251
|
Diagnosis of Glioblastoma by Immuno-Positron Emission Tomography. Cancers (Basel) 2021; 14:cancers14010074. [PMID: 35008238 PMCID: PMC8750680 DOI: 10.3390/cancers14010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neuroimaging has transformed the way brain tumors are diagnosed and treated. Although different non-invasive modalities provide very helpful information, in some situations, they present a limited value. By merging the specificity of antibodies with the resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry”, like a “virtual biopsy”. This review provides and focuses on immuno-PET applications and future perspectives of this promising imaging approach for glioblastoma. Abstract Neuroimaging has transformed neuro-oncology and the way that glioblastoma is diagnosed and treated. Magnetic Resonance Imaging (MRI) is the most widely used non-invasive technique in the primary diagnosis of glioblastoma. Although MRI provides very powerful anatomical information, it has proven to be of limited value for diagnosing glioblastomas in some situations. The final diagnosis requires a brain biopsy that may not depict the high intratumoral heterogeneity present in this tumor type. The revolution in “cancer-omics” is transforming the molecular classification of gliomas. However, many of the clinically relevant alterations revealed by these studies have not yet been integrated into the clinical management of patients, in part due to the lack of non-invasive biomarker-based imaging tools. An innovative option for biomarker identification in vivo is termed “immunotargeted imaging”. By merging the high target specificity of antibodies with the high spatial resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry” in patients. This review provides the state of the art of immuno-PET applications and future perspectives on this imaging approach for glioblastoma.
Collapse
|
252
|
Chowdhury S, Bappy MH, Clocchiatti-Tuozzo S, Cheeti S, Chowdhury S, Patel V. Current Advances in Immunotherapy for Glioblastoma Multiforme and Future Prospects. Cureus 2021; 13:e20604. [PMID: 35103180 PMCID: PMC8782638 DOI: 10.7759/cureus.20604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most frequent and malignant type of brain tumor. It has a reputation for being resistant to current treatments, and the prognosis is still bleak. Immunotherapies have transformed the treatment of a variety of cancers, and they provide great hope for glioblastoma, although they have yet to be successful. The justification for immune targeting of glioblastoma and the obstacles that come with treating these immunosuppressive tumors are reviewed in this paper. Cancer vaccines, oncolytic viruses (OVs), checkpoint blockade medications, adoptive cell transfer (ACT), chimeric antigen receptor (CAR) T-cells, and nanomedicine-based immunotherapies are among the novel immune-targeting therapies researched in glioblastoma. Key clinical trial outcomes and current trials for each method are presented from a clinical standpoint. Finally, constraints, whether biological or due to trial design, are discussed, along with solutions for overcoming them. In glioblastoma, proof of efficacy for immunotherapy approaches has yet to be demonstrated, but our rapidly growing understanding of the disease’s biology and immune microenvironment, as well as the emergence of novel promising combinatorial approaches, may allow researchers to finally meet the medical need for patients with glioblastoma multiforme (GBM).
Collapse
|
253
|
Chen TC, da Fonseca CO, Levin D, Schönthal AH. The Monoterpenoid Perillyl Alcohol: Anticancer Agent and Medium to Overcome Biological Barriers. Pharmaceutics 2021; 13:2167. [PMID: 34959448 PMCID: PMC8709132 DOI: 10.3390/pharmaceutics13122167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022] Open
Abstract
Perillyl alcohol (POH) is a naturally occurring monoterpenoid related to limonene that is present in the essential oils of various plants. It has diverse applications and can be found in household items, including foods, cosmetics, and cleaning supplies. Over the past three decades, it has also been investigated for its potential anticancer activity. Clinical trials with an oral POH formulation administered to cancer patients failed to realize therapeutic expectations, although an intra-nasal POH formulation yielded encouraging results in malignant glioma patients. Based on its amphipathic nature, POH revealed the ability to overcome biological barriers, primarily the blood-brain barrier (BBB), but also the cytoplasmic membrane and the skin, which appear to be characteristics that critically contribute to POH's value for drug development and delivery. In this review, we present the physicochemical properties of POH that underlie its ability to overcome the obstacles placed by different types of biological barriers and consequently shape its multifaceted promise for cancer therapy and applications in drug development. We summarized and appraised the great variety of preclinical and clinical studies that investigated the use of POH for intranasal delivery and nose-to-brain drug transport, its intra-arterial delivery for BBB opening, and its permeation-enhancing function in hybrid molecules, where POH is combined with or conjugated to other therapeutic pharmacologic agents, yielding new chemical entities with novel mechanisms of action and applications.
Collapse
Affiliation(s)
- Thomas C. Chen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Clovis O. da Fonseca
- Department of Neurological Surgery, Federal Hospital of Ipanema, Rio de Janeiro 22411-020, Brazil;
| | | | - Axel H. Schönthal
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
254
|
Achar A, Myers R, Ghosh C. Drug Delivery Challenges in Brain Disorders across the Blood-Brain Barrier: Novel Methods and Future Considerations for Improved Therapy. Biomedicines 2021; 9:1834. [PMID: 34944650 PMCID: PMC8698904 DOI: 10.3390/biomedicines9121834] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the physiological and structural properties of the blood-brain barrier (BBB), the delivery of drugs to the brain poses a unique challenge in patients with central nervous system (CNS) disorders. Several strategies have been investigated to circumvent the barrier for CNS therapeutics such as in epilepsy, stroke, brain cancer and traumatic brain injury. In this review, we summarize current and novel routes of drug interventions, discuss pharmacokinetics and pharmacodynamics at the neurovascular interface, and propose additional factors that may influence drug delivery. At present, both technological and mechanistic tools are devised to assist in overcoming the BBB for more efficient and improved drug bioavailability in the treatment of clinically devastating brain disorders.
Collapse
Affiliation(s)
- Aneesha Achar
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
| | - Rosemary Myers
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
| | - Chaitali Ghosh
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
- Department of Biomedical Engineering and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
255
|
Parakh S, Nicolazzo J, Scott AM, Gan HK. Antibody Drug Conjugates in Glioblastoma - Is There a Future for Them? Front Oncol 2021; 11:718590. [PMID: 34926242 PMCID: PMC8678283 DOI: 10.3389/fonc.2021.718590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive and fatal malignancy that despite decades of trials has limited therapeutic options. Antibody drug conjugates (ADCs) are composed of a monoclonal antibody which specifically recognizes a cellular surface antigen linked to a cytotoxic payload. ADCs have demonstrated superior efficacy and/or reduced toxicity in a range of haematological and solid tumors resulting in nine ADCs receiving regulatory approval. ADCs have also been explored in patients with brain tumours but with limited success to date. While earlier generations ADCs in glioma patients have had limited success and high toxicity, newer and improved ADCs characterised by low immunogenicity and more effective payloads have shown promise in a range of tumour types. These newer ADCs have also been tested in glioma patients, however, with mixed results. Factors affecting the effectiveness of ADCs to target the CNS include the blood brain barrier which acts as a physical and biochemical barrier, the pro-cancerogenic and immunosuppressive tumor microenvironment and tumour characteristics like tumour volume and antigen expression. In this paper we review the data regarding the ongoing the development of ADCs in glioma patients as well as potential strategies to overcome these barriers to maximise their therapeutic potential.
Collapse
Affiliation(s)
- Sagun Parakh
- Department of Medical Oncology, Austin Hospital, Heidelberg, VIC, Australia
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Joseph Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia
| | - Hui Kong Gan
- Department of Medical Oncology, Austin Hospital, Heidelberg, VIC, Australia
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
256
|
Harris MA, Kuang H, Schneiderman Z, Shiao ML, Crane AT, Chrostek MR, Tăbăran AF, Pengo T, Liaw K, Xu B, Lin L, Chen CC, O’Sullivan MG, Kannan RM, Low WC, Kokkoli E. ssDNA nanotubes for selective targeting of glioblastoma and delivery of doxorubicin for enhanced survival. SCIENCE ADVANCES 2021; 7:eabl5872. [PMID: 34851666 PMCID: PMC8635432 DOI: 10.1126/sciadv.abl5872] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Effective treatment of glioblastoma remains a daunting challenge. One of the major hurdles in the development of therapeutics is their inability to cross the blood-brain tumor barrier (BBTB). Local delivery is an alternative approach that can still suffer from toxicity in the absence of target selectivity. Here, we show that nanotubes formed from self-assembly of ssDNA-amphiphiles are stable in serum and nucleases. After bilateral brain injections, nanotubes show preferential retention by tumors compared to normal brain and are taken up by glioblastoma cells through scavenger receptor binding and macropinocytosis. After intravenous injection, they cross the BBTB and internalize in glioblastoma cells. In a minimal residual disease model, local delivery of doxorubicin showed signs of toxicity in the spleen and liver. In contrast, delivery of doxorubicin by the nanotubes resulted in no systemic toxicity and enhanced mouse survival. Our results demonstrate that ssDNA nanotubes are a promising drug delivery vehicle to glioblastoma.
Collapse
Affiliation(s)
- Michael A. Harris
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huihui Kuang
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zachary Schneiderman
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Maple L. Shiao
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Andrew T. Crane
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Matthew R. Chrostek
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Alexandru-Flaviu Tăbăran
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, Saint Paul, MN 55108, USA
| | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Liaw
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Beibei Xu
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Lucy Lin
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Clark C. Chen
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - M. Gerard O’Sullivan
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, Saint Paul, MN 55108, USA
| | - Rangaramanujam M. Kannan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Efrosini Kokkoli
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Corresponding author.
| |
Collapse
|
257
|
Saran F, Welsh L, James A, McBain C, Gattamaneni R, Jefferies S, Harris F, Pemberton K, Schaible J, Bender S, Cseh A, Brada M. Afatinib and radiotherapy, with or without temozolomide, in patients with newly diagnosed glioblastoma: results of a phase I trial. J Neurooncol 2021; 155:307-317. [PMID: 34787778 PMCID: PMC8651574 DOI: 10.1007/s11060-021-03877-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults. Amplification or overexpression of the epidermal growth factor receptor gene, part of the ErbB family, occur in approximately 40% and 60% of patients with GBM, respectively. We present data from a dose-finding study of the ErbB inhibitor afatinib in combination with radiotherapy (RT), with or without temozolomide (TMZ), in patients with GBM. METHODS This was a phase I, open-label, 3 + 3 dose-escalation trial in patients with newly-diagnosed, histologically-confirmed grade 4 malignant glioma and proven O6-methylguanine-DNA methyltransferase gene promoter methylation status. The primary endpoint was the maximum tolerated dose (MTD) of continuous daily afatinib when given in combination with RT, with (regimen M) or without (regimen U) concomitant TMZ treatment. RESULTS Fifty-five patients were enrolled; 36 received ≥ 1 dose of trial medication (regimen M, n = 20, regimen U, n = 16). Afatinib was discontinued by all patients during the study. Reasons for afatinib discontinuation (regimen M/U) included disease progression (45%/50%), dose-limiting toxicity (10%/0%), and other adverse events (AEs; 35%/38%). The most frequently reported AEs with either regimen were diarrhea and rash, with no new safety signals identified. The MTD was determined as afatinib 30 mg in combination with daily TMZ and RT, and afatinib 40 mg in combination with RT alone. CONCLUSIONS This study identified the MTD for afatinib in combination with RT, with and without TMZ, in patients with GBM. Further studies of afatinib in patients with GBM are warranted and should be based on appropriate biomarker-based preselection. TRIAL REGISTRATION NCT00977431 (first posted September 15, 2009).
Collapse
Affiliation(s)
- Frank Saran
- The Royal Marsden NHS Foundation Trust, London, UK.
- Cancer and Blood Service, Auckland City Hospital, Building 8, 99 Park Road, Grafton, Private Bag 92024, Auckland, 1142, New Zealand.
| | - Liam Welsh
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Allan James
- The Beatson West of Scotland Cancer Centre, Glasgow, UK
| | | | | | - Sarah Jefferies
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Fiona Harris
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | - Shaun Bender
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Agnieszka Cseh
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Michael Brada
- Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, UK
| |
Collapse
|
258
|
Talele S, Zhang W, Burgenske DM, Kim M, Mohammad AS, Dragojevic S, Gupta SK, Bindra RS, Sarkaria JN, Elmquist WF. Brain Distribution of Berzosertib: An Ataxia Telangiectasia and Rad3-Related Protein Inhibitor for the Treatment of Glioblastoma. J Pharmacol Exp Ther 2021; 379:343-357. [PMID: 34556535 PMCID: PMC9351722 DOI: 10.1124/jpet.121.000845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
The effective treatment of brain tumors is a considerable challenge in part because of the presence of the blood-brain barrier (BBB) that limits drug delivery. Glioblastoma multiforme (GBM) is an aggressive and infiltrative primary brain tumor with an extremely poor prognosis after standard-of-care therapy with surgery, radiotherapy (RT), and chemotherapy. DNA damage response (DDR) pathways play a critical role in DNA repair in cancer cells, and inhibition of these pathways can potentially augment RT and chemotherapy tumor cell toxicity. The ataxia telangiectasia and Rad3-related protein (ATR) kinase is a key regulator of the DDR network and is potently and selectively inhibited by the ATR inhibitor berzosertib. Although in vitro studies demonstrate a synergistic effect of berzosertib in combination with temozolomide, in vivo efficacy studies have yet to recapitulate this observation using intracranial tumor models. In the current study, we demonstrate that delivery of berzosertib to the brain is restricted by efflux at the BBB. Berzosertib has a high binding affinity to brain tissue compared with plasma, thereby leading to low free drug concentrations in the brain. Berzosertib distribution is heterogenous within the tumor, wherein concentrations are substantially lower in normal brain and invasive tumor rim (wherein the BBB is intact) when compared with those in the tumor core (wherein the BBB is leaky). These results demonstrate that high tissue binding and limited and heterogenous brain distribution of berzosertib may be important factors that influence the efficacy of berzosertib therapy in GBM. SIGNIFICANCE STATEMENT: This study examined the brain delivery and efficacy of berzosertib in patient-derived xenograft models of glioblastoma multiforme (GBM). Berzosertib is actively effluxed at the blood-brain barrier and is highly bound to brain tissue, leading to low free drug concentrations in the brain. Berzosertib is heterogeneously distributed into different regions of the brain and tumor and, in this study, was not efficacious in vivo when combined with temozolomide. These factors inform the future clinical utility of berzosertib for GBM.
Collapse
Affiliation(s)
- Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., M.K., A.S.M., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., S.D., S.K.G., J.N.S.); and Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut (R.S.B.)
| | - Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., M.K., A.S.M., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., S.D., S.K.G., J.N.S.); and Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut (R.S.B.)
| | - Danielle M Burgenske
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., M.K., A.S.M., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., S.D., S.K.G., J.N.S.); and Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut (R.S.B.)
| | - Minjee Kim
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., M.K., A.S.M., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., S.D., S.K.G., J.N.S.); and Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut (R.S.B.)
| | - Afroz S Mohammad
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., M.K., A.S.M., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., S.D., S.K.G., J.N.S.); and Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut (R.S.B.)
| | - Sonja Dragojevic
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., M.K., A.S.M., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., S.D., S.K.G., J.N.S.); and Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut (R.S.B.)
| | - Shiv K Gupta
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., M.K., A.S.M., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., S.D., S.K.G., J.N.S.); and Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut (R.S.B.)
| | - Ranjit S Bindra
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., M.K., A.S.M., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., S.D., S.K.G., J.N.S.); and Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut (R.S.B.)
| | - Jann N Sarkaria
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., M.K., A.S.M., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., S.D., S.K.G., J.N.S.); and Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut (R.S.B.)
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., M.K., A.S.M., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., S.D., S.K.G., J.N.S.); and Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut (R.S.B.)
| |
Collapse
|
259
|
Marin BM, Porath KA, Jain S, Kim M, Conage-Pough JE, Oh JH, Miller CL, Talele S, Kitange GJ, Tian S, Burgenske DM, Mladek AC, Gupta SK, Decker PA, McMinn MH, Stopka SA, Regan MS, He L, Carlson BL, Bakken K, Burns TC, Parney IF, Giannini C, Agar NYR, Eckel-Passow JE, Cochran JR, Elmquist WF, Vaubel RA, White FM, Sarkaria JN. Heterogeneous delivery across the blood-brain barrier limits the efficacy of an EGFR-targeting antibody drug conjugate in glioblastoma. Neuro Oncol 2021; 23:2042-2053. [PMID: 34050676 PMCID: PMC8643472 DOI: 10.1093/neuonc/noab133] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Antibody drug conjugates (ADCs) targeting the epidermal growth factor receptor (EGFR), such as depatuxizumab mafodotin (Depatux-M), is a promising therapeutic strategy for glioblastoma (GBM) but recent clinical trials did not demonstrate a survival benefit. Understanding the mechanisms of failure for this promising strategy is critically important. METHODS PDX models were employed to study efficacy of systemic vs intracranial delivery of Depatux-M. Immunofluorescence and MALDI-MSI were performed to detect drug levels in the brain. EGFR levels and compensatory pathways were studied using quantitative flow cytometry, Western blots, RNAseq, FISH, and phosphoproteomics. RESULTS Systemic delivery of Depatux-M was highly effective in nine of 10 EGFR-amplified heterotopic PDXs with survival extending beyond one year in eight PDXs. Acquired resistance in two PDXs (GBM12 and GBM46) was driven by suppression of EGFR expression or emergence of a novel short-variant of EGFR lacking the epitope for the Depatux-M antibody. In contrast to the profound benefit observed in heterotopic tumors, only two of seven intrinsically sensitive PDXs were responsive to Depatux-M as intracranial tumors. Poor efficacy in orthotopic PDXs was associated with limited and heterogeneous distribution of Depatux-M into tumor tissues, and artificial disruption of the BBB or bypass of the BBB by direct intracranial injection of Depatux-M into orthotopic tumors markedly enhanced the efficacy of drug treatment. CONCLUSIONS Despite profound intrinsic sensitivity to Depatux-M, limited drug delivery into brain tumor may have been a key contributor to lack of efficacy in recently failed clinical trials.
Collapse
Affiliation(s)
- Bianca-Maria Marin
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kendra A Porath
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sonia Jain
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Minjee Kim
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason E Conage-Pough
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ju-Hee Oh
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Caitlyn L Miller
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Surabhi Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shulan Tian
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ann C Mladek
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shiv K Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul A Decker
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Madison H McMinn
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lihong He
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katrina Bakken
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Terence C Burns
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Ian F Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology; Mayo Clinic, Rochester, Minnesota, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rachael A Vaubel
- Department of Laboratory Medicine and Pathology; Mayo Clinic, Rochester, Minnesota, USA
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
260
|
Abstract
Glioblastoma is one of the deadliest forms of primary adult tumors, with median survival of 14.6 months post-diagnosis despite aggressive standard of care treatment. This grim prognosis for glioblastoma patients has changed little in the past two decades, necessitating novel treatment modalities. One potential treatment modality is cancer immunotherapy, which has shown remarkable progress in slowing disease progression or even potentially curing certain solid tumors. However, the transport barriers posed by the blood-brain barrier and the immune privileged status of the central nervous system pose drug delivery obstacles that are unique to brain tumors. In this review, we provide an overview of the various physiological, immunological, and drug delivery barriers that must be overcome for effective glioblastoma treatment. We discuss chemical modification strategies to enable nanomedicines to bypass the blood-brain barrier and reach intracranial tumors. Finally, we highlight recent advances in biomaterial-based strategies for cancer immunotherapy that can be adapted to glioblastoma treatment.
Collapse
Affiliation(s)
- Yuan Rui
- Department of Biomedical Engineering, the Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jordan J Green
- Department of Biomedical Engineering, the Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Neurosurgery, Ophthalmology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Materials Science & Engineering and Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins University School of Medicine, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA.
| |
Collapse
|
261
|
Zhang W, Talele S, Sarkaria JN, Elmquist WF. Changes in the vasculature of human brain tumors: Implications for treatment. Neuro Oncol 2021; 23:1995-1997. [PMID: 34515316 PMCID: PMC8643459 DOI: 10.1093/neuonc/noab220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
262
|
Yu Z, Liu Y, Li Y, Zhang J, Peng J, Gong J, Xia Y, Wang L. miRNA-338-3p inhibits glioma cell proliferation and progression by targeting MYT1L. Brain Res Bull 2021; 179:1-12. [PMID: 34848272 DOI: 10.1016/j.brainresbull.2021.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/31/2021] [Accepted: 11/24/2021] [Indexed: 01/06/2023]
Abstract
Glioma is a common and aggressive primary malignant brain tumor. MicroRNAs (miRNAs) play key roles in the post-transcriptional regulation of gene expression. Currently, miRNAs are considered to be useful biomarkers for the diagnosis and prognosis of glioma. Previously, we screened three differentially expressed miRNAs from Gene Expression Omnibus (GEO) database which included miRNA-338-3p. miRNA-338-3p is involved in tumor development in different cancers. However, in glioma, its function and its underlying mechanism remain unclear. We found that overexpression of miRNA-338-3p suppressed cell proliferation, migration, invasion, and promoted apoptosis of glioma in vitro. Myelin transcription factor 1-like (MYT1L) was found to be a direct target of miRNA-383-3p in glioma cells as the expression of MYT1L was inhibited by overexpressing miRNA-338-3p. Additionally, silencing MYT1L produced similar effects as overexpressing miRNA-338-3p in glioma cells. Overexpression of MYT1L also completely attenuated the inhibitory effect induced by miRNA-338-3p overexpression. These results suggest that the miRNA-338-3p/ MYT1L axis plays a critical role in the progression of glioma. Our study delineates one of the complex molecular mechanisms that drive the growth of glioma and may be useful in finding novel prognostic predictors and treatment targets in glioma. AVAILABILITY OF DATA AND MATERIALS: All data generated or analysed during this study are included in this published article.
Collapse
Affiliation(s)
- Zhengtao Yu
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou 570208, Hainan, China
| | - Yan Liu
- Department of Neurology, Changsha Central Hospital, University of South China, No.161 Shaoshan road, Yuhua district, Changsha 410007, Hunan, China
| | - You Li
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou 570208, Hainan, China
| | - Jikun Zhang
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou 570208, Hainan, China
| | - Jun Peng
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou 570208, Hainan, China
| | - Jianwu Gong
- Department of Neurosurgery, Hunan Cancer Hospital and The Affliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha 410006, Hunan, China
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou 570208, Hainan, China.
| | - Lei Wang
- Department of Neurosurgery, Hunan Cancer Hospital and The Affliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha 410006, Hunan, China.
| |
Collapse
|
263
|
Sadanandan N, Shear A, Brooks B, Saft M, Cabantan DAG, Kingsbury C, Zhang H, Anthony S, Wang ZJ, Salazar FE, Lezama Toledo AR, Rivera Monroy G, Vega Gonzales-Portillo J, Moscatello A, Lee JY, Borlongan CV. Treating Metastatic Brain Cancers With Stem Cells. Front Mol Neurosci 2021; 14:749716. [PMID: 34899179 PMCID: PMC8651876 DOI: 10.3389/fnmol.2021.749716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy may present an effective treatment for metastatic brain cancer and glioblastoma. Here we posit the critical role of a leaky blood-brain barrier (BBB) as a key element for the development of brain metastases, specifically melanoma. By reviewing the immunological and inflammatory responses associated with BBB damage secondary to tumoral activity, we identify the involvement of this pathological process in the growth and formation of metastatic brain cancers. Likewise, we evaluate the hypothesis of regenerating impaired endothelial cells of the BBB and alleviating the damaged neurovascular unit to attenuate brain metastasis, using the endothelial progenitor cell (EPC) phenotype of bone marrow-derived mesenchymal stem cells. Specifically, there is a need to evaluate the efficacy for stem cell therapy to repair disruptions in the BBB and reduce inflammation in the brain, thereby causing attenuation of metastatic brain cancers. To establish the viability of stem cell therapy for the prevention and treatment of metastatic brain tumors, it is crucial to demonstrate BBB repair through augmentation of vasculogenesis and angiogenesis. BBB disruption is strongly linked to metastatic melanoma, worsens neuroinflammation during metastasis, and negatively influences the prognosis of metastatic brain cancer. Using stem cell therapy to interrupt inflammation secondary to this leaky BBB represents a paradigm-shifting approach for brain cancer treatment. In this review article, we critically assess the advantages and disadvantages of using stem cell therapy for brain metastases and glioblastoma.
Collapse
Affiliation(s)
| | - Alex Shear
- University of Florida, Gainesville, FL, United States
| | - Beverly Brooks
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Madeline Saft
- University of Michigan, Ann Arbor, MI, United States
| | | | - Chase Kingsbury
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Henry Zhang
- University of Florida, Gainesville, FL, United States
| | - Stefan Anthony
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Alma R. Lezama Toledo
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | | | - Alexa Moscatello
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
264
|
Li X, Vemireddy V, Cai Q, Xiong H, Kang P, Li X, Giannotta M, Hayenga HN, Pan E, Sirsi SR, Mateo C, Kleinfeld D, Greene C, Campbell M, Dejana E, Bachoo R, Qin Z. Reversibly Modulating the Blood-Brain Barrier by Laser Stimulation of Molecular-Targeted Nanoparticles. NANO LETTERS 2021; 21:9805-9815. [PMID: 34516144 PMCID: PMC8616836 DOI: 10.1021/acs.nanolett.1c02996] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The blood-brain barrier (BBB) is highly selective and acts as the interface between the central nervous system and circulation. While the BBB is critical for maintaining brain homeostasis, it represents a formidable challenge for drug delivery. Here we synthesized gold nanoparticles (AuNPs) for targeting the tight junction specifically and demonstrated that transcranial picosecond laser stimulation of these AuNPs post intravenous injection increases the BBB permeability. The BBB permeability change can be graded by laser intensity, is entirely reversible, and involves increased paracellular diffusion. BBB modulation does not lead to significant disruption in the spontaneous vasomotion or the structure of the neurovascular unit. This strategy allows the entry of immunoglobulins and viral gene therapy vectors, as well as cargo-laden liposomes. We anticipate this nanotechnology to be useful for tissue regions that are accessible to light or fiberoptic application and to open new avenues for drug screening and therapeutic interventions in the central nervous system.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United State
| | - Vamsidhara Vemireddy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United State
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United State
| | - Qi Cai
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United State
| | - Hejian Xiong
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United State
| | - Peiyuan Kang
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United State
| | - Xiuying Li
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United State
| | - Monica Giannotta
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - Heather N. Hayenga
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United State
| | - Edward Pan
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United State
| | - Shashank R. Sirsi
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United State
| | - Celine Mateo
- Department of Physics, University of California San Diego, La Jolla, California 92093, United State
| | - David Kleinfeld
- Department of Physics, University of California San Diego, La Jolla, California 92093, United State
| | - Chris Greene
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
| | - Elisabetta Dejana
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - Robert Bachoo
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United State
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United State
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United State
| | - Zhenpeng Qin
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United State
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United State
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United State
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas 75080, United State
| |
Collapse
|
265
|
Wang H, Shi L, Wang Z. A Novel Hydroxamic Acid-Based Curcumin Derivative as Potent Histone Deacetylase Inhibitor for the Treatment of Glioblastoma. Front Oncol 2021; 11:756817. [PMID: 34804949 PMCID: PMC8602566 DOI: 10.3389/fonc.2021.756817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is one of the most common primary and deadliest malignant brain tumor with chemoresistance and poor prognosis. There is a lack of effective chemotherapeutic drug for the treatment of GBM. In this work, we reported the preparation of a histone deacetylase (HDAC) inhibitor, DMC-HA, from the structural modification of natural product curcumin. DMC-HAs were tested in an HDAC inhibition assay and an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for cytotoxicity. It showed potent inhibition of HDAC1–2 and HDAC6 with IC50 values in the submicromolar concentration range. DMC-HA significantly inhibited the proliferation of human glioblastoma U87 cells and mediated apoptosis of U87 cells in a dose- and time-dependent manner. In addition, DMC-HA elevated the acetylation level of histone H3 in U87 cells. Pharmacokinetic studies showed that DMC-HA possessed acceptable pharmacokinetic profiles, accompanied with certain brain permeability. Lastly, we showed that DMC-HA suppressed the growth of tumor in U87 tumor xenograft model in vivo with no obvious toxicity. These results demonstrate that DMC-HA has the potential to be developed as a chemotherapeutic drug for GBM patients.
Collapse
Affiliation(s)
- Hao Wang
- The Department of Neurosurgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lei Shi
- Department of Neurosurgery, Affiliated First People's Hospital of Kunshan, Gusu College of Nanjing Medical University, Suzhou, China
| | - Zhimin Wang
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
266
|
Singh K, Hotchkiss KM, Mohan AA, Reedy JL, Sampson JH, Khasraw M. For whom the T cells troll? Bispecific T-cell engagers in glioblastoma. J Immunother Cancer 2021; 9:e003679. [PMID: 34795007 PMCID: PMC8603282 DOI: 10.1136/jitc-2021-003679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/11/2023] Open
Abstract
Glioblastoma is the the most common primary brain tumor in adults. Onset of disease is followed by a uniformly lethal prognosis and dismal overall survival. While immunotherapies have revolutionized treatment in other difficult-to-treat cancers, these have failed to demonstrate significant clinical benefit in patients with glioblastoma. Obstacles to success include the heterogeneous tumor microenvironment (TME), the immune-privileged intracranial space, the blood-brain barrier (BBB) and local and systemic immunosuppressions. Monoclonal antibody-based therapies have failed at least in part due to their inability to access the intracranial compartment. Bispecific T-cell engagers are promising antibody fragment-based therapies which can bring T cells close to their target and capture them with a high binding affinity. They can redirect the entire repertoire of T cells against tumor, independent of T-cell receptor specificity. However, the multiple challenges posed by the TME, immune privilege and the BBB suggest that a single agent approach may be insufficient to yield durable, long-lasting antitumor efficacy. In this review, we discuss the mechanism of action of T-cell engagers, their preclinical and clinical developments to date. We also draw comparisons with other classes of multispecific antibodies and potential combinations using these antibody fragment therapies.
Collapse
Affiliation(s)
- Kirit Singh
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Biomedical Engineering, Duke Universtiy, Durham, NC, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, 27703
| | - Kelly M Hotchkiss
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, 27703
| | - Aditya A Mohan
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Jessica L Reedy
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, 27703
| | - John H Sampson
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Biomedical Engineering, Duke Universtiy, Durham, NC, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, 27703
| | - Mustafa Khasraw
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, 27703
- Duke Cancer Institute, Durham, North Carolina, USA
| |
Collapse
|
267
|
Yuan P, Gu X, Ni X, Qi Y, Shao X, Xu X, Liu J, Qian X. Non-alkylator anti-glioblastoma agents induced cell cycle G2/M arrest and apoptosis: Design, in silico physicochemical and SAR studies of 2-aminoquinoline-3-carboxamides. Bioorg Med Chem Lett 2021; 51:128371. [PMID: 34534673 DOI: 10.1016/j.bmcl.2021.128371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
Malignant gliomas are the most common brain tumors, with generally dismal prognosis, early clinical deterioration and high mortality. Recently, 2-aminoquinoline scaffold derivatives have shown pronounced activity in central nervous system disorders. We herein reported a series of 2-aminoquinoline-3-carboxamides as novel non-alkylator anti-glioblastoma agents. The synthesized compounds showed comparable activity to cisplatin against glioblastoma cell line U87 MG in vitro. Among them, we found that 6a displayed good inhibitory activity against A172 and U118 MG glioblastoma cell lines and induced cell cycle arrest in the G2/M phase and apoptosis in U87 MG by flow cytometry analysis. Additionally, 6a displayed low cytotoxicity to several normal human cell lines. In silico study showed 6a had promising physicochemical properties and was predicted to cross the blood-brain barrier. Moreover, preliminary structure-activity relationships are also investigated, shedding light on further modifications towards more potent agents on this series of compounds. Our results suggest this compound has a promising potential as an anti-glioblastoma agent with a differential effect between tumor and non-malignant cells.
Collapse
Affiliation(s)
- Pengtao Yuan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiangyu Gu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Xintong Ni
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yingxue Qi
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianwen Liu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China.
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
268
|
Thomas P, Galopin N, Bonérandi E, Clémenceau B, Fougeray S, Birklé S. CAR T Cell Therapy's Potential for Pediatric Brain Tumors. Cancers (Basel) 2021; 13:cancers13215445. [PMID: 34771608 PMCID: PMC8582542 DOI: 10.3390/cancers13215445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary T cells that are genetically engineered to express chimeric antigen receptors constitute an effective new therapy with curative potential for patients with hematological tumors. The value of chimeric antigen receptor T cells in childhood brain tumors, the leading cause of cancer death in children, is less clear. In this context, the main obstacles for these engineered T cells remain how to find them, allow them to infiltrate, and induce them to remain active in the tumor site. Here, we discuss recent progress in the field and examine future directions for realizing the potential of this therapy. Abstract Malignant central nervous system tumors are the leading cause of cancer death in children. Progress in high-throughput molecular techniques has increased the molecular understanding of these tumors, but the outcomes are still poor. Even when efficacious, surgery, radiation, and chemotherapy cause neurologic and neurocognitive morbidity. Adoptive cell therapy with autologous CD19 chimeric antigen receptor T cells (CAR T) has demonstrated remarkable remission rates in patients with relapsed refractory B cell malignancies. Unfortunately, tumor heterogeneity, the identification of appropriate target antigens, and location in a growing brain behind the blood–brain barrier within a specific suppressive immune microenvironment restrict the efficacy of this strategy in pediatric neuro-oncology. In addition, the vulnerability of the brain to unrepairable tissue damage raises important safety concerns. Recent preclinical findings, however, have provided a strong rationale for clinical trials of this approach in patients. Here, we examine the most important challenges associated with the development of CAR T cell immunotherapy and further present the latest preclinical strategies intending to optimize genetically engineered T cells’ efficiency and safety in the field of pediatric neuro-oncology.
Collapse
Affiliation(s)
- Pauline Thomas
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France; (P.T.); (N.G.); (E.B.); (S.F.)
| | - Natacha Galopin
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France; (P.T.); (N.G.); (E.B.); (S.F.)
| | - Emma Bonérandi
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France; (P.T.); (N.G.); (E.B.); (S.F.)
| | - Béatrice Clémenceau
- Université de Nantes, CHU Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France;
| | - Sophie Fougeray
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France; (P.T.); (N.G.); (E.B.); (S.F.)
| | - Stéphane Birklé
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France; (P.T.); (N.G.); (E.B.); (S.F.)
- Correspondence: ; Tel.: +33-228-08-03-00
| |
Collapse
|
269
|
Singh K, Hotchkiss KM, Patel KK, Wilkinson DS, Mohan AA, Cook SL, Sampson JH. Enhancing T Cell Chemotaxis and Infiltration in Glioblastoma. Cancers (Basel) 2021; 13:5367. [PMID: 34771532 PMCID: PMC8582389 DOI: 10.3390/cancers13215367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is an immunologically 'cold' tumor, which are characterized by absent or minimal numbers of tumor-infiltrating lymphocytes (TILs). For those tumors that have been invaded by lymphocytes, they are profoundly exhausted and ineffective. While many immunotherapy approaches seek to reinvigorate immune cells at the tumor, this requires TILs to be present. Therefore, to unleash the full potential of immunotherapy in glioblastoma, the trafficking of lymphocytes to the tumor is highly desirable. However, the process of T cell recruitment into the central nervous system (CNS) is tightly regulated. Naïve T cells may undergo an initial licensing process to enter the migratory phenotype necessary to enter the CNS. T cells then must express appropriate integrins and selectin ligands to interact with transmembrane proteins at the blood-brain barrier (BBB). Finally, they must interact with antigen-presenting cells and undergo further licensing to enter the parenchyma. These T cells must then navigate the tumor microenvironment, which is rich in immunosuppressive factors. Altered tumoral metabolism also interferes with T cell motility. In this review, we will describe these processes and their mediators, along with potential therapeutic approaches to enhance trafficking. We also discuss safety considerations for such approaches as well as potential counteragents.
Collapse
Affiliation(s)
- Kirit Singh
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA; (K.M.H.); (K.K.P.); (D.S.W.); (A.A.M.); (S.L.C.)
| | | | | | | | | | | | - John H. Sampson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA; (K.M.H.); (K.K.P.); (D.S.W.); (A.A.M.); (S.L.C.)
| |
Collapse
|
270
|
Current state of therapeutic focused ultrasound applications in neuro-oncology. J Neurooncol 2021; 156:49-59. [PMID: 34661791 DOI: 10.1007/s11060-021-03861-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/29/2021] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Despite manifold advances in oncology, cancers of the central nervous system remain among the most lethal. Unique features of the brain, including distinct cellular composition, immunological privilege, and physical barriers to therapeutic delivery, likely contribute to the poor prognosis of patients with neuro-oncological disease. Focused ultrasound is an emerging technology that allows transcranial delivery of ultrasound energy to focal brain targets with great precision. METHODS A review of the clinical and preclinical focused ultrasound literature was performed to obtain data regarding the current state of the focused ultrasound in context of neuro-oncology. A narrative review was then constructed to provide an overview of current and future applications of this technology. RESULTS Focused ultrasound can facilitate direct control of tumors by thermal or mechanical ablation, as well as enhance delivery of diverse therapeutics by disruption of the blood-brain barrier without local tissue damage. Indeed, ultrasound-sensitive drug formulations or sonosensitizers may be combined with ultrasound blood-brain barrier disruption to achieve high local drug concentration while limiting systemic exposure to therapeutics. Furthermore, focused ultrasound can induce radiosensitization, immunomodulation, and neuromodulation. Here we review applications of focused ultrasound with a focus on approaches currently under clinical investigation for the treatment of neuro-oncological disease, such as blood-brain barrier disruption for drug delivery and thermal ablation. We also discuss design of clinical trials, selection of patient cohorts, and emerging approaches to improve the efficacy of transcranial ultrasound, such as histotripsy, as well as combinatorial strategies to exploit synergistic biological effects of existing cancer therapies and ultrasound. CONCLUSIONS Focused ultrasound is a promising and actively expanding therapeutic modality for diverse neuro-oncological diseases.
Collapse
|
271
|
Cytotoxicity Effect of Quinoin, Type 1 Ribosome-Inactivating Protein from Quinoa Seeds, on Glioblastoma Cells. Toxins (Basel) 2021; 13:toxins13100684. [PMID: 34678977 PMCID: PMC8537469 DOI: 10.3390/toxins13100684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are found in several edible plants and are well characterized. Many studies highlight their use in cancer therapy, alone or as immunoconjugates, linked to monoclonal antibodies directed against target cancer cells. In this context, we investigate the cytotoxicity of quinoin, a novel type 1 RIP from quinoa seeds, on human continuous and primary glioblastoma cell lines. The cytotoxic effect of quinoin was assayed on human continuous glioblastoma U87Mg cells. Moreover, considering that common conventional glioblastoma multiforme (GBM) cell lines are genetically different from the tumors from which they derive, the cytotoxicity of quinoin was subsequently tested towards primary cells NULU and ZAR (two cell lines established from patients’ gliomas), also in combination with the chemotherapeutic agent temozolomide (TMZ), currently used in glioblastoma treatment. The present study demonstrated that quinoin (2.5 and 5.0 nM) strongly reduced glioblastoma cells’ growth. The mechanisms responsible for the inhibitory action of quinoin are different in the tested primary cell lines, reproducing the heterogeneous response of glioblastoma cells. Interestingly, primary cells treated with quinoin in combination with TMZ were more sensitive to the treatment. Overall, our data highlight that quinoin could represent a novel tool for glioblastoma therapy and a possible adjuvant for the treatment of the disease in combination with TMZ, alone or as possible immunoconjugates/nanoconstructs.
Collapse
|
272
|
Gan HK, Parakh S, Lassman AB, Seow A, Lau E, Lee ST, Ameratunga M, Perchyonok Y, Cao D, Burvenich IJG, O'Keefe GJ, Rigopoulos A, Gomez E, Maag D, Scott AM. Tumor volumes as a predictor of response to the anti-EGFR antibody drug conjugate depatuxizumab mafadotin. Neurooncol Adv 2021; 3:vdab102. [PMID: 34549181 PMCID: PMC8446913 DOI: 10.1093/noajnl/vdab102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background The adverse impact of increasing brain tumor size on the efficacy of antibody-drug conjugates (ADCs) was investigated preclinically then validated with clinical data. Methods—Preclinical study The impact of tumor size on ADC tumor delivery and treatment response was evaluated in an EGFR-amplified patient-derived glioblastoma (GBM) model following treatment with Depatuxizumab mafadotin (Depatux-M). Biodistribution and imaging studies correlated drug distribution with starting treatment volume and anti-tumor activity. Methods—Clinical study M12-356 was a Phase I study of Depatux-M in patients with GBM. Blinded volumetric analysis of baseline tumor volumes of M12-356 patients was undertaken by two reviewers and results correlated with response and survival. Results Preclinically, imaging and biodistribution studies showed specific and significantly higher tumor uptake of zirconium-89 labeled Depatux-M (89Zr-Depatux-M) in mice with smaller tumor volume (~98 mm3) versus those with larger volumes (~365 mm3); concordantly, mice with tumor volumes ≤100 mm3 at treatment commencement had significantly better growth inhibition by Depatux-M (93% vs 27%, P < .001) and significantly longer overall survival (P < .0001) compared to tumors ≥400 mm3. Clinically, patients with tumor volumes <25 cm3 had significantly higher response rates (17% vs. 0%, P = .009) and longer overall survival (0.5 vs 0.89 years, P = .001) than tumors above 25 cm3. Conclusion Both preclinical and clinical data showed intra-tumoral concentration and efficacy of Depatux-m inversely correlated with tumor size. This finding merit further investigation with pretreatment tumor volume as a predictor for response to ADCs, in both gliomas and other solid tumors.
Collapse
Affiliation(s)
- Hui K Gan
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, Melbourne, Australia.,La Trobe University School of Cancer Medicine, Heidelberg, Melbourne, Australia.,Department of Medical Oncology, Austin Health, Heidelberg, Melbourne, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - Sagun Parakh
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, Melbourne, Australia.,La Trobe University School of Cancer Medicine, Heidelberg, Melbourne, Australia.,Department of Medical Oncology, Monash Health, Clayton, Melbourne, Australia
| | - Andrew B Lassman
- Division of Neuro-Oncology, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Aidan Seow
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Melbourne, Australia
| | - Eddie Lau
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Melbourne, Australia.,Department of Radiology, Austin Health, Heidelberg, Melbourne, Australia
| | - Sze Ting Lee
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, Melbourne, Australia.,La Trobe University School of Cancer Medicine, Heidelberg, Melbourne, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Melbourne, Australia
| | - Malaka Ameratunga
- Department of Medical Oncology, Austin Health, Heidelberg, Melbourne, Australia
| | - Yuliya Perchyonok
- Department of Radiology, Austin Health, Heidelberg, Melbourne, Australia
| | - Diana Cao
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, Melbourne, Australia
| | - Ingrid J G Burvenich
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, Melbourne, Australia.,La Trobe University School of Cancer Medicine, Heidelberg, Melbourne, Australia
| | - Graeme J O'Keefe
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Melbourne, Australia
| | - Angela Rigopoulos
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, Melbourne, Australia
| | - Erica Gomez
- Research and Development Department, AbbVie Inc., North Chicago, Illinois, USA
| | - David Maag
- Research and Development Department, AbbVie Inc., North Chicago, Illinois, USA
| | - Andrew M Scott
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, Melbourne, Australia.,La Trobe University School of Cancer Medicine, Heidelberg, Melbourne, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Melbourne, Australia
| |
Collapse
|
273
|
Localized blood-brain barrier opening in infiltrating gliomas with MRI-guided acoustic emissions-controlled focused ultrasound. Proc Natl Acad Sci U S A 2021; 118:2103280118. [PMID: 34504017 DOI: 10.1073/pnas.2103280118] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Pharmacological treatment of gliomas and other brain-infiltrating tumors remains challenging due to limited delivery of most therapeutics across the blood-brain barrier (BBB). Transcranial MRI-guided focused ultrasound (FUS), an emerging technology for noninvasive brain treatments, enables transient opening of the BBB through acoustic activation of circulating microbubbles. Here, we evaluate the safety and utility of transcranial microbubble-enhanced FUS (MB-FUS) for spatially targeted BBB opening in patients with infiltrating gliomas. In this Phase 0 clinical trial (NCT03322813), we conducted comparative and quantitative analyses of FUS exposures (sonications) and their effects on gliomas using MRI, histopathology, microbubble acoustic emissions (harmonic dose [HD]), and fluorescence-guided surgery metrics. Contrast-enhanced MRI and histopathology indicated safe and reproducible BBB opening in all patients. These observations occurred using a power cycling closed feedback loop controller, with the power varying by nearly an order of magnitude on average. This range underscores the need for monitoring and titrating the exposure on a patient-by-patient basis. We found a positive correlation between microbubble acoustic emissions (HD) and MR-evident BBB opening (P = 0.07) and associated interstitial changes (P < 0.01), demonstrating the unique capability to titrate the MB-FUS effects in gliomas. Importantly, we identified a 2.2-fold increase of fluorescein accumulation in MB-FUS-treated compared to untreated nonenhancing tumor tissues (P < 0.01) while accounting for vascular density. Collectively, this study demonstrates the capabilities of MB-FUS for safe, localized, controlled BBB opening and highlights the potential of this technology to improve the surgical and pharmacologic treatment of brain tumors.
Collapse
|
274
|
Pang Y, Yu G, Butler M, Sindiri S, Song YK, Wei JS, Wen X, Chou HC, Quezado M, Pack S, Xi L, Abdullaev Z, Kim O, Ranjan A, Merchant M, Antony R, Boris L, Aboud O, Kamson D, Kaplan R, Mackey M, Camphausen K, Zaghloul K, Armstrong TS, Gilbert MR, Aldape K, Holdhoff M, Khan J, Wu J. Report of Canonical BCR- ABL1 Fusion in Glioblastoma. JCO Precis Oncol 2021; 5:PO.20.00519. [PMID: 34485806 DOI: 10.1200/po.20.00519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Ying Pang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Guangyang Yu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Madison Butler
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Sivasish Sindiri
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Young K Song
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jun S Wei
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Xinyu Wen
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Hisen-Chao Chou
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Martha Quezado
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Svetlana Pack
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Liqiang Xi
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Olga Kim
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Alice Ranjan
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Mythili Merchant
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Ramya Antony
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Lisa Boris
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Orwa Aboud
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - David Kamson
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rosandra Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Megan Mackey
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD
| | - Kareem Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Terri S Armstrong
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Matthias Holdhoff
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jing Wu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
275
|
Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol Res 2021; 171:105780. [PMID: 34302977 PMCID: PMC8384724 DOI: 10.1016/j.phrs.2021.105780] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a WHO grade IV glioma and the most common malignant, primary brain tumor with a 5-year survival of 7.2%. Its highly infiltrative nature, genetic heterogeneity, and protection by the blood brain barrier (BBB) have posed great treatment challenges. The standard treatment for GBMs is surgical resection followed by chemoradiotherapy. The robust DNA repair and self-renewing capabilities of glioblastoma cells and glioma initiating cells (GICs), respectively, promote resistance against all current treatment modalities. Thus, durable GBM management will require the invention of innovative treatment strategies. In this review, we will describe biological and molecular targets for GBM therapy, the current status of pharmacologic therapy, prominent mechanisms of resistance, and new treatment approaches. To date, medical imaging is primarily used to determine the location, size and macroscopic morphology of GBM before, during, and after therapy. In the future, molecular and cellular imaging approaches will more dynamically monitor the expression of molecular targets and/or immune responses in the tumor, thereby enabling more immediate adaptation of tumor-tailored, targeted therapies.
Collapse
Affiliation(s)
- Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jessica L Klockow
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Michael Zhang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Famyrah Lafortune
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| | - Yang Wu
- Department of Neuropathology, Institute of Pathology, Technical University of Munich, Munich, Bayern 81675, Germany
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
276
|
Andersen RS, Anand A, Harwood DSL, Kristensen BW. Tumor-Associated Microglia and Macrophages in the Glioblastoma Microenvironment and Their Implications for Therapy. Cancers (Basel) 2021; 13:cancers13174255. [PMID: 34503065 PMCID: PMC8428223 DOI: 10.3390/cancers13174255] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma is the most frequent and malignant primary brain tumor. Standard of care includes surgery followed by radiation and temozolomide chemotherapy. Despite treatment, patients have a poor prognosis with a median survival of less than 15 months. The poor prognosis is associated with an increased abundance of tumor-associated microglia and macrophages (TAMs), which are known to play a role in creating a pro-tumorigenic environment and aiding tumor progression. Most treatment strategies are directed against glioblastoma cells; however, accumulating evidence suggests targeting of TAMs as a promising therapeutic strategy. While TAMs are typically dichotomously classified as M1 and M2 phenotypes, recent studies utilizing single cell technologies have identified expression pattern differences, which is beginning to give a deeper understanding of the heterogeneous subpopulations of TAMs in glioblastomas. In this review, we evaluate the role of TAMs in the glioblastoma microenvironment and discuss how their interactions with cancer cells have an extensive impact on glioblastoma progression and treatment resistance. Finally, we summarize the effects and challenges of therapeutic strategies, which specifically aim to target TAMs.
Collapse
Affiliation(s)
- Rikke Sick Andersen
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark; (R.S.A.); (A.A.)
| | - Atul Anand
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark; (R.S.A.); (A.A.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Dylan Scott Lykke Harwood
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark; (R.S.A.); (A.A.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
277
|
Wei X, Meel MH, Breur M, Bugiani M, Hulleman E, Phoenix TN. Defining tumor-associated vascular heterogeneity in pediatric high-grade and diffuse midline gliomas. Acta Neuropathol Commun 2021; 9:142. [PMID: 34425907 PMCID: PMC8381557 DOI: 10.1186/s40478-021-01243-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
The blood–brain barrier (BBB) plays important roles in brain tumor pathogenesis and treatment response, yet our understanding of its function and heterogeneity within or across brain tumor types remains poorly characterized. Here we analyze the neurovascular unit (NVU) of pediatric high-grade glioma (pHGG) and diffuse midline glioma (DMG) using patient derived xenografts and natively forming glioma mouse models. We show tumor-associated vascular differences between these glioma subtypes, and parallels between PDX and mouse model systems, with DMG models maintaining a more normal vascular architecture, BBB function and endothelial transcriptional program relative to pHGG models. Unlike prior work in angiogenic brain tumors, we find that expression of secreted Wnt antagonists do not alter the tumor-associated vascular phenotype in DMG tumor models. Together, these findings highlight vascular heterogeneity between pHGG and DMG and differences in their response to alterations in developmental BBB signals that may participate in driving these pathological differences.
Collapse
|
278
|
Xavier MA, Rezende F, Titze-de-Almeida R, Cornelissen B. BRCAness as a Biomarker of Susceptibility to PARP Inhibitors in Glioblastoma Multiforme. Biomolecules 2021; 11:1188. [PMID: 34439854 PMCID: PMC8394995 DOI: 10.3390/biom11081188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer. GBMs commonly acquire resistance to standard-of-care therapies. Among the novel means to sensitize GBM to DNA-damaging therapies, a promising strategy is to combine them with inhibitors of the DNA damage repair (DDR) machinery, such as inhibitors for poly(ADP-ribose) polymerase (PARP). PARP inhibitors (PARPis) have already shown efficacy and have received regulatory approval for breast, ovarian, prostate, and pancreatic cancer treatment. In these cancer types, after PARPi administration, patients carrying specific mutations in the breast cancer 1 (BRCA1) and 2 (BRCA2) suppressor genes have shown better response when compared to wild-type carriers. Mutated BRCA genes are infrequent in GBM tumors, but their cells can carry other genetic alterations that lead to the same phenotype collectively referred to as 'BRCAness'. The most promising biomarkers of BRCAness in GBM are related to isocitrate dehydrogenases 1 and 2 (IDH1/2), epidermal growth factor receptor (EGFR), phosphatase and tensin homolog (PTEN), MYC proto-oncogene, and estrogen receptors beta (ERβ). BRCAness status identified by accurate biomarkers can ultimately predict responsiveness to PARPi therapy, thereby allowing patient selection for personalized treatment. This review discusses potential biomarkers of BRCAness for a 'precision medicine' of GBM patients.
Collapse
Affiliation(s)
- Mary-Ann Xavier
- Central Institute of Sciences, Technology for Gene Therapy Laboratory, University of Brasília—UnB/FAV, Brasília 70910-900, Brazil; (F.R.); (R.T.-d.-A.)
| | - Fernando Rezende
- Central Institute of Sciences, Technology for Gene Therapy Laboratory, University of Brasília—UnB/FAV, Brasília 70910-900, Brazil; (F.R.); (R.T.-d.-A.)
| | - Ricardo Titze-de-Almeida
- Central Institute of Sciences, Technology for Gene Therapy Laboratory, University of Brasília—UnB/FAV, Brasília 70910-900, Brazil; (F.R.); (R.T.-d.-A.)
| | - Bart Cornelissen
- Department of Oncology, Radiobiology Research Institute, University of Oxford, Oxford OX3 7LJ, UK;
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
279
|
Biomimetic and cell-based nanocarriers - New strategies for brain tumor targeting. J Control Release 2021; 337:482-493. [PMID: 34352316 DOI: 10.1016/j.jconrel.2021.07.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/16/2022]
Abstract
In the last two decades no significant advances were achieved in the treatment of the most frequent and malignant types of brain tumors. The main difficulties in achieving progress are related to the incapacity to deliver drugs in therapeutic amounts into the central nervous system and the associated severe side effects. Indeed, to obtain effective treatments, the drugs should be able to cross the intended biological barriers and not being inactivated before reaching the specific therapeutic target. To overcome these challenges the development of synthetic nanocarriers has been widely explored for brain tumor treatment but unfortunately with no clinical translation until date. The use of cell-derived nanocarriers or biomimetic nanocarriers has been studied in the last few years, considering their innate bio-interfacing properties. The ability to carry therapeutic agents and a higher selectivity towards brain tumors would bring new hope for the development of safe and effective treatments. In this review, we explore the biological barriers that need to be crossed for effective delivery in brain tumors, and the types and properties of cell-based nanocarriers (extracellular vesicles and cell-membrane coated nanocarriers) currently under investigation.
Collapse
|
280
|
Li J, Zheng M, Shimoni O, Banks WA, Bush AI, Gamble JR, Shi B. Development of Novel Therapeutics Targeting the Blood-Brain Barrier: From Barrier to Carrier. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101090. [PMID: 34085418 PMCID: PMC8373165 DOI: 10.1002/advs.202101090] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Indexed: 05/05/2023]
Abstract
The blood-brain barrier (BBB) is a highly specialized neurovascular unit, initially described as an intact barrier to prevent toxins, pathogens, and potentially harmful substances from entering the brain. An intact BBB is also critical for the maintenance of normal neuronal function. In cerebral vascular diseases and neurological disorders, the BBB can be disrupted, contributing to disease progression. While restoration of BBB integrity serves as a robust biomarker of better clinical outcomes, the restrictive nature of the intact BBB presents a major hurdle for delivery of therapeutics into the brain. Recent studies show that the BBB is actively engaged in crosstalk between neuronal and the circulatory systems, which defines another important role of the BBB: as an interfacing conduit that mediates communication between two sides of the BBB. This role has been subject to extensive investigation for brain-targeted drug delivery and shows promising results. The dual roles of the BBB make it a unique target for drug development. Here, recent developments and novel strategies to target the BBB for therapeutic purposes are reviewed, from both barrier and carrier perspectives.
Collapse
Affiliation(s)
- Jia Li
- School of PharmacyHenan UniversityKaifeng475001China
- Centre for Motor Neuron DiseaseDepartment of Biomedical SciencesFaculty of Medicine & Health SciencesMacquarie UniversitySydneyNew South Wales2109Australia
| | - Meng Zheng
- Henan‐Macquarie University Joint Center for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifengHenan475004China
| | - Olga Shimoni
- Institute for Biomedical Materials and DevicesSchool of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneySydneyNew South Wales2007Australia
| | - William A. Banks
- Geriatric Research Education and Clinical CenterVeterans Affairs Puget Sound Health Care System and Division of Gerontology and Geriatric MedicineDepartment of MedicineUniversity of Washington School of MedicineSeattleWA98108USA
| | - Ashley I. Bush
- Melbourne Dementia Research CenterThe Florey Institute for Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoria3052Australia
| | - Jennifer R. Gamble
- Center for the EndotheliumVascular Biology ProgramCentenary InstituteThe University of SydneySydneyNew South Wales2042Australia
| | - Bingyang Shi
- School of PharmacyHenan UniversityKaifeng475001China
- Centre for Motor Neuron DiseaseDepartment of Biomedical SciencesFaculty of Medicine & Health SciencesMacquarie UniversitySydneyNew South Wales2109Australia
- Henan‐Macquarie University Joint Center for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifengHenan475004China
| |
Collapse
|
281
|
Rattray Z, Deng G, Zhang S, Shirali A, May CK, Chen X, Cuffari BJ, Liu J, Zou P, Rattray NJ, Johnson CH, Dubljevic V, Campbell JA, Huttner A, Baehring JM, Zhou J, Hansen JE. ENT2 facilitates brain endothelial cell penetration and blood-brain barrier transport by a tumor-targeting anti-DNA autoantibody. JCI Insight 2021; 6:e145875. [PMID: 34128837 PMCID: PMC8410084 DOI: 10.1172/jci.insight.145875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/10/2021] [Indexed: 11/18/2022] Open
Abstract
The blood-brain barrier (BBB) prevents antibodies from penetrating the CNS and limits conventional antibody-based approaches to brain tumors. We now show that ENT2, a transporter that regulates nucleoside flux at the BBB, may offer an unexpected path to circumventing this barrier to allow targeting of brain tumors with an anti-DNA autoantibody. Deoxymab-1 (DX1) is a DNA-damaging autoantibody that localizes to tumors and is synthetically lethal to cancer cells with defects in the DNA damage response. We found that DX1 penetrated brain endothelial cells and crossed the BBB, and mechanistic studies identify ENT2 as the key transporter. In efficacy studies, DX1 crosses the BBB to suppress orthotopic glioblastoma and breast cancer brain metastases. ENT2-linked transport of autoantibodies across the BBB has potential to be exploited in brain tumor immunotherapy, and its discovery raises hypotheses on actionable mechanisms of CNS penetration by neurotoxic autoantibodies in CNS lupus.
Collapse
Affiliation(s)
| | - Gang Deng
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shenqi Zhang
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | - Jun Liu
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Pan Zou
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Caroline H Johnson
- Yale School of Public Health, New Haven, Connecticut, USA.,Yale Cancer Center, New Haven, Connecticut, USA
| | | | | | - Anita Huttner
- Yale Cancer Center, New Haven, Connecticut, USA.,Department of Pathology and
| | - Joachim M Baehring
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA.,Yale Cancer Center, New Haven, Connecticut, USA.,Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA.,Yale Cancer Center, New Haven, Connecticut, USA
| | - James E Hansen
- Department of Therapeutic Radiology and.,Yale Cancer Center, New Haven, Connecticut, USA
| |
Collapse
|
282
|
Antibody-drug conjugates for H3K27M-mutant diffuse midline gliomas: prospects and challenges. Ther Deliv 2021; 12:553-557. [PMID: 34286602 DOI: 10.4155/tde-2021-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
283
|
Chen KT, Wei KC, Liu HL. Focused Ultrasound Combined with Microbubbles in Central Nervous System Applications. Pharmaceutics 2021; 13:pharmaceutics13071084. [PMID: 34371774 PMCID: PMC8308978 DOI: 10.3390/pharmaceutics13071084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
The blood–brain barrier (BBB) protects the central nervous system (CNS) from invasive pathogens and maintains the homeostasis of the brain. Penetrating the BBB has been a major challenge in the delivery of therapeutic agents for treating CNS diseases. Through a physical acoustic cavitation effect, focused ultrasound (FUS) combined with microbubbles achieves the local detachment of tight junctions of capillary endothelial cells without inducing neuronal damage. The bioavailability of therapeutic agents is increased only in the area targeted by FUS energy. FUS with circulating microbubbles is currently the only method for inducing precise, transient, reversible, and noninvasive BBB opening (BBBO). Over the past decade, FUS-induced BBBO (FUS-BBBO) has been preclinically confirmed to not only enhance the penetration of therapeutic agents in the CNS, but also modulate focal immunity and neuronal activity. Several recent clinical human trials have demonstrated both the feasibility and potential advantages of using FUS-BBBO in diseased patients. The promising results support adding FUS-BBBO as a multimodal therapeutic strategy in modern CNS disease management. This review article explores this technology by describing its physical mechanisms and the preclinical findings, including biological effects, therapeutic concepts, and translational design of human medical devices, and summarizes completed and ongoing clinical trials.
Collapse
Affiliation(s)
- Ko-Ting Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan;
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Guishan, Taoyuan 333, Taiwan
- Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan;
- Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, TuCheng, New Taipei 236, Taiwan
- School of Medicine, Chang Gung University, Guishan, Taoyuan 333, Taiwan
- Correspondence: (K.-C.W.); (H.-L.L.)
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Da’an, Taipei 106, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Da’an, Taipei 106, Taiwan
- Correspondence: (K.-C.W.); (H.-L.L.)
| |
Collapse
|
284
|
MRI and PET of Brain Tumor Neuroinflammation in the Era of Immunotherapy, From the AJR Special Series on Inflammation. AJR Am J Roentgenol 2021; 218:582-596. [PMID: 34259035 DOI: 10.2214/ajr.21.26159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
With the emergence of immune-modulating therapies, brain tumors present significant diagnostic imaging challenges. These challenges include planning personalized treatment and adjudicating accurate monitoring approaches and therapeutically specific response criteria. This has been due, in part, to the reliance on nonspecific imaging metrics, such as gadolinium-contrast-enhanced MRI or FDG PET, and rapidly evolving biologic understanding of neuroinflammation. The importance of the tumor-immune interaction and ability to therapeutically augment inflammation to improve clinical outcomes necessitates that the radiologist develop a working knowledge of the immune system and its role in clinical neuroimaging. In this article, we review relevant biologic concepts of the tumor microenvironment of primary and metastatic brain tumors, these tumors' interactions with the immune system, and MRI and PET methods for imaging inflammatory elements associated with these malignancies. Recognizing the growing fields of immunotherapeutics and precision oncology, we highlight clinically translatable imaging metrics for the diagnosis and monitoring of brain tumor neuroinflammation. Practical guidance is provided for implementing iron nanoparticle imaging, including imaging indications, protocol, interpretation, and pitfalls. A comprehensive understanding of the inflammatory mechanisms within brain tumors and their imaging features will facilitate the development of innovative non-invasive prognostic and predictive imaging strategies for precision oncology.
Collapse
|
285
|
Chokshi CR, Brakel BA, Tatari N, Savage N, Salim SK, Venugopal C, Singh SK. Advances in Immunotherapy for Adult Glioblastoma. Cancers (Basel) 2021; 13:cancers13143400. [PMID: 34298615 PMCID: PMC8305609 DOI: 10.3390/cancers13143400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Therapy failure and disease recurrence are hallmarks of glioblastoma (GBM), the most common and lethal tumor in adults that originates in the brain. Despite aggressive standards of care, tumor recurrence is inevitable with no standardized second-line therapy. Recent clinical studies evaluating therapies that augment the anti-tumor immune response (i.e., immunotherapies) have yielded promising results in subsets of GBM patients. Here, we summarize clinical studies in the past decade that evaluate vaccines, immune checkpoint inhibitors and chimeric antigen receptor (CAR) T cells for treatment of GBM. Although immunotherapies have yet to return widespread efficacy for the majority of GBM patients, critical insights from completed and ongoing clinical trials are informing development of the next generation of therapies, with the goal to alleviate disease burden and extend patient survival. Abstract Despite aggressive multimodal therapy, glioblastoma (GBM) remains the most common malignant primary brain tumor in adults. With the advent of therapies that revitalize the anti-tumor immune response, several immunotherapeutic modalities have been developed for treatment of GBM. In this review, we summarize recent clinical and preclinical efforts to evaluate vaccination strategies, immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells. Although these modalities have shown long-term tumor regression in subsets of treated patients, the underlying biology that may predict efficacy and inform therapy development is being actively investigated. Common to all therapeutic modalities are fundamental mechanisms of therapy evasion by tumor cells, including immense intratumoral heterogeneity, suppression of the tumor immune microenvironment and low mutational burden. These insights have led efforts to design rational combinatorial therapies that can reignite the anti-tumor immune response, effectively and specifically target tumor cells and reliably decrease tumor burden for GBM patients.
Collapse
Affiliation(s)
- Chirayu R. Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
| | - Benjamin A. Brakel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
| | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
| | - Sabra K. Salim
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
| | - Chitra Venugopal
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada;
| | - Sheila K. Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.R.C.); (B.A.B.); (N.T.); (N.S.); (S.K.S.)
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada;
- Correspondence:
| |
Collapse
|
286
|
Li QY, Lee JH, Kim HW, Jin GZ. Research Models of the Nanoparticle-Mediated Drug Delivery across the Blood-Brain Barrier. Tissue Eng Regen Med 2021; 18:917-930. [PMID: 34181202 DOI: 10.1007/s13770-021-00356-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 12/17/2022] Open
Abstract
Brain diseases and damages come in many forms such as neurodegenerative diseases, tumors, and stroke. Millions of people currently suffer from neurological diseases worldwide. While Challenges of current diagnosis and treatment for neurological diseases are the drug delivery to the central nervous system. The Blood-Brain Barrier (BBB) limits the drug from reaching the targeted site thus showing poor effects. Nanoparticles that have advantage of the assembly at the nanoscale of available biomaterials can provide a delivery platform with potential to raising brain levels of either imaging therapeutic drugs or imaging. Therefore, successful modeling of the BBB is another crucial factor for the development of nanodrugs. In this review, we analyze the in vitro and in vivo findings achieved in various models, and outlook future development of nanodrugs for the successful treatment of brain diseases and damages.
Collapse
Affiliation(s)
- Quan-You Li
- Department of Orthopedics, Yanbian University Hospital , Yanji , China
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Grays Inn Road, London, WC1X 8LD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea. .,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea. .,Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea. .,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Grays Inn Road, London, WC1X 8LD, UK.
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea. .,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea. .,Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
287
|
Mockenhaupt K, Gonsiewski A, Kordula T. RelB and Neuroinflammation. Cells 2021; 10:1609. [PMID: 34198987 PMCID: PMC8307460 DOI: 10.3390/cells10071609] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation within the central nervous system involves multiple cell types that coordinate their responses by secreting and responding to a plethora of inflammatory mediators. These factors activate multiple signaling cascades to orchestrate initial inflammatory response and subsequent resolution. Activation of NF-κB pathways in several cell types is critical during neuroinflammation. In contrast to the well-studied role of p65 NF-κB during neuroinflammation, the mechanisms of RelB activation in specific cell types and its roles during neuroinflammatory response are less understood. In this review, we summarize the mechanisms of RelB activation in specific cell types of the CNS and the specialized effects this transcription factor exerts during neuroinflammation.
Collapse
Affiliation(s)
| | | | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VI 23298, USA; (K.M.); (A.G.)
| |
Collapse
|
288
|
Park JH, de Lomana ALG, Marzese DM, Juarez T, Feroze A, Hothi P, Cobbs C, Patel AP, Kesari S, Huang S, Baliga NS. A Systems Approach to Brain Tumor Treatment. Cancers (Basel) 2021; 13:3152. [PMID: 34202449 PMCID: PMC8269017 DOI: 10.3390/cancers13133152] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Brain tumors are among the most lethal tumors. Glioblastoma, the most frequent primary brain tumor in adults, has a median survival time of approximately 15 months after diagnosis or a five-year survival rate of 10%; the recurrence rate is nearly 90%. Unfortunately, this prognosis has not improved for several decades. The lack of progress in the treatment of brain tumors has been attributed to their high rate of primary therapy resistance. Challenges such as pronounced inter-patient variability, intratumoral heterogeneity, and drug delivery across the blood-brain barrier hinder progress. A comprehensive, multiscale understanding of the disease, from the molecular to the whole tumor level, is needed to address the intratumor heterogeneity resulting from the coexistence of a diversity of neoplastic and non-neoplastic cell types in the tumor tissue. By contrast, inter-patient variability must be addressed by subtyping brain tumors to stratify patients and identify the best-matched drug(s) and therapies for a particular patient or cohort of patients. Accomplishing these diverse tasks will require a new framework, one involving a systems perspective in assessing the immense complexity of brain tumors. This would in turn entail a shift in how clinical medicine interfaces with the rapidly advancing high-throughput (HTP) technologies that have enabled the omics-scale profiling of molecular features of brain tumors from the single-cell to the tissue level. However, several gaps must be closed before such a framework can fulfill the promise of precision and personalized medicine for brain tumors. Ultimately, the goal is to integrate seamlessly multiscale systems analyses of patient tumors and clinical medicine. Accomplishing this goal would facilitate the rational design of therapeutic strategies matched to the characteristics of patients and their tumors. Here, we discuss some of the technologies, methodologies, and computational tools that will facilitate the realization of this vision to practice.
Collapse
Affiliation(s)
- James H. Park
- Institute for Systems Biology, Seattle, WA 98109, USA; (J.H.P.); (S.H.)
| | | | - Diego M. Marzese
- Balearic Islands Health Research Institute (IdISBa), 07010 Palma, Spain;
| | - Tiffany Juarez
- St. John’s Cancer Institute, Santa Monica, CA 90401, USA; (T.J.); (S.K.)
| | - Abdullah Feroze
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA; (A.F.); (A.P.P.)
| | - Parvinder Hothi
- Swedish Neuroscience Institute, Seattle, WA 98122, USA; (P.H.); (C.C.)
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Seattle, WA 98122, USA
| | - Charles Cobbs
- Swedish Neuroscience Institute, Seattle, WA 98122, USA; (P.H.); (C.C.)
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Seattle, WA 98122, USA
| | - Anoop P. Patel
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA; (A.F.); (A.P.P.)
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Brotman-Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
| | - Santosh Kesari
- St. John’s Cancer Institute, Santa Monica, CA 90401, USA; (T.J.); (S.K.)
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA 98109, USA; (J.H.P.); (S.H.)
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, WA 98109, USA; (J.H.P.); (S.H.)
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
289
|
Burns TC, Quinones-Hinojosa A. Regenerative medicine for neurological diseases-will regenerative neurosurgery deliver? BMJ 2021; 373:n955. [PMID: 34162530 DOI: 10.1136/bmj.n955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regenerative medicine aspires to transform the future practice of medicine by providing curative, rather than palliative, treatments. Healing the central nervous system (CNS) remains among regenerative medicine's most highly prized but formidable challenges. "Regenerative neurosurgery" provides access to the CNS or its surrounding structures to preserve or restore neurological function. Pioneering efforts over the past three decades have introduced cells, neurotrophins, and genes with putative regenerative capacity into the CNS to combat neurodegenerative, ischemic, and traumatic diseases. In this review we critically evaluate the rationale, paradigms, and translational progress of regenerative neurosurgery, harnessing access to the CNS to protect, rejuvenate, or replace cell types otherwise irreversibly compromised by neurological disease. We discuss the evidence surrounding fetal, somatic, and pluripotent stem cell derived implants to replace endogenous neuronal and glial cell types and provide trophic support. Neurotrophin based strategies via infusions and gene therapy highlight the motivation to preserve neuronal circuits, the complex fidelity of which cannot be readily recreated. We specifically highlight ongoing translational efforts in Parkinson's disease, amyotrophic lateral sclerosis, stroke, and spinal cord injury, using these to illustrate the principles, challenges, and opportunities of regenerative neurosurgery. Risks of associated procedures and novel neurosurgical trials are discussed, together with the ethical challenges they pose. After decades of efforts to develop and refine necessary tools and methodologies, regenerative neurosurgery is well positioned to advance treatments for refractory neurological diseases. Strategic multidisciplinary efforts will be critical to harness complementary technologies and maximize mechanistic feedback, accelerating iterative progress toward cures for neurological diseases.
Collapse
Affiliation(s)
- Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
290
|
Bunevicius A, McDannold NJ, Golby AJ. Focused Ultrasound Strategies for Brain Tumor Therapy. Oper Neurosurg (Hagerstown) 2021; 19:9-18. [PMID: 31853548 DOI: 10.1093/ons/opz374] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND A key challenge in the medical treatment of brain tumors is the limited penetration of most chemotherapeutic agents across the blood-brain barrier (BBB) into the tumor and the infiltrative margin around the tumor. Magnetic resonance-guided focused ultrasound (MRgFUS) is a promising tool to enhance the delivery of chemotherapeutic agents into brain tumors. OBJECTIVE To review the mechanism of FUS, preclinical evidence, and clinical studies that used low-frequency FUS for a BBB opening in gliomas. METHODS Literature review. RESULTS The potential of externally delivered low-intensity ultrasound for a temporally and spatially precise and predictable disruption of the BBB has been investigated for over a decade, yielding extensive preclinical literature demonstrating that FUS can disrupt the BBB in a spatially targeted and temporally reversible manner. Studies in animal models documented that FUS enhanced the delivery of numerous chemotherapeutic and investigational agents across the BBB and into brain tumors, including temozolomide, bevacizumab, 1,3-bis (2-chloroethyl)-1-nitrosourea, doxorubicin, viral vectors, and cells. Chemotherapeutic interventions combined with FUS slowed tumor progression and improved animal survival. Recent advances of MRgFUS systems allow precise, temporally and spatially controllable, and safe transcranial delivery of ultrasound energy. Initial clinical evidence in glioma patients has shown the efficacy of MRgFUS in disrupting the BBB, as demonstrated by an enhanced gadolinium penetration. CONCLUSION Thus far, a temporary disruption of the BBB followed by the administration of chemotherapy has been both feasible and safe. Further studies are needed to determine the actual drug delivery, including the drug distribution at a tissue-level scale, as well as effects on tumor growth and patient prognosis.
Collapse
Affiliation(s)
- Adomas Bunevicius
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Nathan Judson McDannold
- Harvard Medical School, Harvard University, Boston, Massachusetts.,Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Harvard University, Boston, Massachusetts.,Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
291
|
Chan MH, Chen W, Li CH, Fang CY, Chang YC, Wei DH, Liu RS, Hsiao M. An Advanced In Situ Magnetic Resonance Imaging and Ultrasonic Theranostics Nanocomposite Platform: Crossing the Blood-Brain Barrier and Improving the Suppression of Glioblastoma Using Iron-Platinum Nanoparticles in Nanobubbles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26759-26769. [PMID: 34076419 DOI: 10.1021/acsami.1c04990] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Glioblastoma (GBM) is one of the deadliest and most invasive brain cancers/gliomas, and there is currently no established way to treat this disease. The treatment of GBM typically involves intracranial surgery followed by chemotherapy. However, the blood-brain barrier (BBB) impedes the delivery of the chemotherapeutic drug, making the treatment challenging. In this study, we embedded a chemotherapeutic drug and other nanomaterials into a nanobubble (NB), utilized active tracking and other guidance mechanisms to guide the nanocomposite to the tumor site, and then used high-intensity focused ultrasound oscillation to burst the nanobubbles, generating a transient cavitation impact on the BBB and allowing the drug to bypass it and reach the brain. FePt enhances the resolution of T2-weighted magnetic resonance imaging images and has magnetic properties that help guide the nanocomposite to the tumor location. FePt nanoparticles were loaded into the hydrophobic core of the NBs along with doxorubicin to form a bubble-based drug delivery system (Dox-FePt@NB). The surface of the NBs is modified with a targeting ligand, transferrin (Dox-FePt@NB-Tf), giving the nanocomposite active tracking abilities. The Dox-FePt@NB-Tf developed in the present study represents a potential breakthrough in GBM treatment through improved drug delivery and biological imaging.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - William Chen
- Upper School, Taipei American School, Taipei 11152, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Yeu Fang
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Da-Hua Wei
- Graduate Institute of Manufacturing Technology and Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
292
|
Arsiwala TA, Sprowls SA, Blethen KE, Adkins CE, Saralkar PA, Fladeland RA, Pentz W, Gabriele A, Kielkowski B, Mehta RI, Wang P, Carpenter JS, Ranjan M, Najib U, Rezai AR, Lockman PR. Ultrasound-mediated disruption of the blood tumor barrier for improved therapeutic delivery. Neoplasia 2021; 23:676-691. [PMID: 34139452 PMCID: PMC8208897 DOI: 10.1016/j.neo.2021.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
The blood-brain barrier (BBB) is a major anatomical and physiological barrier limiting the passage of drugs into brain. Central nervous system tumors can impair the BBB by changing the tumor microenvironment leading to the formation of a leaky barrier, known as the blood-tumor barrier (BTB). Despite the change in integrity, the BTB remains effective in preventing delivery of chemotherapy into brain tumors. Focused ultrasound is a unique noninvasive technique that can transiently disrupt the BBB and increase accumulation of drugs within targeted areas of the brain. Herein, we summarize the current understanding of different types of targeted ultrasound mediated BBB/BTB disruption techniques. We also discuss influence of the tumor microenvironment on BBB opening, as well as the role of immunological response following disruption. Lastly, we highlight the gaps between evaluation of the parameters governing opening of the BBB/BTB. A deeper understanding of physical opening of the BBB/BTB and the biological effects following disruption can potentially enhance treatment strategies for patients with brain tumors.
Collapse
Affiliation(s)
- T A Arsiwala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV
| | - S A Sprowls
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV
| | - K E Blethen
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV
| | - C E Adkins
- School of Pharmacy, South University, Savannah, GA
| | - P A Saralkar
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV
| | - R A Fladeland
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV
| | - W Pentz
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV
| | - A Gabriele
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV
| | - B Kielkowski
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV
| | - R I Mehta
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV; Department of Neuroradiology, West Virginia University, Morgantown, WV; Department of Neuroscience, West Virginia University, Morgantown, WV
| | - P Wang
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV; Department of Neuroradiology, West Virginia University, Morgantown, WV
| | - J S Carpenter
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV; Department of Neuroradiology, West Virginia University, Morgantown, WV
| | - M Ranjan
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV; Departments of Neuroscience and Neurosurgery, West Virginia University, Morgantown, WV
| | - U Najib
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV; Department of Neurology, West Virginia University, Morgantown, WV
| | - A R Rezai
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV; Departments of Neuroscience and Neurosurgery, West Virginia University, Morgantown, WV
| | - P R Lockman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV.
| |
Collapse
|
293
|
Sarkar S, Yang R, Mirzaei R, Rawji K, Poon C, Mishra MK, Zemp FJ, Bose P, Kelly J, Dunn JF, Yong VW. Control of brain tumor growth by reactivating myeloid cells with niacin. Sci Transl Med 2021; 12:12/537/eaay9924. [PMID: 32238578 DOI: 10.1126/scitranslmed.aay9924] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Glioblastomas are generally incurable partly because monocytes, macrophages, and microglia in afflicted patients do not function in an antitumor capacity. Medications that reactivate these macrophages/microglia, as well as circulating monocytes that become macrophages, could thus be useful to treat glioblastoma. We have discovered that niacin (vitamin B3) is a potential stimulator of these inefficient myeloid cells. Niacin-exposed monocytes attenuated the growth of brain tumor-initiating cells (BTICs) derived from glioblastoma patients by producing anti-proliferative interferon-α14. Niacin treatment of mice bearing intracranial BTICs increased macrophage/microglia representation within the tumor, reduced tumor size, and prolonged survival. These therapeutic outcomes were negated in mice depleted of circulating monocytes or harboring interferon-α receptor-deleted BTICs. Combination treatment with temozolomide enhanced niacin-promoted survival. Monocytes from glioblastoma patients had increased interferon-α14 upon niacin exposure and were reactivated to reduce BTIC growth in culture. We highlight niacin, a common vitamin that can be quickly translated into clinical application, as an immune stimulator against glioblastomas.
Collapse
Affiliation(s)
- Susobhan Sarkar
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Runze Yang
- Department of Radiology and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Reza Mirzaei
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Khalil Rawji
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Candice Poon
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Manoj K Mishra
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Franz J Zemp
- Department of Oncology and the Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Pinaki Bose
- Department of Oncology and the Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Surgery, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - John Kelly
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Oncology and the Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jeff F Dunn
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Radiology and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada. .,Department of Oncology and the Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
294
|
Wang Y, Zhang F, Xiong N, Xu H, Chai S, Wang H, Wang J, Zhao H, Jiang X, Fu P, Xiang W. Remodelling and Treatment of the Blood-Brain Barrier in Glioma. Cancer Manag Res 2021; 13:4217-4232. [PMID: 34079374 PMCID: PMC8166259 DOI: 10.2147/cmar.s288720] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
The blood-brain barrier (BBB) is an essential structure of the central nervous system (CNS), and its existence makes the local internal environment of the CNS a relatively independent structure distinct from other internal environments of the human body to ensure normal physiological and high stability of activities of the CNS. Changes in BBB structure and function are fundamental to the pathophysiology of many diseases. The occurrence and development of glioma are often accompanied by a series of changes in the structure and function of the internal environment, the most significant of which is remodelling of the BBB. The remodelling of the BBB usually leads to changes in the permeability of local microvessels, which provide certain favourable conditions for the occurrence and development of glioma. Meanwhile, the newly generated abnormal blood vessels and the remaining intact regions of the BBB also hinder the effects of drug treatments. Changes in permeability and structural function often lead to the creation of abnormally functioning vascular regions, which pose further treatment challenges. At present, therapeutic methods for glioma have not achieved satisfactory effects in clinical practice, and emerging therapeutic methods have not yet been widely used in clinical practice. In this review, we summarize the knowledge of remodelling of the BBB in the glioma environment, the type of changes that occur, and current BBB treatment methods and prospects for the treatment of glioma.
Collapse
Affiliation(s)
- Yihao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Fangcheng Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Nanxiang Xiong
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Hao Xu
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Wuhan, 430022, People's Republic of China
| | - Songshan Chai
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Haofei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jiajing Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
295
|
Patel B, Yang PH, Kim AH. The effect of thermal therapy on the blood-brain barrier and blood-tumor barrier. Int J Hyperthermia 2021; 37:35-43. [PMID: 32672118 DOI: 10.1080/02656736.2020.1783461] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The blood-brain and blood-tumor barriers represent highly specialized structures responsible for tight regulation of molecular transit into the central nervous system. Under normal circumstances, the relative impermeability of the blood-brain barrier (BBB) protects the brain from circulating toxins and contributes to a brain microenvironment necessary for optimal neuronal function. However, in the context of tumors and other diseases of central nervous system, the BBB and the more recently appreciated blood-tumor barrier (BTB) represent barriers that prevent effective drug delivery. Overcoming both barriers to optimize treatment of central nervous system diseases remains the subject of intense scientific investigation. Although many newer technologies have been developed to overcome these barriers, thermal therapy, which dates back to the 1890 s, has been known to disrupt the BBB since at least the early 1980s. Recently, as a result of several technological advances, laser interstitial thermal therapy (LITT), a method of delivering targeted thermal therapy, has gained widespread use as a surgical technique to ablate brain tumors. In addition, accumulating evidence indicates that laser ablation may also increase local BBB/BTB permeability after treatment. We herein review the structure and function of the BBB and BTB and the impact of thermal injury, including LITT, on barrier function.
Collapse
Affiliation(s)
- Bhuvic Patel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter H Yang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
296
|
Maggs L, Cattaneo G, Dal AE, Moghaddam AS, Ferrone S. CAR T Cell-Based Immunotherapy for the Treatment of Glioblastoma. Front Neurosci 2021; 15:662064. [PMID: 34113233 PMCID: PMC8185049 DOI: 10.3389/fnins.2021.662064] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in adults. Current treatment options typically consist of surgery followed by chemotherapy or more frequently radiotherapy, however, median patient survival remains at just over 1 year. Therefore, the need for novel curative therapies for GBM is vital. Characterization of GBM cells has contributed to identify several molecules as targets for immunotherapy-based treatments such as EGFR/EGFRvIII, IL13Rα2, B7-H3, and CSPG4. Cytotoxic T lymphocytes collected from a patient can be genetically modified to express a chimeric antigen receptor (CAR) specific for an identified tumor antigen (TA). These CAR T cells can then be re-administered to the patient to identify and eliminate cancer cells. The impressive clinical responses to TA-specific CAR T cell-based therapies in patients with hematological malignancies have generated a lot of interest in the application of this strategy with solid tumors including GBM. Several clinical trials are evaluating TA-specific CAR T cells to treat GBM. Unfortunately, the efficacy of CAR T cells against solid tumors has been limited due to several factors. These include the immunosuppressive tumor microenvironment, inadequate trafficking and infiltration of CAR T cells and their lack of persistence and activity. In particular, GBM has specific limitations to overcome including acquired resistance to therapy, limited diffusion across the blood brain barrier and risks of central nervous system toxicity. Here we review current CAR T cell-based approaches for the treatment of GBM and summarize the mechanisms being explored in pre-clinical, as well as clinical studies to improve their anti-tumor activity.
Collapse
Affiliation(s)
- Luke Maggs
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
297
|
Kim C, Guo Y, Velalopoulou A, Leisen J, Motamarry A, Ramajayam K, Aryal M, Haemmerich D, Arvanitis CD. Closed-loop trans-skull ultrasound hyperthermia leads to improved drug delivery from thermosensitive drugs and promotes changes in vascular transport dynamics in brain tumors. Am J Cancer Res 2021; 11:7276-7293. [PMID: 34158850 PMCID: PMC8210606 DOI: 10.7150/thno.54630] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/25/2021] [Indexed: 12/11/2022] Open
Abstract
Effective drug delivery in brain tumors remains a major challenge in oncology. Although local hyperthermia and stimuli-responsive delivery systems, such as thermosensitive liposomes, represent promising strategies to locally enhance drug delivery in solid tumors and improve outcomes, their application in intracranial malignancies remains unexplored. We hypothesized that the combined abilities of closed-loop trans-skull Magnetic Resonance Imaging guided Focused Ultrasound (MRgFUS) hyperthermia with those of thermosensitive drugs can alleviate challenges in drug delivery and improve survival in gliomas. Methods: To conduct our investigations, we first designed a closed loop MR-guided Focused Ultrasound (MRgFUS) system for localized trans-skull hyperthermia (ΔT < 0.5 °C) in rodents and established safety thresholds in healthy mice. To assess the abilities of the developed system and proposed therapeutic strategy for FUS-triggered chemotherapy release we employed thermosensitive liposomal Dox (TSL-Dox) and tested it in two different glioma tumor models (F98 in rats and GL261 in mice). To quantify Dox delivery and changes in the transvascular transport dynamics in the tumor microenvironment we combined fluorescent microscopy, dynamic contrast enhanced MRI (DCE-MRI), and physiologically based pharmacokinetic (PBPK) modeling. Lastly, to assess the therapeutic efficacy of the system and of the proposed therapeutic strategy we performed a survival study in the GL261 glioma bearing mice. Results: The developed closed-loop trans-skull MRgFUS-hyperthermia system that operated at 1.7 MHz, a frequency that maximized the brain (FUS-focus) to skull temperature ratio in mice, was able to attain and maintain the desired focal temperature within a narrow range. Histological evidence (H&E and Nissl) suggests that focal temperature at 41.5 ± 0.5 °C for 10 min is below the threshold for tissue damage. Quantitative analysis of doxorubicin delivery from TSLs with MRgFUS-hyperthermia demonstrated 3.5-fold improvement in cellular uptake in GL261 glioma mouse tumors (p < 0.001) and 5-fold increase in delivery in F98 glioma rat tumors (p < 0.05), as compared to controls (TSL-Dox-only). Moreover, PBPK modeling of drug transport that was calibrated using the experimental data indicated that thermal stress could lead to significant improvement in the transvascular transport (2.3-fold increase in the vessel diffusion coefficient; P < 0.001), in addition to promoting targeted Dox release. Prospective experimental investigations with DCE-MRI during FUS-hyperthermia, supported these findings and provided evidence that moderate thermal stress (≈41 °C for up to 10 min) can promote acute changes in the vascular transport dynamics in the brain tumor microenvironment (Ktrans value for control vs. FUS was 0.0097 and 0.0148 min-1, respectively; p = 0.026). Crucially, survival analysis demonstrated significant improvement in the survival in the TSL-Dox-FUS group as compared to TSL-Dox-only group (p < 0.05), providing supporting evidence on the therapeutic potential of the proposed strategy. Conclusions: Our investigations demonstrated that spatially controlled thermal stress can be attained and sustained in the mouse brain, using a trans-skull closed-loop MRgFUS system, and used to promote the effective delivery of chemotherapy in gliomas from thermosensitive drugs. This system also allowed us to conduct mechanistic investigations that resulted in the refinement of our understanding on the role of thermal stress in augmenting mass and drug transport in brain tumors. Overall, our study established a new paradigm for effective drug delivery in brain tumors based on closed-loop ultrasound-mediated thermal stress and thermosensitive drugs.
Collapse
|
298
|
Kim H, Jin S, Choi H, Kang M, Park SG, Jun H, Cho H, Kang S. Target-switchable Gd(III)-DOTA/protein cage nanoparticle conjugates with multiple targeting affibody molecules as target selective T 1 contrast agents for high-field MRI. J Control Release 2021; 335:269-280. [PMID: 34044091 DOI: 10.1016/j.jconrel.2021.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive in vivo imaging tool, providing high enough spatial resolution to obtain both the anatomical and the physiological information of patients. However, MRI generally suffers from relatively low sensitivity often requiring the aid of contrast agents (CA) to enhance the contrast of vessels and/or the tissues of interest from the background. The targeted delivery of diagnostic probes to the specific lesion is a powerful approach for early diagnosis and signal enhancement leading to the effective treatment of various diseases. Here, we established targeting ligand switchable nanoplatforms using lumazine synthase protein cage nanoparticles derived from Aquifex aeolicus (AaLS) by genetically introducing the SpyTag peptide (ST) to the C-terminus of the AaLS subunits to form an ST-displaying AaLS (AaLS-ST). Conversely, multiple targeting ligands were constructed by genetically fusing SpyCatcher protein (SC) to either HER2 or EGFR targeting affibody molecules (SC-HER2Afb or SC-EGFRAfb). Gd(III)-DOTA complexes were chemically attached to the AaLS-ST and the external surface of the Gd(III)-DOTA conjugated AaLS-ST (Gd(III)-DOTA-AaLS-ST) were successfully decorated with either the HER2Afb or the EGFRAfb. The resulting Gd(III)-DOTA-AaLS/HER2Afb and Gd(III)-DOTA-AaLS/EGFR2Afb exhibited high r1 relaxivity values of 57 and 25 mM-1 s-1 at 1.4 and 7 T, respectively, which were 10-fold or higher than those of the clinically used Dotarem. Their target-selective contrast enhancements were confirmed with in vitro cell-based MRI scans and the in vivo MR imaging of tumor-bearing mouse models at 7 T. A target-switchable AaLS-based nanoplatform that was developed in this study might serve as a promising T1 CA developing platform at a high magnetic field to detect various tumor sites in a target-specific manner in future clinical applications.
Collapse
Affiliation(s)
- Hansol Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seokha Jin
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyukjun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - MungSoo Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seong Guk Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heejin Jun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - HyungJoon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
299
|
Wen PY. Positron emission tomography imaging of drug concentrations in the brain. Neuro Oncol 2021; 23:537-538. [PMID: 33704490 DOI: 10.1093/neuonc/noab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
300
|
Jucaite A, Stenkrona P, Cselényi Z, De Vita S, Buil-Bruna N, Varnäs K, Savage A, Varrone A, Johnström P, Schou M, Davison C, Sykes A, Pilla Reddy V, Hoch M, Vazquez-Romero A, Moein MM, Halldin C, Merchant MS, Pass M, Farde L. Brain exposure of the ATM inhibitor AZD1390 in humans-a positron emission tomography study. Neuro Oncol 2021; 23:687-696. [PMID: 33123736 DOI: 10.1093/neuonc/noaa238] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The protein kinase ataxia telangiectasia mutated (ATM) mediates cellular response to DNA damage induced by radiation. ATM inhibition decreases DNA damage repair in tumor cells and affects tumor growth. AZD1390 is a novel, highly potent, selective ATM inhibitor designed to cross the blood-brain barrier (BBB) and currently evaluated with radiotherapy in a phase I study in patients with brain malignancies. In the present study, PET was used to measure brain exposure of 11C-labeled AZD1390 after intravenous (i.v.) bolus administration in healthy subjects with an intact BBB. METHODS AZD1390 was radiolabeled with carbon-11 and a microdose (mean injected mass 1.21 µg) was injected in 8 male subjects (21-65 y). The radioactivity concentration of [11C]AZD1390 in brain was measured using a high-resolution PET system. Radioactivity in arterial blood was measured to obtain a metabolite corrected arterial input function for quantitative image analysis. Participants were monitored by laboratory examinations, vital signs, electrocardiogram, adverse events. RESULTS The brain radioactivity concentration of [11C]AZD1390 was 0.64 SUV (standard uptake value) and reached maximum 1.00% of injected dose at Tmax[brain] of 21 min (time of maximum brain radioactivity concentration) after i.v. injection. The whole brain total distribution volume was 5.20 mL*cm-3. No adverse events related to [11C]AZD1390 were reported. CONCLUSIONS This study demonstrates that [11C]AZD1390 crosses the intact BBB and supports development of AZD1390 for the treatment of glioblastoma multiforme or other brain malignancies. Moreover, it illustrates the potential of PET microdosing in predicting and guiding dose range and schedule for subsequent clinical studies.
Collapse
Affiliation(s)
- Aurelija Jucaite
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Per Stenkrona
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Zsolt Cselényi
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | - Nuria Buil-Bruna
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Peter Johnström
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Magnus Schou
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | - Andy Sykes
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Matthias Hoch
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ana Vazquez-Romero
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Mohammad Mahdi Moein
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | | | - Lars Farde
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|