251
|
Levine BD. .VO2max: what do we know, and what do we still need to know? J Physiol 2008; 586:25-34. [PMID: 18006574 PMCID: PMC2375567 DOI: 10.1113/jphysiol.2007.147629] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 11/02/2007] [Indexed: 01/24/2023] Open
Abstract
Maximal oxygen uptake (.VO(2,max)) is a physiological characteristic bounded by the parametric limits of the Fick equation: (left ventricular (LV) end-diastolic volume--LV end-systolic volume) x heart rate x arterio-venous oxygen difference. 'Classical' views of .VO(2,max) emphasize its critical dependence on convective oxygen transport to working skeletal muscle, and recent data are dispositive, proving convincingly that such limits must and do exist. 'Contemporary' investigations into the mechanisms underlying peripheral muscle fatigue due to energetic supply/demand mismatch are clarifying the local mediators of fatigue at the skeletal muscle level, though the afferent signalling pathways that communicate these environmental conditions to the brain and the sites of central integration of cardiovascular and neuromotor control are still being worked out. Elite endurance athletes have a high .VO(2,max) due primarily to a high cardiac output from a large compliant cardiac chamber (including the myocardium and pericardium) which relaxes quickly and fills to a large end-diastolic volume. This large capacity for LV filling and ejection allows preservation of blood pressure during extraordinary rates of muscle blood flow and oxygen transport which support high rates of sustained oxidative metabolism. The magnitude and mechanisms of cardiac phenotype plasticity remain uncertain and probably involve underlying genetic factors, as well as the length, duration, type, intensity and age of initiation of the training stimulus.
Collapse
Affiliation(s)
- Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, 7232 Greenville Avenue, Dallas, TX 75231, USA.
| |
Collapse
|
252
|
Secher NH, Seifert T, Van Lieshout JJ. Cerebral blood flow and metabolism during exercise: implications for fatigue. J Appl Physiol (1985) 2008; 104:306-14. [PMID: 17962575 DOI: 10.1152/japplphysiol.00853.2007] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During exercise: the Kety-Schmidt-determined cerebral blood flow (CBF) does not change because the jugular vein is collapsed in the upright position. In contrast, when CBF is evaluated by 133Xe clearance, by flow in the internal carotid artery, or by flow velocity in basal cerebral arteries, a ∼25% increase is detected with a parallel increase in metabolism. During activation, an increase in cerebral O2 supply is required because there is no capillary recruitment within the brain and increased metabolism becomes dependent on an enhanced gradient for oxygen diffusion. During maximal whole body exercise, however, cerebral oxygenation decreases because of eventual arterial desaturation and marked hyperventilation-related hypocapnia of consequence for CBF. Reduced cerebral oxygenation affects recruitment of motor units, and supplemental O2 enhances cerebral oxygenation and work capacity without effects on muscle oxygenation. Also, the work of breathing and the increasing temperature of the brain during exercise are of importance for the development of so-called central fatigue. During prolonged exercise, the perceived exertion is related to accumulation of ammonia in the brain, and data support the theory that glycogen depletion in astrocytes limits the ability of the brain to accelerate its metabolism during activation. The release of interleukin-6 from the brain when exercise is prolonged may represent a signaling pathway in matching the metabolic response of the brain. Preliminary data suggest a coupling between the circulatory and metabolic perturbations in the brain during strenuous exercise and the ability of the brain to access slow-twitch muscle fiber populations.
Collapse
|
253
|
Affiliation(s)
- Chris R Abbiss
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, 100 Joondalup Drive, Joondalup, Western Australia, Australia.
| | | |
Collapse
|
254
|
Subudhi AW, Lorenz MC, Fulco CS, Roach RC. Cerebrovascular responses to incremental exercise during hypobaric hypoxia: effect of oxygenation on maximal performance. Am J Physiol Heart Circ Physiol 2008; 294:H164-71. [DOI: 10.1152/ajpheart.01104.2007] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sought to describe cerebrovascular responses to incremental exercise and test the hypothesis that changes in cerebral oxygenation influence maximal performance. Eleven men cycled in three conditions: 1) sea level (SL); 2) acute hypoxia [AH; hypobaric chamber, inspired Po2(PiO2) 86 Torr]; and 3) chronic hypoxia [CH; 4,300 m, PiO286 Torr]. At maximal work rate (Ẇmax), fraction of inspired oxygen (FiO2) was surreptitiously increased to 0.60, while subjects were encouraged to continue pedaling. Changes in cerebral (frontal lobe) (COX) and muscle (vastus lateralis) oxygenation (MOX) (near infrared spectroscopy), middle cerebral artery blood flow velocity (MCA Vmean; transcranial Doppler), and end-tidal Pco2(PetCO2) were analyzed across %Ẇmax(significance at P < 0.05). At SL, PetCO2, MCA Vmean, and COXfell as work rate rose from 75 to 100% Ẇmax. During AH, PetCO2and MCA Vmeandeclined from 50 to 100% Ẇmax, while COXfell from rest. With CH, PetCO2and COXdropped throughout exercise, while MCA Vmeanfell only from 75 to 100% Ẇmax. MOXfell from rest to 75% Ẇmaxat SL and AH and throughout exercise in CH. The magnitude of fall in COX, but not MOX, was different between conditions (CH > AH > SL). FiO20.60 at Ẇmaxdid not prolong exercise at SL, yet allowed subjects to continue for 96 ± 61 s in AH and 162 ± 90 s in CH. During FiO20.60, COXrose and MOXremained constant as work rate increased. Thus cerebral hypoxia appeared to impose a limit to maximal exercise during hypobaric hypoxia (PiO286 Torr), since its reversal was associated with improved performance.
Collapse
|
255
|
|
256
|
Racinais S, Bringard A, Puchaux K, Noakes TD, Perrey S. Modulation in voluntary neural drive in relation to muscle soreness. Eur J Appl Physiol 2007; 102:439-46. [PMID: 17978834 PMCID: PMC2267484 DOI: 10.1007/s00421-007-0604-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2007] [Indexed: 11/10/2022]
Abstract
The aim of this study was to investigate whether (1) spinal modulation would change after non-exhausting eccentric exercise of the plantar flexor muscles that produced muscle soreness and (2) central modulation of the motor command would be linked to the development of muscle soreness. Ten healthy subjects volunteered to perform a single bout of backward downhill walking exercise (duration 30 min, velocity 1 ms−1, negative grade −25%, load 12% of body weight). Neuromuscular test sessions [H-reflex, M-wave, maximal voluntary torque (MVT)] were performed before, immediately after, as well as 1–3 days after the exercise bout. Immediately after exercise there was a −15% decrease in MVT of the plantar flexors partly attributable to an alteration in contractile properties (−23% in electrically evoked mechanical twitch). However, MVT failed to recover before the third day whereas the contractile properties had significantly recovered within the first day. This delayed recovery of MVT was likely related to a decrement in voluntary muscle drive. The decrease in voluntary activation occurred in the absence of any variation in spinal modulation estimated from the H-reflex. Our findings suggest the development of a supraspinal modulation perhaps linked to the presence of muscle soreness.
Collapse
Affiliation(s)
- S Racinais
- Motor Efficiency and Deficiency Laboratory, EA 2991, UFR STAPS, Montpellier, France.
| | | | | | | | | |
Collapse
|
257
|
Amann M, Dempsey JA. Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol 2007; 586:161-73. [PMID: 17962334 DOI: 10.1113/jphysiol.2007.141838] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We asked whether the central effects of fatiguing locomotor muscle fatigue exert an inhibitory influence on central motor drive to regulate the total degree of peripheral fatigue development. Eight cyclists performed constant-workload prefatigue trials (a) to exhaustion (83% of peak power output (W(peak)), 10 +/- 1 min; PFT(83%)), and (b) for an identical duration but at 67% W(peak) (PFT(67%)). Exercise-induced peripheral quadriceps fatigue was assessed via changes in potentiated quadriceps twitch force (DeltaQ(tw,pot)) from pre- to post-exercise in response to supra-maximal femoral nerve stimulation (DeltaQ(tw,pot)). On different days, each subject randomly performed three 5 km time trials (TTs). First, subjects repeated PFT(83%) and the TT was started 4 min later with a known level of pre-existing locomotor muscle fatigue (DeltaQ(tw,pot) -36%) (PFT(83%)-TT). Second, subjects repeated PFT(67%) and the TT was started 4 min later with a known level of pre-existing locomotor muscle fatigue (DeltaQ(tw,pot) -20%) (PFT(67%)-TT). Finally, a control TT was performed without any pre-existing level of fatigue. Central neural drive during the three TTs was estimated via quadriceps EMG. Increases in pre-existing locomotor muscle fatigue from control TT to PFT(83%)-TT resulted in significant dose-dependent changes in central motor drive (-23%), power output (-14%), and performance time (+6%) during the TTs. However, the magnitude of locomotor muscle fatigue following various TTs was not different (DeltaQ(tw,pot) of -35 to -37%, P = 0.35). We suggest that feedback from fatiguing muscle plays an important role in the determination of central motor drive and force output, so that the development of peripheral muscle fatigue is confined to a certain level.
Collapse
Affiliation(s)
- Markus Amann
- The John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin Medical School, 4245 Medical Science Center, 1300 University Avenue, Madison, WI 53706, USA.
| | | |
Collapse
|
258
|
Abstract
The present review addresses mechanisms of importance for hyperthermia-induced fatigue during short intense activities and prolonged exercise in the heat. Inferior performance during physical activities with intensities that elicit maximal oxygen uptake is to a large extent related to perturbation of the cardiovascular function, which eventually reduces arterial oxygen delivery to the exercising muscles. Accordingly, aerobic energy turnover is impaired and anaerobic metabolism provokes peripheral fatigue. In contrast, metabolic disturbances of muscle homeostasis are less important during prolonged exercise in the heat, because increased oxygen extraction compensates for the reduction in systemic blood flow. The decrease in endurance seems to involve changes in the function of the central nervous system (CNS) that lead to fatigue. The CNS fatigue appears to be influenced by neurotransmitter activity of the dopaminergic system, but may primarily relate to inhibitory signals from the hypothalamus arising secondary to an increase in brain temperature. Fatigue is an integrated phenomenon, and psychological factors, including the anticipation of fatigue, should not be neglected and the interaction between central and peripheral physiological factors also needs to be considered.
Collapse
Affiliation(s)
- Lars Nybo
- Department of Human Physiology, Institute of Exercise and Sport Sciences, University of Copenhagen, Universitetsparken 13, Copenhagen Ø, Denmark.
| |
Collapse
|
259
|
Noakes TD, Marino FE. Arterial oxygenation, central motor output and exercise performance in humans. J Physiol 2007; 585:919-21; author reply 923-4. [PMID: 17962324 DOI: 10.1113/jphysiol.2007.145110] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
260
|
Lundby C, Boushel R, Robach P, Møller K, Saltin B, Calbet JAL. During hypoxic exercise some vasoconstriction is needed to match O2 delivery with O2 demand at the microcirculatory level. J Physiol 2007; 586:123-30. [PMID: 17932136 DOI: 10.1113/jphysiol.2007.146035] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To test the hypothesis that the increased sympathetic tonus elicited by chronic hypoxia is needed to match O(2) delivery with O(2) demand at the microvascular level eight male subjects were investigated at 4559 m altitude during maximal exercise with and without infusion of ATP (80 mug (kg body mass)(-1) min(-1)) into the right femoral artery. Compared to sea level peak leg vascular conductance was reduced by 39% at altitude. However, the infusion of ATP at altitude did not alter femoral vein blood flow (7.6 +/- 1.0 versus 7.9 +/- 1.0 l min(-1)) and femoral arterial oxygen delivery (1.2 +/- 0.2 versus 1.3 +/- 0.2 l min(-1); control and ATP, respectively). Despite the fact that with ATP mean arterial blood pressure decreased (106.9 +/- 14.2 versus 83.3 +/- 16.0 mmHg, P < 0.05), peak cardiac output remained unchanged. Arterial oxygen extraction fraction was reduced from 85.9 +/- 5.3 to 72.0 +/- 10.2% (P < 0.05), and the corresponding venous O(2) content was increased from 25.5 +/- 10.0 to 46.3 +/- 18.5 ml l(-1) (control and ATP, respectively, P < 0.05). With ATP, leg arterial-venous O(2) difference was decreased (P < 0.05) from 139.3 +/- 9.0 to 116.9 +/- 8.4(-1) and leg .VO(2max) was 20% lower compared to the control trial (1.1 +/- 0.2 versus 0.9 +/- 0.1 l min(-1)) (P = 0.069). In summary, at altitude, some degree of vasoconstriction is needed to match O(2) delivery with O(2) demand. Peak cardiac output at altitude is not limited by excessive mean arterial pressure. Exercising leg .VO(2peak) is not limited by restricted vasodilatation in the altitude-acclimatized human.
Collapse
Affiliation(s)
- Carsten Lundby
- Copenhagen Muscle Research Center, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark.
| | | | | | | | | | | |
Collapse
|
261
|
Foster C, Kuffel E, Bradley N, Battista RA, Wright G, Porcari JP, Lucia A, deKoning JJ. VO2max during successive maximal efforts. Eur J Appl Physiol 2007; 102:67-72. [PMID: 17891414 DOI: 10.1007/s00421-007-0565-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2007] [Indexed: 11/26/2022]
Abstract
The concept of VO(2)max has been a defining paradigm in exercise physiology for >75 years. Within the last decade, this concept has been both challenged and defended. The purpose of this study was to test the concept of VO(2)max by comparing VO(2) during a second exercise bout following a preliminary maximal effort exercise bout. The study had two parts. In Study #1, physically active non-athletes performed incremental cycle exercise. After 1-min recovery, a second bout was performed at a higher power output. In Study #2, competitive runners performed incremental treadmill exercise and, after 3-min recovery, a second bout at a higher speed. In Study #1 the highest VO(2) (bout 1 vs. bout 2) was not significantly different (3.95 +/- 0.75 vs. 4.06 +/- 0.75 l min(-1)). Maximal heart rate was not different (179 +/- 14 vs. 180 +/- 13 bpm) although maximal V(E) was higher in the second bout (141 +/- 36 vs. 151 +/- 34 l min(-1)). In Study #2 the highest VO(2) (bout 1 vs. bout 2) was not significantly different (4.09 +/- 0.97 vs. 4.03 +/- 1.16 l min(-1)), nor was maximal heart rate (184 + 6 vs. 181 +/- 10 bpm) or maximal V(E) (126 +/- 29 vs. 126 +/- 34 l min(-1)). The results support the concept that the highest VO(2) during a maximal incremental exercise bout is unlikely to change during a subsequent exercise bout, despite higher muscular power output. As such, the results support the "classical" view of VO(2)max.
Collapse
Affiliation(s)
- Carl Foster
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA.
| | | | | | | | | | | | | | | |
Collapse
|
262
|
Clark SA, Bourdon PC, Schmidt W, Singh B, Cable G, Onus KJ, Woolford SM, Stanef T, Gore CJ, Aughey RJ. The effect of acute simulated moderate altitude on power, performance and pacing strategies in well-trained cyclists. Eur J Appl Physiol 2007; 102:45-55. [PMID: 17882451 DOI: 10.1007/s00421-007-0554-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2007] [Indexed: 11/26/2022]
Abstract
Athletes regularly compete at 2,000-3,000 m altitude where peak oxygen consumption (VO2peak) declines approximately 10-20%. Factors other than VO2peak including gross efficiency (GE), power output, and pacing are all important for cycling performance. It is therefore imperative to understand how all these factors and not just VO2peak are affected by acute hypobaric hypoxia to select athletes who can compete successfully at these altitudes. Ten well-trained, non-altitude-acclimatised male cyclists and triathletes completed cycling tests at four simulated altitudes (200, 1,200, 2,200, 3,200 m) in a randomised, counter-balanced order. The exercise protocol comprised 5 x 5-min submaximal efforts (50, 100, 150, 200 and 250 W) to determine submaximal VO2 and GE and, after 10-min rest, a 5-min maximal time-trial (5-minTT) to determine VO2peak and mean power output (5-minTT(power)). VO2peak declined 8.2 +/- 2.0, 13.9 +/- 2.9 and 22.5 +/- 3.8% at 1,200, 2,200 and 3,200 m compared with 200 m, respectively, P < 0.05. The corresponding decreases in 5-minTT(power) were 5.8 +/- 2.9, 10.3 +/- 4.3 and 19.8 +/- 3.5% (P < 0.05). GE during the 5-minTT was not different across the four altitudes. There was no change in submaximal VO2 at any of the simulated altitudes, however, submaximal efficiency decreased at 3,200 m compared with both 200 and 1,200 m. Despite substantially reduced power at simulated altitude, there was no difference in pacing at the four altitudes for athletes whose first trial was at 200 or 1,200 m; whereas athletes whose first trial was at 2,200 or 3,200 m tended to mis-pace that effort. In conclusion, during the 5-minTT there was a dose-response effect of hypoxia on both VO2peak and 5-minTT(power) but no effect on GE.
Collapse
Affiliation(s)
- Sally A Clark
- Department of Physiology, Australian Institute of Sport, Canberra, ACT, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Mornieux G, Guenette JA, Sheel AW, Sanderson DJ. Influence of cadence, power output and hypoxia on the joint moment distribution during cycling. Eur J Appl Physiol 2007; 102:11-8. [PMID: 17846783 DOI: 10.1007/s00421-007-0555-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2007] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to use a hypoxic stress as a mean to disrupt the normal coordinative pattern during cycling. Seven male cyclists pedalled at three cadence (60, 80, 100 rpm) and three power output (150, 250, 350 W) conditions in normoxia and hypoxia (15% O2). Simultaneous measurements of pedal force, joint kinematics, % oxyhaemoglobin saturation, and minute ventilation were made for each riding condition. A conventional inverse dynamics approach was used to compute the joint moments of force at the hip, knee, and ankle. The relative contribution of the joint moments of force with respect to the total moment was computed for each subject and trial condition. Overall, the ankle contributed on average 21%, the knee 29% and the hip 50% of the total moment. This was not affected by the relative inspired oxygen concentration. Results showed that the relative ankle moment of force remained at 21% regardless of manipulation. The relative hip moment was reduced on average by 4% with increased cadence and increased on average by 4% with increased power output whereas the knee moment responded in the opposite direction. These results suggest that the coordinative pattern in cycling is a dominant characteristic of cycling biomechanics and remains robust even in the face of arterial hypoxemia.
Collapse
Affiliation(s)
- Guillaume Mornieux
- Institut für Sport und Sportwissenschaft, Universität Freiburg, Freiburg, Germany.
| | | | | | | |
Collapse
|
264
|
Amann M, Pegelow DF, Jacques AJ, Dempsey JA. Inspiratory muscle work in acute hypoxia influences locomotor muscle fatigue and exercise performance of healthy humans. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2036-45. [PMID: 17715180 DOI: 10.1152/ajpregu.00442.2007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our aim was to isolate the independent effects of 1) inspiratory muscle work (W(b)) and 2) arterial hypoxemia during heavy-intensity exercise in acute hypoxia on locomotor muscle fatigue. Eight cyclists exercised to exhaustion in hypoxia [inspired O(2) fraction (Fi(O(2))) = 0.15, arterial hemoglobin saturation (Sa(O(2))) = 81 +/- 1%; 8.6 +/- 0.5 min, 273 +/- 6 W; Hypoxia-control (Ctrl)] and at the same work rate and duration in normoxia (Sa(O(2)) = 95 +/- 1%; Normoxia-Ctrl). These trials were repeated, but with a 35-80% reduction in W(b) achieved via proportional assist ventilation (PAV). Quadriceps twitch force was assessed via magnetic femoral nerve stimulation before and 2 min after exercise. The isolated effects of W(b) in hypoxia on quadriceps fatigue, independent of reductions in Sa(O(2)), were revealed by comparing Hypoxia-Ctrl and Hypoxia-PAV at equal levels of Sa(O(2)) (P = 0.10). Immediately after hypoxic exercise potentiated twitch force of the quadriceps (Q(tw,pot)) decreased by 30 +/- 3% below preexercise baseline, and this reduction was attenuated by about one-third after PAV exercise (21 +/- 4%; P = 0.0007). This effect of W(b) on quadriceps fatigue occurred at exercise work rates during which, in normoxia, reducing W(b) had no significant effect on fatigue. The isolated effects of reduced Sa(O(2)) on quadriceps fatigue, independent of changes in W(b), were revealed by comparing Hypoxia-PAV and Normoxia-PAV at equal levels of W(b). Q(tw,pot) decreased by 15 +/- 2% below preexercise baseline after Normoxia-PAV, and this reduction was exacerbated by about one-third after Hypoxia-PAV (-22 +/- 3%; P = 0.034). We conclude that both arterial hypoxemia and W(b) contribute significantly to the rate of development of locomotor muscle fatigue during exercise in acute hypoxia; this occurs at work rates during which, in normoxia, W(b) has no effect on peripheral fatigue.
Collapse
Affiliation(s)
- Markus Amann
- John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin-Madison Medical School, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
265
|
Subudhi AW, Dimmen AC, Roach RC. Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. J Appl Physiol (1985) 2007; 103:177-83. [PMID: 17431082 DOI: 10.1152/japplphysiol.01460.2006] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine if fatigue at maximal aerobic power output was associated with a critical decrease in cerebral oxygenation, 13 male cyclists performed incremental maximal exercise tests (25 W/min ramp) under normoxic (Norm: 21% FiO2) and acute hypoxic (Hypox: 12% FiO2) conditions. Near-infrared spectroscopy (NIRS) was used to monitor concentration (μM) changes of oxy- and deoxyhemoglobin (Δ[O2Hb], Δ[HHb]) in the left vastus lateralis muscle and frontal cerebral cortex. Changes in total Hb were calculated (Δ[THb] = Δ[O2Hb] + Δ[HHb]) and used as an index of change in regional blood volume. Repeated-measures ANOVA were performed across treatments and work rates (α = 0.05). During Norm, cerebral oxygenation rose between 25 and 75% peak power output {Powerpeak; increased (inc) Δ[O2Hb], inc. Δ[HHb], inc. Δ[THb]}, but fell from 75 to 100% Powerpeak {decreased (dec) Δ[O2Hb], inc. Δ[HHb], no change Δ[THb]}. In contrast, during Hypox, cerebral oxygenation dropped progressively across all work rates (dec. Δ[O2Hb], inc. Δ[HHb]), whereas Δ[THb] again rose up to 75% Powerpeak and remained constant thereafter. Changes in cerebral oxygenation during Hypox were larger than Norm. In muscle, oxygenation decreased progressively throughout exercise in both Norm and Hypox (dec. Δ[O2Hb], inc. Δ [HHb], inc. Δ[THb]), although Δ[O2Hb] was unchanged between 75 and 100% Powerpeak. Changes in muscle oxygenation were also greater in Hypox compared with Norm. On the basis of these findings, it is unlikely that changes in cerebral oxygenation limit incremental exercise performance in normoxia, yet it is possible that such changes play a more pivotal role in hypoxia.
Collapse
Affiliation(s)
- Andrew W Subudhi
- Department of Biology, University of Colorado Altitude Research Center, Denver Health Science Center and Colorado Springs Campuses, Colorado 80918, USA.
| | | | | |
Collapse
|
266
|
Nybo L, Rasmussen P. Inadequate Cerebral Oxygen Delivery and Central Fatigue during Strenuous Exercise. Exerc Sport Sci Rev 2007; 35:110-8. [PMID: 17620929 DOI: 10.1097/jes.0b013e3180a031ec] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Under resting conditions, the brain is protected against hypoxia because cerebral blood flow increases when the arterial oxygen tension becomes low. However, during strenuous exercise, hyperventilation lowers the arterial carbon dioxide tension and blunts the increase in cerebral blood flow, which can lead to an inadequate oxygen delivery to the brain and contribute to the development of fatigue.
Collapse
Affiliation(s)
- Lars Nybo
- Institute of Exercise and Sport Sciences and Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
267
|
Katayama K, Amann M, Pegelow DF, Jacques AJ, Dempsey JA. Effect of arterial oxygenation on quadriceps fatigability during isolated muscle exercise. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1279-86. [PMID: 17122329 DOI: 10.1152/ajpregu.00554.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of various levels of oxygenation on quadriceps muscle fatigability during isolated muscle exercise was assessed in six male subjects. Twitch force (Qtw) was assessed using supramaximal magnetic femoral nerve stimulation. In experiment 1, maximal voluntary contraction (MVC) and Qtw of resting quadriceps muscle were measured in normoxia [inspired O2 fraction (FiO2) = 0.21, percent arterial O2 saturation (Sp[Formula: see text]) = 98.4%, estimated arterial O2 content (CaO2) = 20.8 ml/dl], acute hypoxia (FiO2 = 0.11, Sp[Formula: see text] = 74.6%, CaO2 = 15.7 ml/dl), and acute hyperoxia (FiO2 = 1.0, Sp[Formula: see text] = 100%, CaO2 = 22.6 ml/dl). No significant differences were found for MVC and Qtw among the three FiO2 levels. In experiment 2, the subjects performed three sets of nine, intermittent, isometric, unilateral, submaximal quadriceps contractions (62% MVC followed by 1 MVC in each set) while breathing each FiO2. Qtw was assessed before and after exercise, and myoelectrical activity of the vastus lateralis was obtained during exercise. The percent reduction of twitch force (potentiated Qtw) in hypoxia (−27.0%) was significantly ( P < 0.05) greater than in normoxia (−21.4%) and hyperoxia (−19.9%), as were the changes in intratwitch measures of contractile properties. The increase in integrated electromyogram over the course of the nine contractions in hypoxia (15.4%) was higher ( P < 0.05) than in normoxia (7.2%) or hyperoxia (6.7%). These results demonstrate that quadriceps muscle fatigability during isolated muscle exercise is exacerbated in acute hypoxia, and these effects are independent of the relative exercise intensity.
Collapse
Affiliation(s)
- Keisho Katayama
- The John Rankin Laboratory of Pulmonary Medicine, Department of Health, University of Wisconsin-Madison, 4245 Medical Science Center, 1300 University Ave., Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
268
|
Amann M, Romer LM, Subudhi AW, Pegelow DF, Dempsey JA. Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. J Physiol 2007; 581:389-403. [PMID: 17317739 PMCID: PMC2075206 DOI: 10.1113/jphysiol.2007.129700] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We examined the effects of hypoxia severity on peripheral versus central determinants of exercise performance. Eight cyclists performed constant-load exercise to exhaustion at various fractions of inspired O2 fraction (FIO2 0.21/0.15/0.10). At task failure (pedal frequency < 70% target) arterial hypoxaemia was surreptitiously reversed via acute O2 supplementation (FIO2 = 0.30) and subjects were encouraged to continue exercising. Peripheral fatigue was assessed via changes in potentiated quadriceps twitch force (DeltaQ(tw,pot)) as measured pre- versus post-exercise in response to supramaximal femoral nerve stimulation. At task failure in normoxia (haemoglobin saturation (SpO2) approximately 94%, 656 +/- 82 s) and moderate hypoxia (SpO2) approximately 82%, 278 +/- 16 s), hyperoxygenation had no significant effect on prolonging endurance time. However, following task failure in severe hypoxia (SpO2) approximately 67%; 125 +/- 6 s), hyperoxygenation elicited a significant prolongation of time to exhaustion (171 +/- 61%). The magnitude of DeltaQ(tw,pot) at exhaustion was not different among the three trials (-35% to -36%, P = 0.8). Furthermore, quadriceps integrated EMG, blood lactate, heart rate, and effort perceptions all rose significantly throughout exercise, and to a similar extent at exhaustion following hyperoxygenation at all levels of arterial oxygenation. Since hyperoxygenation prolonged exercise time only in severe hypoxia, we repeated this trial and assessed peripheral fatigue following task failure prior to hyperoxygenation (125 +/- 6 s). Although Q(tw,pot) was reduced from pre-exercise baseline (-23%; P < 0.01), peripheral fatigue was substantially less (P < 0.01) than that observed at task failure in normoxia and moderate hypoxia. We conclude that across the range of normoxia to severe hypoxia, the major determinants of central motor output and exercise performance switches from a predominantly peripheral origin of fatigue to a hypoxia-sensitive central component of fatigue, probably involving brain hypoxic effects on effort perception.
Collapse
Affiliation(s)
- Markus Amann
- University of Wisconsin Medical School, John Rankin Laboratory of Pulmonary Medicine, Madison, WI, USA.
| | | | | | | | | |
Collapse
|
269
|
Schuler B, Thomsen JJ, Gassmann M, Lundby C. Timing the arrival at 2340 m altitude for aerobic performance. Scand J Med Sci Sports 2007; 17:588-94. [PMID: 17316377 DOI: 10.1111/j.1600-0838.2006.00611.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study tested the hypothesis that maximal oxygen uptake (VO(2max)) and performance increase upon altitude acclimatization at moderate altitude. Eight elite cyclists were studied at sea level, and after 1 (Day 1), 7 (Day 7), 14 (Day 14) and 21 (Day 21) days of exposure to 2340 m. Capillary blood samples were taken on these days before performing two consecutive maximal exercise trials. Acclimatization increased hemoglobin concentration and arterial oxygen content. On Day 1, VO(2max) and time to exhaustion (at 80% of sea-level maximal power output) decreased by 12.8% (P<0.05) and 25.8% (P<0.05), respectively, compared with the corresponding sea-level values. Subsequently, these parameters increased by 3.2% (P<0.05) and 6.0% (P<0.05) from Days 1 to 7, by 4.8% (P<0.05) and 5.7% (P<0.05) from Days 7 to 14, followed by 0.7% (P>0.05) and 1.4% (P>0.05) from Days 14 to 21, respectively. These data suggest that endurance athletes competing at altitudes around 2340 m should expose themselves to this altitude at least 14 days before competition.
Collapse
Affiliation(s)
- B Schuler
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
270
|
Romer LM, Haverkamp HC, Amann M, Lovering AT, Pegelow DF, Dempsey JA. Effect of acute severe hypoxia on peripheral fatigue and endurance capacity in healthy humans. Am J Physiol Regul Integr Comp Physiol 2007; 292:R598-606. [PMID: 16959862 DOI: 10.1152/ajpregu.00269.2006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that severe hypoxia limits exercise performance via decreased contractility of limb locomotor muscles. Nine male subjects [mean ± SE maximum O2 uptake (V̇o2 max) = 56.5 ± 2.7 ml·kg−1·min−1] cycled at ≥90% V̇o2 max to exhaustion in normoxia [NORM-EXH; inspired O2 fraction (FiO2) = 0.21, arterial O2 saturation (SpO2) = 93 ± 1%] and hypoxia (HYPOX-EXH; FiO2 = 0.13, SpO2 = 76 ± 1%). The subjects also exercised in normoxia for a time equal to that achieved in hypoxia (NORM-CTRL; SpO2 = 96 ± 1%). Quadriceps twitch force, in response to supramaximal single (nonpotentiated and potentiated 1 Hz) and paired magnetic stimuli of the femoral nerve (10–100 Hz), was assessed pre- and at 2.5, 35, and 70 min postexercise. Hypoxia exacerbated exercise-induced peripheral fatigue, as evidenced by a greater decrease in potentiated twitch force in HYPOX-EXH vs. NORM-CTRL (−39 ± 4 vs. −24 ± 3%, P < 0.01). Time to exhaustion was reduced by more than two-thirds in HYPOX-EXH vs. NORM-EXH (4.2 ± 0.5 vs. 13.4 ± 0.8 min, P < 0.01); however, peripheral fatigue was not different in HYPOX-EXH vs. NORM-EXH (−34 ± 4 vs. −39 ± 4%, P > 0.05). Blood lactate concentration and perceptions of limb discomfort were higher throughout HYPOX-EXH vs. NORM-CTRL but were not different at end-exercise in HYPOX-EXH vs. NORM-EXH. We conclude that severe hypoxia exacerbates peripheral fatigue of limb locomotor muscles and that this effect may contribute, in part, to the early termination of exercise.
Collapse
Affiliation(s)
- Lee M Romer
- Centre for Sports Medicine and Human Performance, Brunel University, Middlesex, UB8 3PH, UK.
| | | | | | | | | | | |
Collapse
|
271
|
The Limits of Human Endurance: What is the Greatest Endurance Performance of All Time? Which Factors Regulate Performance at Extreme Altitude? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007. [DOI: 10.1007/978-0-387-75434-5_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
272
|
Perry CGR, Talanian JL, Heigenhauser GJF, Spriet LL. The effects of training in hyperoxia vs. normoxia on skeletal muscle enzyme activities and exercise performance. J Appl Physiol (1985) 2006; 102:1022-7. [PMID: 17170202 DOI: 10.1152/japplphysiol.01215.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inspiring a hyperoxic (H) gas permits subjects to exercise at higher power outputs while training, but there is controversy as to whether this improves skeletal muscle oxidative capacity, maximal O(2) consumption (Vo(2 max)), and endurance performance to a greater extent than training in normoxia (N). To determine whether the higher power output during H training leads to a greater increase in these parameters, nine recreationally active subjects were randomly assigned in a single-blind fashion to train in H (60% O(2)) or N for 6 wk (3 sessions/wk of 10 x 4 min at 90% Vo(2 max)). Training heart rate (HR) was maintained during the study by increasing power output. After at least 6 wk of detraining, a second 6-wk training protocol was completed with the other breathing condition. Vo(2 max) and cycle time to exhaustion at 90% of pretraining Vo(2 max) were tested in room air pre- and posttraining. Muscle biopsies were sampled pre- and posttraining for citrate synthase (CS), beta-hydroxyacyl-coenzyme A dehydrogenase (beta-HAD), and mitochondrial aspartate aminotransferase (m-AsAT) activity measurements. Training power outputs were 8% higher (17 W) in H vs. N. However, both conditions produced similar improvements in Vo(2 max) (11-12%); time to exhaustion (approximately 100%); and CS (H, 30%; N, 32%), beta-HAD (H, 23%; N, 21%), and m-AsAT (H, 21%; N, 26%) activities. We conclude that the additional training stimulus provided by training in H was not sufficient to produce greater increases in the aerobic capacity of skeletal muscle and whole body Vo(2 max) and exercise performance compared with training in N.
Collapse
Affiliation(s)
- Christopher G R Perry
- Dept. of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | | | |
Collapse
|
273
|
Downey AE, Chenoweth LM, Townsend DK, Ranum JD, Ferguson CS, Harms CA. Effects of inspiratory muscle training on exercise responses in normoxia and hypoxia. Respir Physiol Neurobiol 2006; 156:137-46. [PMID: 16996322 DOI: 10.1016/j.resp.2006.08.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/17/2006] [Accepted: 08/18/2006] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to determine the effects of inspiratory muscle training (IMT) on exercise in hypoxia (H) and normoxia (N). A 4-week IMT program was implemented with 12 healthy subjects using an inspiratory muscle trainer set at either 15% (C; n=5) or 50% (IMT; n=7) maximal inspiratory mouth pressure (PImax). Two treadmill tests (85% VO2max) to exhaustion and measures of diaphragm thickness (Tdi) and function were completed before and after training in H and N. Significant increases of 8-12% and 24.5+/-3.1% in Tdi and PImax, respectively, were seen in the IMT group. Time to exhaustion remained unchanged in all conditions. Inspiratory muscle fatigue (downward arrowPImax) following exercise was reduced approximately 10% (P<0.05) in IMT after both N and H. During H, IMT reduced (P<0.05) VO2 by 8-12%, cardiac output by 14+/-2%, ventilation by 25+/-3%; and increased arterial oxygen saturation by 4+/-1% and lung diffusing capacity by 22+/-3%. Ratings of perceived exertion and dyspnea were also significantly reduced. These data suggest that IMT significantly improves structural and functional physiologic measures in hypoxic exercise.
Collapse
Affiliation(s)
- Amy E Downey
- Department of Kinesiology, Kansas State University, Manhattan, 1A Natatorium, KS 66506, United States
| | | | | | | | | | | |
Collapse
|
274
|
Affiliation(s)
- Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Spain.
| |
Collapse
|