251
|
Flagellin treatment prevents increased susceptibility to systemic bacterial infection after injury by inhibiting anti-inflammatory IL-10+ IL-12- neutrophil polarization. PLoS One 2014; 9:e85623. [PMID: 24454904 PMCID: PMC3893295 DOI: 10.1371/journal.pone.0085623] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/05/2013] [Indexed: 12/28/2022] Open
Abstract
Severe trauma renders patients susceptible to infection. In sepsis, defective bacterial clearance has been linked to specific deviations in the innate immune response. We hypothesized that innate immune modulations observed during sepsis also contribute to increased bacterial susceptibility after severe trauma. A well-established murine model of burn injury, used to replicate infection following trauma, showed that wound inoculation with P. aeruginosa quickly spreads systemically. The systemic IL-10/IL-12 axis was skewed after burn injury with infection as indicated by a significant elevation in serum IL-10 and polarization of neutrophils into an anti-inflammatory ("N2"; IL-10(+) IL-12(-)) phenotype. Infection with an attenuated P. aeruginosa strain (ΔCyaB) was cleared better than the wildtype strain and was associated with an increased pro-inflammatory neutrophil ("N1"; IL-10(-)IL-12(+)) response in burn mice. This suggests that neutrophil polarization influences bacterial clearance after burn injury. Administration of a TLR5 agonist, flagellin, after burn injury restored the neutrophil response towards a N1 phenotype resulting in an increased clearance of wildtype P. aeruginosa after wound inoculation. This study details specific alterations in innate cell populations after burn injury that contribute to increased susceptibility to bacterial infection. In addition, for the first time, it identifies neutrophil polarization as a therapeutic target for the reversal of bacterial susceptibility after injury.
Collapse
|
252
|
Yang M, Flavin K, Kopf I, Radics G, Hearnden CHA, McManus GJ, Moran B, Villalta-Cerdas A, Echegoyen LA, Giordani S, Lavelle EC. Functionalization of carbon nanoparticles modulates inflammatory cell recruitment and NLRP3 inflammasome activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:4194-206. [PMID: 23839951 DOI: 10.1002/smll.201300481] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/09/2013] [Indexed: 05/25/2023]
Abstract
The inflammatory effects of carbon nanoparticles (NPs) are highly disputed. Here it is demonstrated that endotoxin-free preparations of raw carbon nanotubes (CNTs) are very limited in their capacity to promote inflammatory responses in vitro, as well as in vivo. Upon purification and selective oxidation of raw CNTs, a higher dispersibility is achieved in physiological solutions, but this process also enhances their inflammatory activity. In synergy with toll-like receptor (TLR) ligands, CNTs promote NLRP3 inflammasome activation and it is shown for the first time that this property extends to spherical carbon nano-onions (CNOs) of 6 nm in size. In contrast, the benzoic acid functionalization of purified CNTs and CNOs leads to significantly attenuated inflammatory properties. This is evidenced by a reduced secretion of the inflammatory cytokine IL-1β, and a pronounced decrease in the recruitment of neutrophils and monocytes following injection into mice. Collectively, these results reveal that the inflammatory properties of carbon NPs are highly dependent on their physicochemical characteristics and crucially, that chemical surface functionalization allows significant moderation of these properties.
Collapse
Affiliation(s)
- Marie Yang
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College, Dublin 2, Ireland; Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Kobayashi T, Tanaka T, Toyama-Sorimachi N. How do cells optimize luminal environments of endosomes/lysosomes for efficient inflammatory responses? J Biochem 2013; 154:491-9. [DOI: 10.1093/jb/mvt099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
254
|
Sevin CM, Newcomb DC, Toki S, Han W, Sherrill TP, Boswell MG, Zhu Z, Collins RD, Boyd KL, Goleniewska K, Huckabee MM, Blackwell TS, Peebles RS. Deficiency of gp91phox inhibits allergic airway inflammation. Am J Respir Cell Mol Biol 2013; 49:396-402. [PMID: 23590311 DOI: 10.1165/rcmb.2012-0442oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a multienzyme complex, is the major source for production of reactive oxygen species (ROS). ROS are increased in allergic diseases, such as asthma, but the role of ROS in disease pathogenesis remains uncertain. We hypothesized that mice unable to generate ROS via the NADPH oxidase pathway would have decreased allergic airway inflammation. To test this hypothesis, we studied gp91phox(-/-) mice in a model of allergic airway inflammation after sensitization and challenge with ovalbumin. Serum, bronchoalveolar lavage fluid, and lungs were then examined for evidence of allergic inflammation. We found that mice lacking a functional NADPH oxidase complex had significantly decreased ROS production and allergic airway inflammation, compared with wild-type (WT) control animals. To determine the mechanism by which allergic inflammation was inhibited by gp91phox deficiency, we cultured bone marrow-derived dendritic cells from WT and gp91phox(-/-) mice and activated them with LPS. IL-12 expression was significantly increased in the gp91phox(-/-) bone marrow-derived dendritic cells, suggesting that the cytokine profile produced in the absence of gp91phox enhanced the conditions leading to T helper (Th) type 1 differentiation, while inhibiting Th2 polarization. Splenocytes from sensitized gp91phox(-/-) animals produced significantly less IL-13 in response to ovalbumin challenge in vitro compared with splenocytes from sensitized WT mice, suggesting that NADPH oxidase promotes allergic sensitization. In contrast, inflammatory cytokines produced by T cells cultured from WT and gp91phox(-/-) mice under Th0, Th1, Th2, and Th17 conditions were not significantly different. This study demonstrates the importance of NADPH oxidase activity and ROS production in a murine model of asthma.
Collapse
Affiliation(s)
- Carla M Sevin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232-2650, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Kiss M, Czimmerer Z, Nagy L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. J Allergy Clin Immunol 2013; 132:264-86. [PMID: 23905916 DOI: 10.1016/j.jaci.2013.05.044] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors linking lipid signaling to the expression of the genome. There is increasing appreciation of the involvement of this receptor network in the metabolic programming of macrophages and dendritic cells (DCs), essential members of the innate immune system. In this review we focus on the role of retinoid X receptor, retinoic acid receptor, peroxisome proliferator-associated receptor γ, liver X receptor, and vitamin D receptor in shaping the immune and metabolic functions of macrophages and DCs. We also provide an overview of the contribution of macrophage- and DC-expressed nuclear receptors to various immunopathologic conditions, such as rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, asthma, and some others. We suggest that systematic analyses of the roles of these receptors and their activating lipid ligands in immunopathologies combined with complementary and focused translational and clinical research will be crucial for the development of new therapies using the many molecules available to target nuclear receptors.
Collapse
Affiliation(s)
- Mate Kiss
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | | | | |
Collapse
|
256
|
Santambrogio L, Stern LJ. Carrying yourself: self antigen composition of the lymphatic fluid. Lymphat Res Biol 2013; 11:149-54. [PMID: 24024574 DOI: 10.1089/lrb.2013.0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Advances in proteomics methodology and instrumentation have allowed detailed characterization of the composition of lymph. Far from being a simple ultrafiltrate of blood plasma, lymph has been shown to carry a rich repertoire of proteins and peptides reflecting the tissue of origin and its physiological state. Peptides derived from lymph can be loaded on the MHCII proteins, particularly those present on immature and/or inactivated antigen presenting cells, and may play an important role in maintenance of peripheral tolerance.
Collapse
Affiliation(s)
- Laura Santambrogio
- 1 Department of Pathology, Microbiology and Immunology, Albert Einstein College of Medicine , New York, New York
| | | |
Collapse
|
257
|
Chua RYR, Wong SH. SNX3 recruits to phagosomes and negatively regulates phagocytosis in dendritic cells. Immunology 2013; 139:30-47. [PMID: 23237080 DOI: 10.1111/imm.12051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 12/11/2022] Open
Abstract
Phagocytes such as dendritic cells (DC) and macrophages employ phagocytosis to take up pathogenic bacteria into phagosomes, digest the bacteria and present the bacteria-derived peptide antigens to the adaptive immunity. Hence, efficient antigen presentation depends greatly on a well-regulated phagocytosis process. Lipids, particularly phosphoinositides, are critical components of the phagosomes. Phosphatidylinositol-3,4,5-triphosphate [PI(3,4,5)P3 ] is formed at the phagocytic cup, and as the phagosome seals off from the plasma membrane, rapid disappearance of PI(3,4,5)P3 is accompanied by high levels of phosphatidylinositol-3-phosphate (PI3P) formation. The sorting nexin (SNX) family consists of a diverse group of Phox-homology (PX) domain-containing cytoplasmic and membrane-associated proteins that are potential effectors of phosphoinositides. We hypothesized that SNX3, a small sorting nexin that contains a single PI3P lipid-binding PX domain as its only protein domain, localizes to phagosomes and regulates phagocytosis in DC. Our results show that SNX3 recruits to nascent phagosomes and silencing of SNX3 enhances phagocytic uptake of bacteria by DC. Furthermore, SNX3 competes with PI3P lipid-binding protein, early endosome antigen-1 (EEA1) recruiting to membranes. Our results indicate that SNX3 negatively regulates phagocytosis in DC possibly by modulating recruitment of essential PI3P lipid-binding proteins of the phagocytic pathways, such as EEA1, to phagosomal membranes.
Collapse
Affiliation(s)
- Rong Yuan Ray Chua
- Laboratory of Membrane Trafficking and Immunoregulation, Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
258
|
Parra J, Abad-Somovilla A, Mercader JV, Taton TA, Abad-Fuentes A. Carbon nanotube-protein carriers enhance size-dependent self-adjuvant antibody response to haptens. J Control Release 2013; 170:242-51. [PMID: 23735572 DOI: 10.1016/j.jconrel.2013.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 12/17/2022]
Abstract
Carbon nanotubes (CNTs) are nanomaterials with interesting emerging applications. Their properties make CNTs excellent candidates for use as new nanovehicles in drug delivery, immunization and diagnostics. In the current study, we assessed the immune-response-amplifying properties of CNTs to haptens by using azoxystrobin, the first developed strobilurin fungicide, as a model analyte. An azoxystrobin derivative bearing a carboxylated spacer arm (hapten AZc6) was covalently coupled to bovine serum albumin (BSA), and the resulting BSA-AZc6 conjugate was covalently linked to four functionalized CNTs of different shapes and sizes, varying in diameter and length. These four types of CNT-based constructs were obtained using efficient, fast, and easy functionalization procedures based on microwave-assisted chemistry. New Zealand rabbits and BALB/c mice were immunized with BSA-AZc6 alone and with the four CNT-BSA-AZc6 constructs, both with and without Freund's adjuvant. The IgG-type antibody responses were assessed in terms of the titer and affinity, paying special attention to the relationship between the immune response and the size and shape of the employed CNTs. Immunization with CNT-BSA-AZc6 resulted in enhanced titers and excellent affinities for azoxystrobin. More important, remarkable IgG responses were obtained even in the absence of an adjuvant, thus proving the self-adjuvanting capability of CNTs. Immunogens were able to produce strong anti-azoxystrobin immune responses in rabbits even when administered at a BSA-AZc6 conjugate dose as low as 0.05 μg. The short and thick CNT-BSA-AZc6 construct produced the best antibody response under all tested conditions.
Collapse
Affiliation(s)
- Javier Parra
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-IATA, Spanish National Research Council-CSIC, Agustí Escardino 7, 46980 Paterna, Valencia, Spain
| | | | | | | | | |
Collapse
|
259
|
Sandgren KJ, Smed-Sörensen A, Forsell MN, Soldemo M, Adams WC, Liang F, Perbeck L, Koup RA, Wyatt RT, Karlsson Hedestam GB, Loré K. Human plasmacytoid dendritic cells efficiently capture HIV-1 envelope glycoproteins via CD4 for antigen presentation. THE JOURNAL OF IMMUNOLOGY 2013; 191:60-9. [PMID: 23729440 DOI: 10.4049/jimmunol.1202489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Advances in HIV-1 vaccine clinical trials and preclinical research indicate that the virus envelope glycoproteins (Env) are likely to be an essential component of a prophylactic vaccine. Efficient Ag uptake and presentation by dendritic cells (DCs) is important for strong CD4(+) Th cell responses and the development of effective humoral immune responses. In this study, we examined the capacity of distinct primary human DC subsets to internalize and present recombinant Env to CD4(+) T cells. Consistent with their specific receptor expression, skin DCs bound and internalized Env via C-type lectin receptors, whereas blood DC subsets, including CD1c(+) myeloid DCs, CD123(+) plasmacytoid DCs (PDCs), and CD141(+) DCs exhibited a restricted repertoire of C-type lectin receptors and relied on CD4 for uptake of Env. Despite a generally poor capacity for Ag uptake compared with myeloid DCs, the high expression of CD4 on PDCs allowed them to bind and internalize Env very efficiently. CD4-mediated uptake delivered Env to EEA1(+) endosomes that progressed to Lamp1(+) and MHC class II(+) lysosomes where internalized Env was degraded rapidly. Finally, all three blood DC subsets were able to internalize an Env-CMV pp65 fusion protein via CD4 and stimulate pp65-specific CD4(+) T cells. Thus, in the in vitro systems described in this paper, CD4-mediated uptake of Env is a functional pathway leading to Ag presentation, and this may therefore be a mechanism used by blood DCs, including PDCs, for generating immune responses to Env-based vaccines.
Collapse
Affiliation(s)
- Kerrie J Sandgren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Yuandani, Ilangkovan M, Jantan I, Mohamad HF, Husain K, Abdul Razak AF. Inhibitory Effects of Standardized Extracts of Phyllanthus amarus and Phyllanthus urinaria and Their Marker Compounds on Phagocytic Activity of Human Neutrophils. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:603634. [PMID: 23737840 PMCID: PMC3659478 DOI: 10.1155/2013/603634] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/06/2013] [Accepted: 04/09/2013] [Indexed: 11/22/2022]
Abstract
The standardized methanol extracts of Phyllanthus amarus and P. urinaria, collected from Malaysia and Indonesia, and their isolated chemical markers, phyllanthin and hypophyllanthin, were evaluated for their effects on the chemotaxis, phagocytosis and chemiluminescence of human phagocytes. All the plant extracts strongly inhibited the migration of polymorphonuclear leukocytes (PMNs) with the Malaysian P. amarus showing the strongest inhibitory activity (IC50 value, 1.1 µ g/mL). There was moderate inhibition by the extracts of the bacteria engulfment by the phagocytes with the Malaysian P. amarus exhibiting the highest inhibition (50.8% of phagocytizing cells). The Malaysian P. amarus and P. urinaria showed strong reactive oxygen species (ROS) inhibitory activity, with both extracts exhibiting IC50 value of 0.7 µ g/mL. Phyllanthin and hypophyllanthin exhibited relatively strong activity against PMNs chemotaxis, with IC50 values slightly lower than that of ibuprofen (1.4 µ g/mL). Phyllanthin exhibited strong inhibitory activity on the oxidative burst with an IC50 value comparable to that of aspirin (1.9 µ g/mL). Phyllanthin exhibited strong engulfment inhibitory activity with percentage of phagocytizing cells of 14.2 and 27.1% for neutrophils and monocytes, respectively. The strong inhibitory activity of the extracts was due to the presence of high amounts of phyllanthin and hypophyllanthin although other constituents may also contribute.
Collapse
Affiliation(s)
- Yuandani
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Menaga Ilangkovan
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Ibrahim Jantan
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Hazni Falina Mohamad
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Amirul Faiz Abdul Razak
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
261
|
Abstract
Reactive oxygen and nitrogen species (ROS-RNS) and other redox active molecules fulfill key functions in immunity. Beside the initiation of cytocidal reactions within the pathogen defense strategy, redox reactions trigger and shape the immune response and are further involved in termination and initialization of cellular restorative processes. Regulatory mechanisms provided by redox-activated signaling events guarantee the correct spatial and temporal proceeding of immunological processes, and continued imbalances in redox homeostasis lead to crucial failures of control mechanisms, thus promoting the development of pathological conditions. Interferon-gamma is the most potent inducer of ROS-RNS formation in target cells like macrophages. Immune-regulatory pathways such as tryptophan breakdown via indoleamine 2,3-dioxygenase and neopterin production by GTP-cyclohydrolase-I are initiated during T helper cell type 1 (Th1-type) immune response concomitant to the production of ROS-RNS by immunocompetent cells. Therefore, increased neopterin production and tryptophan breakdown is representative of an activated cellular immune system and can be used for the in vivo and in vitro monitoring of oxidative stress. In parallel, the activation of the redox-sensitive transcription factor nuclear factor-kappa B is a central element in immunity leading to cell type and stimulus-specific expression of responsive genes. Furthermore, T cell activation and proliferation are strongly dependent on the redox potential of the extracellular microenvironment. T cell commitment to Th1, Th2, regulatory T cell, and other phenotypes appears to crucially depend on the activation of redox-sensitive signaling cascades, where oxidative conditions support Th1 development while 'antioxidative' stress leads to a shift to allergic Th2-type immune responses.
Collapse
Affiliation(s)
- Johanna M Gostner
- Division of Medical Biochemistry, Biocenter, Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
262
|
Shandala T, Lim C, Sorvina A, Brooks DA. A Drosophila model to image phagosome maturation. Cells 2013; 2:188-201. [PMID: 24709696 PMCID: PMC3972680 DOI: 10.3390/cells2020188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/21/2013] [Accepted: 03/14/2013] [Indexed: 12/23/2022] Open
Abstract
Phagocytosis involves the internalization of extracellular material by invagination of the plasma membrane to form intracellular vesicles called phagosomes, which have functions that include pathogen degradation. The degradative properties of phagosomes are thought to be conferred by sequential fusion with endosomes and lysosomes; however, this maturation process has not been studied in vivo. We employed Drosophila hemocytes, which are similar to mammalian professional macrophages, to establish a model of phagosome maturation. Adult Drosophila females, carrying transgenic Rab7-GFP endosome and Lamp1-GFP lysosome markers, were injected with E. coli DH5α and the hemocytes were collected at 15, 30, 45 and 60 minutes after infection. In wild-type females, E. coli were detected within enlarged Rab7-GFP positive phagosomes at 15 to 45 minutes after infection; and were also observed in enlarged Lamp1-GFP positive phagolysosomes at 45 minutes. Two-photon imaging of hemocytes in vivo confirmed this vesicle morphology, including enlargement of Rab7-GFP and Lamp1-GFP structures that often appeared to protrude from hemocytes. The interaction of endosomes and lysosomes with E. coli phagosomes observed in Drosophila hemocytes was consistent with that previously described for phagosome maturation in human ex vivo macrophages. We also tested our model as a tool for genetic analysis using 14-3-3ε mutants, and demonstrated altered phagosome maturation with delayed E. coli internalization, trafficking and/or degradation. These findings demonstrate that Drosophila hemocytes provide an appropriate, genetically amenable, model for analyzing phagosome maturation ex vivo and in vivo.
Collapse
Affiliation(s)
- Tetyana Shandala
- Mechanisms in Cell Biology and Diseases Research Group, School of Pharmacy and Medical Science, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Chiaoxin Lim
- Mechanisms in Cell Biology and Diseases Research Group, School of Pharmacy and Medical Science, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Alexandra Sorvina
- Mechanisms in Cell Biology and Diseases Research Group, School of Pharmacy and Medical Science, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Douglas A Brooks
- Mechanisms in Cell Biology and Diseases Research Group, School of Pharmacy and Medical Science, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
263
|
Abstract
The process of phagocytosis in multicellular organisms is required for homeostasis, clearance of foreign particles, and establishment of long-term immunity, yet the molecular determinants of uptake are not well characterized. Cdc42, a Rho guanosine triphosphatase, is thought to orchestrate critical actin remodeling events needed for internalization. In this paper, we show that Cdc42 controls exocytic events during phagosome formation. Cdc42 inactivation led to a selective defect in large particle phagocytosis as well as a general decrease in the rate of membrane flow to the cell surface. Supporting the connection between Cdc42 and exocytic function, we found that the overproduction of a regulator of exocytosis, Rab11, rescued the large particle uptake defect in the absence of Cdc42. Additionally, we demonstrated a temporal interaction between Cdc42 and the exocyst complex during large particle uptake. Furthermore, disruption of exocyst function through Exo70 depletion led to a defect in large particle internalization, thereby establishing a functional role for the exocyst complex during phagocytosis.
Collapse
Affiliation(s)
- Sina Mohammadi
- Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
264
|
Kotsias F, Hoffmann E, Amigorena S, Savina A. Reactive oxygen species production in the phagosome: impact on antigen presentation in dendritic cells. Antioxid Redox Signal 2013; 18:714-29. [PMID: 22827577 DOI: 10.1089/ars.2012.4557] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE The NADPH oxidase 2 (NOX2) is known to play a major role in innate immunity for several decades. Phagocytic cells provide host defense by ingesting microbes and destroy them by different mechanisms, including the generation of reactive oxygen species (ROS) by NOX2, a process known as oxidative burst. The phagocytic pathway of dendritic cells (DCs), highly adapted to antigen processing, has been shown to display remarkable differences compared to other phagocytes. Contrary to macrophages and neutrophils, the main function of DC phagosomes is antigen presentation rather than pathogen killing or clearance of cell debris. RECENT ADVANCES In the last few years, it became clear that NOX2 is also involved in the establishment of adaptive immunity. Several studies support the idea of a relationship between antigen presentation and the level of antigen degradation, the latter one being regulated by the pH and ROS within phagosomes. CRITICAL ISSUES The regulation of phagosomal pH exerted by NOX2, and thereby of the efficacy of antigen cross-presentation in DCs, represents a clear illustration of how NOX2 can influence CD8(+) T lymphocyte responses. In this review, we want to put emphasis on the relationship between ROS generation and antigen processing and presentation, since there is growing evidence that the low levels of ROS generated by DCs play an important role in these processes. FUTURE DIRECTIONS In the next years, it will be interesting to unravel possible mechanisms involved and to find other possible connections between NOX family members and adaptive immune responses.
Collapse
|
265
|
Van de Bittner GC, Bertozzi CR, Chang CJ. Strategy for dual-analyte luciferin imaging: in vivo bioluminescence detection of hydrogen peroxide and caspase activity in a murine model of acute inflammation. J Am Chem Soc 2013; 135:1783-95. [PMID: 23347279 PMCID: PMC3583381 DOI: 10.1021/ja309078t] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In vivo molecular imaging holds promise for understanding the underlying mechanisms of health, injury, aging, and disease, as it can detect distinct biochemical processes such as enzymatic activity, reactive small-molecule fluxes, or post-translational modifications. Current imaging techniques often detect only a single biochemical process, but, within whole organisms, multiple types of biochemical events contribute to physiological and pathological phenotypes. In this report, we present a general strategy for dual-analyte detection in living animals that employs in situ formation of firefly luciferin from two complementary caged precursors that can be unmasked by different biochemical processes. To establish this approach, we have developed Peroxy Caged Luciferin-2 (PCL-2), a H(2)O(2)-responsive boronic acid probe that releases 6-hydroxy-2-cyanobenzothiazole (HCBT) upon reacting with this reactive oxygen species, as well as a peptide-based probe, z-Ile-Glu-ThrAsp-D-Cys (IETDC), which releases D-cysteine in the presence of active caspase 8. Once released, HCBT and D-cysteine form firefly luciferin in situ, giving rise to a bioluminescent signal if and only if both chemical triggers proceed. This system thus constitutes an AND-type molecular logic gate that reports on the simultaneous presence of H(2)O(2) and caspase 8 activity. Using these probes, chemoselective imaging of either H(2)O(2) or caspase 8 activity was performed in vitro and in vivo. Moreover, concomitant use of PCL-2 and IETDC in vivo establishes a concurrent increase in both H(2)O(2) and caspase 8 activity during acute inflammation in living mice. Taken together, this method offers a potentially powerful new chemical tool for studying simultaneous oxidative stress and inflammation processes in living animals during injury, aging, and disease, as well as a versatile approach for concurrent monitoring of multiple analytes using luciferin-based bioluminescence imaging technologies.
Collapse
Affiliation(s)
| | - Carolyn R. Bertozzi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
266
|
Immunoglobulins drive terminal maturation of splenic dendritic cells. Proc Natl Acad Sci U S A 2013; 110:2282-7. [PMID: 23345431 DOI: 10.1073/pnas.1210654110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nature and physiological status of antigen-presenting cells, such as dendritic cells DCs, are decisive for the immune reactions elicited. Multiple factors and cell interactions have been described that affect maturation of DCs. Here, we show that DCs arising in the absence of immunoglobulins (Ig) in vivo are impaired in cross-presentation of soluble antigen. This deficiency was due to aberrant cellular targeting of antigen to lysosomes and its rapid degradation. Function of DCs could be restored by transfer of Ig irrespective of antigen specificity and isotype. Modulation of cross-presentation by Ig was inhibited by coapplication of mannan and, thus, likely to be mediated by C-type lectin receptors. This unexpected dependency of splenic DCs on Ig to cross-present antigen provides insights into the interplay between cellular and humoral immunity and the immunomodulatory capacity of Ig.
Collapse
|
267
|
Fang H, Tan M, Xia M, Wang L, Jiang X. Norovirus P particle efficiently elicits innate, humoral and cellular immunity. PLoS One 2013; 8:e63269. [PMID: 23638188 PMCID: PMC3639243 DOI: 10.1371/journal.pone.0063269] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/31/2013] [Indexed: 02/07/2023] Open
Abstract
Norovirus (NoV) P domain complexes, the 24 mer P particles and the P dimers, induced effective humoral immunity, but their role in the cellular immune responses remained unclear. We reported here a study on cellular immune responses of the two P domain complexes in comparison with the virus-like particle (VLP) of a GII.4 NoV (VA387) in mice. The P domain complexes induced significant central memory CD4(+) T cell phenotypes (CD4(+) CD44(+) CD62L(+) CCR7(+)) and activated polyclonal CD4(+) T cells as shown by production of Interleukin (IL)-2, Interferon (IFN)-γ, and Tumor Necrosis Factor (TNF)-α. Most importantly, VA387-specific CD4(+) T cell epitope induced a production of IFN-γ, indicating an antigen-specific CD4(+) T cell response in P domain complex-immunized mice. Furthermore, P domain complexes efficiently induced bone marrow-derived dendritic cell (BMDC) maturation, evidenced by up-regulation of co-stimulatory and MHC class II molecules, as well as production of IL-12 and IL-1β. Finally, P domain complex-induced mature dendritic cells (DCs) elicited proliferation of specific CD4(+) T cells targeting VA387 P domain. Overall, we conclude that the NoV P domain complexes are efficiently presented by DCs to elicit not only humoral but also cellular immune responses against NoVs. Since the P particle is highly effective for both humoral and cellular immune responses and easily produced in Escherichia coli (E. coli), it is a good choice of vaccine against NoVs and a vaccine platform against other diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- Bone Marrow Cells/cytology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Female
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Innate
- Interferon-gamma/biosynthesis
- Interleukin-2/biosynthesis
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Norovirus/immunology
- Protein Structure, Tertiary
- Species Specificity
- Tumor Necrosis Factor-alpha/biosynthesis
- Vaccines, Virus-Like Particle/chemistry
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
- Hao Fang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Leyi Wang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
268
|
Le Roux D, Niedergang F. New insights into antigen encounter by B cells. Immunobiology 2012; 217:1285-91. [DOI: 10.1016/j.imbio.2012.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/10/2012] [Accepted: 07/14/2012] [Indexed: 01/01/2023]
|
269
|
Mantegazza AR, Magalhaes JG, Amigorena S, Marks MS. Presentation of phagocytosed antigens by MHC class I and II. Traffic 2012; 14:135-52. [PMID: 23127154 DOI: 10.1111/tra.12026] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/01/2012] [Accepted: 11/06/2012] [Indexed: 12/15/2022]
Abstract
Phagocytosis provides innate immune cells with a mechanism to take up and destroy pathogenic bacteria, apoptotic cells and other large particles. In some cases, however, peptide antigens from these particles are preserved for presentation in association with major histocompatibility complex (MHC) class I or class II molecules in order to stimulate antigen-specific T cells. Processing and presentation of antigens from phagosomes presents a number of distinct challenges relative to antigens internalized by other means; while bacterial antigens were among the first discovered to be presented to T cells, analyses of the cellular mechanisms by which peptides from phagocytosed antigens assemble with MHC molecules and by which these complexes are then expressed at the plasma membrane have lagged behind those of conventional model soluble antigens. In this review, we cover recent advances in our understanding of these processes, including the unique cross-presentation of phagocytosed antigens by MHC class I molecules, and in their control by signaling modalities in phagocytic cells.
Collapse
Affiliation(s)
- Adriana R Mantegazza
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
270
|
Abstract
Asthma is a complex disease of the lungs, which is characterized by airway inflammation and airway hyperresponsiveness (AHR). Alveolar macrophages (AMs), one of the prominent immune system cells found in the airways, have been implicated in the development and progression of asthma. AMs constitute a unique subset of pulmonary macrophages, which serve as a first line of defense against foreign invaders to the lung tissue. In addition, based on human and animal studies, they have also been found to regulate pro- and anti-inflammatory responses in the airways, suggesting that these cells have a critical role in asthma. In this review, our focus is to evaluate the relevance of AMs in the context of asthma, and the underlying mechanisms that regulate their functions.
Collapse
|
271
|
Sakurai C, Hashimoto H, Nakanishi H, Arai S, Wada Y, Sun-Wada GH, Wada I, Hatsuzawa K. SNAP-23 regulates phagosome formation and maturation in macrophages. Mol Biol Cell 2012; 23:4849-63. [PMID: 23087210 PMCID: PMC3521691 DOI: 10.1091/mbc.e12-01-0069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using macrophages overexpressing or reducing SNAP-23, this study shows that SNAP-23 is implicated in phagosome formation and maturation, presumably by mediating SNARE-based membrane traffic. Indeed, a conformational change in SNAP-23 structure based on FRET signal is observed on the phagosome membrane of cells overexpressing the lysosomal SNARE VAMP7. Synaptosomal associated protein of 23 kDa (SNAP-23), a plasma membrane–localized soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE), has been implicated in phagocytosis by macrophages. For elucidation of its precise role in this process, a macrophage line overexpressing monomeric Venus–tagged SNAP-23 was established. These cells showed enhanced Fc receptor–mediated phagocytosis. Detailed analyses of each process of phagocytosis revealed a marked increase in the production of reactive oxygen species within phagosomes. Also, enhanced accumulation of a lysotropic dye, as well as augmented quenching of a pH-sensitive fluorophore were observed. Analyses of isolated phagosomes indicated the critical role of SNAP-23 in the functional recruitment of the NADPH oxidase complex and vacuolar-type H+-ATPase to phagosomes. The data from the overexpression experiments were confirmed by SNAP-23 knockdown, which demonstrated a significant delay in phagosome maturation and a reduction in uptake activity. Finally, for analyzing whether phagosomal SNAP-23 entails a structural change in the protein, an intramolecular Förster resonance energy transfer (FRET) probe was constructed, in which the distance within a TagGFP2-TagRFP was altered upon close approximation of the N-termini of its two SNARE motifs. FRET efficiency on phagosomes was markedly enhanced only when VAMP7, a lysosomal SNARE, was coexpressed. Taken together, our results strongly suggest the involvement of SNAP-23 in both phagosome formation and maturation in macrophages, presumably by mediating SNARE-based membrane traffic.
Collapse
Affiliation(s)
- Chiye Sakurai
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | | | | | | | | | | | | | | |
Collapse
|
272
|
Hole CR, Bui H, Wormley FL, Wozniak KL. Mechanisms of dendritic cell lysosomal killing of Cryptococcus. Sci Rep 2012; 2:739. [PMID: 23074646 PMCID: PMC3472389 DOI: 10.1038/srep00739] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/19/2012] [Indexed: 11/26/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.
Collapse
Affiliation(s)
- Camaron R Hole
- Department of Biology and The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | | | | | | |
Collapse
|
273
|
Yonggang T, Yiming M, Heying Z, Cheng S, Qiushi W, Xianghong Y, Wei Z, Huawei Z, Shan F. Maturation and upregulation of functions of murine dendritic cells (DCs) under the influence of purified aromatic-turmerone (AR). Hum Vaccin Immunother 2012; 8:1416-24. [PMID: 23095866 PMCID: PMC3660284 DOI: 10.4161/hv.21526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/04/2012] [Accepted: 07/18/2012] [Indexed: 12/31/2022] Open
Abstract
The aim of this work is to evaluate the effects of purified aromatic-turmerone (ar-turmerione, AR) on murine dendritic cells (DCs). These impacts of AR on DCs from bone marrow derived DCs(BMDCs) were assessed with use of conventional scanning electron microscopy (SEM), fluorescence activated cell sorting (FACS), transmission electron microscopy (TEM), cytochemistry assay, FITC-dextran, bio-assay and enzyme linked immunosorbent assay (ELISA). We found that AR induced phenotypic maturation as evidenced by increased expression of CD86, CD40, CD83, CD80 and major histocompatibility complex II (MHC II). The functional tests showed the activity of acidic phosphatase (ACP) inside the DCs were downregulated after treatment with AR (which occurs when phagocytosis of DCs were decreased). Finally, we proved that AR increased the production of IL-12 and tumor necrosis factor α (TNF-α). These data suggested that AR could promote phenotypic and functional maturation of DCs and this adjuvant-like activity may have potential therapeutic value. It is therefore concluded that AR could exert positive modulation on murine DCs.
Collapse
Affiliation(s)
- Tan Yonggang
- Department of Oncology; Shengjing Hospital; China Medical University; Heping District, Shenyang, P.R. China
| | - Meng Yiming
- Department of Immunology; School of Basic Medical Science; China Medical University; Heping District, Shenyang, P.R. China
| | - Zhang Heying
- Department of Oncology; Shengjing Hospital; China Medical University; Heping District, Shenyang, P.R. China
| | - Sun Cheng
- Department of Oncology; Shengjing Hospital; China Medical University; Heping District, Shenyang, P.R. China
| | - Wang Qiushi
- Department of Oncology; Shengjing Hospital; China Medical University; Heping District, Shenyang, P.R. China
| | - Yang Xianghong
- Department of Oncology; Shengjing Hospital; China Medical University; Heping District, Shenyang, P.R. China
| | - Zheng Wei
- Department of Oncology; Shengjing Hospital; China Medical University; Heping District, Shenyang, P.R. China
| | - Zhou Huawei
- Department of Oncology; Shengjing Hospital; China Medical University; Heping District, Shenyang, P.R. China
| | - Fengping Shan
- Department of Immunology; School of Basic Medical Science; China Medical University; Heping District, Shenyang, P.R. China
- Institute of pathology and pathophysiology; School of Basic Medical Science; China Medical University; Heping District, Shenyang, P.R. China
| |
Collapse
|
274
|
Öhman J, Magnusson B, Telemo E, Jontell M, Hasséus B. Langerhans cells and T cells sense cell dysplasia in oral leukoplakias and oral squamous cell carcinomas--evidence for immunosurveillance. Scand J Immunol 2012; 76:39-48. [PMID: 22469080 DOI: 10.1111/j.1365-3083.2012.02701.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Leukoplakias (LPLs) are lesions in the oral mucosa that may develop into oral squamous cell carcinoma (OSCC). The objective of this study was to assess presence and distribution of dendritic Langerhans cells (LCs) and T cells in patients with LPLs with or without cell dysplasia and in oral squamous cell carcinoma (OSCC). Biopsy specimens from patients with leukoplakias (LPLs) with or without dysplasia and oral squamous cell carcinoma (OSCC) were immunostained with antibodies against CD1a, Langerin, CD3, CD4, CD8 and Ki67, followed by quantitative analysis. Analyses of epithelium and connective tissue revealed a significantly higher number of CD1a + LCs in LPLs with dysplasia compared with LPLs without dysplasia. Presence of Langerin + LCs in epithelium did not differ significantly between LPLs either with or without dysplasia and OSCC. T cells were found in significantly increased numbers in LPLs with dysplasia and OSCC. The number of CD4+ cells did not differ significantly between LPLs with and without dysplasia, but a significant increase was detected when comparing LPLs with dysplasia with OSCC. CD8+ cells were significantly more abundant in OSCC and LPLs with dysplasia compared with LPLs without dysplasia. Proliferating cells (Ki67+) were significantly more abundant in OSCC compared to LPLs with dysplasia. Confocal laser scanning microscopy revealed colocalization of LCs and T cells in LPLs with dysplasia and in OSCC. LCs and T cells are more numerous in tissue compartments with dysplastic epithelial cells and dramatically increase in OSCC. This indicates an ongoing immune response against cells with dysplasia.
Collapse
Affiliation(s)
- J Öhman
- Department of Oral Medicine and Pathology, Institute of Odontology, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
275
|
Scott EA, Stano A, Gillard M, Maio-Liu AC, Swartz MA, Hubbell JA. Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials 2012; 33:6211-9. [DOI: 10.1016/j.biomaterials.2012.04.060] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/30/2012] [Indexed: 12/21/2022]
|
276
|
Singh SK, Cousens LP, Alvarez D, Mahajan PB. Determinants of immunogenic response to protein therapeutics. Biologicals 2012; 40:364-8. [DOI: 10.1016/j.biologicals.2012.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/01/2012] [Accepted: 06/02/2012] [Indexed: 11/27/2022] Open
|
277
|
De Haes W, Van Mol G, Merlin C, De Smedt SC, Vanham G, Rejman J. Internalization of mRNA Lipoplexes by Dendritic Cells. Mol Pharm 2012; 9:2942-9. [DOI: 10.1021/mp3003336] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Winni De Haes
- Virology Unit, Department of
Biomedical Sciences, Institute of Tropical Medicine of Antwerp, Nationalestraat
155, Antwerp, Belgium
| | - Greet Van Mol
- Virology Unit, Department of
Biomedical Sciences, Institute of Tropical Medicine of Antwerp, Nationalestraat
155, Antwerp, Belgium
| | - Céline Merlin
- Virology Unit, Department of
Biomedical Sciences, Institute of Tropical Medicine of Antwerp, Nationalestraat
155, Antwerp, Belgium
| | - Stefaan C. De Smedt
- Laboratory
of General Biochemistry
and Physical Pharmacy, Ghent University, Harelbekestraat 72, Ghent,
Belgium
| | - Guido Vanham
- Virology Unit, Department of
Biomedical Sciences, Institute of Tropical Medicine of Antwerp, Nationalestraat
155, Antwerp, Belgium
- Faculty of Pharmaceutical,
Veterinary
and Biomedical Sciences, University of Antwerp, Belgium
- Faculty of Medicine and Pharmacology,
Vrije Universiteit Brussel, Belgium
| | - Joanna Rejman
- Laboratory
of General Biochemistry
and Physical Pharmacy, Ghent University, Harelbekestraat 72, Ghent,
Belgium
| |
Collapse
|
278
|
Autonomous phagosomal degradation and antigen presentation in dendritic cells. Proc Natl Acad Sci U S A 2012; 109:14556-61. [PMID: 22908282 DOI: 10.1073/pnas.1203912109] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phagocytosis plays a critical role in both innate and adaptive immunity. Phagosomal fusion with late endosomes and lysosomes enhances proteolysis, causing degradation of the phagocytic content. Increased degradation participates in both innate protection against pathogens and the production of antigenic peptides for presentation to T lymphocytes during adaptive immune responses. Specific ligands present in the phagosomal cargo influence the rate of phagosome fusion with lysosomes, thereby modulating both antigen degradation and presentation. Using a combination of cell sorting techniques and single phagosome flow cytometry-based analysis, we found that opsonization with IgG accelerates antigen degradation within individual IgG-containing phagosomes, but not in other phagosomes present in the same cell and devoid of IgG. Likewise, IgG opsonization enhances antigen presentation to CD4(+) T lymphocytes only when antigen and IgG are present within the same phagosome, whereas cells containing phagosomes with either antigen or IgG alone failed to present antigen efficiently. Therefore, individual phagosomes behave autonomously, in terms of both cargo degradation and antigen presentation to CD4(+) T cells. Phagosomal autonomy could serve as a basis for the intracellular discrimination between self and nonself antigens, resulting in the preferential presentation of peptides derived from opsonized, nonself antigens.
Collapse
|
279
|
Cross-presentation of IgG-containing immune complexes. Cell Mol Life Sci 2012; 70:1319-34. [PMID: 22847331 DOI: 10.1007/s00018-012-1100-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 07/09/2012] [Accepted: 07/17/2012] [Indexed: 12/23/2022]
Abstract
IgG is a molecule that functionally combines facets of both innate and adaptive immunity and therefore bridges both arms of the immune system. On the one hand, IgG is created by adaptive immune cells, but can be generated by B cells independently of T cell help. On the other hand, once secreted, IgG can rapidly deliver antigens into intracellular processing pathways, which enable efficient priming of T cell responses towards epitopes from the cognate antigen initially bound by the IgG. While this process has long been known to participate in CD4(+) T cell activation, IgG-mediated delivery of exogenous antigens into a major histocompatibility complex (MHC) class I processing pathway has received less attention. The coordinated engagement of IgG with IgG receptors expressed on the cell-surface (FcγR) and within the endolysosomal system (FcRn) is a highly potent means to deliver antigen into processing pathways that promote cross-presentation of MHC class I and presentation of MHC class II-restricted epitopes within the same dendritic cell. This review focuses on the mechanisms by which IgG-containing immune complexes mediate such cross-presentation and the implications that this understanding has for manipulation of immune-mediated diseases that depend upon or are due to the activities of CD8(+) T cells.
Collapse
|
280
|
Nagy L, Szanto A, Szatmari I, Széles L. Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiol Rev 2012; 92:739-89. [PMID: 22535896 DOI: 10.1152/physrev.00004.2011] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A key issue in the immune system is to generate specific cell types, often with opposing activities. The mechanisms of differentiation and subtype specification of immune cells such as macrophages and dendritic cells are critical to understand the regulatory principles and logic of the immune system. In addition to cytokines and pathogens, it is increasingly appreciated that lipid signaling also has a key role in differentiation and subtype specification. In this review we explore how intracellular lipid signaling via a set of transcription factors regulates cellular differentiation, subtype specification, and immune as well as metabolic homeostasis. We introduce macrophages and dendritic cells and then we focus on a group of transcription factors, nuclear receptors, which regulate gene expression upon receiving lipid signals. The receptors we cover are the ones with a recognized physiological function in these cell types and ones which heterodimerize with the retinoid X receptor. These are as follows: the receptor for a metabolite of vitamin A, retinoic acid: retinoic acid receptor (RAR), the vitamin D receptor (VDR), the fatty acid receptor: peroxisome proliferator-activated receptor γ (PPARγ), the oxysterol receptor liver X receptor (LXR), and their obligate heterodimeric partner, the retinoid X receptor (RXR). We discuss how they can get activated and how ligand is generated and eliminated in these cell types. We also explore how activation of a particular target gene contributes to biological functions and how the regulation of individual target genes adds up to the coordination of gene networks. It appears that RXR heterodimeric nuclear receptors provide these cells with a coordinated and interrelated network of transcriptional regulators for interpreting the lipid milieu and the metabolic changes to bring about gene expression changes leading to subtype and functional specification. We also show that these networks are implicated in various immune diseases and are amenable to therapeutic exploitation.
Collapse
Affiliation(s)
- Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen, Hungary.
| | | | | | | |
Collapse
|
281
|
Silva MT, Correia-Neves M. Neutrophils and macrophages: the main partners of phagocyte cell systems. Front Immunol 2012; 3:174. [PMID: 22783254 PMCID: PMC3389340 DOI: 10.3389/fimmu.2012.00174] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 06/08/2012] [Indexed: 12/12/2022] Open
Abstract
Biological cellular systems are groups of cells sharing a set of characteristics, mainly key function and origin. Phagocytes are crucial in the host defense against microbial infection. The previously proposed phagocyte cell systems including the most recent and presently prevailing one, the mononuclear phagocyte system (MPS), grouped mononuclear cells but excluded neutrophils, creating an unacceptable situation. As neutrophils are archetypical phagocytes that must be members of comprehensive phagocyte systems, Silva recently proposed the creation of a myeloid phagocyte system (MYPS) that adds neutrophils to the MPS. The phagocytes grouped in the MYPS include the leukocytes neutrophils, inflammatory monocytes, macrophages, and immature myeloid DCs. Here the justifications behind the inclusion of neutrophils in a phagocyte system is expanded and the MYPS are further characterized as a group of dedicated phagocytic cells that function in an interacting and cooperative way in the host defense against microbial infection. Neutrophils and macrophages are considered the main arms of this system.
Collapse
Affiliation(s)
- Manuel T Silva
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
282
|
Rotsch J, Rohrbeck A, May M, Kolbe T, Hagemann S, Schelle I, Just I, Genth H, Huelsenbeck SC. Inhibition of macrophage migration by C. botulinum exoenzyme C3. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:883-90. [DOI: 10.1007/s00210-012-0764-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/15/2012] [Indexed: 11/24/2022]
|
283
|
Tanaka S, Saito Y, Kunisawa J, Kurashima Y, Wake T, Suzuki N, Shultz LD, Kiyono H, Ishikawa F. Development of mature and functional human myeloid subsets in hematopoietic stem cell-engrafted NOD/SCID/IL2rγKO mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:6145-55. [PMID: 22611244 DOI: 10.4049/jimmunol.1103660] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although physiological development of human lymphoid subsets has become well documented in humanized mice, in vivo development of human myeloid subsets in a xenotransplantation setting has remained unevaluated. Therefore, we investigated in vivo differentiation and function of human myeloid subsets in NOD/SCID/IL2rγ(null) (NSG) mouse recipients transplanted with purified lineage(-)CD34(+)CD38(-) cord blood hematopoietic stem cells. At 4-6 mo posttransplantation, we identified the development of human neutrophils, basophils, mast cells, monocytes, and conventional and plasmacytoid dendritic cells in the recipient hematopoietic organs. The tissue distribution and morphology of these human myeloid cells were similar to those identified in humans. After cytokine stimulation in vitro, phosphorylation of STAT molecules was observed in neutrophils and monocytes. In vivo administration of human G-CSF resulted in the recruitment of human myeloid cells into the recipient circulation. Flow cytometry and confocal imaging demonstrated that human bone marrow monocytes and alveolar macrophages in the recipients displayed intact phagocytic function. Human bone marrow-derived monocytes/macrophages were further confirmed to exhibit phagocytosis and killing of Salmonella typhimurium upon IFN-γ stimulation. These findings demonstrate the development of mature and functionally intact human myeloid subsets in vivo in the NSG recipients. In vivo human myelopoiesis established in the NSG humanized mouse system may facilitate the investigation of human myeloid cell biology including in vivo analyses of infectious diseases and therapeutic interventions.
Collapse
Affiliation(s)
- Satoshi Tanaka
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Szteyn K, Yang W, Schmid E, Lang F, Shumilina E. Lipopolysaccharide-sensitive H+ current in dendritic cells. Am J Physiol Cell Physiol 2012; 303:C204-12. [PMID: 22572846 DOI: 10.1152/ajpcell.00059.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells equipped to transport antigens from the periphery to lymphoid tissues and to present them to T cells. Ligation of Toll-like receptor 4 (TLR4), expressed on the DC surface, by lipopolysaccharides (LPS), elements of the Gram-negative bacteria outer wall, induces DC maturation. Initial steps of maturation include stimulation of antigen endocytosis and enhanced reactive oxygen species (ROS) production with eventual downregulation of endocytic capacity in fully matured DCs. ROS production depends on NADPH oxidase (NOX2), the activity of which requires continuous pH and charge compensation. The present study demonstrates, for the first time, the functional expression of voltage-gated proton (Hv1) channels in mouse bone marrow-derived DCs. In whole cell patch-clamp experiments, we recorded Zn(2+) (50 μM)-sensitive outwardly rectifying currents activated upon depolarization, which were highly selective for H(+), with the reversal potential shift of 38 mV per pH unit. The threshold voltage of activation (V(threshold)) was dependent on the pH gradient and was close to the empirically predicted V(threshold) for the Hv1 currents. LPS (1 μg/ml) had bimodal effects on Hv1 channels: acute LPS treatment increased Hv1 channel activity, whereas 24 h of LPS incubation significantly inhibited Hv1 currents and decreased ROS production. Activation of H(+) currents by acute application of LPS was abolished by PKC inhibitor GFX (10 nM). According to electron current measurements, acute LPS application was associated with increased NOX2 activity.
Collapse
Affiliation(s)
- Kalina Szteyn
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | |
Collapse
|
285
|
Mantegazza AR, Guttentag SH, El-Benna J, Sasai M, Iwasaki A, Shen H, Laufer TM, Marks MS. Adaptor protein-3 in dendritic cells facilitates phagosomal toll-like receptor signaling and antigen presentation to CD4(+) T cells. Immunity 2012; 36:782-94. [PMID: 22560444 DOI: 10.1016/j.immuni.2012.02.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 12/08/2011] [Accepted: 02/09/2012] [Indexed: 01/17/2023]
Abstract
Effective major histocompatibility complex-II (MHC-II) antigen presentation from phagocytosed particles requires phagosome-intrinsic Toll-like receptor (TLR) signaling, but the molecular mechanisms underlying TLR delivery to phagosomes and how signaling regulates antigen presentation are incompletely understood. We show a requirement in dendritic cells (DCs) for adaptor protein-3 (AP-3) in efficient TLR recruitment to phagosomes and MHC-II presentation of antigens internalized by phagocytosis but not receptor-mediated endocytosis. DCs from AP-3-deficient pearl mice elicited impaired CD4(+) T cell activation and Th1 effector cell function to particulate antigen in vitro and to recombinant Listeria monocytogenes infection in vivo. Whereas phagolysosome maturation and peptide:MHC-II complex assembly proceeded normally in pearl DCs, peptide:MHC-II export to the cell surface was impeded. This correlated with reduced TLR4 recruitment and proinflammatory signaling from phagosomes by particulate TLR ligands. We propose that AP-3-dependent TLR delivery from endosomes to phagosomes and subsequent signaling mobilize peptide:MHC-II export from intracellular stores.
Collapse
Affiliation(s)
- Adriana R Mantegazza
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
286
|
Zhou J, Li L, Cai ZH. Identification of putative cathepsin S in mangrove red snapper Lutjanus argentimaculatus and its role in antigen presentation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:28-38. [PMID: 22210546 DOI: 10.1016/j.dci.2011.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 05/31/2023]
Abstract
Cathepsin S (CTSS) is a key enzyme employed in the histocompatibility complex (MHC) class II-restricted antigens, which are presented by processing class II-associated invariant chains and loaded antigen peptides into class II molecules. To date, little is known about the character and function of CTSS in fish. In the present study, we screened and identified a CTSS cDNA sequence from the mangrove red snapper head kidney cDNA library. The full-length CTSS cDNA contained 1339-bp nucleotide acids encoding 337 amino acids. The sequence shared high identity and similarity with other known cathepsins, especially CTSS (about 56-78% and 79-89%, respectively). Like other cathepsins, the deduced peptide consisted of regions with N-terminal signal peptides, propeptides, and mature peptides. A typical ERWNIN motif in L-like cathepsins and three conservative catalytic activity sites forming a catalytic triad active center were respectively identified in the pro-peptide and mature peptide regions of CTSS. Phylogenetic analysis revealed that mangrove red snapper CTSS was located in the CTSS clade belonging to the L-like cathepsin group, and evolved from the same ancestry. To further characterize the biological activity of the putative CTSS of mangrove snapper, CTSS was expressed in Escherichia coli M15 strains. Like other mammalian CTSS, the recombinant CTSS (rCTSS) had autocatalytic activation properties, can remove pro-peptides, and can release active mature peptides. Active CTSS had the ability to catalyze Z-Phe-Arg-AMC substrates in acidic conditions (pH 5.0) and weak alkaline environments (pH 7.5); this activity could be blocked by the cysteine protease inhibitor E-64. Active CTSS can process recombinant Ii chains (invariant chains) in a stepwise manner in vitro. The results indicate that mangrove red snapper CTSS is a lysosomal cysteine protease family member with a key role in antigen processing in fish.
Collapse
Affiliation(s)
- Jin Zhou
- The Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | | | | |
Collapse
|
287
|
Haspot F, Lavault A, Sinzger C, Laib Sampaio K, Stierhof YD, Pilet P, Bressolette-Bodin C, Halary F. Human cytomegalovirus entry into dendritic cells occurs via a macropinocytosis-like pathway in a pH-independent and cholesterol-dependent manner. PLoS One 2012; 7:e34795. [PMID: 22496863 PMCID: PMC3322158 DOI: 10.1371/journal.pone.0034795] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 03/08/2012] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that is able to infect fibroblastic, epithelial, endothelial and hematopoietic cells. Over the past ten years, several groups have provided direct evidence that dendritic cells (DCs) fully support the HCMV lytic cycle. We previously demonstrated that the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) has a prominent role in the docking of HCMV on monocyte-derived DCs (MDDCs). The DC-SIGN/HCMV interaction was demonstrated to be a crucial and early event that substantially enhanced infection in trans, i.e., from one CMV-bearing cell to another non-infected cell (or trans-infection), and rendered susceptible cells fully permissive to HCMV infection. Nevertheless, nothing is yet known about how HCMV enters MDDCs. In this study, we demonstrated that VHL/E HCMV virions (an endothelio/dendrotropic strain) are first internalized into MDDCs by a macropinocytosis-like process in an actin- and cholesterol-dependent, but pH-independent, manner. We observed the accumulation of virions in large uncoated vesicles with endosomal features, and the virions remained as intact particles that retained infectious potential for several hours. This trans-infection property was specific to MDDCs because monocyte-derived macrophages or monocytes from the same donor were unable to allow the accumulation of and the subsequent transmission of the virus. Together, these data allowed us to delineate the early mechanisms of the internalization and entry of an endothelio/dendrotropic HCMV strain into human MDDCs and to propose that DCs can serve as a "Trojan horse" to convey CMV from entry sites to other locations that may favor the occurrence of either latency or acute infection.
Collapse
Affiliation(s)
- Fabienne Haspot
- Unité Mixte de Recherche_S 1064, ex643, Institut National de la Santé et de la Recherche Médicale, Institute for Transplantation/Urology and Nephrology, Nantes, France.
| | | | | | | | | | | | | | | |
Collapse
|
288
|
Thacker RI, Janssen EM. Cross-presentation of cell-associated antigens by mouse splenic dendritic cell populations. Front Immunol 2012; 3:41. [PMID: 22566924 PMCID: PMC3342388 DOI: 10.3389/fimmu.2012.00041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/19/2012] [Indexed: 11/13/2022] Open
Abstract
Cross-presentation of cell-associated antigens (Ag) plays an important role in the induction of anti-tumor responses, autoimmune diseases, and transplant rejection. While several dendritic cell (DC) populations can induce pro-inflammatory CD8(+) T cell responses to cell-associated Ag during infection, in the absence of infection, cross-priming of naïve CD8(+) T cells is highly restricted. Comparison of the main splenic DC populations in mice - including the classic, cross-presenting CD8α DC and the recently described merocytic DC (mcDC) - reveals that cross-priming DCs display a distinct phenotype in cell-associated Ag uptake, endosomal/lysosomal trafficking, lysosomal acidification, and Ag persistence compared to non-cross-priming DC populations. Although the CD8α DC and mcDC subsets utilize similar processing pathways to cross-present cell-associated Ag, cross-priming by CD8α DCs is associated with IL-12 production, while the superior priming of the mcDC is critically dependent on type I IFN production. This discussion illustrates how subtle differences in internal processing pathways and their signaling sequelae significantly affect the duration of Ag cross-presentation and cytokine production by DCs, thereby shaping the ensuing CD8(+) T cell response.
Collapse
Affiliation(s)
- Robert I Thacker
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | | |
Collapse
|
289
|
Bartneck M, Keul HA, Wambach M, Bornemann J, Gbureck U, Chatain N, Neuss S, Tacke F, Groll J, Zwadlo-Klarwasser G. Effects of nanoparticle surface-coupled peptides, functional endgroups, and charge on intracellular distribution and functionality of human primary reticuloendothelial cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:1282-92. [PMID: 22406188 DOI: 10.1016/j.nano.2012.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/15/2012] [Accepted: 02/22/2012] [Indexed: 11/27/2022]
Abstract
UNLABELLED The medical use of nanoparticles (NPs) has to consider their interactions with the cells of the reticuloendothelial system. In this study the authors used gold nanorods coated by PEG chains bearing peptides or charged functional groups to study their influence on the uptake, subcellular distribution, and activation of human primary reticuloendothelial cells: monocytes, macrophages (MΦ), immature and mature dendritic cells (DC), and endothelial cells (EC). We found that beside MΦ and immature DC also EC internalize large quantities of NPs and observed an increased uptake of positively charged particles. Most notably, NPs accumulated in the MHC II compartment in mature DC that is involved in antigen processing. Furthermore, surface-coupled peptide sequences RGD and GLF altered the activation profile of DC, and modulated cytokine release in both DC and MΦ in a cell specific manner. These data suggest that the charge of NPs mainly influences their uptake, whereas conjugated peptides alter cell functions. FROM THE CLINICAL EDITOR In this paper the interactions between RES cells and nanoparticles is investigated, concluding that in the case of gold nanorods charge determines uptake characteristics, whereas conjugated peptides determine their function.
Collapse
Affiliation(s)
- Matthias Bartneck
- Department of Medicine III, Medical Faculty, RWTH Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Cebrian I, Visentin G, Blanchard N, Jouve M, Bobard A, Moita C, Enninga J, Moita LF, Amigorena S, Savina A. Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells. Cell 2012; 147:1355-68. [PMID: 22153078 DOI: 10.1016/j.cell.2011.11.021] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/07/2011] [Accepted: 11/10/2011] [Indexed: 11/16/2022]
Abstract
Antigen (Ag) crosspresentation by dendritic cells (DCs) involves the presentation of internalized Ags on MHC class I molecules to initiate CD8+ T cell-mediated immunity in response to certain pathogens and tumor cells. Here, we identify the SNARE Sec22b as a specific regulator of Ag crosspresentation. Sec22b localizes to the ER-Golgi intermediate compartment (ERGIC) and pairs to the plasma membrane SNARE syntaxin 4, which is present in phagosomes (Phgs). Depletion of Sec22b inhibits the recruitment of ER-resident proteins to Phgs and to the vacuole containing the Toxoplasma gondii parasite. In Sec22b-deficient DCs, crosspresentation is compromised after Ag phagocytosis or endocytosis and after invasion by T. gondii. Sec22b silencing inhibited Ag export to the cytosol and increased phagosomal degradation by accelerating lysosomal recruitment. Our findings provide insight into an intracellular traffic pathway required for crosspresentation and show that Sec22b-dependent recruitment of ER proteins to Phgs critically influences phagosomal functions in DCs.
Collapse
Affiliation(s)
- Ignacio Cebrian
- Institut Curie, INSERM U932, Immunité et Cancer, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Flacher V, Tripp CH, Haid B, Kissenpfennig A, Malissen B, Stoitzner P, Idoyaga J, Romani N. Skin langerin+ dendritic cells transport intradermally injected anti-DEC-205 antibodies but are not essential for subsequent cytotoxic CD8+ T cell responses. THE JOURNAL OF IMMUNOLOGY 2012; 188:2146-55. [PMID: 22291181 DOI: 10.4049/jimmunol.1004120] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Incorporation of Ags by dendritic cells (DCs) increases when Ags are targeted to endocytic receptors by mAbs. We have previously demonstrated in the mouse that mAbs against C-type lectins administered intradermally are taken up by epidermal Langerhans cells (LCs), dermal Langerin(neg) DCs, and dermal Langerin(+) DCs in situ. However, the relative contribution of these skin DC subsets to the induction of immune responses after Ag targeting has not been addressed in vivo. We show in this study that murine epidermal LCs and dermal DCs transport intradermally injected mAbs against the lectin receptor DEC-205/CD205 in vivo. Skin DCs targeted in situ with mAbs migrated through lymphatic vessels in steady state and inflammation. In the skin-draining lymph nodes, targeting mAbs were found in resident CD8α(+) DCs and in migrating skin DCs. More than 70% of targeted DCs expressed Langerin, including dermal Langerin(+) DCs and LCs. Numbers of targeted skin DCs in the nodes increased 2-3-fold when skin was topically inflamed by the TLR7 agonist imiquimod. Complete removal of the site where OVA-coupled anti-DEC-205 had been injected decreased endogenous cytotoxic responses against OVA peptide-loaded target cells by 40-50%. Surprisingly, selective ablation of all Langerin(+) skin DCs in Langerin-DTR knock-in mice did not affect such responses independently of the adjuvant chosen. Thus, in cutaneous immunization strategies where Ag is targeted to DCs, Langerin(+) skin DCs play a major role in transport of anti-DEC-205 mAb, although Langerin(neg) dermal DCs and CD8α(+) DCs are sufficient to subsequent CD8(+) T cell responses.
Collapse
Affiliation(s)
- Vincent Flacher
- Department of Dermatology and Venereology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
292
|
The prolyl isomerase Pin1 modulates development of CD8+ cDC in mice. PLoS One 2012; 7:e29808. [PMID: 22238658 PMCID: PMC3251613 DOI: 10.1371/journal.pone.0029808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 12/06/2011] [Indexed: 11/21/2022] Open
Abstract
Background Pin1 has previously been described to regulate cells that participate in both innate and adaptive immunity. Thus far, however, no role for Pin1 has been described in modulating conventional dendritic cells, innate antigen presenting cells that potently activate naïve T cells, thereby bridging innate and adaptive immune responses. Methodology/Principal Findings When challenged with LPS, Pin1-null mice failed to accumulate spleen conventional dendritic cells (cDC). Analysis of steady-state spleen DC populations revealed that Pin1-null mice had fewer CD8+ cDC. This defect was recapitulated by culturing Pin1-null bone marrow with the DC-instructive cytokine Flt3 Ligand. Additionally, injection of Flt3 Ligand for 9 days failed to induce robust expansion of CD8+ cDC in Pin1-null mice. Upon infection with Listeria monocytogenes, Pin1-null mice were defective in stimulating proliferation of adoptively transferred WT CD8+ T cells, suggesting that decreases in Pin1 null CD8+ cDC may affect T cell responses to infection in vivo. Finally, upon analyzing expression of proteins involved in DC development, elevated expression of PU.1 was detected in Pin1-null cells, which resulted from an increase in PU.1 protein half-life. Conclusions/Significance We have identified a novel role for Pin1 as a modulator of CD8+ cDC development. Consistent with reduced numbers of CD8+ cDC in Pin1-null mice, we find that the absence of Pin1 impairs CD8+ T cell proliferation in response to infection with Listeria monocytogenes. These data suggest that, via regulation of CD8+ cDC production, Pin1 may serve as an important modulator of adaptive immunity.
Collapse
|
293
|
Phagosomal proteolysis in dendritic cells is modulated by NADPH oxidase in a pH-independent manner. EMBO J 2011; 31:932-44. [PMID: 22157818 DOI: 10.1038/emboj.2011.440] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022] Open
Abstract
The level of proteolysis within phagosomes of dendritic cells (DCs) is thought to be tightly regulated, as it directly impacts the cell's efficiency to process antigen. Activity of the antimicrobial effector NADPH oxidase (NOX2) has been shown to reduce levels of proteolysis within phagosomes of both macrophages and DCs. However, the proposed mechanisms underlying these observations in these two myeloid cell lineages are dissimilar. Using real-time analysis of lumenal microenvironmental parameters within phagosomes in live bone marrow-derived DCs, we show that the levels of phagosomal proteolysis are diminished in the presence of NOX2 activity, but in contrast to previous reports, the acidification of the phagosome is largely unaffected. As found in macrophages, we show that NOX2 controls phagosomal proteolysis in DCs through redox modulation of local cysteine cathepsins. Aspartic cathepsins were unaffected by redox conditions, indicating that NOX2 skews the relative protease activities in these antigen processing compartments. The ability of DC phagosomes to reduce disulphides was also compromised by NOX2 activity, implicating this oxidase in the control of an additional antigen processing chemistry of DCs.
Collapse
|
294
|
Buschow SI, Lasonder E, Szklarczyk R, Oud MM, de Vries IJM, Figdor CG. Unraveling the human dendritic cell phagosome proteome by organellar enrichment ranking. J Proteomics 2011; 75:1547-62. [PMID: 22146474 DOI: 10.1016/j.jprot.2011.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DC) take up pathogens through phagocytosis and process them into protein and lipid fragments for presentation to T cells. So far, the proteome of the human DC phagosome, a detrimental compartment for antigen processing and presentation as well as for DC activation, remains largely uncharacterized. Here we have analyzed the protein composition of phagosomes from human monocyte-derived DC. For LC-MS/MS analysis we purified phagosomes from DC using latex beads targeted to DC-SIGN, and quantified proteins using a label-free method. We used organellar enrichment ranking (OER) to select proteins with a high potential to be relevant for phagosome function. The method compares phagosome protein abundance with protein abundance in whole DC. Phagosome enrichment indicates specific recruitment to the phagosome rather than co-purification or passive incorporation. Using OER we extracted the most enriched proteins that we further complemented with functionally associated proteins to define a set of 90 phagosomal proteins that included many proteins with established relevance on DC phagosomes as well as high potential novel candidates. We already experimentally confirmed phagosomal recruitment of Galectin-9, which has not been previously associated with phagocytosis, to both bead and pathogen containing phagosomes, suggesting a role for Galectin-9 in DC phagocytosis.
Collapse
Affiliation(s)
- Sonja I Buschow
- Department of Tumor Immunology at the Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Postbox 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
295
|
McNally AK, Anderson JM. Foreign body-type multinucleated giant cells induced by interleukin-4 express select lymphocyte co-stimulatory molecules and are phenotypically distinct from osteoclasts and dendritic cells. Exp Mol Pathol 2011; 91:673-81. [PMID: 21798256 PMCID: PMC3220734 DOI: 10.1016/j.yexmp.2011.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/28/2022]
Abstract
Foreign body-type multinucleated giant cells (FBGC), formed by macrophage fusion, are a prominent cell type on implanted biomaterials, although the roles they play at these and other sites of chronic inflammation are not understood. Why lymphocytes are present in this scenario and the effects of fusing macrophages/FBGC on subsequent lymphocyte responses are also unclear. To address the physiological significance of FBGC in this regard, we employed our in vitro system of interleukin (IL)-4-induced human monocyte-derived macrophage fusion/FBGC formation. Initially, we pursued the identities of lymphocyte co-stimulatory molecules on fusing macrophages/FBGC. In addition, we further compared the FBGC phenotype to that currently associated with osteoclasts and dendritic cells using recognized markers. Immunoblotting of cell lysates and immunochemistry of macrophages/FBGC in situ, revealed that IL-4-induced macrophages/FBGC strongly express HLA-DR, CD98, B7-2 (CD86), and B7-H1 (PD-L1), but not B7-1 (CD80) or B7-H2 (B7RP-1). Furthermore, molecules currently recognized to be expressed on osteoclasts (calcitonin receptor, tartrate-resistant acid phosphatase, RANK) or dendritic cells (CD1a, CD40, CD83, CD95/fas) are undetectable. In contrast, fusing macrophages/FBGC strongly express the macrophage markers αX integrin (CD11c), CD68, and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), whereas CD14 is completely down-modulated with IL-4-induced macrophage fusion. These novel data demonstrate that IL-4-induction of macrophage multinucleation/FBGC formation features the acquisition of a CD14-negative phenotypic profile which is distinguishable from that of dendritic cells and osteoclasts, yet potentially exhibits multiple capacities for lymphocyte interactions with resultant lymphocyte down-modulation.
Collapse
Affiliation(s)
- Amy K McNally
- Department of Pathology, Case Western Reserve University, Wolstein Research Building, Room 5104, 2103 Cornell Road, Cleveland, OH 44106, USA.
| | | |
Collapse
|
296
|
Bozzacco L, Yu H, Zebroski HA, Dengjel J, Deng H, Mojsov S, Steinman RM. Mass spectrometry analysis and quantitation of peptides presented on the MHC II molecules of mouse spleen dendritic cells. J Proteome Res 2011; 10:5016-30. [PMID: 21913724 PMCID: PMC3270889 DOI: 10.1021/pr200503g] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Major histocompatibility complex class II (MHC II) molecules are expressed on the surface of antigen-presenting cells and display short bound peptide fragments derived from self- and nonself antigens. These peptide-MHC complexes function to maintain immunological tolerance in the case of self-antigens and initiate the CD4(+) T cell response in the case of foreign proteins. Here we report the application of LC-MS/MS analysis to identify MHC II peptides derived from endogenous proteins expressed in freshly isolated murine splenic DCs. The cell number was enriched in vivo upon treatment with Flt3L-B16 melanoma cells. In a typical experiment, starting with about 5 × 10(8) splenic DCs, we were able to reliably identify a repertoire of over 100 MHC II peptides originating from about 55 proteins localized in membrane (23%), intracellular (26%), endolysosomal (12%), nuclear (14%), and extracellular (25%) compartments. Using synthetic isotopically labeled peptides corresponding to the sequences of representative bound MHC II peptides, we quantified by LC-MS relative peptide abundance. In a single experiment, peptides were detected in a wide concentration range spanning from 2.5 fmol/μL to 12 pmol/μL or from approximately 13 to 2 × 10(5) copies per DC. These peptides were found in similar amounts on B cells where we detected about 80 peptides originating from 55 proteins distributed homogenously within the same cellular compartments as in DCs. About 90 different binding motifs predicted by the epitope prediction algorithm were found within the sequences of the identified MHC II peptides. These results set a foundation for future studies to quantitatively investigate the MHC II repertoire on DCs generated under different immunization conditions.
Collapse
|
297
|
Parra D, Rieger AM, Li J, Zhang YA, Randall LM, Hunter CA, Barreda DR, Sunyer JO. Pivotal advance: peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells. J Leukoc Biol 2011; 91:525-36. [PMID: 22058420 DOI: 10.1189/jlb.0711372] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Breaking the long-held paradigm that primary B cells are not phagocytic, several studies have demonstrated recently that B cells from fish, amphibians, and reptilians have a significant phagocytic capacity. Whether such capacity has remained conserved in certain mammalian B cell subsets is presently an enigma. Here, we report a previously unrecognized ability of PerC B-1a and B-1b lymphocytes to phagocytose latex beads and bacteria. In contrast, B-2 lymphocytes had an almost negligible ability to internalize these particles. Upon phagocytosis, B-1a and B-1b cells were able to mature their phagosomes into phagolysosomes and displayed the ability to kill internalized bacteria. Importantly, B-1a and B-1b cells effectively present antigen recovered from phagocytosed particles to CD4(+) T cells. However, these cells showed a much lower competence to present soluble antigen or antigen from large, noninternalized particles. B-1 B cells presented particulate and soluble antigen to CD4(+) T cells more efficiently than macrophages, whereas DCs were the most potent APCs. The novel phagocytic and microbicidal abilities identified in B-1 B lymphocytes strengthen the innate nature that has long been attributed to these cells. In the context of adaptive immunity, we show that these innate immune processes are relevant, as they enable B-1 B cells to present phagocytosable particulate antigen. These capacities position these cells at the crossroads that link innate with adaptive immune processes. In a broader context, these newly identified capacities of B-1 B cells further support the previously recognized functional, developmental, and evolutionary relationships between these cells and macrophages.
Collapse
Affiliation(s)
- David Parra
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
298
|
Verschoor A, Neuenhahn M, Navarini AA, Graef P, Plaumann A, Seidlmeier A, Nieswandt B, Massberg S, Zinkernagel RM, Hengartner H, Busch DH. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol 2011; 12:1194-201. [PMID: 22037602 DOI: 10.1038/ni.2140] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/21/2011] [Indexed: 12/30/2022]
Abstract
The acquisition of pathogen-derived antigen by dendritic cells (DCs) is a key event in the generation of cytotoxic CD8(+) T cell responses. In mice, the intracellular bacterium Listeria monocytogenes is directed from the blood to splenic CD8α(+) DCs. We report that L. monocytogenes rapidly associated with platelets in the bloodstream in a manner dependent on GPIb and complement C3. Platelet association targeted a small but immunologically important portion of L. monocytogenes to splenic CD8α(+) DCs, diverting bacteria from swift clearance by other, less immunogenic phagocytes. Thus, an effective balance is established between maintaining sterility of the circulation and induction of antibacterial immunity by DCs. Other gram-positive bacteria also were rapidly tagged by platelets, revealing a broadly active shuttling mechanism for systemic bacteria.
Collapse
Affiliation(s)
- Admar Verschoor
- Institute for Medical Microbiology, Immunology and Hygiene, and Focus Group, Clinical Cell Processing and Purification, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Huang Y, Biswas C, Klos Dehring DA, Sriram U, Williamson EK, Li S, Clarke F, Gallucci S, Argon Y, Burkhardt JK. The actin regulatory protein HS1 is required for antigen uptake and presentation by dendritic cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:5952-63. [PMID: 22031761 DOI: 10.4049/jimmunol.1100870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hematopoietic actin regulatory protein hematopoietic lineage cell-specific protein 1 (HS1) is required for cell spreading and signaling in lymphocytes, but the scope of HS1 function in Ag presentation has not been addressed. We show that dendritic cells (DCs) from HS1(-/-) mice differentiate normally and display normal LPS-induced upregulation of surface markers and cytokines. Consistent with their normal expression of MHC and costimulatory molecules, HS1(-/-) DCs present OVA peptide efficiently to CD4(+) T cells. However, presentation of OVA protein is defective. Similarly, MHC class I-dependent presentation of VSV8 peptide to CD8(+) T cells occurs normally, but cross-presentation of GRP94/VSV8 complexes is defective. Analysis of Ag uptake pathways shows that HS1 is required for receptor-mediated endocytosis, but not for phagocytosis or macropinocytosis. HS1 interacts with dynamin 2, a protein involved in scission of endocytic vesicles. However, HS1(-/-) DCs showed decreased numbers of endocytic invaginations, whereas dynamin-inhibited cells showed accumulation of these endocytic intermediates. Taken together, these studies show that HS1 promotes an early step in the endocytic pathway that is required for efficient Ag presentation of exogenous Ag by DCs.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Stolf BS, Smyrnias I, Lopes LR, Vendramin A, Goto H, Laurindo FRM, Shah AM, Santos CXC. Protein disulfide isomerase and host-pathogen interaction. ScientificWorldJournal 2011; 11:1749-61. [PMID: 22125433 PMCID: PMC3201685 DOI: 10.1100/2011/289182] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/07/2011] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals) functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i) pathogen entry through protein redox switches and redox modification (i.e., intra- and interdisulfide and cysteine oxidation) and (ii) phagocytic ROS production via Nox family NADPH oxidase enzyme and the control of phagolysosome function with key implications for antigen processing. The protein disulfide isomerase (PDI) family of redox chaperones is closely involved in both processes and is also implicated in protein unfolding and trafficking across the endoplasmic reticulum (ER) and towards the cytosol, a thiol-based redox locus for antigen processing. Here, we summarise examples of the cellular association of host PDI with different pathogens and explore the possible roles of pathogen PDIs in infection. A better understanding of these complex regulatory steps will provide insightful information on the redox role and coevolutional biological process, and assist the development of more specific therapeutic strategies in pathogen-mediated infections.
Collapse
Affiliation(s)
- Beatriz S Stolf
- Department of Parasitology, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|