251
|
Salisbury EM, Game DS, Lechler RI. Transplantation tolerance. Pediatr Nephrol 2014; 29:2263-72. [PMID: 24213880 PMCID: PMC4212135 DOI: 10.1007/s00467-013-2659-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 01/26/2023]
Abstract
Although transplantation has been a standard medical practice for decades, marked morbidity from the use of immunosuppressive drugs and poor long-term graft survival remain important limitations in the field. Since the first solid organ transplant between the Herrick twins in 1954, transplantation immunology has sought to move away from harmful, broad-spectrum immunosuppressive regimens that carry with them the long-term risk of potentially life-threatening opportunistic infections, cardiovascular disease, and malignancy, as well as graft toxicity and loss, towards tolerogenic strategies that promote long-term graft survival. Reports of "transplant tolerance" in kidney and liver allograft recipients whose immunosuppressive drugs were discontinued for medical or non-compliant reasons, together with results from experimental models of transplantation, provide the proof-of-principle that achieving tolerance in organ transplantation is fundamentally possible. However, translating the reconstitution of immune tolerance into the clinical setting is a daunting challenge fraught with the complexities of multiple interacting mechanisms overlaid on a background of variation in disease. In this article, we explore the basic science underlying mechanisms of tolerance and review the latest clinical advances in the quest for transplantation tolerance.
Collapse
Affiliation(s)
- Emma M. Salisbury
- Section of Immunobiology, Division of Immunology and Inflammation, Department of Medicine, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, Exhibition Road, London, SW7 2AZ UK
| | - David S. Game
- Department of Renal Medicine, Guy’s and St. Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
| | - Robert I. Lechler
- King’s Health Partners Academic Health Sciences Centre, King’s College London, London, WC2R 2LS UK
| |
Collapse
|
252
|
Passerini L, Mel ER, Sartirana C, Fousteri G, Bondanza A, Naldini L, Roncarolo MG, Bacchetta R. CD4+ T Cells from IPEX Patients Convert into Functional and Stable Regulatory T Cells by FOXP3 Gene Transfer. Sci Transl Med 2013; 5:215ra174. [DOI: 10.1126/scitranslmed.3007320] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
253
|
Jethwa H, Adami AA, Maher J. Use of gene-modified regulatory T-cells to control autoimmune and alloimmune pathology: is now the right time? Clin Immunol 2013; 150:51-63. [PMID: 24333533 DOI: 10.1016/j.clim.2013.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/21/2013] [Accepted: 11/06/2013] [Indexed: 12/22/2022]
Abstract
Adoptive immunotherapy using genetically targeted T-cells has recently begun to achieve impressive clinical impact in selected tumor types. Furthermore, long-term follow-up studies indicate thus far that integrating viral vectors do not elicit clinically evident genotoxicity in T-cells, unlike hematopoietic stem cells. The optimism engendered by this clinical experience provides a platform for consideration of the extended use of this technology in other disease types. One area of particular interest entails the harnessing of regulatory T-cells (Tregs) in order to down-regulate unwanted immune responses. Increasing evidence supports the efficacy of this approach in pre-clinical models of autoimmune disease and allograft rejection. Nonetheless, questions remain about optimal host cell, transgene cargo, phenotypic stability of engineered cells in vivo and potential for toxicity. Here, we review the evidence that genetically engineered Tregs can effectively dampen pathogenic immune responses and critically evaluate the prospects for clinical development of this approach.
Collapse
Affiliation(s)
- Hannah Jethwa
- Department of Medicine, Barnet and Chase Farm NHS Trust, Barnet, Hertfordshire EN5 3DJ, UK
| | - Antonella A Adami
- King's College London, King's Health Partners Integrated Cancer Centre, Department of Research Oncology, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - John Maher
- King's College London, King's Health Partners Integrated Cancer Centre, Department of Research Oncology, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK; Department of Immunology, Barnet and Chase Farm NHS Trust, Barnet, Hertfordshire EN5 3DJ, UK; Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK.
| |
Collapse
|
254
|
Okubo Y, Mera T, Wang L, Faustman DL. Homogeneous expansion of human T-regulatory cells via tumor necrosis factor receptor 2. Sci Rep 2013; 3:3153. [PMID: 24193319 PMCID: PMC3818650 DOI: 10.1038/srep03153] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/17/2013] [Indexed: 02/07/2023] Open
Abstract
T-regulatory cells (T(regs)) are a rare lymphocyte subtype that shows promise for treating infectious disease, allergy, graft-versus-host disease, autoimmunity, and asthma. Clinical applications of T(regs) have not been fully realized because standard methods of expansion ex vivo produce heterogeneous progeny consisting of mixed populations of CD4 + T cells. Heterogeneous progeny are risky for human clinical trials and face significant regulatory hurdles. With the goal of producing homogeneous T(regs), we developed a novel expansion protocol targeting tumor necrosis factor receptors (TNFR) on T(regs). In in vitro studies, a TNFR2 agonist was found superior to standard methods in proliferating human T(regs) into a phenotypically homogeneous population consisting of 14 cell surface markers. The TNFR2 agonist-expanded T(regs) also were functionally superior in suppressing a key T(reg) target cell, cytotoxic T-lymphocytes. Targeting the TNFR2 receptor during ex vivo expansion is a new means for producing homogeneous and potent human T(regs) for clinical opportunities.
Collapse
Affiliation(s)
- Yoshiaki Okubo
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Rm 3602, MGH-East, Bldg 149, 13th Street, Boston, MA 02129
| | | | | | | |
Collapse
|
255
|
Abstract
Organ transplantation appears today to be the best alternative to replace the loss of vital organs induced by various diseases. Transplants can, however, also be rejected by the recipient. In this review, we provide an overview of the mechanisms and the cells/molecules involved in acute and chronic rejections. T cells and B cells mainly control the antigen-specific rejection and act either as effector, regulatory, or memory cells. On the other hand, nonspecific cells such as endothelial cells, NK cells, macrophages, or polymorphonuclear cells are also crucial actors of transplant rejection. Last, beyond cells, the high contribution of antibodies, chemokines, and complement molecules in graft rejection is discussed in this article. The understanding of the different components involved in graft rejection is essential as some of them are used in the clinic as biomarkers to detect and quantify the level of rejection.
Collapse
Affiliation(s)
- Aurélie Moreau
- INSERM UMR 1064, Center for Research in Transplantation and Immunology-ITUN, CHU de Nantes 44093, France
| | | | | | | |
Collapse
|
256
|
Tang Q, Bluestone JA. Regulatory T-cell therapy in transplantation: moving to the clinic. Cold Spring Harb Perspect Med 2013; 3:3/11/a015552. [PMID: 24186492 DOI: 10.1101/cshperspect.a015552] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regulatory T cells (Tregs) are essential to transplantation tolerance and their therapeutic efficacy is well documented in animal models. Moreover, human Tregs can be identified, isolated, and expanded in short-term ex vivo cultures so that a therapeutic product can be manufactured at relevant doses. Treg therapy is being planned at multiple transplant centers around the world. In this article, we review topics critical to effective implementation of Treg therapy in transplantation. We will address issues such as Treg dose, antigen specificity, and adjunct therapies required for transplant tolerance induction. We will summarize technical advances in Treg manufacturing and provide guidelines for identity and purity assurance of Treg products. Clinical trial designs and Treg manufacturing plans that incorporate the most up-to-date scientific understanding in Treg biology will be essential for harnessing the tolerogenic potential of Treg therapy in transplantation.
Collapse
Affiliation(s)
- Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, California 94143
| | | |
Collapse
|
257
|
Putnam AL, Safinia N, Medvec A, Laszkowska M, Wray M, Mintz MA, Trotta E, Szot GL, Liu W, Lares A, Lee K, Laing A, Lechler RI, Riley JL, Bluestone JA, Lombardi G, Tang Q. Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. Am J Transplant 2013; 13:3010-20. [PMID: 24102808 PMCID: PMC4161737 DOI: 10.1111/ajt.12433] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 01/25/2023]
Abstract
Regulatory T cell (Treg) therapy has the potential to induce transplantation tolerance so that immunosuppression and associated morbidity can be minimized. Alloantigen-reactive Tregs (arTregs) are more effective at preventing graft rejection than polyclonally expanded Tregs (PolyTregs) in murine models. We have developed a manufacturing process to expand human arTregs in short-term cultures using good manufacturing practice-compliant reagents. This process uses CD40L-activated allogeneic B cells to selectively expand arTregs followed by polyclonal restimulation to increase yield. Tregs expanded 100- to 1600-fold were highly alloantigen reactive and expressed the phenotype of stable Tregs. The alloantigen-expanded Tregs had a diverse TCR repertoire. They were more potent than PolyTregs in vitro and more effective at controlling allograft injuries in vivo in a humanized mouse model.
Collapse
Affiliation(s)
- A. L. Putnam
- UCSF Diabetes Center, University of California, San Francisco, San Francisco CA
| | - N. Safinia
- MRC Centre for Transplantation, King’s College London, London, UK
| | - A. Medvec
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - M. Laszkowska
- Department of Surgery, University of California, San Francisco, San Francisco CA
| | - M. Wray
- Department of Surgery, University of California, San Francisco, San Francisco CA
| | - M. A. Mintz
- Department of Surgery, University of California, San Francisco, San Francisco CA
| | - E. Trotta
- UCSF Diabetes Center, University of California, San Francisco, San Francisco CA,Department of Surgery, University of California, San Francisco, San Francisco CA
| | - G. L. Szot
- UCSF Diabetes Center, University of California, San Francisco, San Francisco CA,Department of Surgery, University of California, San Francisco, San Francisco CA
| | - W. Liu
- UCSF Diabetes Center, University of California, San Francisco, San Francisco CA
| | - A. Lares
- UCSF Diabetes Center, University of California, San Francisco, San Francisco CA
| | - K. Lee
- Department of Surgery, University of California, San Francisco, San Francisco CA
| | - A. Laing
- MRC Centre for Transplantation, King’s College London, London, UK
| | - R. I. Lechler
- MRC Centre for Transplantation, King’s College London, London, UK
| | - J. L. Riley
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - J. A. Bluestone
- UCSF Diabetes Center, University of California, San Francisco, San Francisco CA
| | - G. Lombardi
- MRC Centre for Transplantation, King’s College London, London, UK
| | - Q. Tang
- Department of Surgery, University of California, San Francisco, San Francisco CA,Corresponding author: Qizhi Tang,
| |
Collapse
|
258
|
Regulatory T-cell directed therapies in liver diseases. J Hepatol 2013; 59:1127-34. [PMID: 23727305 DOI: 10.1016/j.jhep.2013.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 05/17/2013] [Accepted: 05/22/2013] [Indexed: 01/07/2023]
|
259
|
González-Amaro R, Cortés JR, Sánchez-Madrid F, Martín P. Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med 2013; 19:625-32. [PMID: 23954168 PMCID: PMC4171681 DOI: 10.1016/j.molmed.2013.07.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/02/2013] [Accepted: 07/18/2013] [Indexed: 12/28/2022]
Abstract
Early studies described CD69 as a leukocyte activation marker, and suggested its involvement in the activation of different leukocyte subsets as well as in the pathogenesis of chronic inflammation. However, recent investigations have showed that CD69 knockout mice exhibit an enhanced or reduced susceptibility to different experimental models of inflammatory diseases, including those mediated by T helper 17 (Th17) lymphocytes. In this regard, the expression of CD69, both in Th17 lymphocytes and by a subset of regulatory T cells, has an important role in the control of the immune response and the inflammatory phenomenon. Therefore, different evidence indicates that CD69 exerts a complex immunoregulatory role in humans, and that it could be considered as a target molecule for the therapy of immune-mediated diseases.
Collapse
Affiliation(s)
| | - Jose R. Cortés
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain, 28029
| | - Francisco Sánchez-Madrid
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain, 28029
- Servicio de Inmunología, Hospital de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain, 28006
| | - Pilar Martín
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain, 28029
| |
Collapse
|
260
|
Wang S, Chen HC, Fan CB, Wen DG, Hou JQ, Ouyang J. Prolongation of rat renal allograft survival by CD4⁺CD25⁻ T cells induced by recipient dendritic cells transfected with IKK2dn. Mol Med Rep 2013; 8:1519-24. [PMID: 24045636 DOI: 10.3892/mmr.2013.1689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/28/2013] [Indexed: 11/05/2022] Open
Abstract
Previous studies have demonstrated that recipient-derived immature dendritic cells transfected by recombinant adenovirus-mediated IKK2dn (Adv‑IKK2dn) and loaded with donor splenocyte lysate generate CD4+CD25- T cells (Adv-IKK2dn-CD4+CD25- T cells). These cells may inhibit T cell responses in vitro. In the present study, Lewis (LW) rats were administered with an intravenous injection of naive CD4+ T cells, empty adenovirus (Adv-0)-dendritic cell-generated CD4+CD25- T cells (Adv-0-CD4+CD25- T cells), Adv-IKK2dn-CD4+CD25- T cells or an equal volume of normal saline, seven days prior to transplantation. The potency and the mechanism of action of Adv-IKK2dn-CD4+CD25- T cells was analyzed, as well as an investigation of their tolerogenic properties in vivo. Administration of Adv-IKK2dn-CD4+CD25- T cells in vivo to LW rats was observed to markedly prolong the survival of a kidney allograft from Brown Norway rats. Furthermore, the Adv-IKK2dn-CD4+CD25- T cell-treated group exhibited significantly reduced levels of interleukin (Il)-2 and interferon-γ production and increased Il-10 and transforming growth factor-β (TGF-β) secretion. The serum creatinine levels remained at low levels in the Adv-IKK2dn-CD4+CD25- T cell-treated group. Their ability to induce allogeneic T cell proliferation was markedly reduced compared with the other groups. These observations indicated that Adv-IKK2dn-CD4+CD25- T cells induce prolongation of kidney allograft survival in vivo, which is hypothesized to be due to the high expression levels of Il-10 and TGF-β.
Collapse
Affiliation(s)
- Shen Wang
- Department of Urology, The Fourth People's Hospital of Changzhou, Changzhou, Jiangsu 213032, P.R. China
| | | | | | | | | | | |
Collapse
|
261
|
Cell therapy as a strategy to minimize maintenance immunosuppression in solid organ transplant recipients. Curr Opin Organ Transplant 2013; 18:408-15. [PMID: 23838645 DOI: 10.1097/mot.0b013e328363319d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review presents a clinically focussed introduction to cell-based immunotherapy in solid organ transplantation. The potential benefits and risks of cell-based immunotherapeutics are critically discussed. RECENT FINDINGS The use of immunoregulatory cells as medicinal agents is very much in its infancy, but the field is expanding rapidly. In principle, this approach permits manipulation of specific immunological functions, opening new possibilities in the field of tolerance-promoting therapies. Several immunoregulatory cell types have reached the point of preclinical and clinical development that should allow them to be tested in early-phase clinical trials. Solid organ transplantation represents an important potential indication for the use of cell-based immunosuppressive agents because promoting immunological regulation towards allografts remains a promising strategy for preventing chronic rejection. SUMMARY Remarkable progress is being made in the implementation of novel cell-based immunotherapeutics in solid organ transplantation studies. It is hoped that these new immunoregulatory therapies will afford better long-term transplant outcomes by mitigating chronic graft injury.
Collapse
|
262
|
Human regulatory T cells against minor histocompatibility antigens: ex vivo expansion for prevention of graft-versus-host disease. Blood 2013; 122:2251-61. [PMID: 23908471 DOI: 10.1182/blood-2013-03-492397] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alloreactive donor T cells against host minor histocompatibility antigens (mHAs) cause graft-versus-host disease (GVHD) after marrow transplantation from HLA-identical siblings. We sought to identify and expand regulatory CD4 T cells (Tregs) specific for human mHAs in numbers and potency adequate for clinical testing. Purified Tregs from normal donors were stimulated by dendritic cells (DCs) from their HLA-matched siblings in the presence of interleukin 2, interleukin 15, and rapamycin. Male-specific Treg clones against H-Y antigens DBY, UTY, or DFFRY-2 suppressed conventional CD4 T cell (Tconv) response to the specific antigen. In the blood of 16 donors, we found a 24-fold (range, 8-fold to 39-fold) excess Tconvs over Tregs reactive against sibling mHAs. We expanded mHA-specific Tregs from 4 blood samples and 4 leukaphereses by 155- to 405-fold. Cultured Tregs produced allospecific suppression, maintained demethylation of the Treg-specific Foxp3 gene promoter, Foxp3 expression, and transforming growth factor β production. The rare CD4 T conv and CD8 T cells in the end product were anergic. This is the first report of detection and expansion of potent mHA-specific Tregs from HLA-matched siblings in sufficient numbers for application in human transplant trials.
Collapse
|
263
|
Berglund D, Karlsson M, Biglarnia AR, Lorant T, Tufveson G, Korsgren O, Carlsson B. Obtaining regulatory T cells from uraemic patients awaiting kidney transplantation for use in clinical trials. Clin Exp Immunol 2013; 173:310-22. [PMID: 23607776 PMCID: PMC3722931 DOI: 10.1111/cei.12112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2013] [Indexed: 02/06/2023] Open
Abstract
Adoptive transfer of regulatory T cells (T(regs)) has been proposed for use as a cellular therapy to induce transplantation tolerance. Preclinical data are encouraging, and clinical trials with T(reg) therapy are anticipated. In this study, we investigate different strategies for the isolation and expansion of CD4(+) CD25(high) CD127(low) T(regs) from uraemic patients. We use allogeneic dendritic cells (DCs) as feeder cells for the expansion and compare T(reg) preparations isolated by either fluorescence activated cell sorting (FACS) or magnetic activated cell sorting (MACS) that have been expanded subsequently with either mature or tolerogenic DCs. Expanded T(reg) preparations have been characterized by their purity, cytokine production and in-vitro suppressive ability. The results show that T(reg) preparations can be isolated from uraemic patients by both FACS and MACS. Also, the type of feeder cells used in the expansion affects both the purity and the functional properties of the T(reg) preparations. In particular, FACS-sorted T(reg) preparations expanded with mature DCs secrete more interleukin (IL)-10 and granzyme B than FACS-sorted T(reg) preparations expanded with tolerogenic DCs. This is a direct comparison between different isolation techniques and expansion protocols with T(regs) from uraemic patients that may guide future efforts to produce clinical-grade T(regs) for use in kidney transplantation.
Collapse
Affiliation(s)
- D Berglund
- Department of Surgical Sciences, Section of Transplantation Surgery, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
264
|
Martin GH, Grégoire S, Landau DA, Pilon C, Grinberg-Bleyer Y, Charlotte F, Mège JP, Chatenoud L, Salomon BL, Cohen JL. In vivo activation of transferred regulatory T cells specific for third-party exogenous antigen controls GVH disease in mice. Eur J Immunol 2013; 43:2263-72. [PMID: 23765389 PMCID: PMC4738555 DOI: 10.1002/eji.201343449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/09/2013] [Accepted: 06/10/2013] [Indexed: 12/23/2022]
Abstract
Treg cells hold enormous promise for therapeutic application in GVH disease, a lethal complication of allogeneic HSC transplantation. Mouse studies showed that donor‐derived recipient‐specific Treg (rsTreg) cells are far more efficient than polyclonal Treg cells in suppressing GVH disease. However, clinical grade preparations of rsTreg cells carries the risk of containing significant numbers of highly pathogenic recipient‐specific effector T cells. We hypothesized that an alternative approach using Treg cells specific for an exogenous (i.e. nondonor, nonrecipient) Ag (exoTreg cells) can overcome this risk by taking advantage of the bystander suppressive effect of Treg cells. For this, we used a murine model for aggressive GVH disease. We expanded ex vivo exoTreg cells that are primed against the HY Ag, which is only expressed in males. ExoTreg cells supressed GVH disease as efficiently as rsTreg cells in recipient male mice. We also applied this strategy in female mice that do not express this Ag. While exoTreg cells were not effective in female recipients when applied alone, providing the cognate HY Ag in vivo along side effectively activated exoTreg cells and completely abrogated GVH disease, establishing a targeted on/off system to provide a suppressive effect on alloreactive effector T cells.
Collapse
Affiliation(s)
- Gaëlle H Martin
- UPMC Univ Paris 06, CNRS UMR7211, INSERM U959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
van Gelder T, Baan C, Vincenti F, Mannon RB. Report of the second joint meeting of ESOT and AST: current pipelines in biotech and pharma. Transpl Int 2013; 26:938-48. [PMID: 23822608 DOI: 10.1111/tri.12140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/15/2013] [Accepted: 06/10/2013] [Indexed: 12/14/2022]
Abstract
Following the first joint meeting organized by the European (ESOT) and American (AST) Societies of Transplantation in 2010, a second joint meeting was held in Nice, France, on October 12-14, 2012 at the Palais de la Mediterannee. Co-chairs of the scientific advisory committee were Dr. Flavio Vincenti (AST) and Dr. Teun Van Gelder (ESOT). The goal was to discuss the key unmet needs in solid organ transplantation with the opportunity to interrelate current basic research efforts with clinical translation. Thus, the topic of this second meeting "Transformational therapies and diagnostics in transplantation" was devised and a summary of this meeting follows.
Collapse
|
266
|
Huang H, Ma Y, Dawicki W, Zhang X, Gordon JR. Comparison of induced versus natural regulatory T cells of the same TCR specificity for induction of tolerance to an environmental antigen. THE JOURNAL OF IMMUNOLOGY 2013; 191:1136-43. [PMID: 23817420 DOI: 10.4049/jimmunol.1201899] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent evidence shows that natural CD25(+)Foxp3(+) regulatory T cells (nTreg) and induced CD25(+)Foxp3(+) regulatory T cells (iTreg) both contribute to tolerance in mouse models of colitis and asthma, but there is little evidence regarding their relative contributions to this tolerance. We compared the abilities of nTreg and iTreg, both from OVA-TCR-transgenic OTII mice, to mediate tolerance in OVA-asthmatic C57BL/6 mice. The iTreg were differentiated from Th2 effector T cells by exposure to IL-10-differentiated dendritic cells (DC10) in vitro or in vivo, whereas we purified nTreg from allergen-naive mice and exposed them to DC10 before use. Each Treg population was subsequently repurified and tested for its therapeutic efficacy in vitro and in vivo. DC10 engaged the nTreg in a cognate fashion in Forster (or fluorescence) resonance energy transfer assays, and these nTreg reduced in vitro OVA-asthmatic Th2 effector T cell responses by 41-56%, whereas the comparator iTreg reduced these responses by 72-86%. Neutralization of IL-10, but not TGF-β, eliminated the suppressive activities of iTreg but not nTreg. Delivery of 5 × 10(5) purified nTreg reduced allergen challenge-induced airway IL-4 (p ≤ 0.03) and IL-5 (p ≤ 0.001) responses of asthmatic recipients by ≤ 23% but did not affect airway hyperresponsiveness or IgE levels, whereas equal numbers of iTreg of identical TCR specificity reduced all airway responses to allergen challenge by 82-96% (p ≤ 0.001) and fully normalized airway hyperresponsiveness. These data confirm that allergen-specific iTreg and nTreg have active roles in asthma tolerance and that iTreg are substantially more tolerogenic in this setting.
Collapse
Affiliation(s)
- Hui Huang
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | | | | | | | | |
Collapse
|
267
|
Safinia N, Leech J, Hernandez-Fuentes M, Lechler R, Lombardi G. Promoting transplantation tolerance; adoptive regulatory T cell therapy. Clin Exp Immunol 2013; 172:158-68. [PMID: 23574313 DOI: 10.1111/cei.12052] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 01/09/2023] Open
Abstract
Transplantation is a successful treatment for end-stage organ failure. Despite improvements in short-term outcome, long-term survival remains suboptimal because of the morbidity and mortality associated with long-term use of immunosuppression. There is, therefore, a pressing need to devise protocols that induce tolerance in order to minimize or completely withdraw immunosuppression in transplant recipients. In this review we will discuss how regulatory T cells (T(regs)) came to be recognized as an attractive way to promote transplantation tolerance. We will summarize the preclinical data, supporting the importance of these cells in the induction and maintenance of immune tolerance and that provide the rationale for the isolation and expansion of these cells for cellular therapy. We will also describe the data from the first clinical trials, using T(regs) to inhibit graft-versus-host disease (GVHD) after haematopoietic stem cell transplantation and will address both the challenges and opportunities in human T(reg) cell therapy.
Collapse
Affiliation(s)
- N Safinia
- MRC Centre for Transplantation, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | | |
Collapse
|
268
|
Leech JM, Sharif-Paghaleh E, Maher J, Livieratos L, Lechler RI, Mullen GE, Lombardi G, Smyth LA. Whole-body imaging of adoptively transferred T cells using magnetic resonance imaging, single photon emission computed tomography and positron emission tomography techniques, with a focus on regulatory T cells. Clin Exp Immunol 2013; 172:169-77. [PMID: 23574314 DOI: 10.1111/cei.12087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 01/03/2023] Open
Abstract
Cell-based therapies using natural or genetically modified regulatory T cells (T(regs)) have shown significant promise as immune-based therapies. One of the main difficulties facing the further advancement of these therapies is that the fate and localization of adoptively transferred T(regs) is largely unknown. The ability to dissect the migratory pathway of these cells in a non-invasive manner is of vital importance for the further development of in-vivo cell-based immunotherapies, as this technology allows the fate of the therapeutically administered cell to be imaged in real time. In this review we will provide an overview of the current clinical imaging techniques used to track T cells and T(regs) in vivo, including magnetic resonance imaging (MRI) and positron emission tomography (PET)/single photon emission computed tomography (SPECT). In addition, we will discuss how the finding of these studies can be used, in the context of transplantation, to define the most appropriate T(reg) subset required for cellular therapy.
Collapse
Affiliation(s)
- J M Leech
- Medical Research Council, Centre for Transplantation, King's College London, King's Health Partners, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
269
|
Tang Q, Lee K. Regulatory T-cell therapy for transplantation: how many cells do we need? Curr Opin Organ Transplant 2013; 17:349-54. [PMID: 22790069 DOI: 10.1097/mot.0b013e328355a992] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW As regulatory T-cell (Treg) therapy begins to enter the clinic and more clinical trials of Treg therapy are being actively planned for solid organ transplantations, a thorough quantitative assessment of therapeutic dosing is essential for the design of an effective Treg-therapy trial in the solid organ transplant setting. RECENT FINDINGS Considering the requirement for a high percentage of Tregs to control transplant rejection in mouse models of transplantation and the total cellularity of the human T-cell compartment, we estimate that it would take billions of Tregs, preferably alloantigen-reactive Tregs, to effectively control transplant rejection in humans. Donor dendritic cells and B cells can be used to selectively expand donor alloantigen-reactive Tregs. Recent improvements in manufacturing alloantigen-reactive Tregs demonstrate that billions of alloantigen-reactive T cells can be manufactured in short-term cultures. SUMMARY It is feasible to grow human alloantigen-reactive Tregs up to billions, an optimal number to achieve therapeutic efficacy. Better understanding of Treg lineage commitment and further technological investments are needed to ease the implementation and ensure consistency in Treg manufacturing.
Collapse
Affiliation(s)
- Qizhi Tang
- Department of Surgery, University of California, San Francisco, California 94143-0780, USA.
| | | |
Collapse
|
270
|
Abstract
PURPOSE OF REVIEW Transfer of human regulatory T cells (Tregs) has become an attractive therapeutic alternative to improve the long-term outcome in transplantation and thus reduce the side-effects of conventional immunosuppressive drugs. Here, we summarize the recent findings on human Treg subsets, their phenotype and in-vivo function. RECENT FINDINGS In the last 2 years, it has become apparent that several Treg subsets exist that specifically regulate Th1-driven, Th2-driven, or Th17-driven immune responses; these subsets are very unstable and rapidly change their phenotype, for example, there is loss of Foxp3 expression upon extensive ex-vivo expansion and only the administration of rapamycin has been shown to be able to interfere reproducibly. New humanized mouse models incorporating human solid-organ grafts have been developed, which have been used to test the human Treg in-vivo function, and the first human Treg-cell products have been tested for safety and efficacy in stem cell transplantation. SUMMARY With the recent findings, we have gained a better understanding of Treg heterogeneity, plasticity and function. Using the outcomes of clinical trials in stem cell transplantation, we have learned that adoptive therapy of Tregs is well tolerated and we are now awaiting the first result in solid-organ transplantation from the 'ONE Study'.
Collapse
|
271
|
Abstract
Tolerance has been defined as graft-specific survival in the absence of continued immunosuppression. The mechanisms of central and peripheral tolerance are discussed in this review, as well as the barriers and limitations in achieving graft-specific tolerance. The need remains for definitive laboratory assays to determine the presence of a tolerant state. Genetic biomarker analysis pre-transplant may allow for better donor: recipient matching, lessening the need for immunosuppression, while post-transplant analysis of biomarkers, certain cytokines, and regulatory leukocytes may permit minimally invasive assessment of graft function and potentially, of graft-specific tolerance.
Collapse
Affiliation(s)
- Colin Brinkman
- Departments of Surgery and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
272
|
Canavan JB, Afzali B, Lord GM, Lombardi G. Assessment of regulatory T-cell function in forthcoming clinical trials of cell therapy. Expert Rev Mol Diagn 2013; 13:5-7. [PMID: 23256698 PMCID: PMC3815565 DOI: 10.1586/erm.12.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
“Tregs are highly promising agents for the prevention of graft-versus-host disease, induction of tolerance to transplanted antigens and the treatment of autoimmunity in humans.”
Collapse
Affiliation(s)
- James B Canavan
- Medical Research Council Center for Transplantation, King’s College London, London, UK; Department of Experimental Immunobiology, King’s College London, London, UK; National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Behdad Afzali
- Medical Research Council Center for Transplantation, King’s College London, London, UK; Department of Immunoregulation and Immune Intervention, King’s College London, London, UK; National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Graham M Lord
- Medical Research Council Center for Transplantation, King’s College London, London, UK; Department of Experimental Immunobiology, King’s College London, London, UK; National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Giovanna Lombardi
- Medical Research Council Center for Transplantation, King’s College London, London, UK; Department of Immunoregulation & Immune Intervention, King’s College London, London, UK; National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK. Tel.: +44 207 188 7670, Fax: +44 207 188 7675,
| |
Collapse
|
273
|
Issa F, Robb RJ, Wood KJ. The where and when of T cell regulation in transplantation. Trends Immunol 2012; 34:107-13. [PMID: 23228885 DOI: 10.1016/j.it.2012.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/08/2012] [Accepted: 11/13/2012] [Indexed: 01/03/2023]
Abstract
Multiple cell types contribute to the peripheral regulation of T cell alloresponses in haematopoieitc cell transplantation (HCT) and solid organ transplantation (SOT). Of these, regulatory T cells (Tregs) are the principal players and have shown the greatest success in the therapeutic control of detrimental immune responses. Investigations into the induction, location, and mechanism of suppression utilised by Tregs to control alloreactive responses are ongoing. The activation and homing characteristics of Tregs are important to their regulatory capabilities, with activation and homing occurring in the same time and space as conventional T cells. This review discusses these characteristics and recent advances in the field as we move closer to the ultimate goal of utilising Tregs as treatment for allograft rejection and graft-versus-host disease (GvHD).
Collapse
Affiliation(s)
- Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, UK
| | | | | |
Collapse
|
274
|
Coughlan AM, Freeley SJ, Robson MG. Humanised mice have functional human neutrophils. J Immunol Methods 2012; 385:96-104. [PMID: 22917930 DOI: 10.1016/j.jim.2012.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/06/2012] [Accepted: 08/06/2012] [Indexed: 01/20/2023]
Abstract
The differences between murine and human neutrophils mean that findings in mice may not translate to humans, and therefore an in vivo model with human neutrophils would be an important methodological advance. We generated humanised mice by injecting human cord blood derived CD34+ stem cells into irradiated NOD-scid-γc(-/-) mice. At least 3 months after engraftment, treatment of mice with GCSF mobilised circulating human neutrophils, which comprised 2.6% of human leukocytes, and led to L-selectin shedding and upregulation of CD66b, CD11b and CD63. Subsequent in vivo LPS treatment led to further downregulation of L-selectin with upregulation of CD66b and CD63, and also resulted in human neutrophil sequestration in the lungs. Furthermore, human neutrophils from these mice were capable of robust functional responses. They were shown to undergo a respiratory burst, and to degranulate with upregulation of CD63 and CD66b, in response to fMLP and Escherichia coli. These data show that functional human neutrophils develop from CD34+ cord blood stem cells in NOD-scid-γc(-/-) mice. They suggest that this approach may facilitate the in vivo study of human neutrophils in clinically relevant models of infection and autoimmunity.
Collapse
Affiliation(s)
- Alice M Coughlan
- King's College London, King's Health Partners, Medical Research Council Centre for Transplantation, Guy's Hospital, London SE1 9RT, UK
| | | | | |
Collapse
|
275
|
Schoenbrunn A, Frentsch M, Kohler S, Keye J, Dooms H, Moewes B, Dong J, Loddenkemper C, Sieper J, Wu P, Romagnani C, Matzmohr N, Thiel A. A Converse 4-1BB and CD40 Ligand Expression Pattern Delineates Activated Regulatory T Cells (Treg) and Conventional T Cells Enabling Direct Isolation of Alloantigen-Reactive Natural Foxp3+ Treg. THE JOURNAL OF IMMUNOLOGY 2012; 189:5985-94. [DOI: 10.4049/jimmunol.1201090] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
276
|
Kotsiou E, Davies JK. New ways to separate graft-versus-host disease and graft-versus-tumour effects after allogeneic haematopoietic stem cell transplantation. Br J Haematol 2012; 160:133-45. [PMID: 23121307 DOI: 10.1111/bjh.12115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/13/2012] [Indexed: 12/25/2022]
Abstract
A major challenge to transplant immunologists and physicians remains the separation of harmful graft-versus-host disease (GvHD) and beneficial graft-versus-tumour (GvT) effects after allogeneic haematopoietic stem cell transplantation. Recent advances in our understanding of the allogeneic immune response provide potential new opportunities to achieve this goal. Three potential new approaches that capitalize on this new knowledge are considered in depth; the manipulation of organ-specific cytokines and other pro-inflammatory signals, the selective manipulation of donor effector T cell migration, and the development of cell-mediated immunosuppressive strategies using donor-derived regulatory T cells. These new approaches could provide strategies for local control of allogeneic immune responses, a new paradigm to separate GvHD and GvT effects. Although these strategies are currently in their infancy and have challenges to successful translation to clinical practice, all have exciting potential for the future.
Collapse
Affiliation(s)
- Eleni Kotsiou
- Centre for Haemato-Oncology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London, UK
| | | |
Collapse
|
277
|
An effective immune-monitoring protocol based on gene expression profiles in the peripheral T-cell fraction reactive to graft antigens. Transplantation 2012; 94:802-8. [PMID: 22992770 DOI: 10.1097/tp.0b013e3182696a5b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The ability to induce tolerance, or at least minimize the need for immunosuppressive therapy, is a high priority in organ transplantation. Accomplishing this goal requires a novel method for determining when a patient has become tolerant to or is rejecting their graft. Here, we sought to develop an efficient monitoring protocol based on gene expression profiles of recipient T cells in murine skin and islet allograft models. METHODS Unlike previous studies, here, gene expression analysis was focused on donor antigen-reactive T cells, which were prepared by collecting CD69(+) T cells from cocultures of recipient peripheral T cells and donor antigen-presenting cells. Candidate tolerance and rejection biomarker genes were selected from a CD69(+) T-cell microarray analysis, and their expression levels were measured in the recipient CD69(+) T-cell fraction using quantitative reverse transcription polymerase chain reaction. RESULTS Our new monitoring protocol was capable of precisely detecting the immune status of recipients relative to their graft regardless of the organ received, whether they were taking immunosuppressive drugs, or different strains of origin. CONCLUSIONS Gene expression analysis focusing on recipient CD69(+) T cells as the donor antigen-reactive T-cell population could be used as an effective and sensitive method for monitoring transplant patients.
Collapse
|
278
|
Sagoo P, Ratnasothy K, Tsang Y, Barber LD, Noble A, Lechler RI, Lombardi G. Alloantigen-specific regulatory T cells prevent experimental chronic graft-versus-host disease by simultaneous control of allo- and autoreactivity. Eur J Immunol 2012; 42:3322-33. [DOI: 10.1002/eji.201242770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/02/2012] [Accepted: 09/12/2012] [Indexed: 01/01/2023]
Affiliation(s)
- Pervinder Sagoo
- NIHR Biomedical Research Centre; Guy's & St Thomas’ NHS Foundation Trust & King's College London, London; UK
- MRC Centre for Transplantation; Department of Transplantation; Immunoregulation & Mucosal Biology; King's College London, London; UK
| | - Kulachelvy Ratnasothy
- MRC Centre for Transplantation; Department of Transplantation; Immunoregulation & Mucosal Biology; King's College London, London; UK
| | - Yuen Tsang
- MRC Centre for Transplantation; Department of Transplantation; Immunoregulation & Mucosal Biology; King's College London, London; UK
| | - Linda D. Barber
- Department of Haematological Medicine; King's College London; London UK
| | - Alistair Noble
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma; King's College London; London UK
| | - Robert I. Lechler
- MRC Centre for Transplantation; Department of Transplantation; Immunoregulation & Mucosal Biology; King's College London, London; UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation; Department of Transplantation; Immunoregulation & Mucosal Biology; King's College London, London; UK
| |
Collapse
|
279
|
de Oliveira VL, Keijsers RRMC, van de Kerkhof PCM, Seyger MMB, Fasse E, Svensson L, Latta M, Norsgaard H, Labuda T, Hupkens P, van Erp PEJ, Joosten I, Koenen HJPM. Humanized mouse model of skin inflammation is characterized by disturbed keratinocyte differentiation and influx of IL-17A producing T cells. PLoS One 2012; 7:e45509. [PMID: 23094018 PMCID: PMC3477148 DOI: 10.1371/journal.pone.0045509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 08/21/2012] [Indexed: 12/14/2022] Open
Abstract
Humanized mouse models offer a challenging possibility to study human cell function in vivo. In the huPBL-SCID-huSkin allograft model human skin is transplanted onto immunodeficient mice and allowed to heal. Thereafter allogeneic human peripheral blood mononuclear cells are infused intra peritoneally to induce T cell mediated inflammation and microvessel destruction of the human skin. This model has great potential for in vivo study of human immune cells in (skin) inflammatory processes and for preclinical screening of systemically administered immunomodulating agents. Here we studied the inflammatory skin response of human keratinocytes and human T cells and the concomitant systemic human T cell response. As new findings in the inflamed human skin of the huPBL-SCID-huSkin model we here identified: 1. Parameters of dermal pathology that enable precise quantification of the local skin inflammatory response exemplified by acanthosis, increased expression of human β-defensin-2, Elafin, K16, Ki67 and reduced expression of K10 by microscopy and immunohistochemistry. 2. Induction of human cytokines and chemokines using quantitative real-time PCR. 3. Influx of inflammation associated IL-17A-producing human CD4+ and CD8+ T cells as well as immunoregulatory CD4+Foxp3+ cells using immunohistochemistry and -fluorescence, suggesting that active immune regulation is taking place locally in the inflamed skin. 4. Systemic responses that revealed activated and proliferating human CD4+ and CD8+ T cells that acquired homing marker expression of CD62L and CLA. Finally, we demonstrated the value of the newly identified parameters by showing significant changes upon systemic treatment with the T cell inhibitory agents cyclosporine-A and rapamycin. In summary, here we equipped the huPBL-SCID-huSkin humanized mouse model with relevant tools not only to quantify the inflammatory dermal response, but also to monitor the peripheral immune status. This combined approach will gain our understanding of the dermal immunopathology in humans and benefit the development of novel therapeutics for controlling inflammatory skin diseases.
Collapse
Affiliation(s)
- Vivian L. de Oliveira
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Romy R. M. C. Keijsers
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Dermatology Department, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Marieke M. B. Seyger
- Dermatology Department, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Esther Fasse
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Lars Svensson
- Department of Disease Pharmacology, LEO Pharma, Ballerup, Denmark
| | - Markus Latta
- Department of Disease Pharmacology, LEO Pharma, Ballerup, Denmark
| | - Hanne Norsgaard
- Department of Molecular Biomedicine, LEO Pharma, Ballerup, Denmark
| | - Tord Labuda
- Department of Molecular Biomedicine, LEO Pharma, Ballerup, Denmark
| | - Pieter Hupkens
- Department of Plastic Surgery Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Piet E. J. van Erp
- Dermatology Department, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Hans J. P. M. Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
280
|
|
281
|
Siepert A, Ahrlich S, Vogt K, Appelt C, Stanko K, Kühl A, van den Brandt J, Reichardt HM, Nizze H, Lehmann M, Tiedge M, Volk HD, Sawitzki B, Reinke P. Permanent CNI treatment for prevention of renal allograft rejection in sensitized hosts can be replaced by regulatory T cells. Am J Transplant 2012; 12:2384-94. [PMID: 22702307 DOI: 10.1111/j.1600-6143.2012.04143.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent data suggest that donor-specific memory T cells (T(mem)) are an independent risk factor for rejection and poor graft function in patients and a major challenge for immunosuppression minimizing strategies. Many tolerance induction protocols successfully proven in small animal models e.g. costimulatory blockade, T cell depletion failed in patients. Consequently, there is a need for more predictive transplant models to evaluate novel promising strategies, such as adoptive transfer of regulatory T cells (Treg). We established a clinically more relevant, life-supporting rat kidney transplant model using a high responder (DA to LEW) recipients that received donor-specific CD4(+)/ 8(+) GFP(+) T(mem) before transplantation to achieve similar pre-transplant frequencies of donor-specific T(mem) as seen in many patients. T cell depletion alone induced long-term graft survival in naïve recipients but could not prevent acute rejection in T(mem)(+) rats, like in patients. Only if T cell depletion was combined with permanent CNI-treatment, the intragraft inflammation, and acute/chronic allograft rejection could be controlled long-term. Remarkably, combining 10 days CNI treatment and adoptive transfer of Tregs (day 3) but not Treg alone also induced long-term graft survival and an intragraft tolerance profile (e.g. high TOAG-1) in T(mem)(+) rats. Our model allows evaluation of novel therapies under clinically relevant conditions.
Collapse
Affiliation(s)
- A Siepert
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Ali N, Flutter B, Sanchez Rodriguez R, Sharif-Paghaleh E, Barber LD, Lombardi G, Nestle FO. Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγnull mice display a T-effector memory phenotype. PLoS One 2012; 7:e44219. [PMID: 22937164 PMCID: PMC3429415 DOI: 10.1371/journal.pone.0044219] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 08/03/2012] [Indexed: 11/30/2022] Open
Abstract
The occurrence of Graft-versus-Host Disease (GvHD) is a prevalent and potentially lethal complication that develops following hematopoietic stem cell transplantation. Humanized mouse models of xenogeneic-GvHD based upon immunodeficient strains injected with human peripheral blood mononuclear cells (PBMC; “Hu-PBMC mice”) are important tools to study human immune function in vivo. The recent introduction of targeted deletions at the interleukin-2 common gamma chain (IL-2Rγnull), notably the NOD-scid IL-2Rγnull (NSG) and BALB/c-Rag2null IL-2Rγnull (BRG) mice, has led to improved human cell engraftment. Despite their widespread use, a comprehensive characterisation of engraftment and GvHD development in the Hu-PBMC NSG and BRG models has never been performed in parallel. We compared engrafted human lymphocyte populations in the peripheral blood, spleens, lymph nodes and bone marrow of these mice. Kinetics of engraftment differed between the two strains, in particular a significantly faster expansion of the human CD45+ compartment and higher engraftment levels of CD3+ T-cells were observed in NSG mice, which may explain the faster rate of GvHD development in this model. The pathogenesis of human GvHD involves anti-host effector cell reactivity and cutaneous tissue infiltration. Despite this, the presence of T-cell subsets and tissue homing markers has only recently been characterised in the peripheral blood of patients and has never been properly defined in Hu-PBMC models of GvHD. Engrafted human cells in NSG mice shows a prevalence of tissue homing cells with a T-effector memory (TEM) phenotype and high levels of cutaneous lymphocyte antigen (CLA) expression. Characterization of Hu-PBMC mice provides a strong preclinical platform for the application of novel immunotherapies targeting TEM-cell driven GvHD.
Collapse
Affiliation(s)
- Niwa Ali
- St. John's Institute of Dermatology, King's College London and NIHR Biomedical Research Centre, London, United Kingdom
- MRC Centre for Transplantation, King's College London and NIHR Biomedical Research Centre, London, United Kingdom
| | - Barry Flutter
- St. John's Institute of Dermatology, King's College London and NIHR Biomedical Research Centre, London, United Kingdom
| | - Robert Sanchez Rodriguez
- St. John's Institute of Dermatology, King's College London and NIHR Biomedical Research Centre, London, United Kingdom
| | - Ehsan Sharif-Paghaleh
- MRC Centre for Transplantation, King's College London and NIHR Biomedical Research Centre, London, United Kingdom
| | - Linda D. Barber
- Department of Haematological Medicine, King's College London, London, United Kingdom
| | - Giovanna Lombardi
- MRC Centre for Transplantation, King's College London and NIHR Biomedical Research Centre, London, United Kingdom
| | - Frank O. Nestle
- St. John's Institute of Dermatology, King's College London and NIHR Biomedical Research Centre, London, United Kingdom
- * E-mail:
| |
Collapse
|
283
|
Issa F, Wood KJ. Translating tolerogenic therapies to the clinic - where do we stand? Front Immunol 2012; 3:254. [PMID: 22934094 PMCID: PMC3422982 DOI: 10.3389/fimmu.2012.00254] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/30/2012] [Indexed: 12/12/2022] Open
Abstract
Manipulation of the immune system to prevent the development of a specific immune response is an ideal strategy to improve outcomes after transplantation. A number of experimental techniques exploiting central and peripheral tolerance mechanisms have demonstrated success, leading to the first early phase clinical trials for tolerance induction. The first major strategy centers on the facilitation of donor-cell mixed chimerism in the transplant recipient with the use of bone marrow or hematopoietic stem cell transplantation. The second strategy, utilizing peripheral regulatory mechanisms, focuses on cellular therapy with regulatory T cells. This review examines the key studies and novel research directions in the field of immunological tolerance.
Collapse
Affiliation(s)
- Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, Level 6, John Radcliffe Hospital, University of Oxford Oxford, UK
| | | |
Collapse
|
284
|
Abstract
PURPOSE OF REVIEW Regulatory T cells (Treg) maintain immune homeostasis and prevent autoimmune disease. This review summarizes the recent advances in Treg knowledge relevant to type 1 diabetes, focusing on Treg signature, antigen specificity and development and function in the face of inflammation. RECENT FINDINGS Thymus-derived natural regulatory T cells (nTreg) programmed by the transcription factor forkhead box P3 (FOXP3) and peripheral-induced regulatory T cells (iTreg) have largely nonoverlapping T-cell receptor repertoires to self-antigens and jointly contribute to immune homeostasis. Initial reports that CD4CD25 (FOXP3) Treg were impaired in frequency or function in type 1 diabetes have not been confirmed. The Treg-specific demethylated region in the FOXP3 locus in nTreg is, in contrast, methylated in iTreg and conventional T cells (Tconv) and is the only feature that reliably distinguishes activated human nTreg and Tconv. Inflammatory cytokines regulate extrathymic differentiation of nTreg but can also reprogram nTreg into Th17 or Th1 effectors and prevent the differentiation of iTreg. SUMMARY The methylation status of the FOXP3 locus provides a means to re-examine Treg in autoimmune disease. nTreg and iTreg recognize different self-antigens. Shaping of Treg by the cytokine milieu has implications for the application of Treg cell-based immune therapies.
Collapse
Affiliation(s)
- Yuxia Zhang
- The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
285
|
Sagoo P, Lombardi G, Lechler RI. Relevance of regulatory T cell promotion of donor-specific tolerance in solid organ transplantation. Front Immunol 2012; 3:184. [PMID: 22811678 PMCID: PMC3395995 DOI: 10.3389/fimmu.2012.00184] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/14/2012] [Indexed: 01/29/2023] Open
Abstract
Current clinical strategies to control the alloimmune response after transplantation do not fully prevent induction of the immunological processes which lead to acute and chronic immune-mediated graft rejection, and as such the survival of a solid organ allograft is limited. Experimental research on naturally occurring CD4+CD25highFoxP3+ Regulatory T cells (Tregs) has indicated their potential to establish stable long-term graft acceptance, with the promise of providing a more effective therapy for transplant recipients. Current approaches for clinical use are based on the infusion of freshly isolated or ex vivo polyclonally expanded Tregs into graft recipients with an aim to redress the in vivo balance of T effector cells to Tregs. However mounting evidence suggests that regulation of donor-specific immunity may be central to achieving immunological tolerance. Therefore, the next stages in optimizing translation of Tregs to organ transplantation will be through the refinement and development of donor alloantigen-specific Treg therapy. The altering kinetics and intensity of alloantigen presentation pathways and alloimmune priming following transplantation may indeed influence the specificity of the Treg required and the timing or frequency at which it needs to be administered. Here we review and discuss the relevance of antigen-specific regulation of alloreactivity by Tregs in experimental and clinical studies of tolerance and explore the concept of delivering an optimal Treg for the induction and maintenance phases of achieving transplantation tolerance.
Collapse
Affiliation(s)
- Pervinder Sagoo
- Department Transplantation, Immunoregulation and Mucosal Biology, MRC Centre for Transplantation, King's College London London, UK
| | | | | |
Collapse
|
286
|
Rosenblum MD, Gratz IK, Paw JS, Abbas AK. Treating human autoimmunity: current practice and future prospects. Sci Transl Med 2012; 4:125sr1. [PMID: 22422994 DOI: 10.1126/scitranslmed.3003504] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases are caused by immune cells attacking the host tissues they are supposed to protect. Recent advances suggest that maintaining a balance of effector and regulatory immune function is critical for avoiding autoimmunity. New therapies, including costimulation blockade, regulatory T cell therapy, antigen-specific immunotherapy, and manipulating the interleukin-2 pathway, attempt to restore this balance. This review discusses these advances as well as the challenges that must be overcome to target these therapies to patients suffering from autoimmune disease while avoiding the pitfalls of general immunosuppression.
Collapse
Affiliation(s)
- Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA.
| | | | | | | |
Collapse
|
287
|
Kim YH, Kim HJ, Kim JS, Park CG. Application of Regulatory T Cells in Transplantation Field. KOREAN JOURNAL OF TRANSPLANTATION 2012. [DOI: 10.4285/jkstn.2012.26.2.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yong-Hee Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Transplantation Research Institute SNUMRC, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute and TIMRC, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Je Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Transplantation Research Institute SNUMRC, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute and TIMRC, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Sik Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Transplantation Research Institute SNUMRC, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute and TIMRC, Seoul National University College of Medicine, Seoul, Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Transplantation Research Institute SNUMRC, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute and TIMRC, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
288
|
Are we ready for the use of foxp3(+) regulatory T cells for immunodiagnosis and immunotherapy in kidney transplantation? J Transplant 2012; 2012:397952. [PMID: 22690325 PMCID: PMC3368592 DOI: 10.1155/2012/397952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/19/2012] [Indexed: 02/06/2023] Open
Abstract
The existence of T-cell subsets naturally committed to perform immunoregulation has led to enthusiastic efforts to investigate their role in the immunopathogenesis of transplantation. Being able to modulate alloresponses, regulatory T cells could be used as an immunodiagnostic tool in clinical kidney transplantation. Thus, the measurement of Foxp3 transcripts, the presence of regulatory T cells in kidney biopsies, and the phenotypic characterisation of the T-cell infiltrate could aid in the diagnosis of rejection and the immune monitoring and prediction of outcomes in kidney transplantation. Interestingly, the adoptive transfer of regulatory T cells in animal models has been proven to downmodulate powerful alloresponses, igniting translational research on their potential use as an immunomodulatory therapy. For busy transplant clinicians, the vast amount of information in the literature on regulatory T cells can be overwhelming. This paper aims to highlight the most applicable research findings on the use of regulatory T cells in the immune diagnosis and potential immunomodulatory therapy of kidney transplant patients. However, can we yet rely on differential regulatory T-cell profiles for the identification of rejection or to tailor patient's immunosuppression? Are we ready to administer regulatory T cells as inductive or adjunctive therapy for kidney transplantation?
Collapse
|
289
|
Wood KJ, Bushell A, Hester J. Regulatory immune cells in transplantation. Nat Rev Immunol 2012; 12:417-30. [DOI: 10.1038/nri3227] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
290
|
Chu CC, Ali N, Karagiannis P, Di Meglio P, Skowera A, Napolitano L, Barinaga G, Grys K, Sharif-Paghaleh E, Karagiannis SN, Peakman M, Lombardi G, Nestle FO. Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. ACTA ACUST UNITED AC 2012; 209:935-45. [PMID: 22547651 PMCID: PMC3348099 DOI: 10.1084/jem.20112583] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human skin-resident IL-10+ regulatory dendritic cells induce T reg cells that suppress allogeneic skin graft inflammation. Human skin immune homeostasis, and its regulation by specialized subsets of tissue-residing immune sentinels, is poorly understood. In this study, we identify an immunoregulatory tissue-resident dendritic cell (DC) in the dermis of human skin that is characterized by surface expression of CD141, CD14, and constitutive IL-10 secretion (CD141+ DDCs). CD141+ DDCs possess lymph node migratory capacity, induce T cell hyporesponsiveness, cross-present self-antigens to autoreactive T cells, and induce potent regulatory T cells that inhibit skin inflammation. Vitamin D3 (VitD3) promotes certain phenotypic and functional properties of tissue-resident CD141+ DDCs from human blood DCs. These CD141+ DDC-like cells can be generated in vitro and, once transferred in vivo, have the capacity to inhibit xeno-graft versus host disease and tumor alloimmunity. These findings suggest that CD141+ DDCs play an essential role in the maintenance of skin homeostasis and in the regulation of both systemic and tumor alloimmunity. Finally, VitD3-induced CD141+ DDC-like cells have potential clinical use for their capacity to induce immune tolerance.
Collapse
Affiliation(s)
- Chung-Ching Chu
- St. John's Institute of Dermatology, King's College London and National Institutes for Health Research Biomedical Research Centre, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Identification and expansion of highly suppressive CD8(+)FoxP3(+) regulatory T cells after experimental allogeneic bone marrow transplantation. Blood 2012; 119:5898-908. [PMID: 22538855 DOI: 10.1182/blood-2011-12-396119] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
FoxP3(+) confers suppressive properties and is confined to regulatory T cells (T(reg)) that potently inhibit autoreactive immune responses. In the transplant setting, natural CD4(+) T(reg) are critical in controlling alloreactivity and the establishment of tolerance. We now identify an important CD8(+) population of FoxP3(+) T(reg) that convert from CD8(+) conventional donor T cells after allogeneic but not syngeneic bone marrow transplantation. These CD8(+) T(reg) undergo conversion in the mesenteric lymph nodes under the influence of recipient dendritic cells and TGF-β. Importantly, this population is as important for protection from GVHD as the well-studied natural CD4(+)FoxP3(+) population and is more potent in exerting class I-restricted and antigen-specific suppression in vitro and in vivo. Critically, CD8(+)FoxP3(+) T(reg) are exquisitely sensitive to inhibition by cyclosporine but can be massively and specifically expanded in vivo to prevent GVHD by coadministering rapamycin and IL-2 antibody complexes. CD8(+)FoxP3(+) T(reg) thus represent a new regulatory population with considerable potential to preferentially subvert MHC class I-restricted T-cell responses after bone marrow transplantation.
Collapse
|
292
|
Cippà PE, Kraus AK, Lindenmeyer MT, Chen J, Guimezanes A, Bardwell PD, Wekerle T, Wüthrich RP, Fehr T. Resistance to ABT-737 in activated T lymphocytes: molecular mechanisms and reversibility by inhibition of the calcineurin-NFAT pathway. Cell Death Dis 2012; 3:e299. [PMID: 22513873 PMCID: PMC3358016 DOI: 10.1038/cddis.2012.38] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic regulation of the intrinsic apoptosis pathway controls central and peripheral lymphocyte deletion, and may interfere with the pro-apoptotic potency of B-cell lymphoma 2 inhibitors such as ABT-737. By following a T-cell receptor (TCR) transgenic population of alloantigen-specific T cells, we found that sensitivity to ABT-737 radically changed during the course of allo-specific immune responses. Particularly, activated T cells were fully resistant to ABT-737 during the first days after antigen recognition. This phenomenon was caused by a TCR–calcineurin–nuclear factor of activated T cells-dependent upregulation of A1, and was therefore prevented by cyclosporine A (CsA). As a result, exposure to ABT-737 after alloantigen recognition induced selection of alloreactive T cells in vivo, whereas in combination with low-dose CsA, ABT-737 efficiently depleted alloreactive T cells in murine host-versus-graft and graft-versus-host models. Thus, ABT-737 resistance is not a prerogative of neoplastic cells, but it physiologically occurs in T cells after antigen recognition. Reversibility of this process by calcineurin inhibitors opens new pharmacological opportunities to modulate this process in the context of cancer, autoimmunity and transplantation.
Collapse
Affiliation(s)
- P E Cippà
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Gregori S, Goudy KS, Roncarolo MG. The cellular and molecular mechanisms of immuno-suppression by human type 1 regulatory T cells. Front Immunol 2012; 3:30. [PMID: 22566914 PMCID: PMC3342353 DOI: 10.3389/fimmu.2012.00030] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/11/2012] [Indexed: 01/08/2023] Open
Abstract
The immuno-regulatory mechanisms of IL-10-producing type 1 regulatory T (Tr1) cells have been widely studied over the years. However, several recent discoveries have shed new light on the cellular and molecular mechanisms that human Tr1 cells use to control immune responses and induce tolerance. In this review we outline the well known and newly discovered regulatory properties of human Tr1 cells and provide an in-depth comparison of the known suppressor mechanisms of Tr1 cells with FOXP3+ Treg. We also highlight the role that Tr1 cells play in promoting and maintaining tolerance in autoimmunity, allergy, and transplantation.
Collapse
Affiliation(s)
- Silvia Gregori
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute Milan, Italy
| | | | | |
Collapse
|
294
|
Brehm MA, Shultz LD. Human allograft rejection in humanized mice: a historical perspective. Cell Mol Immunol 2012; 9:225-31. [PMID: 22327213 DOI: 10.1038/cmi.2011.64] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Basic research in transplantation immunology has relied primarily on rodent models. Experimentation with rodents has laid the foundation for our basic understanding of the biological events that precipitate rejection of non-self or allogeneic tissue transplants and supported the development of novel strategies to specifically suppress allogeneic immune responses. However, translation of these studies to the clinic has met with limited success, emphasizing the need for new models that focus on human immune responses to allogeneic tissues. Humanized mouse models are an exciting alternative that permits investigation of the rejection of human tissues mediated by human immune cells without putting patients at risk. However, the use of humanized mice is complicated by a diversity of protocols and approaches, including the large number of immunodeficient mouse strains available, the choice of tissue to transplant and the specific human immune cell populations that can be engrafted. Here, we present a historical perspective on the study of allograft rejection in humanized mice and discuss the use of these novel model systems in transplant biology.
Collapse
Affiliation(s)
- Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
295
|
Abstract
Regulatory T cells (Tregs) are long-lived cells that suppress immune responses in vivo in a dominant and antigen-specific manner. Therefore, therapeutic application of Tregs to control unwanted immune responses is an active area of investigation. Tregs can confer long-term protection against auto-inflammatory diseases in mouse models. They have also been shown to be effective in suppressing alloimmunity in models of graft-versus-host disease and organ transplantation. Building on extensive research in Treg biology and preclinical testing of therapeutic efficacy over the past decade, we are now at the point of evaluating the safety and efficacy of Treg therapy in humans. This review focuses on developing therapy for transplantation using CD4(+)Foxp3(+) Tregs, with an emphasis on the studies that have informed clinical approaches that aim to maximize the benefits while overcoming the challenges and risks of Treg cell therapy.
Collapse
Affiliation(s)
- Qizhi Tang
- Division of Transplantation, Department of Surgery, University of California San Francisco, San Francisco, CA 94143-0780, USA.
| | | | | |
Collapse
|
296
|
A rapid diagnostic test for human regulatory T-cell function to enable regulatory T-cell therapy. Blood 2012; 119:e57-66. [PMID: 22219224 DOI: 10.1182/blood-2011-09-380048] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulatory T cells (CD4(+)CD25(hi)CD127(lo)FOXP3(+) T cells [Tregs]) are a population of lymphocytes involved in the maintenance of self-tolerance. Abnormalities in function or number of Tregs are a feature of autoimmune diseases in humans. The ability to expand functional Tregs ex vivo makes them ideal candidates for autologous cell therapy to treat human autoimmune diseases and to induce tolerance to transplants. Current tests of Treg function typically take up to 120 hours, a kinetic disadvantage as clinical trials of Tregs will be critically dependent on the availability of rapid diagnostic tests before infusion into humans. Here we evaluate a 7-hour flow cytometric assay for assessing Treg function, using suppression of the activation markers CD69 and CD154 on responder T cells (CD4(+)CD25(-) [Tresp]), compared with traditional assays involving inhibition of CFSE dilution and cytokine production. In both freshly isolated and ex vivo expanded Tregs, we describe excellent correlation with gold standard suppressor cell assays. We propose that the kinetic advantage of the new assay may place it as the preferred rapid diagnostic test for the evaluation of Treg function in forthcoming clinical trials of cell therapy, enabling the translation of the large body of preclinical data into potentially useful treatments for human diseases.
Collapse
|
297
|
Li D, Romain G, Flamar AL, Duluc D, Dullaers M, Li XH, Zurawski S, Bosquet N, Palucka AK, Le Grand R, O'Garra A, Zurawski G, Banchereau J, Oh S. Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. ACTA ACUST UNITED AC 2012; 209:109-21. [PMID: 22213806 PMCID: PMC3260876 DOI: 10.1084/jem.20110399] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Targeting antigens to the lectinlike DC-ASGPR receptor on human DCs and in nonhuman primates results in the induction of antigen-specific IL-10–producing CD4+ T cells. Dendritic cells (DCs) can initiate and shape host immune responses toward either immunity or tolerance by their effects on antigen-specific CD4+ T cells. DC-asialoglycoprotein receptor (DC-ASGPR), a lectinlike receptor, is a known scavenger receptor. Here, we report that targeting antigens to human DCs via DC-ASGPR, but not lectin-like oxidized-LDL receptor, Dectin-1, or DC-specific ICAM-3–grabbing nonintegrin favors the generation of antigen-specific suppressive CD4+ T cells that produce interleukin 10 (IL-10). These findings apply to both self- and foreign antigens, as well as memory and naive CD4+ T cells. The generation of such IL-10–producing CD4+ T cells requires p38/extracellular signal-regulated kinase phosphorylation and IL-10 induction in DCs. We further demonstrate that immunization of nonhuman primates with antigens fused to anti–DC-ASGPR monoclonal antibody generates antigen-specific CD4+ T cells that produce IL-10 in vivo. This study provides a new strategy for the establishment of antigen-specific IL-10–producing suppressive T cells in vivo by targeting whole protein antigens to DCs via DC-ASGPR.
Collapse
Affiliation(s)
- Dapeng Li
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Marel SVD, Majowicz A, Deventer SV, Petry H, Hommes DW, Ferreira V. Gene and cell therapy based treatment strategies for inflammatory bowel diseases. World J Gastrointest Pathophysiol 2011; 2:114-22. [PMID: 22180846 PMCID: PMC3240904 DOI: 10.4291/wjgp.v2.i6.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 08/12/2011] [Accepted: 08/19/2011] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders most commonly affecting young adults. Currently available therapies can result in induction and maintenance of remission, but are not curative and have sometimes important side effects. Advances in basic research in IBD have provided new therapeutic opportunities to target the inflammatory process involved. Gene and cell therapy approaches are suitable to prevent inflammation in the gastrointestinal tract and show therefore potential in the treatment of IBD. In this review, we present the current progress in the field of both gene and cell therapy and future prospects in the context of IBD. Regarding gene therapy, we focus on viral vectors and their applications in preclinical models. The focus for cell therapy is on regulatory T lymphocytes and mesenchymal stromal cells, their potential for the treatment of IBD and the progress made in both preclinical models and clinical trials.
Collapse
|
299
|
Hippen KL, Riley JL, June CH, Blazar BR. Clinical perspectives for regulatory T cells in transplantation tolerance. Semin Immunol 2011; 23:462-8. [PMID: 21820917 PMCID: PMC3230779 DOI: 10.1016/j.smim.2011.07.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/15/2011] [Indexed: 12/29/2022]
Abstract
Three main types of CD4+ regulatory T cells can be distinguished based upon whether they express Foxp3 and differentiate naturally in the thymus (natural Tregs) or are induced in the periphery (inducible Tregs); or whether they are FoxP3 negative but secrete IL-10 in response to antigen (Tregulatory type 1, Tr1 cells). Adoptive transfer of each cell type has proven highly effective in mouse models at preventing graft vs. host disease (GVHD) and autoimmunity. Although clinical application was initially hampered by low Treg frequency and unfavorable ex vivo expansion properties, several phase I trials are now being conducted to assess their effect on GVHD following hematopoietic stem cell transplantation (HSCT) and in type I diabetes. Human Treg trials for HSCT recipients have preceded other indications because GVHD onset is precisely known, the time period needed for prevention relatively short, initial efficacy is likely to provide life-long protection, and complications of GVHD can be lethal. This review will summarize the clinical trials conducted to date that have employed Tregs to prevent GVHD following HSCT and discuss recent advances in Treg cellular therapy.
Collapse
Affiliation(s)
- Keli L. Hippen
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Bone Marrow Transplantation, Minneapolis, MN USA
| | - James L. Riley
- Abramson Family Cancer Center Research Institute, University of Pennsylvania Cancer Center, Philadelphia, PA USA
| | - Carl H. June
- Abramson Family Cancer Center Research Institute, University of Pennsylvania Cancer Center, Philadelphia, PA USA
| | - Bruce R. Blazar
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Bone Marrow Transplantation, Minneapolis, MN USA
| |
Collapse
|
300
|
Sharif-Paghaleh E, Sunassee K, Tavaré R, Ratnasothy K, Koers A, Ali N, Alhabbab R, Blower PJ, Lechler RI, Smyth LA, Mullen GE, Lombardi G. In vivo SPECT reporter gene imaging of regulatory T cells. PLoS One 2011; 6:e25857. [PMID: 22043296 PMCID: PMC3197183 DOI: 10.1371/journal.pone.0025857] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/12/2011] [Indexed: 12/24/2022] Open
Abstract
Regulatory T cells (Tregs) were identified several years ago and are key in controlling autoimmune diseases and limiting immune responses to foreign antigens, including alloantigens. In vivo imaging techniques including intravital microscopy as well as whole body imaging using bioluminescence probes have contributed to the understanding of in vivo Treg function, their mechanisms of action and target cells. Imaging of the human sodium/iodide symporter via Single Photon Emission Computed Tomography (SPECT) has been used to image various cell types in vivo. It has several advantages over the aforementioned imaging techniques including high sensitivity, it allows non-invasive whole body studies of viable cell migration and localisation of cells over time and lastly it may offer the possibility to be translated to the clinic. This study addresses whether SPECT/CT imaging can be used to visualise the migratory pattern of Tregs in vivo. Treg lines derived from CD4+CD25+FoxP3+ cells were retrovirally transduced with a construct encoding for the human Sodium Iodide Symporter (NIS) and the fluorescent protein mCherry and stimulated with autologous DCs. NIS expressing self-specific Tregs were specifically radiolabelled in vitro with Technetium-99m pertechnetate (99mTcO4−) and exposure of these cells to radioactivity did not affect cell viability, phenotype or function. In addition adoptively transferred Treg-NIS cells were imaged in vivo in C57BL/6 (BL/6) mice by SPECT/CT using 99mTcO4−. After 24 hours NIS expressing Tregs were observed in the spleen and their localisation was further confirmed by organ biodistribution studies and flow cytometry analysis. The data presented here suggests that SPECT/CT imaging can be utilised in preclinical imaging studies of adoptively transferred Tregs without affecting Treg function and viability thereby allowing longitudinal studies within disease models.
Collapse
Affiliation(s)
- Ehsan Sharif-Paghaleh
- Medical Research Council (MRC) Centre for Transplantation, King's College London, King's Health Partners, Guy's Hospital, London, United Kingdom
- Division of Imaging Sciences, King's College London, St Thomas Hospital, London, United Kingdom
| | - Kavitha Sunassee
- Division of Imaging Sciences, King's College London, St Thomas Hospital, London, United Kingdom
| | - Richard Tavaré
- Division of Imaging Sciences, King's College London, St Thomas Hospital, London, United Kingdom
| | - Kulachelvy Ratnasothy
- Medical Research Council (MRC) Centre for Transplantation, King's College London, King's Health Partners, Guy's Hospital, London, United Kingdom
| | - Alexander Koers
- Division of Imaging Sciences, King's College London, St Thomas Hospital, London, United Kingdom
| | - Niwa Ali
- Medical Research Council (MRC) Centre for Transplantation, King's College London, King's Health Partners, Guy's Hospital, London, United Kingdom
| | - Rowa Alhabbab
- Medical Research Council (MRC) Centre for Transplantation, King's College London, King's Health Partners, Guy's Hospital, London, United Kingdom
| | - Philip J. Blower
- Division of Imaging Sciences, King's College London, St Thomas Hospital, London, United Kingdom
| | - Robert I. Lechler
- Medical Research Council (MRC) Centre for Transplantation, King's College London, King's Health Partners, Guy's Hospital, London, United Kingdom
| | - Lesley A. Smyth
- Medical Research Council (MRC) Centre for Transplantation, King's College London, King's Health Partners, Guy's Hospital, London, United Kingdom
| | - Gregory E. Mullen
- Medical Research Council (MRC) Centre for Transplantation, King's College London, King's Health Partners, Guy's Hospital, London, United Kingdom
- Division of Imaging Sciences, King's College London, St Thomas Hospital, London, United Kingdom
- * E-mail: (GL); (GEM)
| | - Giovanna Lombardi
- Medical Research Council (MRC) Centre for Transplantation, King's College London, King's Health Partners, Guy's Hospital, London, United Kingdom
- * E-mail: (GL); (GEM)
| |
Collapse
|