251
|
Ebnoether E, Muller L. Diagnostic and Therapeutic Applications of Exosomes in Cancer with a Special Focus on Head and Neck Squamous Cell Carcinoma (HNSCC). Int J Mol Sci 2020; 21:ijms21124344. [PMID: 32570802 PMCID: PMC7352611 DOI: 10.3390/ijms21124344] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are nanovesicles part of a recently described intercellular communication system. Their properties seem promising as a biomarker in cancer research, where more sensitive monitoring and therapeutic applications are desperately needed. In the case of head and neck squamous cell carcinoma (HNSCC), overall survival often remains poor, although huge technological advancements in the treatment of this disease have been made. In the following review, diagnostic and therapeutic properties are highlighted and summarised. Impressive first results have been obtained but more research is needed to implement these innovative techniques into daily clinical routines.
Collapse
Affiliation(s)
- Eliane Ebnoether
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland;
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Basel, 4051 Basel, Switzerland
| | - Laurent Muller
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland;
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Basel, 4051 Basel, Switzerland
- Correspondence:
| |
Collapse
|
252
|
Kluszczyńska K, Czernek L, Cypryk W, Pęczek Ł, Düchler M. Methods for the Determination of the Purity of Exosomes. Curr Pharm Des 2020; 25:4464-4485. [PMID: 31808383 DOI: 10.2174/1381612825666191206162712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Exosomes open exciting new opportunities for advanced drug transport and targeted release. Furthermore, exosomes may be used for vaccination, immunosuppression or wound healing. To fully utilize their potential as drug carriers or immune-modulatory agents, the optimal purity of exosome preparations is of crucial importance. METHODS Articles describing the isolation and purification of exosomes were retrieved from the PubMed database. RESULTS Exosomes are often separated from biological fluids containing high concentrations of proteins, lipids and other molecules that keep vesicle purification challenging. A great number of purification protocols have been published, however, their outcome is difficult to compare because the assessment of purity has not been standardized. In this review, we first give an overview of the generation and composition of exosomes, as well as their multifaceted biological functions that stimulated various medical applications. Finally, we describe various methods that have been used to purify small vesicles and to assess the purity of exosome preparations and critically compare the quality of these evaluation protocols. CONCLUSION Combinations of various techniques have to be applied to reach the required purity and quality control of exosome preparations.
Collapse
Affiliation(s)
- Katarzyna Kluszczyńska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Street, 90-363 Lodz, Poland
| | - Liliana Czernek
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Street, 90-363 Lodz, Poland
| | - Wojciech Cypryk
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Street, 90-363 Lodz, Poland
| | - Łukasz Pęczek
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Street, 90-363 Lodz, Poland
| | - Markus Düchler
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Street, 90-363 Lodz, Poland
| |
Collapse
|
253
|
Guo Q, Jiang C. Delivery strategies for macromolecular drugs in cancer therapy. Acta Pharm Sin B 2020; 10:979-986. [PMID: 32642406 PMCID: PMC7332661 DOI: 10.1016/j.apsb.2020.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/23/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
With the development of biotherapy, biomacromolecular drugs have gained tremendous attention recently, especially in drug development field due to the sophisticated functions in vivo. Over the past few years, a motley variety of drug delivery strategies have been developed for biomacromolecular drugs to overcome the difficulties in the druggability, e.g., the instability and easily restricted by physiologic barriers. The application of novel delivery systems to deliver biomacromolecular drugs can usually prolong the half-life, increase the bioavailability, or improve patient compliance, which greatly improves the efficacy and potentiality for clinical use of biomacromolecular drugs. In this review, recent studies regarding the drug delivery strategies for macromolecular drugs in cancer therapy are summarized, mainly drawing on the development over the last five years.
Collapse
Key Words
- CHOL, cholesterol
- CP, Cas9-sgRNA plasmid
- CTCs, circulating tumor cells
- CTLA4, cytotoxic T lymphocyte antigen 4
- Cancer therapy
- ChiP, multifunctional chimeric peptide
- DDS, drug delivery systems
- DOPE, dioleoyl phosphoethanolamine
- DOTAP, (2,3-dioleoyloxy-propyl)-trimethylammonium
- DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
- Delivery strategies
- EMT, epithelial-to-mesenchymal transition
- Exosomes
- GOx, glucose oxidase
- GRVs, glucose-responsive vesicles
- LFA-1, lymphocyte function antigen-1
- MDP, muramyl dipeptide
- MFT, mifamurtide
- Macromolecular drugs
- Membrane-camouflage systems
- NLR, domain-like receptors
- PAMAM, polyamidoamine
- PD1, programmed cell death protein 1
- PDT, photodynamic therapy
- PEG, polyethylene glycol
- PEI, polyethylenimine
- PGE2, prostaglandin E2
- PMAPs, pathogen associated molecular patterns
- RBC, red blood cells
- TAT, human immunodeficiency virus-1 transcription activator
- TLR, toll-like receptors
- TME, tumor microenvironment
- TRAIL, tumor necrosis factor related apoptosis-inducing ligand
- aPDL1, antibodies against PDL1
- rFljB, recombinant flagellin
Collapse
Affiliation(s)
| | - Chen Jiang
- Corresponding author. Tel./fax: +86 21 51980079.
| |
Collapse
|
254
|
Cheng K, Kang Q, Zhao X. Biogenic nanoparticles as immunomodulator for tumor treatment. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1646. [DOI: 10.1002/wnan.1646] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing China
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province College of Materials, Xiamen University Xiamen Fujian China
| | - Qinglin Kang
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Queensland Australia
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing China
| |
Collapse
|
255
|
Giannecchini S. Evidence of the Mechanism by Which Polyomaviruses Exploit the Extracellular Vesicle Delivery System during Infection. Viruses 2020; 12:v12060585. [PMID: 32471033 PMCID: PMC7354590 DOI: 10.3390/v12060585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that human viruses can hijack extracellular vesicles (EVs) to deliver proteins, mRNAs, microRNAs (miRNAs) and whole viral particles during viral persistence in the host. Human polyomavirus (PyV) miRNAs, which downregulate large T-antigen expression and target host factors, help the virus escape immune elimination and may have roles in the success of viral persistence/replication and the development of diseases. In this context, several investigations have detected PyV miRNAs in EVs obtained from cell culture supernatants after viral infection, demonstrating the ability of these vesicles to deliver miRNAs to uninfected cells, potentially counteracting new viral infection. Additionally, PyV miRNAs have been identified in EVs derived from the biological fluids of clinical samples obtained from patients with or at risk of severe PyV-associated diseases and from asymptomatic control healthy subjects. Interestingly, PyV miRNAs were found to be circulating in blood, urine, cerebrospinal fluid, and saliva samples from patients despite their PyV DNA status. Recently, the association between EVs and PyV viral particles was reported, demonstrating the ability of PyV viral particles to enter the cell without natural receptor-mediated entry and evade antibody-mediated neutralization or to be neutralized at a step different from that of the neutralization of naked whole viral particles. All these data point toward a potential role of the association between PyVs with EVs in viral persistence, suggesting that further work to define the implication of this interaction in viral reactivation is warranted.
Collapse
Affiliation(s)
- Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, I-50134 Florence, Italy
| |
Collapse
|
256
|
Gangadaran P, Ahn BC. Extracellular Vesicle- and Extracellular Vesicle Mimetics-Based Drug Delivery Systems: New Perspectives, Challenges, and Clinical Developments. Pharmaceutics 2020; 12:pharmaceutics12050442. [PMID: 32403320 PMCID: PMC7284431 DOI: 10.3390/pharmaceutics12050442] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are small membrane-based nanovesicles naturally released from cells. Extracellular vesicles mimetics (EVMs) are artificial vesicles engineered from cells or in combination with lipid materials, and they mimic certain characteristics of EVs. As such, EVs facilitate intracellular communication by carrying and delivering biological materials, such as proteins, lipids, and nucleic acids, and they have been found to find organ tropism in preclinical studies. Because of their native structure and characteristics, they are considered promising drug carriers for future clinical use. This review outlines the origin and composition of natural EVs and EVM engineering and internalization. It then details different loading approaches, with examples of the drug delivery of therapeutic molecules. In addition, the advantages and disadvantages of loading drugs into EVs or EVMs as a drug delivery system are discussed. Finally, the advantages of EVMs over EVs and the future clinical translation of EVM-based drug delivery platforms are outlined.
Collapse
Affiliation(s)
- Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-5583; Fax: +82-53-422-0864
| |
Collapse
|
257
|
Haque S, Kodidela S, Gerth K, Hatami E, Verma N, Kumar S. Extracellular Vesicles in Smoking-Mediated HIV Pathogenesis and their Potential Role in Biomarker Discovery and Therapeutic Interventions. Cells 2020; 9:cells9040864. [PMID: 32252352 PMCID: PMC7226815 DOI: 10.3390/cells9040864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
In the last two decades, the mortality rate in people living with HIV/AIDS (PLWHA) has decreased significantly, resulting in an almost normal longevity in this population. However, a large portion of this population still endures a poor quality of life, mostly due to an increased inclination for substance abuse, including tobacco smoking. The prevalence of smoking in PLWHA is consistently higher than in HIV negative persons. A predisposition to cigarette smoking in the setting of HIV potentially leads to exacerbated HIV replication and a higher risk for developing neurocognitive and other CNS disorders. Oxidative stress and inflammation have been identified as mechanistic pathways in smoking-mediated HIV pathogenesis and HIV-associated neuropathogenesis. Extracellular vesicles (EVs), packaged with oxidative stress and inflammatory agents, show promise in understanding the underlying mechanisms of smoking-induced HIV pathogenesis via cell-cell interactions. This review focuses on recent advances in the field of EVs with an emphasis on smoking-mediated HIV pathogenesis and HIV-associated neuropathogenesis. This review also provides an overview of the potential applications of EVs in developing novel therapeutic carriers for the treatment of HIV-infected individuals who smoke, and in the discovery of novel biomarkers that are associated with HIV-smoking interactions in the CNS.
Collapse
|
258
|
Zhang Q, Zhang H, Ning T, Liu D, Deng T, Liu R, Bai M, Zhu K, Li J, Fan Q, Ying G, Ba Y. Exosome-Delivered c-Met siRNA Could Reverse Chemoresistance to Cisplatin in Gastric Cancer. Int J Nanomedicine 2020; 15:2323-2335. [PMID: 32308384 PMCID: PMC7133545 DOI: 10.2147/ijn.s231214] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Background Drug resistance often occurs in the treatment of gastric cancer, which is the main cause of poor prognosis of chemotherapy. c-Met is overexpressed in a variety of tumors including gastric cancer, often leads to poor prognosis of gastric cancer, therefore regarded as a key target for the treatment of gastric cancer. This study aims to determine whether exosomes with si-c-Met could inhibit the resistance to cisplatin in gastric cancer (GC). Methods The protein expression levels of c-Met in tumor tissues and normal tissues of patients were evaluated by Western blot (WB) and immunohistochemistry (IHC), HEK293T cells were transfected with si-c-Met, exosomes were isolated, then co-cultured with gastric cancer cell lines and confirmed that it was incorporated into the cells by transmitted electron microscopy. Functional experiments were performed to examine the inhibitory effect of exo-si-c-Met on gastric cancer cell resistance in vitro, and xenograft models were used to reveal that exo-si-c-Met can enhance the sensitivity of tumors to cisplatin in vivo. Results High expression of c-Met is associated with poor prognosis of GC patients. si-c-Met significantly inhibited migration, invasion and promoted apoptosis in vitro, which indicated that si-c-Met sensitizes the response of gastric cancer cells to cisplatin. Exo-si-c-Met sharply reduced c-Met expression in gastric cancer cells and reverse the resistance to cisplatin in vitro and in vivo. Conclusion Our results indicate that exo-si-c-Met can inhibit the invasion and migration of gastric cancer cells and promote apoptosis in vitro and inhibit tumor growth in vivo, reversing the resistance to cisplatin in gastric cancer.
Collapse
Affiliation(s)
- Qiumo Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Tao Ning
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Dongying Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Ming Bai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Kegan Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Jialu Li
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai 200001, People's Republic of China
| | - Qian Fan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| |
Collapse
|
259
|
Takakura Y, Matsumoto A, Takahashi Y. Therapeutic Application of Small Extracellular Vesicles (sEVs): Pharmaceutical and Pharmacokinetic Challenges. Biol Pharm Bull 2020; 43:576-583. [DOI: 10.1248/bpb.b19-00831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Yuki Takahashi
- Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
260
|
Shimizu A, Sawada K, Kimura T. Pathophysiological Role and Potential Therapeutic Exploitation of Exosomes in Ovarian Cancer. Cells 2020; 9:cells9040814. [PMID: 32230983 PMCID: PMC7226729 DOI: 10.3390/cells9040814] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
Exosomes are extracellular vesicles involved in several biological and pathological molecules and can carry many bioactive materials to target cells. They work as important mediators of cell-cell communication and play essential roles in many diseases, especially in cancer. Ovarian cancer is one of the most common gynecological malignancies. Most patients are diagnosed at advanced stages involving widespread peritoneal dissemination, resulting in poor prognosis. Emerging evidence has shown that exosomes play vital roles throughout the progression of ovarian cancer. Moreover, the development of engineered exosome-based therapeutic applications— including drug delivery systems, biomolecular targets and immune therapy—has increased drastically. Herein, we review the functional features of exosomes in ovarian cancer progression and the therapeutic application potential of exosomes as novel cancer treatments.
Collapse
|
261
|
Singh BK, Cooney AL, Krishnamurthy S, Sinn PL. Extracellular Vesicle-Mediated siRNA Delivery, Protein Delivery, and CFTR Complementation in Well-Differentiated Human Airway Epithelial Cells. Genes (Basel) 2020; 11:genes11040351. [PMID: 32224868 PMCID: PMC7230663 DOI: 10.3390/genes11040351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
Extracellular vesicles (EVs) are a class of naturally occurring secreted cellular bodies that are involved in long distance cell-to-cell communication. Proteins, lipids, mRNA, and miRNA can be packaged into these vesicles and released from the cell. This information is then delivered to target cells. Since EVs are naturally adapted molecular messengers, they have emerged as an innovative, inexpensive, and robust method to deliver therapeutic cargo in vitro and in vivo. Well-differentiated primary cultures of human airway epithelial cells (HAE) are refractory to standard transfection techniques. Indeed, common strategies used to overexpress or knockdown gene expression in immortalized cell lines simply have no detectable effect in HAE. Here we use EVs to efficiently deliver siRNA or protein to HAE. Furthermore, EVs can deliver CFTR protein to cystic fibrosis donor cells and functionally correct the Cl− channel defect in vitro. EV-mediated delivery of siRNA or proteins to HAE provides a powerful genetic tool in a model system that closely recapitulates the in vivo airways.
Collapse
|
262
|
Fu B, Ma H, Liu D. Extracellular Vesicles Function as Bioactive Molecular Transmitters in the Mammalian Oviduct: An Inspiration for Optimizing in Vitro Culture Systems and Improving Delivery of Exogenous Nucleic Acids during Preimplantation Embryonic Development. Int J Mol Sci 2020; 21:ijms21062189. [PMID: 32235756 PMCID: PMC7139358 DOI: 10.3390/ijms21062189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Two technologies, in vitro culture and exogenous gene introduction, constitute cornerstones of producing transgenic animals. Although in vitro embryo production techniques can bypass the oviduct during early development, such embryos are inferior to their naturally produced counterparts. In addition, preimplantation embryos are resistant to the uptake of exogenous genetic material. These factors restrict the production of transgenic animals. The discovery of extracellular vesicles (EVs) was a milestone in the study of intercellular signal communication. EVs in the oviduct, known as oviductosomes (OVS), are versatile delivery tools during maternal–embryo communication. In this review, we discuss the important roles of OVS in these interactions and the feasibility of using them as tools for transferring exogenous nucleic acids during early development. We hypothesize that further accurate characterization of OVS cargoes and functions will open new horizons for research on maternal–embryo interactions and enhance the production of transgenic animals.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People’s Republic of China, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People’s Republic of China, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People’s Republic of China, Harbin 150086, China
- Correspondence: ; Tel.: +86-138-4512-0192
| |
Collapse
|
263
|
Dai Y, Bai S, Hu C, Chu K, Shen B, Smith ZJ. Combined Morpho-Chemical Profiling of Individual Extracellular Vesicles and Functional Nanoparticles without Labels. Anal Chem 2020; 92:5585-5594. [PMID: 32162516 DOI: 10.1021/acs.analchem.0c00607] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biological nanoparticles are important targets of study, yet their small size and tendency to aggregate makes their heterogeneity difficult to profile on a truly single-particle basis. Here we present a label-free system called 'Raman-enabled nanoparticle trapping analysis' (R-NTA) that optically traps individual nanoparticles, records Raman spectra and tracks particle motion to identify chemical composition, size, and refractive index. R-NTA has the unique capacity to characterize aggregation status and absolute chemical concentration at the single-particle level. We validate the method on NIST standards and liposomes, demonstrating that R-NTA can accurately characterize size and chemical heterogeneity, including determining combined morpho-chemical properties such as the number of lamellae in individual liposomes. Applied to extracellular vesicles (EVs), we find distinct differences between EVs from cancerous and noncancerous cells, and that knockdown of the TRPP2 ion channel, which is pathologically highly expressed in laryngeal cancer cells, leads the EVs to more closely resemble EVs from normal epithelial cells. Intriguingly, the differences in EV content are found in small subpopulations of EVs, highlighting the importance of single-particle measurements. These experiments demonstrate the power of the R-NTA system to measure and characterize the morpho-chemical heterogeneity of bionanoparticles.
Collapse
Affiliation(s)
- Yichuan Dai
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Suwen Bai
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230026, China
| | - Chuanzhen Hu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kaiqin Chu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230026, China
| | - Zachary J Smith
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
264
|
Lin Q, Zhou CR, Bai MJ, Zhu D, Chen JW, Wang HF, Li MA, Wu C, Li ZR, Huang MS. Exosome-mediated miRNA delivery promotes liver cancer EMT and metastasis. Am J Transl Res 2020; 12:1080-1095. [PMID: 32269736 PMCID: PMC7137059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/02/2020] [Indexed: 06/11/2023]
Abstract
The deregulation of exosomal microRNAs (miRNAs) plays an important role in the progression of hepatocarcinogenesis. In this study, we highlight exosomes as mediators involved in modulating miRNA profiles in liver cancer cells after induction of the epithelial-mesenchymal transition (EMT) and metastasis. Initially, we induced EMT in a hepatocellular carcinoma cell (HCC) line (Hep3B) by stimulation with transforming growth factor-β (TGF-β) and confirmed by western blot detection of EMT markers such as vimentin and E-cadherin. Exosomes were then isolated from the cells and identified by nanoparticle tracking analysis (NTA). The isolated exosomal particles from unstimulated Hep3B cells (Hep3B exo) or TGF-β-stimulated EMT Hep3B cells (EMT-Hep3B exo) contained higher levels of exosome marker proteins, CD63 and TSG101. After incubation with EMT-Hep3B exo, Hep3B cell proliferation increased. EMT-Hep3B exo promoted the migration and invasion of Hep3B and 7721 cells. High-throughput sequencing of miRNAs and mRNA within the exosomes showed 119 upregulated and 186 downregulated miRNAs and 156 upregulated and 166 downregulated mRNA sequences in the EMT-Hep3B exo compared with the control Hep3B exo. The most differentially expressed miRNAs and target mRNA sequences were validated by RT-qPCR. Based on the known miRNA targets for specific mRNA sequences, we hypothesized that GADD45A was regulated by miR-374a-5p. Inhibition of miR-374a-5p in Hep3B cells resulted in exosomes that inhibited the proliferation, migration, and invasion of HCC cells. These results enhance our understanding of metastatic progression of liver cancer and provide a foundation for the future development of potential biomarkers for diagnosis and prognosis of hepatic cancer.
Collapse
Affiliation(s)
- Qu Lin
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
| | - Chu-Ren Zhou
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
| | - Ming-Jun Bai
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
| | - Duo Zhu
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
| | - Jun-Wei Chen
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
| | - Hao-Fan Wang
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
| | - Ming-An Li
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
| | - Chun Wu
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
| | - Zheng-Ran Li
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
| | - Ming-Sheng Huang
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, China
| |
Collapse
|
265
|
Floriano JF, Willis G, Catapano F, de Lima PR, Reis FVDS, Barbosa AMP, Rudge MVC, Emanueli C. Exosomes Could Offer New Options to Combat the Long-Term Complications Inflicted by Gestational Diabetes Mellitus. Cells 2020; 9:E675. [PMID: 32164322 PMCID: PMC7140615 DOI: 10.3390/cells9030675] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 02/08/2023] Open
Abstract
Gestational diabetes Mellitus (GDM) is a complex clinical condition that promotes pelvic floor myopathy, thus predisposing sufferers to urinary incontinence (UI). GDM usually regresses after birth. Nonetheless, a GDM history is associated with higher risk of subsequently developing type 2 diabetes, cardiovascular diseases (CVD) and UI. Some aspects of the pathophysiology of GDM remain unclear and the associated pathologies (outcomes) are poorly addressed, simultaneously raising public health costs and diminishing women's quality of life. Exosomes are small extracellular vesicles produced and actively secreted by cells as part of their intercellular communication system. Exosomes are heterogenous in their cargo and depending on the cell sources and environment, they can mediate both pathogenetic and therapeutic functions. With the advancement in knowledge of exosomes, new perspectives have emerged to support the mechanistic understanding, prediction/diagnosis and ultimately, treatment of the post-GMD outcomes. Here, we will review recent advances in knowledge of the role of exosomes in GDM and related areas and discuss the possibilities for translating exosomes as therapeutic agents in the GDM clinical setting.
Collapse
Affiliation(s)
- Juliana Ferreira Floriano
- Botucatu Medical School, Sao Paulo State University, 18618687 Botucatu, Brazil; (J.F.F.); (P.R.d.L.); (F.V.D.S.R.); (A.M.P.B.)
| | - Gareth Willis
- Division of Newborn Medicine/Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Francesco Catapano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK;
| | - Patrícia Rodrigues de Lima
- Botucatu Medical School, Sao Paulo State University, 18618687 Botucatu, Brazil; (J.F.F.); (P.R.d.L.); (F.V.D.S.R.); (A.M.P.B.)
| | | | - Angélica Mercia Pascon Barbosa
- Botucatu Medical School, Sao Paulo State University, 18618687 Botucatu, Brazil; (J.F.F.); (P.R.d.L.); (F.V.D.S.R.); (A.M.P.B.)
| | - Marilza Vieira Cunha Rudge
- Botucatu Medical School, Sao Paulo State University, 18618687 Botucatu, Brazil; (J.F.F.); (P.R.d.L.); (F.V.D.S.R.); (A.M.P.B.)
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK;
| |
Collapse
|
266
|
Dilsiz N. Role of exosomes and exosomal microRNAs in cancer. Future Sci OA 2020; 6:FSO465. [PMID: 32257377 PMCID: PMC7117563 DOI: 10.2144/fsoa-2019-0116] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
A growing body of evidence indicates that exosomes play a critical role in the cell-cell communication process. Exosomes are biological nanoparticles with an average diameter of 30-100 nm in size and are produced by almost all cell types in the human body; however, cancer cells contain higher concentrations of exosomes than healthy cells. They are released into all body fluids and contain double-stranded DNA (originated from nucleus and mitochondria), a variety of RNA species, and specific protein biomarkers that can be utilized as cancer biomarkers and therapeutic targets, and lipids. Therefore, the specific exosomes secreted by tumor cells could be used to predict the existence of the presence of a tumor in cancer patients. This review summarizes the role of exosomes in cancer development and their potential utility in the clinic.
Collapse
Affiliation(s)
- Nihat Dilsiz
- Department of Molecular Biology & Genetics, Faculty of Engineering & Natural Sciences, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
267
|
Surman M, Drożdż A, Stępień E, Przybyło M. Extracellular Vesicles as Drug Delivery Systems - Methods of Production and Potential Therapeutic Applications. Curr Pharm Des 2020; 25:132-154. [PMID: 30848183 DOI: 10.2174/1381612825666190306153318] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/01/2019] [Indexed: 01/08/2023]
Abstract
Drug delivery systems are created to achieve the desired therapeutic effect of a specific pharmaceutical compound. Numerous drawbacks and side effects such as unfavorable pharmacokinetics, lack of tissue selectivity, immunogenicity, increased systemic clearance and toxicity, have been observed for currently available drug delivery systems (DDSs). The use of natural and artificial extracellular vesicles (EVs) in drug delivery may help to solve the aforementioned problems faced by different DDSs. Due to their self-origin, small size, flexibility, the presence of multiple adhesive molecules on their surfaces as well as their function as biomolecules carriers, EVs are the perfect candidates for DDSs. Currently, several drug delivery systems based on EVs have been proposed. While the great potential of these particles in targeted drug delivery has been recognized in cancer, hepatitis C, neurodegenerative diseases, inflammatory states etc., this field is still in the early stage of development. Unfortunately, the use of EVs from natural sources (cell cultures, body fluids) results in numerous problems in terms of the heterogeneity of isolated vesicle population as well as the method of isolation thereof, which may influence vesicle composition and properties. Therefore, there is a significant need for the synthesis of artificial EV-based DDSs under strictly controlled laboratory conditions and from well-defined biomolecules (proteins and lipids). Vesicle-mimetic delivery systems, characterized by properties similar to natural EVs, will bring new opportunities to study the mechanisms of DDS internalization and their biological activity after delivering their cargo to a target cell.
Collapse
Affiliation(s)
- Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Anna Drożdż
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Ewa Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
268
|
Hu J, Tang T, Zeng Z, Wu J, Tan X, Yan J. The expression of small RNAs in exosomes of follicular fluid altered in human polycystic ovarian syndrome. PeerJ 2020; 8:e8640. [PMID: 32117643 PMCID: PMC7035867 DOI: 10.7717/peerj.8640] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) can cause reproductive disorders that may affect oocyte quality from punctured follicles in human follicular fluid (HFF). The non-coding RNA family includes micro RNA (miRNA), piwi-interacting RNA (piRNA) and transfer RNA (tRNA); these non-coding RNA transcripts play diverse functions and are implicated in a variety of diseases and health conditions, including infertility. In this study, to explore the role of HFF exosomes in PCOS, we extracted and sequenced RNA from HFF exosomes of PCOS patients and compared the analysis results with those of non-PCOS control group. The HFF exosomes were successfully isolated and characterized in a variety of ways. The sequencing results of the HFF exosomal RNA showed that about 6.6% of valid reads in the PCOS group and 8.6% in the non-PCOS group were successfully mapped to the human RNA database. Using a hierarchical clustering method, we found there were ten small RNA sequences whose expression was significantly different between the PCOS and non-PCOS groups. We chose six of them to predict target genes of interest for further GO analysis, and pathway analysis showed that the target genes are mainly involved in biosynthesis of amino acids, glycine, serine and glycosaminoglycan, as well as threonine metabolism. Therefore, the small RNA sequences contained in HFF EXs may play a key role in the mechanism that drives PCOS pathogenesis, and thereby can act as molecular biomarkers for PCOS diagnosis in the future.
Collapse
Affiliation(s)
- Junhe Hu
- Agriculture and Biotechnology Department, Hunan University of Humanities, Science and Technology, Loudi, Hunan province, China
| | - Tao Tang
- Agriculture and Biotechnology Department, Hunan University of Humanities, Science and Technology, Loudi, Hunan province, China
| | - Zhi Zeng
- Agriculture and Biotechnology Department, Hunan University of Humanities, Science and Technology, Loudi, Hunan province, China
| | - Juan Wu
- Agriculture and Biotechnology Department, Hunan University of Humanities, Science and Technology, Loudi, Hunan province, China
| | - Xiansheng Tan
- Agriculture and Biotechnology Department, Hunan University of Humanities, Science and Technology, Loudi, Hunan province, China
| | - Jiao Yan
- Agriculture and Biotechnology Department, Hunan University of Humanities, Science and Technology, Loudi, Hunan province, China
| |
Collapse
|
269
|
Vechetti IJ, Valentino T, Mobley CB, McCarthy JJ. The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise. J Physiol 2020; 599:845-861. [PMID: 31944292 DOI: 10.1113/jp278929] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Regular exercise has a central role in human health by reducing the risk of type 2 diabetes, obesity, stroke and cancer. How exercise is able to promote such systemic benefits has remained somewhat of a mystery but has been thought to be in part mediated by the release of myokines, skeletal muscle-specific cytokines, in response to exercise. Recent studies have revealed skeletal muscle can also release extracellular vesicles (EVs) into circulation following a bout of exercise. EVs are small membrane-bound vesicles capable of delivering biomolecules to recipient cells and subsequently altering their metabolism. The notion that EVs may have a role in both skeletal muscle and systemic adaptation to exercise has generated a great deal of excitement within a number of different fields including exercise physiology, neuroscience and metabolism. The purpose of this review is to provide an introduction to EV biology and what is currently known about skeletal muscle EVs and their potential role in the response of muscle and other tissues to exercise.
Collapse
Affiliation(s)
- Ivan J Vechetti
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Taylor Valentino
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - C Brooks Mobley
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
270
|
Abstract
As a nanoscale subset of extracellular vehicles, exosomes represent a new pathway of intercellular communication by delivering cargos such as proteins and nucleic acids to recipient cells. Importantly, it has been well documented that exosome-mediated delivery of such cargo is involved in many pathological processes such as tumor progression, cancer metastasis, and development of drug resistance. Innately biocompatible and possessing ideal structural properties, exosomes offer distinct advantages for drug delivery over artificial nanoscale drug carriers. In this review, we summarize recent progress in methods for engineering exosomes including isolation techniques and exogenous cargo encapsulation, with a focus on applications of engineered exosomes to target cancer metastasis.
Collapse
Affiliation(s)
- Zhenjiang Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Jenna A. Dombroski
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| |
Collapse
|
271
|
Najrana T, Mahadeo A, Abu-Eid R, Kreienberg E, Schulte V, Uzun A, Schorl C, Goldberg L, Quesenberry P, Sanchez-Esteban J. Mechanical stretch regulates the expression of specific miRNA in extracellular vesicles released from lung epithelial cells. J Cell Physiol 2020; 235:8210-8223. [PMID: 31970782 DOI: 10.1002/jcp.29476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Abstract
The underlying mechanism of normal lung organogenesis is not well understood. An increasing number of studies are demonstrating that extracellular vesicles (EVs) play critical roles in organ development by delivering microRNAs (miRNA) to neighboring and distant cells. miRNAs are important for fetal lung growth; however, the role of miRNA-EVs (miRNAs packaged inside the EVs) during fetal lung development is unexplored. The aim of this study was to examine the expression of miRNA-EVs in MLE-12, a murine lung epithelial cell line subjected to mechanical stretch in vitro with the long-term goal to investigate their potential role in the fetal lung development. Both cyclic and continuous mechanical stretch regulate miRNA differentially in EVs released from MLE-12 and intracellularly, demonstrating that mechanical signals regulate the expression of miRNA-EVs in lung epithelial cells. These results provide a proof-of-concept for the potential role that miRNA-EVs could play in the development of fetal lung.
Collapse
Affiliation(s)
- Tanbir Najrana
- Department of Pediatrics, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Anshu Mahadeo
- Department of Pediatrics, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Rasha Abu-Eid
- Division of Life Sciences, Institute of Dentistry, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Elena Kreienberg
- Department of Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Victoria Schulte
- Department of Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Alper Uzun
- Department of Pediatrics, Center of Computational Molecular Biology, Brown University, Providence, Rhode Island
| | - Christoph Schorl
- Department of Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Laura Goldberg
- Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Peter Quesenberry
- Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Juan Sanchez-Esteban
- Department of Pediatrics, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
272
|
Gowda R, Robertson BM, Iyer S, Barry J, Dinavahi SS, Robertson GP. The role of exosomes in metastasis and progression of melanoma. Cancer Treat Rev 2020; 85:101975. [PMID: 32050108 DOI: 10.1016/j.ctrv.2020.101975] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/21/2022]
Abstract
The mechanisms of melanoma metastasis have been the subject of extensive research for decades. Improved diagnostic and therapeutic strategies are of increasing importance for the treatment of melanoma due to its high burden of mortality in the advanced stages of the disease. Intercellular communication is a critical event for the progression of cancer. Collective evidence suggests that exosomes, small extracellular membrane vesicles released by the cells, are important facilitators of intercellular communication between the cells and the surrounding environment. Although the emerging field of exosomes is rapidly gaining traction in the scientific community, there is limited knowledge regarding the role of exosomes in melanoma. This review discusses the multifaceted role of melanoma-derived exosomes in promoting the process of metastasis by modulating the invasive and angiogenic capacity of malignant cells. The future implications of exosome research and the therapeutic potential of exosomes are also discussed.
Collapse
Affiliation(s)
- Raghavendra Gowda
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Bailey M Robertson
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Soumya Iyer
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - John Barry
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Saketh S Dinavahi
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Gavin P Robertson
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Departments of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Departments of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Departments of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
273
|
Wang J, Zhang Q, Wang D, Yang S, Zhou S, Xu H, Zhang H, Zhong S, Feng J. Microenvironment-induced TIMP2 loss by cancer-secreted exosomal miR-4443 promotes liver metastasis of breast cancer. J Cell Physiol 2020; 235:5722-5735. [PMID: 31970775 DOI: 10.1002/jcp.29507] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/10/2020] [Indexed: 01/08/2023]
Abstract
We aimed to investigate the role of exosomal miR-4443 in metastasis of breast cancer (BCa). In vitro wound-healing assay and transwell invasion assay were used to investigate effect of miR-4443 on BCa cells. Animal experiments were performed to confirm its effects in vivo. miR-4443 promotes the metastasis of BCa cells through downregulating tissue inhibitors of metalloproteinase 2 (TIMP2) and upregulating matrix metalloproteinases (MMPs). Highly invasive BCa cells have a higher expression of miR-4443 in both cells and exosomes. The exosomes derived from highly invasive BCa cells mainly gather in the primary tumor and liver. In vivo, overexpression of miR-4443 in noninvasive BCa cells induces liver metastasis, accompanied with downregulated TIMP2, and upregulated MMP-2 in both the primary tumor and liver. When we armed MCF-10A exosomes with miR-4443 inhibitors to treat mice bearing high-miR-4443 tumors, exosomes accumulated in the primary tumor, and liver following the upregulation of TIMP2 and downregulation of MMP2, and the metastasis was inhibited. Highly invasive BCa cells destroy natural barriers against metastasis by delivering exosomal miR-4443 to stromal cells of the primary tumor and impairing TIMP2, consequently activating MMP; circulating exosomal miR-4443 might promote BCa cells lodging in future metastatic sites through the similar mechanisms.
Collapse
Affiliation(s)
- Jinyan Wang
- Department of Oncology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China.,Department of Oncology, The Affiliated Jiangning Hospital of Jiangsu Health Vocational College, Nanjing, China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dandan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sujin Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siying Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hanzi Xu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Heda Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jifeng Feng
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
274
|
Forterre AV, Wang JH, Delcayre A, Kim K, Green C, Pegram MD, Jeffrey SS, Matin AC. Extracellular Vesicle-Mediated In Vitro Transcribed mRNA Delivery for Treatment of HER2 + Breast Cancer Xenografts in Mice by Prodrug CB1954 without General Toxicity. Mol Cancer Ther 2020; 19:858-867. [PMID: 31941722 DOI: 10.1158/1535-7163.mct-19-0928] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/02/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
Prodrugs are harmless until activated by a bacterial or viral gene product; they constitute the basis of gene-delivered prodrug therapies called GDEPT, which can kill tumors without major side effects. Previously, we utilized the prodrug CNOB (C16H7CIN2O4; not clinically tested) and enzyme HChrR6 in GDEPT to generate the drug MCHB (C16H9CIN2O2) in tumors. Extracellular vesicles (EVs) were used for directed gene delivery and HChrR6 mRNA as gene. Here, the clinical transfer of this approach is enhanced by: (i) use of CB1954 (tretazicar) for which safe human dose is established; HChrR6 can activate this prodrug. (ii) EVs delivered in vitro transcribed (IVT) HChrR6 mRNA, eliminating the potentially harmful plasmid transfection of EV producer cells we utilized previously; this has not been done before. IVT mRNA loading of EVs required several steps. Naked mRNA being unstable, we ensured its prodrug activating functionality at each step. This was not possible using tretazicar itself; we relied instead on HChrR6's ability to convert CNOB into MCHB, whose fluorescence is easily visualizable. HChrR6 mRNA-translated product's ability to generate fluorescence from CNOB vicariously indicated its competence for tretazicar activation. (iii) Systemic IVT mRNA-loaded EVs displaying an anti-HER2 single-chain variable fragment ("IVT EXO-DEPTs") and tretazicar caused growth arrest of human HER2+ breast cancer xenografts in athymic mice. As this occurred without injury to other tissues, absence of off-target mRNA delivery is strongly indicated. Many cancer sites are not amenable for direct gene injection, but current GDEPTs require this. In circumventing this need, a major advance in GDEPT applicability has been accomplished.
Collapse
Affiliation(s)
- Alexis V Forterre
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | - Jing-Hung Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | | | - Kyuri Kim
- SRI International, Menlo Park, California
| | | | - Mark D Pegram
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - A C Matin
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
275
|
Nasiri Kenari A, Cheng L, Hill AF. Methods for loading therapeutics into extracellular vesicles and generating extracellular vesicles mimetic-nanovesicles. Methods 2020; 177:103-113. [PMID: 31917274 DOI: 10.1016/j.ymeth.2020.01.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/05/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane bound vesicles released into the extracellular environment by eukaryotic and prokaryotic cells. EVs are enriched in active biomolecules and they can horizontally transfer cargo to recipient cells. In recent years EVs have demonstrated promising clinical applications due to their theragnostic potential. Although EVs have promising therapeutic potential, there are several challenges associated with using EVs before transition from the laboratory to clinical use. Some of these challenges include issues around low yield, isolation and purification methodologies, and efficient engineering (loading) of EVs with therapeutic cargo. Also, to achieve higher therapeutic efficiency, EV architecture and cargo may need to be manipulated prior to clinical application. Some of these issues have been addressed by developing biomimetic EVs. EV mimetic-nanovesicles (M-NVs) are a type of artificial EVs which can be generated from all cell types with comparable characteristics as EVs for an alternative therapeutic modality. In this review, we will discuss current techniques for modifying EVs and methodology used to generate and customize EV mimetic-nanovesicles.
Collapse
Affiliation(s)
- Amirmohammad Nasiri Kenari
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Australia
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Australia.
| |
Collapse
|
276
|
Lennox KA, Behlke MA. Chemical Modifications in RNA Interference and CRISPR/Cas Genome Editing Reagents. Methods Mol Biol 2020; 2115:23-55. [PMID: 32006393 DOI: 10.1007/978-1-0716-0290-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemically modified oligonucleotides (ONs) are routinely used in the laboratory to assess gene function, and clinical advances are rapidly progressing as continual efforts are being made to optimize ON efficacy. Over the years, RNA interference (RNAi) has become one of the main tools used to inhibit RNA expression across a wide variety of species. Efforts have been made to improve the exogenous delivery of the double-stranded RNA components to the endogenous intracellular RNAi machinery to direct efficacious degradation of a user-defined RNA target. More recently, synthetic RNA ONs are being used to mimic the bacterial-derived CRISPR/Cas system to direct specific editing of the mammalian genome. Both of these techniques rely on the use of various chemical modifications to the RNA phosphate backbone or sugar in specific positions throughout the ONs to improve the desired biological outcome. Relevant chemical modifications also include conjugated targeting ligands to assist ON delivery to specific cell types. Chemical modifications are most beneficial for therapeutically relevant ONs, as they serve to enhance target binding, increase drug longevity, facilitate cell-specific targeting, improve internalization into productive intracellular compartments, and mitigate both sequence-specific as well as immune-related off-target effects (OTEs). The knowledge gained from years of optimizing RNAi reagents and characterizing the biochemical and biophysical properties of each chemical modification will hopefully accelerate the CRISPR/Cas technology into the clinic, as well as further expand the use of RNAi to treat currently undruggable diseases. This review discusses the most commonly employed chemical modifications in RNAi reagents and CRISPR/Cas guide RNAs and provides an overview of select publications that have demonstrated success in improving ON efficacy and/or mitigating undesired OTEs.
Collapse
Affiliation(s)
- Kim A Lennox
- Integrated DNA Technologies, Inc., Coralville, IA, USA.
| | - Mark A Behlke
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| |
Collapse
|
277
|
Li W, Liu S, Chen Y, Weng R, Zhang K, He X, He C. Circulating Exosomal microRNAs as Biomarkers of Systemic Lupus Erythematosus. Clinics (Sao Paulo) 2020; 75:e1528. [PMID: 32876110 PMCID: PMC7442402 DOI: 10.6061/clinics/2020/e1528] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Many studies indicate that microRNAs (miRNAs) could be potential biomarkers for various diseases. The purpose of this study was to investigate the clinical value of serum exosomal miRNAs in systemic lupus erythematosus (SLE). METHODS Serum exosomes were isolated from 38 patients with SLE and 18 healthy controls (HCs). The expression of miR-21, miR-146a and miR-155 within exosomes was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Using receiver operating characteristic (ROC) curves, we evaluated the diagnostic value of exosomal miRNAs. RESULTS Exosomal miR-21 and miR-155 were upregulated (p<0.01), whereas miR-146a expression (p<0.05) was downregulated in patients with SLE, compared to that in HCs. The expression of miR-21 (p<0.01) and miR-155 (p<0.05) was higher in SLE patients with lupus nephritis (LN) than in those without LN (non-LN). The analysis of ROC curves revealed that the expression of miR-21 and miR-155 showed a potential diagnostic value for LN. Furthermore, miR-21 (R=0.44, p<0.05) and miR-155 (R=0.33, p<0.05) were positively correlated with proteinuria. The expression of miR-21 was negatively associated with anti-SSA/Ro antibodies (R=-0.38, p<0.05), and that of miR-146a was negatively associated with anti-dsDNA antibodies (R=-0.39, p<0.05). CONCLUSIONS These findings suggested that exosomal miR-21 and miR-155 expression levels may serve as potential biomarkers for the diagnosis of SLE and LN.
Collapse
Affiliation(s)
- Wengen Li
- Rheumatology Department, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- *Corresponding authors. E-mails: / vanguard_1987@163
| | - Sudong Liu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory for Precision Medicine and Translational Research of Hakka Population, Meizhou 514031, P. R. China
- *Corresponding authors. E-mails: / vanguard_1987@163
| | - Yongyu Chen
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory for Precision Medicine and Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Ruiqiang Weng
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory for Precision Medicine and Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Ke Zhang
- Rheumatology Department, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
| | - Xuechun He
- Rheumatology Department, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
| | - Chunmei He
- Rheumatology Department, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
| |
Collapse
|
278
|
Yonezawa S, Koide H, Asai T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv Drug Deliv Rev 2020; 154-155:64-78. [PMID: 32768564 PMCID: PMC7406478 DOI: 10.1016/j.addr.2020.07.022] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Small interfering RNA (siRNA) has been expected to be a unique pharmaceutic for the treatment of broad-spectrum intractable diseases. However, its unfavorable properties such as easy degradation in the blood and negative-charge density are still a formidable barrier for clinical use. For disruption of this barrier, siRNA delivery technology has been significantly advanced in the past two decades. The approval of Patisiran (ONPATTRO™) for the treatment of transthyretin-mediated amyloidosis, the first approved siRNA drug, is a most important milestone. Since lipid-based nanoparticles (LNPs) are used in Patisiran, LNP-based siRNA delivery is now of significant interest for the development of the next siRNA formulation. In this review, we describe the design of LNPs for the improvement of siRNA properties, bioavailability, and pharmacokinetics. Recently, a number of siRNA-encapsulated LNPs were reported for the treatment of intractable diseases such as cancer, viral infection, inflammatory neurological disorder, and genetic diseases. We believe that these contributions address and will promote the development of an effective LNP-based siRNA delivery system and siRNA formulation.
Collapse
Affiliation(s)
| | | | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
279
|
Jeyaram A, Lamichhane TN, Wang S, Zou L, Dahal E, Kronstadt SM, Levy D, Parajuli B, Knudsen DR, Chao W, Jay SM. Enhanced Loading of Functional miRNA Cargo via pH Gradient Modification of Extracellular Vesicles. Mol Ther 2019; 28:975-985. [PMID: 31911034 DOI: 10.1016/j.ymthe.2019.12.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Based on their identification as physiological nucleic acid carriers in humans and other organisms, extracellular vesicles (EVs) have been explored as therapeutic delivery vehicles for DNA, RNA, and other cargo. However, efficient loading and functional delivery of nucleic acids remain a challenge, largely because of potential sources of degradation and aggregation. Here, we report that protonation of EVs to generate a pH gradient across EV membranes can be utilized to enhance vesicle loading of nucleic acid cargo, specifically microRNA (miRNA), small interfering RNA (siRNA), and single-stranded DNA (ssDNA). The loading process did not impair cellular uptake of EVs, nor did it promote any significant EV-induced toxicity response in mice. Cargo functionality was verified by loading HEK293T EVs with either pro- or anti-inflammatory miRNAs and observing the effective regulation of corresponding cellular cytokine levels. Critically, this loading increase is comparable with what can be accomplished by methods such as sonication and electroporation, and is achievable without the introduction of energy associated with these methods that can potentially damage labile nucleic acid cargo.
Collapse
Affiliation(s)
- Anjana Jeyaram
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Tek N Lamichhane
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lin Zou
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eshan Dahal
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Babita Parajuli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Daphne R Knudsen
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Program in Molecular and Cell Biology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
280
|
Extracellular vesicle (ECV)-modified polyethylenimine (PEI) complexes for enhanced siRNA delivery in vitro and in vivo. J Control Release 2019; 319:63-76. [PMID: 31866504 DOI: 10.1016/j.jconrel.2019.12.032] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
Abstract
Extracellular vesicles (ECVs) are secreted cell-derived membrane particles involved in intercellular signaling and cell-cell communication. By transporting various bio-macromolecules, ECVs and in particular exosomes are relevant in various (patho-) physiological processes. ECVs are also released by cancer cells and can confer pro-tumorigenic effects. Their target cell tropism, effects on proliferation rates, natural stability in blood and immunotolerance makes ECVs particularly interesting as delivery vehicles. Polyethylenimines (PEIs) are linear or branched polymers which are capable of forming non-covalent complexes with small RNA molecules including siRNAs or antimiRs, for their delivery in vitro and in vivo. This study explores for the first time the combination of PEI-based nanoparticles with naturally occurring ECVs from different cell lines, for the delivery of small RNAs. ECV-modified PEI/siRNA complexes are analyzed by electron microscopy vs. ECV or complex alone. On the functional side, we demonstrate increased knockdown efficacy and storage stability of PEI/siRNA complexes upon their modification with ECVs. This is paralleled by enhanced tumor cell-inhibition by ECV-modified PEI/siRNA complexes targeting Survivin. Pre-treatment with various inhibitors of cellular internalization reveals alterations in cellular uptake mechanisms and biological activities of PEI/siRNA complexes upon their ECV modification. Extending our studies towards PEI-complexed antimiRs against miR-155 or miR-1246, dose-dependent cellular and molecular effects are enhanced in ECV-modified complexes, based on the de-repression of direct miRNA target genes. Differences between ECVs from different cell lines are observed regarding their capacity of enhancing PEI/siRNA efficacies, independent of the target cell line for transfection. Finally, an in vivo therapy study in mice bearing s.c. PC3 prostate carcinoma xenografts reveals marked inhibition of tumor growth upon treatment with ECVPC3-modified PEI/siSurvivin complexes, based on profound target gene knockdown. We conclude that ECV-modification enhances the activity of PEI-based complexes, by altering pivotal physicochemical and biological nanoparticle properties.
Collapse
|
281
|
Wang T, Luo Y, Lv H, Wang J, Zhang Y, Pei R. Aptamer-Based Erythrocyte-Derived Mimic Vesicles Loaded with siRNA and Doxorubicin for the Targeted Treatment of Multidrug-Resistant Tumors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45455-45466. [PMID: 31718159 DOI: 10.1021/acsami.9b16637] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Multidrug resistance (MDR) remains one of the most important challenges to clinical chemotherapeutics. In this study, versatile mimic vesicles (MVs) derived from erythrocytes were investigated as delivery systems for siRNA and doxorubicin (DOX) to treat MDR tumors. The carriers could be readily obtained through extruding erythrocyte membranes and had the advantages of biological homogeneity, high output, controllable size, low cost, and excellent biocompatibility. Moreover, aptamers modified on the MVs endowed the carriers with tumor-targeting capacity. DOX and P-glycoprotein (P-gp) siRNA were loaded onto the MVs through incubation and cholesterol-mediated methods, achieving high loading rates and targeted tumor delivery. The drug-loaded carriers could successfully overcome drug resistance and synergistically kill MDR tumors through P-gp silencing and DOX-induced growth inhibition. This MV-based drug delivery system therefore provides new insights into the synergistic targeting of MDR tumors and offers an alternative delivery strategy to overcome MDR.
Collapse
Affiliation(s)
- Tengfei Wang
- CAS Key Laboratory for Nano-Bio Interface , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yu Luo
- CAS Key Laboratory for Nano-Bio Interface , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Haiyin Lv
- CAS Key Laboratory for Nano-Bio Interface , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Jine Wang
- CAS Key Laboratory for Nano-Bio Interface , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| |
Collapse
|
282
|
Susa F, Limongi T, Dumontel B, Vighetto V, Cauda V. Engineered Extracellular Vesicles as a Reliable Tool in Cancer Nanomedicine. Cancers (Basel) 2019; 11:E1979. [PMID: 31835327 PMCID: PMC6966613 DOI: 10.3390/cancers11121979] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Fast diagnosis and more efficient therapies for cancer surely represent one of the huge tasks for the worldwide researchers' and clinicians' community. In the last two decades, our understanding of the biology and molecular pathology of cancer mechanisms, coupled with the continuous development of the material science and technological compounds, have successfully improved nanomedicine applications in oncology. This review argues on nanomedicine application of engineered extracellular vesicles (EVs) in oncology. All the most innovative processes of EVs engineering are discussed together with the related degree of applicability for each one of them in cancer nanomedicines.
Collapse
Affiliation(s)
| | | | | | | | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (T.L.); (B.D.); (V.V.)
| |
Collapse
|
283
|
Ackova DG, Smilkov K, Bosnakovski D. Contemporary Formulations for Drug Delivery of Anticancer Bioactive Compounds. Recent Pat Anticancer Drug Discov 2019; 14:19-31. [PMID: 30636616 DOI: 10.2174/1574892814666190111104834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/28/2018] [Accepted: 01/01/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND The immense development in the field of anticancer research has led to an increase in the research of bioactive compounds with anticancer potential. It has been known that many bioactive natural compounds have low solubility (and low bioavailability) as their main drawback when it comes to the formulation and drug delivery to specific sites. OBJECTIVE As many attempts have been made to overcome this issue, this review gives a summary of the current accomplishments regarding the development of new Drug Delivery Systems (DDSs) represented by nanoparticles (NPs) and exosomes. METHODS We analyzed the published data concerning selected compounds that present the most prominent plant secondary metabolites with anticancer potential, specifically flavone (quercetin), isoflavone (genistein and curcumin) and stilbene (resveratrol) groups that have been formulated as NPs and exosomes. In addition, we summarized the patent literature published from 2015-2018 that address these formulations. RESULTS Although the exact mechanism of action for the selected natural compounds still remains unclear, the anticancer effect is evident and the main research efforts are directed to finding the most suitable delivery systems. Recent patents in this field serve as evidence that these newly designed natural compound delivery systems could be powerful new anticancer agents in the very near future if the noted difficulties are overcome. CONCLUSION The focus of recent research is not only to clarify the exact mechanisms of action and therapeutic effects, but also to answer the issue of suitable delivery systems that can transport sufficient doses of bioactive compounds to the desired target.
Collapse
Affiliation(s)
- Darinka G Ackova
- Department of Pharmacy, Faculty of Medical Sciences, University Goce Delcev - Stip, Macedonia, the Former Yugoslav Republic of
| | - Katarina Smilkov
- Department of Pharmacy, Faculty of Medical Sciences, University Goce Delcev - Stip, Macedonia, the Former Yugoslav Republic of
| | - Darko Bosnakovski
- Department of Pharmacy, Faculty of Medical Sciences, University Goce Delcev - Stip, Macedonia, the Former Yugoslav Republic of.,Department of Pediatrics, University of Minnesota, Minneapolis, United States
| |
Collapse
|
284
|
Mudgapalli N, Nallasamy P, Chava H, Chava S, Pathania AS, Gunda V, Gorantla S, Pandey MK, Gupta SC, Challagundla KB. The role of exosomes and MYC in therapy resistance of acute myeloid leukemia: Challenges and opportunities. Mol Aspects Med 2019; 70:21-32. [PMID: 31623866 PMCID: PMC7775410 DOI: 10.1016/j.mam.2019.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) is caused by abnormal production of white blood cells, red blood cells or platelets. The leukemia cells communicate with their microenvironment through nano-vesicle exosomes that are 30-100 nm in diameter. These nano-vesicles are released from body fluids upon fusion of an endocytic compartment with the cell membrane. Exosomes function as cargo to deliver signaling molecules to distant cells. This allows cross-talk between hematopoietic cells and other distant target cell environments. Exosomes support leukemia growth by acting as messengers between tumor cells and the microenvironment as well as inducing oncogenic factors such as c-Myc. Exosomes have also been used as biomarkers in the clinical diagnosis of leukemia. Glycogen synthase kinase-3 (GSK-3) and protein phosphatase 2A (PP2A) are two crucial signaling molecules involved in the AML pathogenesis and MYC stability. GSK-3 is a serine/threonine protein kinase that coordinates with over 40 different proteins during physiological/pathological conditions in blood cells. The dysregulation in GSK-3 has been reported during hematological malignancies. GSK-3 acts as a tumor suppressor by targeting c-MYC, MCL-1 and β-catenin. Conversely, GSK-3 can also act as tumor promoter in some instances. The pharmacological modulators of GSK-3 such as ABT-869, 6-Bromoindirubin-3'-oxime (BIO), GS-87 and LY2090314 have shown promise in the treatment of hematological malignancy. PP2A is a heterotrimeric serine/threonine phosphatase involved in the regulation of hematological malignancy. PP2A-activating drugs (PADs) can effectively antagonize leukemogenesis. The discovery of exosomes, kinase inhibitors and phosphatase activators have provided new hope to the leukemia patients. This review discusses the role of exosomes, GSK-3 and PP2A in the pathogenesis of leukemia. We provide evidence from both preclinical and clinical studies.
Collapse
Affiliation(s)
- Nithya Mudgapalli
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
; UNMC Summer Undergraduate Research Program, University of Nebraska Medical Center, Omaha, NE, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Haritha Chava
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Srinivas Chava
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anup S Pathania
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Venugopal Gunda
- Pediatric Oncology Laboratory, Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Subash C Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
.
| |
Collapse
|
285
|
Efficient nanocarriers of siRNA therapeutics for cancer treatment. Transl Res 2019; 214:62-91. [PMID: 31369717 DOI: 10.1016/j.trsl.2019.07.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 02/02/2023]
Abstract
Nanocarriers as drug delivery systems are promising and becoming popular, especially for cancer treatment. In addition to improving the pharmacokinetics of poorly soluble hydrophobic drugs by solubilizing them in a hydrophobic core, nanocarriers allow cancer-specific combination drug deliveries by inherent passive targeting phenomena and adoption of active targeting strategies. Nanoparticle-drug formulations can enhance the safety, pharmacokinetic profiles, and bioavailability of locally or systemically administered drugs, leading to improved therapeutic efficacy. Gene silencing by RNA interference (RNAi) is rapidly developing as a personalized field of cancer treatment. Small interfering RNAs (siRNAs) can be used to switch off specific cancer genes, in effect, "silence the gene, silence the cancer." siRNA can be used to silence specific genes that produce harmful or abnormal proteins. The activity of siRNA can be used to harness cellular machinery to destroy a corresponding sequence of mRNA that encodes a disease-causing protein. At present, the main barrier to implementing siRNA therapies in clinical practice is the lack of an effective delivery system that protects the siRNA from nuclease degradation, delivers to it to cancer cells, and releases it into the cytoplasm of targeted cancer cells, without creating adverse effects. This review provides an overview of various nanocarrier formulations in both research and clinical applications with a focus on combinations of siRNA and chemotherapeutic drug delivery systems for the treatment of multidrug resistant cancer. The use of various nanoparticles for siRNA-drug delivery, including liposomes, polymeric nanoparticles, dendrimers, inorganic nanoparticles, exosomes, and red blood cells for targeted drug delivery in cancer is discussed.
Collapse
|
286
|
Bai X, Shi Y, Tarique I, Vistro WA, Huang Y, Chen H, Haseeb A, Gandahi NS, Yang P, Chen Q, Lin J. Multivesicular bodies containing exosomes in immune-related cells of the intestine in zebrafish (Danio rerio): Ultrastructural evidence. FISH & SHELLFISH IMMUNOLOGY 2019; 95:644-649. [PMID: 31704204 DOI: 10.1016/j.fsi.2019.10.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/28/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Exosomes are secreted from various cells by multivesicular bodies (MVBs) that fuse with the plasma membrane and are involved in the intestinal immune response to maintain intestinal homeostasis. Here, we demonstrate the ultrastructural characteristics of MVBs and their exosomes in immune-related cells of the zebrafish intestine, including goblet cells (GCs), mitochondria-rich cells (MRCs), high endothelial cells (HECs) and lymphocytes. In GCs, MVBs with a low electron density were present under the nucleus. MVBs with exosomes were observed among mucin granules. "Heterogeneous" MVBs were identified within the cytoplasm around mucin granules. MRCs were observed in the intestinal mucosa epithelium, including "open-type" MRCs and "close-type" MRCs. Typical MVBs were identified in these MRCs. MVBs with a variety of exosomes were observed in the HECs of the capillary located in the lamina propria (LP). The HEC basement membrane budded outward to LP cells to form a plurality of basal blebs, later containing a large number of exosomes. MVBs also existed in the LP lymphocytes. A schematic diagram of the ultrastructural distribution of MVBs and their exosomes in the intestinal mucosal immune-related cells was created. Our findings provide cytological evidence for the source and ultrastructural distribution of exosomes within the different intestine cells of zebrafish. Component analysis and immunological functions of exosomes require future study.
Collapse
Affiliation(s)
- Xuebing Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yonghong Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Imran Tarique
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Waseem Ali Vistro
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yufei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Hong Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Abdul Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Noor Samad Gandahi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| | - Jinxing Lin
- Shanghai Laboratory Animal Research Center, Shanghai, 201203, China.
| |
Collapse
|
287
|
Shi X, Cheng Q, Hou T, Han M, Smbatyan G, Lang JE, Epstein AL, Lenz HJ, Zhang Y. Genetically Engineered Cell-Derived Nanoparticles for Targeted Breast Cancer Immunotherapy. Mol Ther 2019; 28:536-547. [PMID: 31843452 DOI: 10.1016/j.ymthe.2019.11.020] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 01/24/2023] Open
Abstract
Exosomes are nanosized membranous vesicles secreted by a variety of cells. Due to their unique and pharmacologically important properties, cell-derived exosome nanoparticles have drawn significant interest for drug development. By genetically modifying exosomes with two distinct types of surface-displayed monoclonal antibodies, we have developed an exosome platform termed synthetic multivalent antibodies retargeted exosome (SMART-Exo) for controlling cellular immunity. Here, we apply this approach to human epidermal growth factor receptor 2 (HER2)-expressing breast cancer by engineering exosomes through genetic display of both anti-human CD3 and anti-human HER2 antibodies, resulting in SMART-Exos dually targeting T cell CD3 and breast cancer-associated HER2 receptors. By redirecting and activating cytotoxic T cells toward attacking HER2-expressing breast cancer cells, the designed SMART-Exos exhibited highly potent and specific anti-tumor activity both in vitro and in vivo. This work demonstrates preclinical feasibility of utilizing endogenous exosomes for targeted breast cancer immunotherapy and the SMART-Exos as a broadly applicable platform technology for the development of next-generation immuno-nanomedicines.
Collapse
Affiliation(s)
- Xiaojing Shi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Tianling Hou
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Menglu Han
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Goar Smbatyan
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Julie E Lang
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Alan L Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
288
|
Haney MJ, Zhao Y, Jin YS, Li SM, Bago JR, Klyachko NL, Kabanov AV, Batrakova EV. Macrophage-Derived Extracellular Vesicles as Drug Delivery Systems for Triple Negative Breast Cancer (TNBC) Therapy. J Neuroimmune Pharmacol 2019; 15:487-500. [DOI: 10.1007/s11481-019-09884-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022]
|
289
|
Electroporation of outer membrane vesicles derived from Pseudomonas aeruginosa with gold nanoparticles. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1646-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Abstract
Since their discovery, extracellular vesicles have gained considerable scientific interest as a novel drug delivery system. In particular, outer membrane vesicles (OMVs) play a critical role in bacteria–bacteria communication and bacteria–host interactions by trafficking cell signalling biochemicals (i.e. DNA, RNA, proteins). Although previous studies have focused on the use of OMVs as vaccines, little work has been done on loading them with functional nanomaterials for drug delivery. We have developed a novel drug delivery system by loading OMVs with gold nanoparticles (AuNPs). AuNPs are versatile nanoparticles that have been extensively used in disease therapeutics. The particles were loaded into the vesicles via electroporation, which uses an electric pulse to create a short-lived electric field. The resulting capacitance on the membrane generates pores in the lipid bilayer of the OMVs allowing AuNPs (or any nanoparticle under 10 nm) inside the vesicles. Closure of the pores of the lipid membrane of the OMVs entraps the nanoparticles as cargo. Transmission electron microscopy was used to confirm the loading of AuNPs inside the OMVs and dynamic light scattering (DLS) and cryogenic scanning electron microscopy (cryo-SEM) verified the size and integrity of the OMVs. This is the first report to load nanoparticles into OMVs, demonstrating a potential method for drug delivery.
Graphic abstract
Collapse
|
290
|
Oshchepkova A, Neumestova A, Matveeva V, Artemyeva L, Morozova K, Kiseleva E, Zenkova M, Vlassov V. Cytochalasin-B-Inducible Nanovesicle Mimics of Natural Extracellular Vesicles That Are Capable of Nucleic Acid Transfer. MICROMACHINES 2019; 10:E750. [PMID: 31683842 PMCID: PMC6915531 DOI: 10.3390/mi10110750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles provide cell-to-cell communication and have great potential for use as therapeutic carriers. This study was aimed at the development of an extracellular vesicle-based system for nucleic acid delivery. Three types of nanovesicles were assayed as oligonucleotide carriers: mesenchymal stem cell-derived extracellular vesicles and mimics prepared either by cell treatment with cytochalasin B or by vesicle generation from plasma membrane. Nanovesicles were loaded with a DNA oligonucleotide by freezing/thawing, sonication, or permeabilization with saponin. Oligonucleotide delivery was assayed using HEK293 cells. Extracellular vesicles and mimics were characterized by a similar oligonucleotide loading level but different efficiency of oligonucleotide delivery. Cytochalasin-B-inducible nanovesicles exhibited the highest level of oligonucleotide accumulation in HEK293 cells and a loading capacity of 0.44 ± 0.05 pmol/µg. The loaded oligonucleotide was mostly protected from nuclease action.
Collapse
Affiliation(s)
- Anastasiya Oshchepkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| | - Alexandra Neumestova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| | - Vera Matveeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| | - Lyudmila Artemyeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| | - Ksenia Morozova
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia.
| | - Elena Kiseleva
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia.
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| |
Collapse
|
291
|
The stromal loss of miR-4516 promotes the FOSL1-dependent proliferation and malignancy of triple negative breast cancer. Cancer Lett 2019; 469:256-265. [PMID: 31672492 DOI: 10.1016/j.canlet.2019.10.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/24/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
Stroma-derived exosomal microRNA (exomiR) contributes to tumor progression, however, which remains poorly understood. In our study, we analyzed exomiRs from the cancer-associated fibroblast (CAF) and normal fibroblast (NF) isolated from an invasive ductal carcinoma (IDC) patient and found that the level of microRNA (miR)-4516 was approximately 5-fold lower in CAF-derived exosomes than NF-derived ones. In gene annotation analysis, miR-4516 target genes were mainly associated with the regulation of proliferation. miR-4516 overexpression or mimic treatment suppressed the proliferation of breast cancer cells, especially triple negative breast cancer (TNBC) cells. Among miR-4516 targets, FOSL1 was overexpressed in TNBC cells compared to non-TNBC cells and promoted tumor proliferation. The expression of miR-4516 and FOSL1 was reversely correlated in breast cancer patient tissues. Particularly, TNBC patients with high FOSL1 expression showed a significant poorer survival than those with low FOSL1 expression. Our results show that the loss of miR-4516 from CAF-derived exosomes is associated with FOSL1-dependent TNBC progression and suggest that miR-4516 can be used as an anti-cancer drug for TNBC.
Collapse
|
292
|
Sancho-Albero M, Encabo-Berzosa MDM, Beltrán-Visiedo M, Fernández-Messina L, Sebastián V, Sánchez-Madrid F, Arruebo M, Santamaría J, Martín-Duque P. Efficient encapsulation of theranostic nanoparticles in cell-derived exosomes: leveraging the exosomal biogenesis pathway to obtain hollow gold nanoparticle-hybrids. NANOSCALE 2019; 11:18825-18836. [PMID: 31595912 DOI: 10.1039/c9nr06183e] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Exosomes can be considered natural targeted delivery systems able to carry exogenous payloads, drugs or theranostic nanoparticles (NPs). This work aims to combine the therapeutic capabilities of hollow gold nanoparticles (HGNs) with the unique tumor targeting properties provided by exosomes. Here, we tested different methods to encapsulate HGNs (capable of absorbing light in the NIR region for selective thermal ablation) into murine melanoma cells derived exosomes (B16-F10-exos), including electroporation, passive loading by diffusion, thermal shock, sonication and saponin-assisted loading. These methods gave less than satisfactory results: although internalization of relatively large NPs into B16-F10-exos was achieved by almost all the physicochemical methods tested, only about 15% of the exosomes were loaded with NPs and several of those processes had a negative effect regarding the morphology and integrity of the loaded exosomes. In a different approach, B16-F10 cells were pre-incubated with PEGylated HGNs (PEG-HGNs) in an attempt to incorporate the NPs into the exosomal biogenesis pathway. The results were highly successful: exosomes recovered from the supernatant of the cell culture showed up to 50% of HGNs internalization. The obtained hybrid HGN-exosome vectors were characterized with a battery of techniques to make sure that internalization of HGNs did not affect exosome characteristics compared with other strategies. PEG-HGNs were released through the endosomal-exosome biogenesis pathway confirming that the isolated vesicles were exosomes.
Collapse
Affiliation(s)
- María Sancho-Albero
- Department of Chemical Engineering, Aragón Institute of Nanoscience (INA), University of Zaragoza, Campus Rio Ebro-Edificio I+D+I, C/Mariano Esquillor S/N, 50018-Zaragoza, Spain. and Networking Research Center of Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| | - Maria Del Mar Encabo-Berzosa
- Department of Chemical Engineering, Aragón Institute of Nanoscience (INA), University of Zaragoza, Campus Rio Ebro-Edificio I+D+I, C/Mariano Esquillor S/N, 50018-Zaragoza, Spain. and Networking Research Center of Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| | - Manuel Beltrán-Visiedo
- Department of Chemical Engineering, Aragón Institute of Nanoscience (INA), University of Zaragoza, Campus Rio Ebro-Edificio I+D+I, C/Mariano Esquillor S/N, 50018-Zaragoza, Spain.
| | - Lola Fernández-Messina
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid. C/Diego de León 62, 28006-Madrid, Spain and Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER- CV), 28029-Madrid, Spain
| | - Víctor Sebastián
- Department of Chemical Engineering, Aragón Institute of Nanoscience (INA), University of Zaragoza, Campus Rio Ebro-Edificio I+D+I, C/Mariano Esquillor S/N, 50018-Zaragoza, Spain. and Networking Research Center of Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid. C/Diego de León 62, 28006-Madrid, Spain and Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER- CV), 28029-Madrid, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragón Institute of Nanoscience (INA), University of Zaragoza, Campus Rio Ebro-Edificio I+D+I, C/Mariano Esquillor S/N, 50018-Zaragoza, Spain. and Networking Research Center of Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| | - Jesús Santamaría
- Department of Chemical Engineering, Aragón Institute of Nanoscience (INA), University of Zaragoza, Campus Rio Ebro-Edificio I+D+I, C/Mariano Esquillor S/N, 50018-Zaragoza, Spain. and Networking Research Center of Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| | - Pilar Martín-Duque
- Networking Research Center of Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain and Instituto Aragonés de Ciencias de la Salud (IACS), Centro de Investigación Biomédica de Aragón (CIBA), 50009-Zaragoza, Spain and IIS Aragón(IISA), Centro de Investigación Biomédica de Aragón (CIBA), 50009-Zaragoza, Spain and Fundación ARAID. Avda. Ranillas, 1-D, planta 2ª, oficina b, 50018-Zaragoza, Spain
| |
Collapse
|
293
|
Walker S, Busatto S, Pham A, Tian M, Suh A, Carson K, Quintero A, Lafrence M, Malik H, Santana MX, Wolfram J. Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics 2019; 9:8001-8017. [PMID: 31754377 PMCID: PMC6857056 DOI: 10.7150/thno.37097] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are naturally occurring cell-secreted nanoparticles that play important roles in many physiological and pathological processes. EVs enable intercellular communication by serving as delivery vehicles for a wide range of endogenous cargo molecules, such as RNAs, proteins, carbohydrates, and lipids. EVs have also been found to display tissue tropism mediated by surface molecules, such as integrins and glycans, making them promising for drug delivery applications. Various methods can be used to load therapeutic agents into EVs, and additional modification strategies have been employed to prolong circulation and improve targeting. This review gives an overview of EV-based drug delivery strategies in cancer therapy.
Collapse
Affiliation(s)
- Sierra Walker
- Department of Transplantation/Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sara Busatto
- Department of Transplantation/Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Anthony Pham
- Department of Transplantation/Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ming Tian
- Department of Transplantation/Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Annie Suh
- Department of Transplantation/Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Kelsey Carson
- Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Astrid Quintero
- Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Maria Lafrence
- Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Hanna Malik
- Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Moises X. Santana
- Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Joy Wolfram
- Department of Transplantation/Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| |
Collapse
|
294
|
Mohammadi S, Yousefi F, Shabaninejad Z, Movahedpour A, Mahjoubin Tehran M, Shafiee A, Moradizarmehri S, Hajighadimi S, Savardashtaki A, Mirzaei H. Exosomes and cancer: From oncogenic roles to therapeutic applications. IUBMB Life 2019; 72:724-748. [PMID: 31618516 DOI: 10.1002/iub.2182] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Exosomes belong to extracellular vehicles that were produced and secreted from most eukaryotic cells and are involved in cell-to-cell communications. They are an effective delivery system for biological compounds such as mRNAs, microRNAs (miRNAs), proteins, lipids, saccharides, and other physiological compounds to target cells. In this way, they could influence on cellular pathways and mediate their physiological behaviors including cell proliferation, tumorigenesis, differentiation, and so on. Many research studies focused on their role in cancers and also on potentially therapeutic and biomarker applications. In the current study, we reviewed the exosomes' effects on cancer progression based on their cargoes including miRNAs, long noncoding RNAs, circular RNAs, DNAs, mRNAs, proteins, and lipids. Moreover, their therapeutic roles in cancer were considered. In this regard, we have given a brief overview of challenges and obstacles in using exosomes as therapeutic agents.
Collapse
Affiliation(s)
- Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mahjoubin Tehran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
295
|
Kim H, Kim D, Nam H, Moon S, Kwon YJ, Lee JB. Engineered extracellular vesicles and their mimetics for clinical translation. Methods 2019; 177:80-94. [PMID: 31626895 DOI: 10.1016/j.ymeth.2019.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cells secrete extracellular vesicles (EVs) to external environments to achieve cellular homeostasis and cell-to-cell communication. Their therapeutic potential has been constantly spotlighted since they mirror both cytoplasmic and membranous components of parental cells. Meanwhile, growing evidence suggests that EV engineering could further promote EVs with a maximized capacity. In this review, a range of engineering techniques as well as upscaling approaches to exploit EVs and their mimetics are introduced. By laying out the pros and cons of each technique from different perspectives, we sought to provide an overview potentially helpful for understanding the current state of the art EV engineering and a guideline for choosing a suitable technique for engineering EVs. Furthermore, we envision that the advances in each technique will give rise to the combinatorial engineering of EVs, taking us a step closer to a clinical translation of EV-based therapeutics.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Dajeong Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Hyangsu Nam
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Young Jik Kwon
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States; Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States.
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea.
| |
Collapse
|
296
|
Markov O, Oshchepkova A, Mironova N. Immunotherapy Based on Dendritic Cell-Targeted/-Derived Extracellular Vesicles-A Novel Strategy for Enhancement of the Anti-tumor Immune Response. Front Pharmacol 2019; 10:1152. [PMID: 31680949 PMCID: PMC6798004 DOI: 10.3389/fphar.2019.01152] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
Dendritic cell (DC)-based anti-tumor vaccines have great potential for the treatment of cancer. To date, a large number of clinical trials involving DC-based vaccines have been conducted with a view to treating tumors of different histological origins. However, DC-based vaccines had several drawbacks, including problems with targeted delivery of tumor antigens to DCs and prolong storage of cellular vaccines. Therefore, the development of other immunotherapeutic approaches capable of enhancing the immunogenicity of existing DC-based vaccines or directly triggering anti-tumor immune responses is of great interest. Extracellular vesicles (EVs) are released by almost all types of eukaryotic cells for paracrine signaling. EVs can interact with target cells and change their functional activity by delivering different signaling molecules including mRNA, non-coding RNA, proteins, and lipids. EVs have potential benefits as natural vectors for the delivery of RNA and other therapeutic molecules targeted to DCs, T-lymphocytes, and tumor cells; therefore, EVs are a promising entity for the development of novel cell-free anti-tumor vaccines that may be a favourable alternative to DC-based vaccines. In the present review, we discuss the anti-tumor potential of EVs derived from DCs, tumors, and other cells. Methods of EV isolation are systematized, and key molecules carried by EVs that are necessary for the activation of a DC-mediated anti-tumor immune response are analyzed with a focus on the RNA component of EVs. Characteristics of anti-tumor immune responses induced by EVs in vitro and in vivo are reviewed. Finally, perspectives and challenges with the use of EVs for the development of anti-tumor cell-free vaccines are considered.
Collapse
Affiliation(s)
- Oleg Markov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | | | | |
Collapse
|
297
|
Maugeri M, Nawaz M, Papadimitriou A, Angerfors A, Camponeschi A, Na M, Hölttä M, Skantze P, Johansson S, Sundqvist M, Lindquist J, Kjellman T, Mårtensson IL, Jin T, Sunnerhagen P, Östman S, Lindfors L, Valadi H. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nat Commun 2019; 10:4333. [PMID: 31551417 PMCID: PMC6760118 DOI: 10.1038/s41467-019-12275-6] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 08/23/2019] [Indexed: 12/14/2022] Open
Abstract
RNA-based therapeutics hold great promise for treating diseases and lipid nanoparticles (LNPs) represent the most advanced platform for RNA delivery. However, the fate of the LNP-mRNA after endosome-engulfing and escape from the autophagy-lysosomal pathway remains unclear. To investigate this, mRNA (encoding human erythropoietin) was delivered to cells using LNPs, which shows, for the first time, a link between LNP-mRNA endocytosis and its packaging into extracellular vesicles (endo-EVs: secreted after the endocytosis of LNP-mRNA). Endosomal escape of LNP-mRNA is dependent on the molar ratio between ionizable lipids and mRNA nucleotides. Our results show that fractions of ionizable lipids and mRNA (1:1 molar ratio of hEPO mRNA nucleotides:ionizable lipids) of endocytosed LNPs were detected in endo-EVs. Importantly, these EVs can protect the exogenous mRNA during in vivo delivery to produce human protein in mice, detected in plasma and organs. Compared to LNPs, endo-EVs cause lower expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Marco Maugeri
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Muhammad Nawaz
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Alexandros Papadimitriou
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Annelie Angerfors
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Manli Na
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Mikko Hölttä
- Translational Biomarkers and Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Pia Skantze
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Svante Johansson
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Johnny Lindquist
- Translational Biomarkers and Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Tomas Kjellman
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Gothenburg, Sweden
| | - Sofia Östman
- Animal Sciences and Technologies, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden.
| |
Collapse
|
298
|
Yao X, Wei W, Wang X, Chenglin L, Björklund M, Ouyang H. Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders. Biomaterials 2019; 224:119492. [PMID: 31557588 DOI: 10.1016/j.biomaterials.2019.119492] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Age-associated musculoskeletal disorders (MSDs) have been historically overlooked by mainstream biopharmaceutical researchers. However, it has now been recognized that stem and progenitor cells confer innate healing capacity for the musculoskeletal system. Current evidence indicates that exosomes are particularly important in this process as they can mediate sequential and reciprocal interactions between cells to initiate and enhance healing. The present review focuses on stem cells (SCs) derived exosomes as a regenerative therapy for treatment of musculoskeletal disorders. We discuss mechanisms involving exosome-mediated transfer of RNAs and how these have been demonstrated in vitro and in vivo to affect signal transduction pathways in target cells. We envision that standardized protocols for stem cell culture as well as for the isolation and characterization of exosomes enable GMP-compliant large-scale production of SCs-derived exosomes. Hence, potential new treatment for age-related degenerative diseases can be seen in the horizon.
Collapse
Affiliation(s)
- Xudong Yao
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wei
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaozhao Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Chenglin
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mikael Björklund
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China
| | - Hongwei Ouyang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
299
|
Lu M, Zhao X, Xing H, Liu H, Lang L, Yang T, Xun Z, Wang D, Ding P. Cell-free synthesis of connexin 43-integrated exosome-mimetic nanoparticles for siRNA delivery. Acta Biomater 2019; 96:517-536. [PMID: 31284098 DOI: 10.1016/j.actbio.2019.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are naturally secreted nanovesicles that have emerged as a promising therapeutic nanodelivery platform, due to their specific composition and biological properties. However, challenges like considerable complexity, low isolation yield, drug payload, and potential safety concerns substantially reduce their pharmaceutical acceptability. Given that the nano-bio-interface is a crucial factor for nanocarrier behavior and function, modification of synthetic nanoparticles with the intrinsic hallmarks of exosomes' membrane to create exosome mimetics could allow for siRNA delivery in a safer and more efficient manner. Herein, connexin 43 (Cx43)-embedded, exosome-mimicking lipid bilayers coated chitosan nanoparticles (Cx43/L/CS NPs) were constructed by using cell-free (CF) synthesis systems with plasmids encoding Cx43 in the presence of lipid-coated CS NPs (L/CS NPs). The integration of de novo synthesized Cx43 into the lipid bilayers of L/CS NPs occurred cotranslationally during one-pot reaction and, more importantly, the integrated Cx43 was functionally active in transport. In addition to considerably lower cytotoxicity (<four-fold) than cationic Lipo 2000, the obtained Cx43/L/CS-siRNA NPs showed feasible cellular uptake and silencing efficacy that was significantly higher than free siRNA and CS-siRNA NPs. By using a gap junction (GJ) inhibitor, 18β-glycyrrhetinic acid, we demonstrated that Cx43 facilitated the delivery of siRNA into Cx43-expressing U87 MG cells. Additionally, the cellular entry of Cx43/L/CS-siRNA NPs may rely on different endocytic mechanisms, depending on the types of recipient cells. However, Cx43/L/CS-siRNA NPs still exhibited far from adequate delivery efficiency compared with transfection reagent Lipo 2000. Taken together, our study provides a brand new strategy to construct Cx43-functionalized, exosome-mimetic nanoparticles, which may further encourage the establishment of more biomimetic nanocarriers with higher biocompatibility and delivery efficiency. SIGNIFICANCE OF STATEMENT: The major issue to move RNA interference (RNAi) therapy from bench to bedside is the lack of safe and efficient delivery vehicles. Given the certain advantages and limitations of exosomes and synthetic nanocarriers, a promising strategy is to facilitate positive feedbacks between the two fields, in which the superiority of exosomes regarding special membrane composition beneficial for cytoplasmic delivery and the better pharmaceutical acceptance of synthetic nanocarriers could be combined. In this study, we reported to construct Cx43-integrated, exosome-mimetic lipid bilayers coated nanoparticles by using CF synthesis technique. The obtained Cx43/L/CS-siRNA NPs were characterized by desirable cytotoxicity profile and feasible delivery efficiency. This study provides a new avenue and insights for the synthesis of more biocompatible and effective bio-mimetic siRNA delivery platforms.
Collapse
|
300
|
Patras L, Banciu M. Intercellular Crosstalk Via Extracellular Vesicles in Tumor Milieu as Emerging Therapies for Cancer Progression. Curr Pharm Des 2019; 25:1980-2006. [DOI: 10.2174/1381612825666190701143845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
:Increasing evidence has suggested that extracellular vesicles (EV) mediated bidirectional transfer of functional molecules (such as proteins, different types of RNA, and lipids) between cancer cells and tumor stromal cells (immune cells, endothelial cells, fibroblasts, stem cells) and strongly contributed to the reinforcement of cancer progression. Thus, intercellular EV-mediated signaling in tumor microenvironment (TME) is essential in the modulation of all processes that support and promote tumor development like immune suppression, angiogenesis, invasion and metastasis, and resistance of tumor cells to anticancer treatments.:Besides EV potential to revolutionize our understanding of the cancer cell-stromal cells crosstalk in TME, their ability to selectively transfer different cargos to recipient cells has created excitement in the field of tumortargeted delivery of specific molecules for anticancer treatments. Therefore, in tight connection with previous findings, this review brought insight into the dual role of EV in modulation of TME. Thus, on one side EV create a favorable phenotype of tumor stromal cells for tumor progression; however, as a future new class of anticancer drug delivery systems EV could re-educate the TME to overcome main supportive processes for malignancy progression.
Collapse
Affiliation(s)
- Laura Patras
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|