. Functional analysis showed that these proteins are required for endocytosis of hemoglobin from the host cell. Parasites with inactivated Kelch13 or a resistance-conferring Kelch13 mutation displayed reduced hemoglobin endocytosis. ARTs are activated by degradation products of hemoglobin. Hence, reduced activity of Kelch13 and its interactors diminishes hemoglobin endocytosis and thereby ART activation, resulting in parasite resistance.
Collapse
Affiliation(s)
- Jakob Birnbaum
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Sarah Scharf
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Sabine Schmidt
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Ernst Jonscher
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | | | - Sven Flemming
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Christa Geeke Toenhake
- Department of Molecular Biology, Radboud University, Geert Grooteplein 26-28, 6525 GA Nijmegen, Netherlands
| | - Marius Schmitt
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Ricarda Sabitzki
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Bärbel Bergmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Ulrike Fröhlke
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Paolo Mesén-Ramírez
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | | | - Hendrik Herrmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, Geert Grooteplein 26-28, 6525 GA Nijmegen, Netherlands
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany.
| |
Collapse
|
291
|
Choi Y, Jeong K, Shin S, Lee JW, Lee YS, Kim S, Kim SA, Jung J, Kim KP, Kim VN, Kim JS. MS1-Level Proteome Quantification Platform Allowing Maximally Increased Multiplexity for SILAC and In Vitro Chemical Labeling. Anal Chem 2020; 92:4980-4989. [PMID: 32167278 DOI: 10.1021/acs.analchem.9b05148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Quantitative proteomic platforms based on precursor intensity in mass spectrometry (MS1-level) uniquely support in vivo metabolic labeling with superior quantification accuracy but suffer from limited multiplexity (≤3-plex) and frequent missing quantities. Here we present a new MS1-level quantification platform that allows maximal multiplexing with high quantification accuracy and precision for the given labeling scheme. The platform currently comprises 6-plex in vivo SILAC or in vitro diethylation labeling with a dedicated algorithm and is also expandable to higher multiplexity (e.g., nine-plex for SILAC). For complex samples with broad dynamic ranges such as total cell lysates, our platform performs highly accurately and free of missing quantities. Furthermore, we successfully applied our method to measure protein synthesis rate under heat shock response in human cells by 6-plex pulsed SILAC experiments, demonstrating the unique biological merits of our in vivo platform to disclose translational regulations for cellular response to stress.
Collapse
Affiliation(s)
- Yeon Choi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kyowon Jeong
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Sanghee Shin
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Joon Won Lee
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Young-Suk Lee
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Sangtae Kim
- Illumina, Inc., San Diego, California 92122, United States
| | - Sun Ah Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jaehun Jung
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
292
|
Dörrbaum AR, Alvarez-Castelao B, Nassim-Assir B, Langer JD, Schuman EM. Proteome dynamics during homeostatic scaling in cultured neurons. eLife 2020; 9:e52939. [PMID: 32238265 PMCID: PMC7117909 DOI: 10.7554/elife.52939] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/22/2020] [Indexed: 12/11/2022] Open
Abstract
Protein turnover, the net result of protein synthesis and degradation, enables cells to remodel their proteomes in response to internal and external cues. Previously, we analyzed protein turnover rates in cultured brain cells under basal neuronal activity and found that protein turnover is influenced by subcellular localization, protein function, complex association, cell type of origin, and by the cellular environment (Dörrbaum et al., 2018). Here, we advanced our experimental approach to quantify changes in protein synthesis and degradation, as well as the resulting changes in protein turnover or abundance in rat primary hippocampal cultures during homeostatic scaling. Our data demonstrate that a large fraction of the neuronal proteome shows changes in protein synthesis and/or degradation during homeostatic up- and down-scaling. More than half of the quantified synaptic proteins were regulated, including pre- as well as postsynaptic proteins with diverse molecular functions.
Collapse
Affiliation(s)
- Aline Ricarda Dörrbaum
- Max Planck Institute for Brain Research, Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biological Sciences, Frankfurt, Germany
| | | | | | - Julian D Langer
- Max Planck Institute for Brain Research, Frankfurt, Germany
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany
| |
Collapse
|
293
|
Herr P, Boström J, Rullman E, Rudd SG, Vesterlund M, Lehtiö J, Helleday T, Maddalo G, Altun M. Cell Cycle Profiling Reveals Protein Oscillation, Phosphorylation, and Localization Dynamics. Mol Cell Proteomics 2020; 19:608-623. [PMID: 32051232 PMCID: PMC7124475 DOI: 10.1074/mcp.ra120.001938] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Indexed: 11/06/2022] Open
Abstract
The cell cycle is a highly conserved process involving the coordinated separation of a single cell into two daughter cells. To relate transcriptional regulation across the cell cycle with oscillatory changes in protein abundance and activity, we carried out a proteome- and phospho-proteome-wide mass spectrometry profiling. We compared protein dynamics with gene transcription, revealing many transcriptionally regulated G2 mRNAs that only produce a protein shift after mitosis. Integration of CRISPR/Cas9 survivability studies further highlighted proteins essential for cell viability. Analyzing the dynamics of phosphorylation events and protein solubility dynamics over the cell cycle, we characterize predicted phospho-peptide motif distributions and predict cell cycle-dependent translocating proteins, as exemplified by the S-adenosylmethionine synthase MAT2A. Our study implicates this enzyme in translocating to the nucleus after the G1/S-checkpoint, which enables epigenetic histone methylation maintenance during DNA replication. Taken together, this data set provides a unique integrated resource with novel insights on cell cycle dynamics.
Collapse
Affiliation(s)
- Patrick Herr
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden; Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, S10 2RX Sheffield, England
| | - Johan Boström
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Eric Rullman
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sean G Rudd
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Mattias Vesterlund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Janne Lehtiö
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden; Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, S10 2RX Sheffield, England
| | - Gianluca Maddalo
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mikael Altun
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
294
|
Sakalauskaite J, Plasseraud L, Thomas J, Albéric M, Thoury M, Perrin J, Jamme F, Broussard C, Demarchi B, Marin F. The shell matrix of the european thorny oyster, Spondylus gaederopus: microstructural and molecular characterization. J Struct Biol 2020; 211:107497. [PMID: 32220629 DOI: 10.1016/j.jsb.2020.107497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 11/18/2022]
Abstract
Molluscs, the largest marine phylum, display extraordinary shell diversity and sophisticated biomineral architectures. However, mineral-associated biomolecules involved in biomineralization are still poorly characterised. We report the first comprehensive structural and biomolecular study of Spondylus gaederopus, a pectinoid bivalve with a peculiar shell texture. Used since prehistoric times, this is the best-known shell of Europe's cultural heritage. We find that Spondylus microstructure is very poor in mineral-bound organics, which are mostly intercrystalline and concentrated at the interface between structural layers. Using high-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) we characterized several shell protein fractions, isolated following different bleaching treatments. Several peptides were identified as well as six shell proteins, which display features and domains typically found in biomineralized tissues, including the prevalence of intrinsically disordered regions. It is very likely that these sequences only partially represent the full proteome of Spondylus, considering the lack of genomics data for this genus and the fact that most of the reconstructed peptides do not match with any known shell proteins, representing consequently lineage-specific sequences. This work sheds light onto the shell matrix involved in the biomineralization in spondylids. Our proteomics data suggest that Spondylus has evolved a shell-forming toolkit, distinct from that of other better studied pectinoids - fine-tuned to produce shell structures with high mechanical properties, while limited in organic content. This study therefore represents an important milestone for future studies on biomineralized skeletons and provides the first reference dataset for forthcoming molecular studies of Spondylus archaeological artifacts.
Collapse
Affiliation(s)
- Jorune Sakalauskaite
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; Biogeosciences, UMR CNRS 6282, University of Burgundy-Franche-Comté (UBFC), 6 Boulevard Gabriel, 21000 Dijon, France.
| | - Laurent Plasseraud
- Institute of Molecular Chemistry, ICMUB UMR CNRS 6302, University of Burgundy-Franche-Comté (UBFC), 9 Avenue Alain Savary, 21000 Dijon, France
| | - Jérôme Thomas
- Biogeosciences, UMR CNRS 6282, University of Burgundy-Franche-Comté (UBFC), 6 Boulevard Gabriel, 21000 Dijon, France
| | - Marie Albéric
- Laboratoire Chimie de la Matière Condensée de Paris, UMR, CNRS 7574, Sorbonne Université, Place Jussieu 4, 75252 Paris, France
| | - Mathieu Thoury
- IPANEMA, CNRS, ministère de la Culture, UVSQ, USR3461, Université Paris-Saclay, F-91192 Gif-sur-Yvette, France
| | - Jonathan Perrin
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | - Frédéric Jamme
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | - Cédric Broussard
- 3P5 Proteomic Platform, University of Paris, Cochin Institute, INSERM, U1016, CNRS, UMR8104, F-75014 Paris, France
| | - Beatrice Demarchi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Frédéric Marin
- Biogeosciences, UMR CNRS 6282, University of Burgundy-Franche-Comté (UBFC), 6 Boulevard Gabriel, 21000 Dijon, France.
| |
Collapse
|
295
|
Thomas S, Hao L, DeLaney K, McLean D, Steinke L, Marker PC, Vezina CM, Li L, Ricke WA. Spatiotemporal Proteomics Reveals the Molecular Consequences of Hormone Treatment in a Mouse Model of Lower Urinary Tract Dysfunction. J Proteome Res 2020; 19:1375-1382. [PMID: 32108482 DOI: 10.1021/acs.jproteome.9b00451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benign prostatic hyperplasia and related lower urinary tract symptoms remain common, costly, and impactful issues for aging males. The etiology and pathogenesis are multifactorial and include steroid hormone changes and inflammation. Noninvasive markers could one day inform personalized medicine, but interindividual variation and lack of healthy age-matched controls hamper research. Experimental models are appealing for insight into disease mechanisms. Here, we present a spatiotemporal proteomics study in a mouse model of hormone-induced urinary dysfunction. Urine samples were collected noninvasively across time: before, during, and after disease onset. A microcomputed tomography analysis implicated the prostate as a spatially relevant contributor to bladder outlet obstruction. Prostates were collected after disease onset and compared with control mice. Notable changes in urine include proteins representing oxidative stress defense and acute phase inflammatory response processes. In the prostate, hormone treatment led to perturbations related to an oxidative stress response and H2O2 metabolism. Several protein changes coincided in both urine and the prostate tissue, including glutathione peroxidase 3, glutathione hydrolase 1 proenzyme, and vitamin D-binding protein. This study supports the concept of noninvasive urinary biomarkers for prostate disease diagnostics. Oxidative stress and acute phase inflammatory processes were identified as key consequences of hormone-induced bladder outlet obstruction. Future research into antioxidants and anti-inflammatories in prostate diseases appears promising.
Collapse
Affiliation(s)
- Samuel Thomas
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ling Hao
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Dalton McLean
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Laura Steinke
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Paul C Marker
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Chad M Vezina
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - William A Ricke
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
296
|
How paired PSII-LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass-spectrometry. Nat Commun 2020; 11:1361. [PMID: 32170184 PMCID: PMC7069969 DOI: 10.1038/s41467-020-15184-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/18/2020] [Indexed: 01/17/2023] Open
Abstract
Grana are a characteristic feature of higher plants’ thylakoid membranes, consisting of stacks of appressed membranes enriched in Photosystem II (PSII) and associated light-harvesting complex II (LHCII) proteins, together forming the PSII-LHCII supercomplex. Grana stacks undergo light-dependent structural changes, mainly by reorganizing the supramolecular structure of PSII-LHCII supercomplexes. LHCII is vital for grana formation, in which also PSII-LHCII supercomplexes are involved. By combining top-down and crosslinking mass spectrometry we uncover the spatial organization of paired PSII-LHCII supercomplexes within thylakoid membranes. The resulting model highlights a basic molecular mechanism whereby plants maintain grana stacking at changing light conditions. This mechanism relies on interactions between stroma-exposed N-terminal loops of LHCII trimers and Lhcb4 subunits facing each other in adjacent membranes. The combination of light-dependent LHCII N-terminal trimming and extensive N-terminal α-acetylation likely affects interactions between pairs of PSII-LHCII supercomplexes across the stromal gap, ultimately mediating membrane folding in grana stacks. The supramolecular organization of PSII-LHCII supercomplexes determines the plant thylakoid structure. Here, via structural mass spectrometry, Albanese et al. show how stroma-exposed N-termini of LHCII subunits, interacting with each other in adjacent membranes, can mediate membrane folding in grana stacks.
Collapse
|
297
|
Feng H, Schorpp K, Jin J, Yozwiak CE, Hoffstrom BG, Decker AM, Rajbhandari P, Stokes ME, Bender HG, Csuka JM, Upadhyayula PS, Canoll P, Uchida K, Soni RK, Hadian K, Stockwell BR. Transferrin Receptor Is a Specific Ferroptosis Marker. Cell Rep 2020; 30:3411-3423.e7. [PMID: 32160546 PMCID: PMC7172030 DOI: 10.1016/j.celrep.2020.02.049] [Citation(s) in RCA: 570] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/17/2019] [Accepted: 02/10/2020] [Indexed: 01/10/2023] Open
Abstract
Ferroptosis is a type of regulated cell death driven by the iron-dependent accumulation of oxidized polyunsaturated fatty acid-containing phospholipids. There is no reliable way to selectively stain ferroptotic cells in tissue sections to characterize the extent of ferroptosis in animal models or patient samples. We address this gap by immunizing mice with membranes from lymphoma cells treated with the ferroptosis inducer piperazine erastin and screening ∼4,750 of the resulting monoclonal antibodies generated for their ability to selectively detect cells undergoing ferroptosis. We find that one antibody, 3F3 ferroptotic membrane antibody (3F3-FMA), is effective as a selective ferroptosis-staining reagent. The antigen of 3F3-FMA is identified as the human transferrin receptor 1 protein (TfR1). We validate this finding with several additional anti-TfR1 antibodies and compare them to other potential ferroptosis-detecting reagents. We find that anti-TfR1 and anti-malondialdehyde adduct antibodies are effective at staining ferroptotic tumor cells in multiple cell culture and tissue contexts.
Collapse
Affiliation(s)
- Huizhong Feng
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 12th Floor, MC 4846, 550 West 120(th) Street, New York, NY 10027, USA
| | - Kenji Schorpp
- HelmholtzZentrum München, German Research Center for Environmental Health (GmbH), Assay Development and Screening Platform, Institute for Molecular Toxicology and Pharmacology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Jenny Jin
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 12th Floor, MC 4846, 550 West 120(th) Street, New York, NY 10027, USA
| | - Carrie E Yozwiak
- Department of Chemistry, Columbia University, Northwest Corner Building, 12th Floor, MC 4846, 550 West 120(th) Street, New York, NY 10027, USA
| | - Benjamin G Hoffstrom
- Antibody Technology Resource, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Aubrianna M Decker
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 12th Floor, MC 4846, 550 West 120(th) Street, New York, NY 10027, USA
| | - Presha Rajbhandari
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 12th Floor, MC 4846, 550 West 120(th) Street, New York, NY 10027, USA
| | - Michael E Stokes
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 12th Floor, MC 4846, 550 West 120(th) Street, New York, NY 10027, USA
| | - Hannah G Bender
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 12th Floor, MC 4846, 550 West 120(th) Street, New York, NY 10027, USA
| | - Joleen M Csuka
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 12th Floor, MC 4846, 550 West 120(th) Street, New York, NY 10027, USA
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St. Nicholas Ave., Room 1001, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kamyar Hadian
- HelmholtzZentrum München, German Research Center for Environmental Health (GmbH), Assay Development and Screening Platform, Institute for Molecular Toxicology and Pharmacology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 12th Floor, MC 4846, 550 West 120(th) Street, New York, NY 10027, USA; Department of Chemistry, Columbia University, Northwest Corner Building, 12th Floor, MC 4846, 550 West 120(th) Street, New York, NY 10027, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
298
|
Sahni S, Nahm C, Krisp C, Molloy MP, Mehta S, Maloney S, Itchins M, Pavlakis N, Clarke S, Chan D, Gill AJ, Howell VM, Samra J, Mittal A. Identification of Novel Biomarkers in Pancreatic Tumor Tissue to Predict Response to Neoadjuvant Chemotherapy. Front Oncol 2020; 10:237. [PMID: 32195182 PMCID: PMC7064619 DOI: 10.3389/fonc.2020.00237] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Neoadjuvant chemotherapy (NAC) has been of recent interest as an alternative to upfront surgery followed by adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma (PDAC). However, a subset of patients does not respond to NAC and may have been better managed by upfront surgery. Hence, there is an unmet need for accurate biomarkers for predicting NAC response in PDAC. We aimed to identify upregulated proteins in tumor tissue from poor- and good-NAC responders. Methods: Tumor and adjacent pancreas tissue samples were obtained following surgical resection from NAC-treated PDAC patients. SWATH-MS proteomic analysis was performed to identify and quantify proteins in tissue samples. Statistical analysis was performed to identify biomarkers for NAC response. Pathway analysis was performed to characterize affected canonical pathways in good- and poor-NAC responders. Results: A total of 3,156 proteins were identified, with 19 being were significantly upregulated in poor-responders compared to good-responders (log2 ratio > 2, p < 0.05). Those with the greatest ability to predict poor-NAC response were GRP78, CADM1, PGES2, and RUXF. Notably, canonical pathways that were significantly upregulated in good-responders included acute phase signaling and macrophage activation, indicating a heightened immune response in these patients. Conclusion: A novel biomarker signature for poor-NAC response in PDAC was identified.
Collapse
Affiliation(s)
- Sumit Sahni
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia.,Australian Pancreatic Centre, Sydney, NSW, Australia
| | - Christopher Nahm
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia.,Australian Pancreatic Centre, Sydney, NSW, Australia
| | - Christoph Krisp
- Center for Diagnostics, Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg - Eppendorf, Hamburg, Germany
| | - Mark P Molloy
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bowel Cancer and Biomarker Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, NSW, Australia
| | - Shreya Mehta
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia.,Australian Pancreatic Centre, Sydney, NSW, Australia
| | - Sarah Maloney
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia
| | - Malinda Itchins
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia.,Northern Sydney Cancer Center, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Cancer Institute, St Leonards and Frenchs Forest, St Leonards, NSW, Australia
| | - Nick Pavlakis
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia.,Northern Sydney Cancer Center, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Cancer Institute, St Leonards and Frenchs Forest, St Leonards, NSW, Australia
| | - Stephen Clarke
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia.,Northern Sydney Cancer Center, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Cancer Institute, St Leonards and Frenchs Forest, St Leonards, NSW, Australia
| | - David Chan
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia.,Northern Sydney Cancer Center, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Cancer Institute, St Leonards and Frenchs Forest, St Leonards, NSW, Australia
| | - Anthony J Gill
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Viive M Howell
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Australian Pancreatic Centre, Sydney, NSW, Australia.,Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, Sydney, NSW, Australia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Australian Pancreatic Centre, Sydney, NSW, Australia.,Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, Sydney, NSW, Australia
| |
Collapse
|
299
|
Hayes LR, Duan L, Bowen K, Kalab P, Rothstein JD. C9orf72 arginine-rich dipeptide repeat proteins disrupt karyopherin-mediated nuclear import. eLife 2020; 9:e51685. [PMID: 32119645 PMCID: PMC7051184 DOI: 10.7554/elife.51685] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Disruption of nucleocytoplasmic transport is increasingly implicated in the pathogenesis of neurodegenerative diseases, including ALS caused by a C9orf72 hexanucleotide repeat expansion. However, the mechanism(s) remain unclear. Karyopherins, including importin β and its cargo adaptors, have been shown to co-precipitate with the C9orf72 arginine-containing dipeptide repeat proteins (R-DPRs), poly-glycine arginine (GR) and poly-proline arginine (PR), and are protective in genetic modifier screens. Here, we show that R-DPRs interact with importin β, disrupt its cargo loading, and inhibit nuclear import of importin β, importin α/β, and transportin cargoes in permeabilized mouse neurons and HeLa cells, in a manner that can be rescued by RNA. Although R-DPRs induce widespread protein aggregation in this in vitro system, transport disruption is not due to nucleocytoplasmic transport protein sequestration, nor blockade of the phenylalanine-glycine (FG)-rich nuclear pore complex. Our results support a model in which R-DPRs interfere with cargo loading on karyopherins.
Collapse
Affiliation(s)
- Lindsey R Hayes
- Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Lauren Duan
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins UniversityBaltimoreUnited States
| | - Kelly Bowen
- Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Jeffrey D Rothstein
- Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
300
|
Robichon A. Protein Phosphorylation Dynamics: Unexplored Because of Current Methodological Limitations: Dynamics of Processive Phosphorylation. Bioessays 2020; 42:e1900149. [PMID: 32103519 DOI: 10.1002/bies.201900149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/21/2020] [Indexed: 12/30/2022]
Abstract
The study of intrinsic phosphorylation dynamics and kinetics in the context of complex protein architecture in vivo has been challenging: Method limitations have prevented significant advances in the understanding of the highly variable turnover of phosphate groups, synergy, and cooperativity between P-sites. However, over the last decade, powerful analytical technologies have been developed to determine the full catalog of the phosphoproteome for many species. The curated databases of phospho sites found by mass spectrometry analysis and the computationally predicted sites based on the linear sequence of kinase motifs are valuable tools. They allow investigation of the complexity of phosphorylation in vivo, albeit with strong discrepancies between different methods. A series of hypothetical scenarios on combinatorial processive phosphorylation is proposed that are likely unverifiable with current methodologies. These proposed a priori postulates could be considered as possible extensions of the known schemes of the activation/inhibition signaling process in vivo.
Collapse
Affiliation(s)
- Alain Robichon
- Université Côte d'Azur (UCA), Agrobiotech Institute, INRA, CNRS, ISA, 06270, France
| |
Collapse
|