251
|
Cadavid E, Echeverri F. The Search for Natural Inhibitors of Biofilm Formation and the Activity of the Autoinductor C6-AHL in Klebsiella pneumoniae ATCC 13884. Biomolecules 2019; 9:biom9020049. [PMID: 30704099 PMCID: PMC6406709 DOI: 10.3390/biom9020049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/24/2022] Open
Abstract
Human nosocomial infections are common around the world. One of the main causes is the bacteria Klebsiella pneumoniae, which shows high rates of resistance to antibiotics. Thus, drugs with novel mechanisms of action are needed. In this work, we report the effects of various natural substances on the formation of biofilm in Klebsiella pneumoniae, as well as its stability. The effect of the molecules on the growth of K. pneumoniae was initially determined by measuring the optical density. The modification of the biofilm, the changes relating to its resistance, the effects on the bacterial adhesion to the urethral catheter and its antagonist role the hexanoyl-homoserinelactone were assessed by crystal violet, as well as by microscopy. The best effects were obtained with 3-methyl-2(5H)-furanone and 2´-hydroxycinnamic acid, which inhibited the formation of biofilm by 67.38% and 65.06%, respectively. Additionally, the remaining biofilm formed was more susceptible to gentamicin. Through microscopy examination, there were evident changes in the biofilm and adherence on the polyvinyl chloride (PVC) urethral catheter. Besides, 3-methyl-2(5H)-furanone inhibited the biofilm-forming effect of the autoinducer hexanoyl-homoserinelactone. Thus, these molecules could be developed as supplemental of antibiotics.
Collapse
Affiliation(s)
- Elizabeth Cadavid
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Calle 67 No. 53⁻10, Medellín 050010, Colombia.
| | - Fernando Echeverri
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Calle 67 No. 53⁻10, Medellín 050010, Colombia.
| |
Collapse
|
252
|
Quorum Sensing Inhibitors from Marine Microorganisms and Their Synthetic Derivatives. Mar Drugs 2019; 17:md17020080. [PMID: 30696031 PMCID: PMC6409935 DOI: 10.3390/md17020080] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/13/2022] Open
Abstract
Quorum sensing inhibitors (QSIs) present a promising alternative or potent adjuvants of conventional antibiotics for the treatment of antibiotic-resistant bacterial strains, since they could disrupt bacterial pathogenicity without imposing selective pressure involved in antibacterial treatments. This review covers a series of molecules showing quorum sensing (QS) inhibitory activity that are isolated from marine microorganisms, including bacteria, actinomycetes and fungi, and chemically synthesized based on QSIs derived from marine microorganisms. This is the first comprehensive overview of QSIs derived from marine microorganisms and their synthetic analogues with QS inhibitory activity.
Collapse
|
253
|
Mion S, Rémy B, Plener L, Chabrière É, Daudé D. Quorum sensing et quorum quenching : Comment bloquer la communication des bactéries pour inhiber leur virulence ? Med Sci (Paris) 2019; 35:31-38. [DOI: 10.1051/medsci/2018310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
La plupart des bactéries utilisent un système de communication, le quorum sensing, fondé sur la sécrétion et la perception de petites molécules appelées autoinducteurs qui leur permettent d’adapter leur comportement en fonction de la taille de la population. Les bactéries mutualisent ainsi leurs efforts de survie en synchronisant entre elles la régulation de gènes impliqués notamment dans la virulence, la résistance aux antimicrobiens ou la formation du biofilm. Des méthodes ont vu le jour pour inhiber cette communication entre bactéries et limiter leurs effets nocifs. Des inhibiteurs chimiques, des anticorps ou encore des enzymes capables d’interférer avec les autoinducteurs ont été développés et se sont montrés efficaces pour diminuer la virulence des bactéries à la fois in vitro et in vivo. Cette stratégie, appelée quorum quenching, a également montré des effets synergiques avec des traitements antibactériens classiques. Il permettrait notamment d’augmenter la sensibilité des bactéries aux antibiotiques. Ceci constitue une piste thérapeutique prometteuse pour lutter contre les infections bactériennes et limiter les conséquences de l’antibiorésistance.
Collapse
|
254
|
Kumar L, Cox CR, Sarkar SK. Matrix metalloprotease-1 inhibits and disrupts Enterococcus faecalis biofilms. PLoS One 2019. [PMID: 30633757 DOI: 10.1371/journal.pone.021021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enterococcus faecalis is a major opportunistic pathogen that readily forms protective biofilms leading to chronic infections. Biofilms protect bacteria from detergent solutions, antimicrobial agents, environmental stress, and effectively make bacteria 10 to 1000-fold more resistant to antibiotic treatment. Extracellular proteins and polysaccharides are primary components of biofilms and play a key role in cell survival, microbial persistence, cellular interaction, and maturation of E. faecalis biofilms. Degradation of biofilm components by mammalian proteases is an effective antibiofilm strategy because proteases are known to degrade bacterial proteins leading to bacterial cell lysis and growth inhibition. Here, we show that human matrix metalloprotease-1 inhibits and disrupts E. faecalis biofilms. MMPs are cell-secreted zinc- and calcium-dependent proteases that degrade and regulate various structural components of the extracellular matrix. Human MMP1 is known to degrade type-1 collagen and can also cleave a wide range of substrates. We found that recombinant human MMP1 significantly inhibited and disrupted biofilms of vancomycin sensitive and vancomycin resistant E. faecalis strains. The mechanism of antibiofilm activity is speculated to be linked with bacterial growth inhibition and degradation of biofilm matrix proteins by MMP1. These findings suggest that human MMP1 can potentially be used as a potent antibiofilm agent against E. faecalis biofilms.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, CO, United States of America
| | - Christopher R Cox
- Department of Chemistry, Colorado School of Mines, CO, United States of America
| | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, CO, United States of America
| |
Collapse
|
255
|
Kumar L, Cox CR, Sarkar SK. Matrix metalloprotease-1 inhibits and disrupts Enterococcus faecalis biofilms. PLoS One 2019; 14:e0210218. [PMID: 30633757 PMCID: PMC6329490 DOI: 10.1371/journal.pone.0210218] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Enterococcus faecalis is a major opportunistic pathogen that readily forms protective biofilms leading to chronic infections. Biofilms protect bacteria from detergent solutions, antimicrobial agents, environmental stress, and effectively make bacteria 10 to 1000-fold more resistant to antibiotic treatment. Extracellular proteins and polysaccharides are primary components of biofilms and play a key role in cell survival, microbial persistence, cellular interaction, and maturation of E. faecalis biofilms. Degradation of biofilm components by mammalian proteases is an effective antibiofilm strategy because proteases are known to degrade bacterial proteins leading to bacterial cell lysis and growth inhibition. Here, we show that human matrix metalloprotease-1 inhibits and disrupts E. faecalis biofilms. MMPs are cell-secreted zinc- and calcium-dependent proteases that degrade and regulate various structural components of the extracellular matrix. Human MMP1 is known to degrade type-1 collagen and can also cleave a wide range of substrates. We found that recombinant human MMP1 significantly inhibited and disrupted biofilms of vancomycin sensitive and vancomycin resistant E. faecalis strains. The mechanism of antibiofilm activity is speculated to be linked with bacterial growth inhibition and degradation of biofilm matrix proteins by MMP1. These findings suggest that human MMP1 can potentially be used as a potent antibiofilm agent against E. faecalis biofilms.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, CO, United States of America
| | - Christopher R. Cox
- Department of Chemistry, Colorado School of Mines, CO, United States of America
| | - Susanta K. Sarkar
- Department of Physics, Colorado School of Mines, CO, United States of America
- * E-mail:
| |
Collapse
|
256
|
Characterization of a Signaling System in Streptococcus mitis That Mediates Interspecies Communication with Streptococcus pneumoniae. Appl Environ Microbiol 2019; 85:AEM.02297-18. [PMID: 30389765 DOI: 10.1128/aem.02297-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Streptococcus mitis is found in the oral cavity and nasopharynx and forms a significant portion of the human microbiome. In this study, in silico analyses indicated the presence of an Rgg regulator and short hydrophobic peptide (Rgg/SHP) cell-to-cell communication system in S. mitis Although Rgg presented greater similarity to a repressor in Streptococcus pyogenes, autoinducing assays and genetic mutation analysis revealed that in S. mitis Rgg acts as an activator. Transcriptome analysis showed that in addition to shp, the system regulates two other downstream genes, comprising a segment of a putative lantibiotic gene cluster that is in a conjugative element locus in different members of the mitis group. Close comparison to a similar lantibiotic gene cluster in Streptococcus pneumoniae indicated that S. mitis lacked the full set of genes. Despite the potential of SHP to trigger a futile cycle of autoinduction, growth was not significantly affected for the rgg mutant under normal or antibiotic stress conditions. The S. mitis SHP was, however, fully functional in promoting cross-species communication and increasing S. pneumoniae surface polysaccharide production, which in this species is regulated by Rgg/SHP. The activity of SHPs produced by both species was detected in cocultures using a S. mitis reporter strain. In competitive assays, a slight advantage was observed for the rgg mutants. We conclude that the Rgg/SHP system in S. mitis regulates the expression of its own shp and activates an Rgg/SHP system in S. pneumoniae that regulates surface polysaccharide synthesis. Fundamentally, cross-communication of such systems may have a role during multispecies interactions.IMPORTANCE Bacteria secrete signal molecules into the environment which are sensed by other cells when the density reaches a certain threshold. In this study, we describe a communication system in Streptococcus mitis, a commensal species from the oral cavity, which we also found in several species and strains of streptococci from the mitis group. Further, we show that this system can promote cross-communication with S. pneumoniae, a closely related major human pathogen. Importantly, we show that this cross-communication can take place during coculture. While the genes regulated in S. mitis are likely part of a futile cycle of activation, the target genes in S. pneumoniae are potentially involved in virulence. The understanding of such complex communication networks can provide important insights into the dynamics of bacterial communities.
Collapse
|
257
|
The Probiotic Bacterium Phaeobacter inhibens Downregulates Virulence Factor Transcription in the Shellfish Pathogen Vibrio coralliilyticus by N-Acyl Homoserine Lactone Production. Appl Environ Microbiol 2019; 85:AEM.01545-18. [PMID: 30389771 DOI: 10.1128/aem.01545-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/30/2018] [Indexed: 01/25/2023] Open
Abstract
Phaeobacter inhibens S4Sm acts as a probiotic bacterium against the oyster pathogen Vibrio coralliilyticus Here, we report that P. inhibens S4Sm secretes three molecules that downregulate the transcription of major virulence factors, metalloprotease genes, in V. coralliilyticus cultures. The effects of the S4Sm culture supernatant on the transcription of three genes involved in protease activity, namely, vcpA, vcpB, and vcpR (encoding metalloproteases A and B and their transcriptional regulator, respectively), were examined by reverse transcriptase quantitative PCR (qRT-PCR). The expression of vcpB and vcpR were reduced to 36% and 6.6%, respectively, compared to that in an untreated control. We constructed a V. coralliilyticus green fluorescent protein (GFP) reporter strain to detect the activity of inhibitory compounds. Using a bioassay-guided approach, the molecules responsible for V. coralliilyticus protease inhibition activity were isolated from S4Sm supernatant and identified as three N-acyl homoserine lactones (AHLs). The three AHLs are N-(3-hydroxydecanoyl)-l-homoserine lactone, N-(dodecanoyl-2,5-diene)-l-homoserine lactone, and N-(3-hydroxytetradecanoyl-7-ene)-l-homoserine lactone, and their half maximal inhibitory concentrations (IC50s) against V. coralliilyticus protease activity were 0.26 μM, 3.7 μM, and 2.9 μM, respectively. Our qRT-PCR data demonstrated that exposures to the individual AHLs reduced the transcription of vcpR and vcpB Combinations of the three AHLs (any two or all three AHLs) on V. coralliilyticus produced additive effects on protease inhibition activity. These AHL compounds may contribute to the host protective effects of S4Sm by disrupting the quorum sensing pathway that activates protease transcription of V. coralliilyticus IMPORTANCE Probiotics represent a promising alternative strategy to control infection and disease caused by marine pathogens of aquaculturally important species. Generally, the beneficial effects of probiotics include improved water quality, control of pathogenic bacteria and their virulence, stimulation of the immune system, and improved animal growth. Previously, we isolated a probiotic bacterium, Phaeobacter inhibens S4Sm, which protects oyster larvae from Vibrio coralliilyticus RE22Sm infection. We also demonstrated that both antibiotic secretion and biofilm formation play important roles in S4Sm probiotic activity. Here, we report that P. inhibens S4Sm, an alphaproteobacterium and member of the Roseobacter clade, also secretes secondary metabolites that hijack the quorum sensing ability of V. coralliilyticus RE22Sm, suppressing virulence gene expression. This finding demonstrates that probiotic bacteria can exert their host protection by using a multipronged array of behaviors that limit the ability of pathogens to become established and cause infection.
Collapse
|
258
|
Butenolide, a Marine-Derived Broad-Spectrum Antibiofilm Agent Against Both Gram-Positive and Gram-Negative Pathogenic Bacteria. MARINE BIOTECHNOLOGY 2019; 21:88-98. [PMID: 30612218 PMCID: PMC6394721 DOI: 10.1007/s10126-018-9861-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
Bacterial biofilm can cause nosocomial recurrent infections and implanted device secondary infections in patients and strongly promotes development of pathogenic drug resistance in clinical treatments. Butenolide is an effective anti-macrofouling compound derived from a marine Streptomyces sp., but its antibiofilm efficacy remains largely unexplored. In the present study, the antibiofilm activities of butenolide were examined using biofilms formed by both Gram-positive and Gram-negative pathogenic model species. Four Escherichia coli strains, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus (MRSA) were used as targets in antibiofilm assays that examined the effects of butenolide, including the following: (i) on bacterial growth; (ii) in inhibiting biofilm formation and eradicating mature biofilm; (iii) on biofilm structures. In addition, the synergistic effect between butenolide with tetracycline was also examined. Butenolide not only effectively inhibited the biofilm formation but also eradicated pre-formed biofilms of tested bacteria. Fractional inhibitory concentration index (FICI) indicated that butenolide was a potential tetracycline enhancer against E. coli, P. aeruginosa, and MRSA. These results indicated that butenolide may hold a great potential as an effective antibiofilm agent to control and prevent biofilm-associated infections in future clinical treatments.
Collapse
|
259
|
Matallana-Surget S, Werner J, Wattiez R, Lebaron K, Intertaglia L, Regan C, Morris J, Teeling H, Ferrer M, Golyshin PN, Gerogiorgis D, Reilly SI, Lebaron P. Proteogenomic Analysis of Epibacterium Mobile BBCC367, a Relevant Marine Bacterium Isolated From the South Pacific Ocean. Front Microbiol 2018; 9:3125. [PMID: 30622520 PMCID: PMC6308992 DOI: 10.3389/fmicb.2018.03125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022] Open
Abstract
Epibacterium mobile BBCC367 is a marine bacterium that is common in coastal areas. It belongs to the Roseobacter clade, a widespread group in pelagic marine ecosystems. Species of the Roseobacter clade are regularly used as models to understand the evolution and physiological adaptability of generalist bacteria. E. mobile BBCC367 comprises two chromosomes and two plasmids. We used gel-free shotgun proteomics to assess its protein expression under 16 different conditions, including stress factors such as elevated temperature, nutrient limitation, high metal concentration, and UVB exposure. Comparison of the different conditions allowed us not only to retrieve almost 70% of the predicted proteins, but also to define three main protein assemblages: 584 essential core proteins, 2,144 facultative accessory proteins and 355 specific unique proteins. While the core proteome mainly exhibited proteins involved in essential functions to sustain life such as DNA, amino acids, carbohydrates, cofactors, vitamins and lipids metabolisms, the accessory and unique proteomes revealed a more specific adaptation with the expression of stress-related proteins, such as DNA repair proteins (accessory proteome), transcription regulators and a significant predominance of transporters (unique proteome). Our study provides insights into how E. mobile BBCC367 adapts to environmental changes and copes with diverse stresses.
Collapse
Affiliation(s)
- Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Johannes Werner
- Department of Biological Oceanography, Leibniz Institute of Baltic Sea Research, Rostock, Germany
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, Interdisciplinary Mass Spectrometry Center (CISMa), University of Mons, Mons, Belgium
| | - Karine Lebaron
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Laurent Intertaglia
- Sorbonne Universites, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls/Mer, France.,Sorbonne Universites, UPMC Univ Paris 06, CNRS, Observatoire Océanologique de Banyuls (OOB), Banyuls/Mer, France
| | - Callum Regan
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - James Morris
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Hanno Teeling
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Ferrer
- Department of Applied Biocatalysis, Institute of Catalysis, CSIC, Madrid, Spain
| | - Peter N Golyshin
- School of Natural Sciences, University of Bangor, Bangor, United Kingdom
| | - Dimitrios Gerogiorgis
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh, United Kingdom
| | - Simon I Reilly
- School of Natural Sciences, University of Bangor, Bangor, United Kingdom
| | - Philippe Lebaron
- Sorbonne Universites, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls/Mer, France.,Sorbonne Universites, UPMC Univ Paris 06, CNRS, Observatoire Océanologique de Banyuls (OOB), Banyuls/Mer, France
| |
Collapse
|
260
|
Fernandez-Garcia L, Ambroa A, Blasco L, Bleriot I, López M, Alvarez-Marin R, Fernández-Cuenca F, Martinez-Martinez L, Vila J, Rodríguez-Baño J, Garnacho-Montero J, Cisneros JM, Pascual A, Pachón J, Bou G, Smani Y, Tomás M. Relationship Between the Quorum Network (Sensing/Quenching) and Clinical Features of Pneumonia and Bacteraemia Caused by A. baumannii. Front Microbiol 2018; 9:3105. [PMID: 30619184 PMCID: PMC6304438 DOI: 10.3389/fmicb.2018.03105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/30/2018] [Indexed: 01/22/2023] Open
Abstract
Acinetobacter baumannii (Ab) is one of the most important pathogens associated with nosocomial infections, especially pneumonia. Interest in the Quorum network, i.e., Quorum Sensing (QS)/Quorum Quenching (QQ), in this pathogen has grown in recent years. The Quorum network plays an important role in regulating diverse virulence factors such as surface motility and bacterial competition through the type VI secretion system (T6SS), which is associated with bacterial invasiveness. In the present study, we investigated 30 clinical strains of A. baumannii isolated in the “II Spanish Study of A. baumannii GEIH-REIPI 2000-2010” (Genbank Umbrella Bioproject PRJNA422585), a multicentre study describing the relationship between the Quorum network in A. baumannii and the development of pneumonia and associated bacteraemia. Expression of the aidA gene (encoding the AidA protein, QQ enzyme) was lower (P < 0.001) in strains of A. baumannii isolated from patients with bacteraemic pneumonia than in strains isolated from patients with non-bacteraemic pneumonia. Moreover, aidA expression in the first type of strain was not regulated in the presence of environmental stress factors such as the 3-oxo-C12-HSL molecule (substrate of AidA protein, QQ activation) or H2O2 (inhibitor of AidA protein, QS activation). However, in the A. baumannii strains isolated from patients with non-bacteraemic pneumonia, aidA gene expression was regulated by stressors such as 3-oxo-C12-HSL and H2O2. In an in vivo Galleria mellonella model of A. baumannii infection, the A. baumannii ATCC 17978 strain was associated with higher mortality (100% at 24 h) than the mutant, abaI-deficient, strain (carrying a synthetase enzyme of Acyl homoserine lactone molecules) (70% at 24 h). These data suggest that the QS (abaR and abaI genes)/QQ (aidA gene) network affects the development of secondary bacteraemia in pneumonia patients and also the virulence of A. baumannii.
Collapse
Affiliation(s)
- Laura Fernandez-Garcia
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Antón Ambroa
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Lucia Blasco
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Ines Bleriot
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Maria López
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Rocio Alvarez-Marin
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University Seville, Seville, Spain
| | - Felipe Fernández-Cuenca
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Department of Microbiology and Medicine, Biomedicine Institute of Seville, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Luis Martinez-Martinez
- Unit of Microbiology, Department of Microbiology, Maimonides Biomedical Research Institute of Cordoba, University Hospital Reina Sofía, University of Córdoba, Córdoba, Spain
| | - Jordi Vila
- Institute of Global Health of Barcelona (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Jesús Rodríguez-Baño
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Department of Microbiology and Medicine, Biomedicine Institute of Seville, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Jose Garnacho-Montero
- Intensive Care Clinical Unit-Institute of Biomedicine of Seville (IBIS), Hospital Virgen Macarena, Seville, Spain
| | - Jose Miguel Cisneros
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University Seville, Seville, Spain
| | - Alvaro Pascual
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Department of Microbiology and Medicine, Biomedicine Institute of Seville, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Jeronimo Pachón
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University Seville, Seville, Spain.,Department of Medicine, University of Seville, Seville, Spain
| | - German Bou
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Younes Smani
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University Seville, Seville, Spain
| | - Maria Tomás
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| |
Collapse
|
261
|
Vadakkan K, Choudhury AA, Gunasekaran R, Hemapriya J, Vijayanand S. Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression. J Genet Eng Biotechnol 2018; 16:239-252. [PMID: 30733731 PMCID: PMC6353778 DOI: 10.1016/j.jgeb.2018.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/09/2018] [Accepted: 07/03/2018] [Indexed: 01/24/2023]
Abstract
Bacteria communicate within a system by means of a density dependent mechanism known as quorum sensing which regulate the metabolic and behavioral activities of a bacterial community. This sort of interaction occurs through a dialect of chemical signals called as autoinducers synthesized by bacteria. Bacterial quorum sensing occurs through various complex pathways depending upon specious diversity. Therefore the cognizance of quorum sensing mechanism will enable the regulation and thereby constrain bacterial communication. Inhibition strategies of quorum sensing are collectively called as quorum quenching; through which bacteria are incapacitated of its interaction with each other. Many virulence mechanism such as sporulation, biofilm formation, toxin production can be blocked by quorum quenching. Usually quorum quenching mechanisms can be broadly classified into enzymatic methods and non-enzymatic methods. Substantial understanding of bacterial communication and its inhibition enhances the development of novel antibacterial therapeutic drugs. In this review we have discussed the types and mechanisms of quorum sensing and various methods to inhibit and regulate density dependent bacterial communication.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | - Abbas Alam Choudhury
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | - Ramya Gunasekaran
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | | | - Selvaraj Vijayanand
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| |
Collapse
|
262
|
Shaaban M, Elgaml A, Habib ESE. Biotechnological applications of quorum sensing inhibition as novel therapeutic strategies for multidrug resistant pathogens. Microb Pathog 2018; 127:138-143. [PMID: 30503958 DOI: 10.1016/j.micpath.2018.11.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/25/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023]
Abstract
High incidence of antibiotic resistance among bacterial clinical isolates necessitates the discovery of new targets for inhibition of microbial pathogenicity, without stimulation of microbial resistance. This could be achieved by targeting virulence determinants, which cause host damage and disease. Many pathogenic bacteria elaborate signaling molecules for cellular communication. This signaling system is named quorum sensing system (QS), and it is contingent on the bacterial population density and mediated by signal molecules called pheromones or autoinducers (AIs). Bacteria utilize QS to regulate activities and behaviors including competence, conjugation, symbiosis, virulence, motility, sporulation, antibiotic production, and biofilm formation. Hence, targeting bacterial communicating signals and suppression of QS exhibit a fundamental approach for competing microbial communication. In this review, we illustrate the common up to date approaches to utilize QS circuits in pathogenic bacteria, including Vibrio fischeri, Pseudomonas aeruginosa, Escherichia coli and Acinetobacter baumannii, as novel therapeutic targets.
Collapse
Affiliation(s)
- Mona Shaaban
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah, 30078, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, 35516, Egypt; Department of Microbiology, Faculty of Pharmacy, Horus University, New Damietta, 34517, Egypt
| | - El-Sayed E Habib
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah, 30078, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, 35516, Egypt.
| |
Collapse
|
263
|
Martín-Rodríguez AJ, Álvarez-Méndez SJ, Overå C, Baruah K, Lourenço TM, Norouzitallab P, Bossier P, Martín VS, Fernández JJ. The 9 H-Fluoren Vinyl Ether Derivative SAM461 Inhibits Bacterial Luciferase Activity and Protects Artemia franciscana From Luminescent Vibriosis. Front Cell Infect Microbiol 2018; 8:368. [PMID: 30467537 PMCID: PMC6236115 DOI: 10.3389/fcimb.2018.00368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/03/2018] [Indexed: 11/13/2022] Open
Abstract
Vibrio campbellii is a major pathogen in aquaculture. It is a causative agent of the so-called “luminescent vibriosis,” a life-threatening condition caused by bioluminescent Vibrio spp. that often involves mass mortality of farmed shrimps. The emergence of multidrug resistant Vibrio strains raises a concern and poses a challenge for the treatment of this infection in the coming years. Inhibition of bacterial cell-to-cell communication or quorum sensing (QS) has been proposed as an alternative to antibiotic therapies. Aiming to identify novel QS disruptors, the 9H-fluroen-9yl vinyl ether derivative SAM461 was found to thwart V. campbellii bioluminescence, a QS-regulated phenotype. Phenotypic and gene expression analyses revealed, however, that the mode of action of SAM461 was unrelated to QS inhibition. Further evaluation with purified Vibrio fischeri and NanoLuc luciferases revealed enzymatic inhibition at micromolar concentrations. In silico analysis by molecular docking suggested binding of SAM461 in the active site cavities of both luciferase enzymes. Subsequent in vivo testing of SAM461 with gnotobiotic Artemia franciscana nauplii demonstrated naupliar protection against V. campbellii infection at low micromolar concentrations. Taken together, these findings suggest that suppression of luciferase activity could constitute a novel paradigm in the development of alternative anti-infective chemotherapies against luminescent vibriosis, and pave the ground for the chemical synthesis and biological characterization of derivatives with promising antimicrobial prospects.
Collapse
Affiliation(s)
- Alberto J Martín-Rodríguez
- Instituto Universitario de Bio-Orgánica "Antonio González", Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sergio J Álvarez-Méndez
- Instituto Universitario de Bio-Orgánica "Antonio González", Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| | - Caroline Overå
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, Regensburg, Germany
| | - Kartik Baruah
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tânia Margarida Lourenço
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Parisa Norouzitallab
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Víctor S Martín
- Instituto Universitario de Bio-Orgánica "Antonio González", Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica "Antonio González", Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| |
Collapse
|
264
|
Blöcher R, Rodarte Ramírez A, Castro-Escarpulli G, Curiel-Quesada E, Reyes-Arellano A. Design, Synthesis, and Evaluation of Alkyl-Quinoxalin-2(1 H)-One Derivatives as Anti- Quorum Sensing Molecules, Inhibiting Biofilm Formation in Aeromonas caviae Sch3. Molecules 2018; 23:molecules23123075. [PMID: 30477243 PMCID: PMC6321446 DOI: 10.3390/molecules23123075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 01/05/2023] Open
Abstract
With the increasing antibiotic resistance of bacterial strains, alternative methods for infection control are in high demand. Quorum sensing (QS) is the bacterial communication system based on small molecules. QS is enables bacterial biofilm formation and pathogenic development. The interruption of QS has become a target for drug discovery, but remains in the early experimental phase. In this study, we synthesized a set of six compounds based on a scaffold (alkyl-quinoxalin-2(1H)-one), new in the anti-QS of Gram-negative bacteria Aeromonas caviae Sch3. By quantifying biofilm formation, we were able to monitor the effect of these compounds from concentrations of 1 to 100 µM. Significant reduction in biofilm formation was achieved by 3-hexylylquinoxalin-2(1H)-one (11), 3-hexylylquinoxalin-2(1H)-one-6-carboxylic acid (12), and 3-heptylylquinoxalin-2(1H)-one-6-carboxylic acid (14), ranging from 11% to 59% inhibition of the biofilm. This pilot study contributes to the development of anti-QS compounds to overcome the clinical challenge of resistant bacteria strains.
Collapse
Affiliation(s)
- René Blöcher
- Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Departamento de Química Orgánica, Ciudad de México 11340, México.
| | - Ariel Rodarte Ramírez
- Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Ciudad de México 11340, México.
| | - Graciela Castro-Escarpulli
- Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Ciudad de México 11340, México.
| | - Everardo Curiel-Quesada
- Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Departamento de Bioquímica, Ciudad de México 11340, México.
| | - Alicia Reyes-Arellano
- Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Departamento de Química Orgánica, Ciudad de México 11340, México.
| |
Collapse
|
265
|
Barbey C, Chane A, Burini JF, Maillot O, Merieau A, Gallique M, Beury-Cirou A, Konto-Ghiorghi Y, Feuilloley M, Gobert V, Latour X. A Rhodococcal Transcriptional Regulatory Mechanism Detects the Common Lactone Ring of AHL Quorum-Sensing Signals and Triggers the Quorum-Quenching Response. Front Microbiol 2018; 9:2800. [PMID: 30524404 PMCID: PMC6262395 DOI: 10.3389/fmicb.2018.02800] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023] Open
Abstract
The biocontrol agent Rhodococcus erythropolis disrupts virulence of plant and human Gram-negative pathogens by catabolizing their N-acyl-homoserine lactones. This quorum-quenching activity requires the expression of the qsd (quorum-sensing signal degradation) operon, which encodes the lactonase QsdA and the fatty acyl-CoA ligase QsdC, involved in the catabolism of lactone ring and acyl chain moieties of signaling molecules, respectively. Here, we demonstrate the regulation of qsd operon expression by a TetR-like family repressor, QsdR. This repression was lifted by adding the pathogen quorum signal or by deleting the qsdR gene, resulting in enhanced lactone degrading activity. Using interactomic approaches and transcriptional fusion strategy, the qsd operon derepression was elucidated: it is operated by the binding of the common part of signaling molecules, the homoserine lactone ring, to the effector-receiving domain of QsdR, preventing a physical binding of QsdR to the qsd promoter region. To our knowledge, this is the first evidence revealing quorum signals as inducers of the suitable quorum-quenching pathway, confirming this TetR-like protein as a lactone sensor. This regulatory mechanism designates the qsd operon as encoding a global disrupting pathway for degrading a wide range of signal substrates, allowing a broad spectrum anti-virulence activity mediated by the rhodococcal biocontrol agent. Understanding the regulation mechanisms of qsd operon expression led also to the development of biosensors useful to monitor in situ the presence of exogenous signals and quorum-quenching activity.
Collapse
Affiliation(s)
- Corinne Barbey
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France.,Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville du Grand-Caux, France
| | - Andrea Chane
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Jean-François Burini
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Annabelle Merieau
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Mathias Gallique
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Amélie Beury-Cirou
- Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville du Grand-Caux, France.,French Federation of Seed Potato Growers (FN3PT/RD3PT), Paris, France
| | - Yoan Konto-Ghiorghi
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Virginie Gobert
- Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville du Grand-Caux, France.,French Federation of Seed Potato Growers (FN3PT/RD3PT), Paris, France
| | - Xavier Latour
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| |
Collapse
|
266
|
Wang H, Chu W, Ye C, Gaeta B, Tao H, Wang M, Qiu Z. Chlorogenic acid attenuates virulence factors and pathogenicity of Pseudomonas aeruginosa by regulating quorum sensing. Appl Microbiol Biotechnol 2018; 103:903-915. [PMID: 30421108 DOI: 10.1007/s00253-018-9482-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/21/2018] [Accepted: 10/23/2018] [Indexed: 01/12/2023]
Abstract
Quorum sensing (QS) is a cell-to-cell communication that is used by bacteria to regulate collective behaviors. Quorum sensing controls virulence factor production in many bacterial species and it is regarded as an attractive target to combat bacterial pathogenicity, especially against antibiotic-resistant bacteria. Chlorogenic acid (CA), abundant in fruits, vegetables, and Chinese herbs, processes multiple activities. In this research, we explored its quorum sensing quenching activity. In Pseudomonas aeruginosa, CA significantly inhibited the formation of biofilm, the ability of swarming, and virulence factors including protease and elastase activities and rhamnolipid and pyocyanin production. CA showed similar inhibitory effects in Chromobacterium violaceum on its biofilm formation, swarming motility, chitinolytic activity and violacein production. We examined the expression of QS-related genes in P.aeruginosa and found these genes were all downregulated by CA treatment. Computational modeling revealed that CA can form hydrogen bonds with all three QS receptors. Caenorhabditis elegans and mouse infection models were employed to explore the anti-virulence ability of CA and its effect on pathogenesis process in vivo. CA extended the survival period and reduced the quantity of P. aeruginosa in nematode gut, showing a moderate protective effect on C. elegans. In mice wound model, CA-treated groups showed an accelerating healing rate and the bacteria number in wound area was also decreased by CA treatment. It is suggested by our research that CA has potential to be used as an anti-virulence factor in P. aeruginosa infection.
Collapse
Affiliation(s)
- Hong Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Weihua Chu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Chao Ye
- School of computer Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bruno Gaeta
- School of computer Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Huimin Tao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Min Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Zheng Qiu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
267
|
D'Angelo F, Baldelli V, Halliday N, Pantalone P, Polticelli F, Fiscarelli E, Williams P, Visca P, Leoni L, Rampioni G. Identification of FDA-Approved Drugs as Antivirulence Agents Targeting the pqs Quorum-Sensing System of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:e01296-18. [PMID: 30201815 PMCID: PMC6201120 DOI: 10.1128/aac.01296-18] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/01/2018] [Indexed: 12/11/2022] Open
Abstract
The long-term use of antibiotics has led to the emergence of multidrug-resistant bacteria. A promising strategy to combat bacterial infections aims at hampering their adaptability to the host environment without affecting growth. In this context, the intercellular communication system quorum sensing (QS), which controls virulence factor production and biofilm formation in diverse human pathogens, is considered an ideal target. Here, we describe the identification of new inhibitors of the pqs QS system of the human pathogen Pseudomonas aeruginosa by screening a library of 1,600 U.S. Food and Drug Administration-approved drugs. Phenotypic characterization of ad hoc engineered strains and in silico molecular docking demonstrated that the antifungal drugs clotrimazole and miconazole, as well as an antibacterial compound active against Gram-positive pathogens, clofoctol, inhibit the pqs system, probably by targeting the transcriptional regulator PqsR. The most active inhibitor, clofoctol, specifically inhibited the expression of pqs-controlled virulence traits in P. aeruginosa, such as pyocyanin production, swarming motility, biofilm formation, and expression of genes involved in siderophore production. Moreover, clofoctol protected Galleria mellonella larvae from P. aeruginosa infection and inhibited the pqs QS system in P. aeruginosa isolates from cystic fibrosis patients. Notably, clofoctol is already approved for clinical treatment of pulmonary infections caused by Gram-positive bacterial pathogens; hence, this drug has considerable clinical potential as an antivirulence agent for the treatment of P. aeruginosa lung infections.
Collapse
Affiliation(s)
| | | | - Nigel Halliday
- Centre for Biomolecular Sciences and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paolo Pantalone
- Centre for Biomolecular Sciences and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Fabio Polticelli
- Department of Science, University Roma Tre, Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, Rome, Italy
| | - Ersilia Fiscarelli
- Laboratory of Cystic Fibrosis Microbiology, Bambino Gesú Hospital, Rome, Italy
| | - Paul Williams
- Centre for Biomolecular Sciences and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | | |
Collapse
|
268
|
Medarametla P, Gatta V, Kajander T, Laitinen T, Tammela P, Poso A. Structure-Based Virtual Screening of LsrK Kinase Inhibitors to Target Quorum Sensing. ChemMedChem 2018; 13:2400-2407. [PMID: 30178912 DOI: 10.1002/cmdc.201800548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Indexed: 11/06/2022]
Abstract
In the era of increased antibiotic resistance, targeting enzymes involved in bacterial communication (quorum sensing) represents a new strategy to fight bacterial infections. LsrK is a kinase responsible for the phosphorylation of autoinducer-2, a signaling molecule involved in quorum sensing. Inhibiting LsrK would lead to quorum sensing inactivation and interfere with the pathogenesis. In this study, we built the first LsrK 3D model and performed virtual screening of a locally available database. Selected compounds were tested against LsrK, and the analogue search conducted based on the positive hits led to the identification of low-micromolar LsrK inhibitors. These results prove the utility of the model and provide the first class of LsrK inhibitors to be further optimized as antivirulence agents.
Collapse
Affiliation(s)
- Prasanthi Medarametla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Viviana Gatta
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Tommi Kajander
- Institute of Biotechnology, University of Helsinki, P.O. Box 65, 00014, Helsinki, Finland
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
269
|
Liu Y, Qin Q, Defoirdt T. Does quorum sensing interference affect the fitness of bacterial pathogens in the real world? Environ Microbiol 2018; 20:3918-3926. [DOI: 10.1111/1462-2920.14446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Yiying Liu
- College of Marine Sciences, South China Agricultural University; Guangzhou China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University; Guangzhou China
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology (CMET); Ghent University; Ghent Belgium
| |
Collapse
|
270
|
Husain FM, Ahmad I, Khan FI, Al-Shabib NA, Baig MH, Hussain A, Rehman MT, Alajmi MF, Lobb KA. Seed Extract of Psoralea corylifolia and Its Constituent Bakuchiol Impairs AHL-Based Quorum Sensing and Biofilm Formation in Food- and Human-Related Pathogens. Front Cell Infect Microbiol 2018; 8:351. [PMID: 30410871 PMCID: PMC6211212 DOI: 10.3389/fcimb.2018.00351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 09/14/2018] [Indexed: 01/18/2023] Open
Abstract
The emergence of multi-drug resistance in pathogenic bacteria in clinical settings as well as food-borne infections has become a serious health concern. The problem of drug resistance necessitates the need for alternative novel therapeutic strategies to combat this menace. One such approach is targeting the quorum-sensing (QS) controlled virulence and biofilm formation. In this study, we first screened different fractions of Psoralea corylifolia (seed) for their anti-QS property in the Chromobacterium violaceum 12472 strain. The methanol fraction was found to be the most active fraction and was selected for further bioassays. At sub-inhibitory concentrations, the P. corylifolia methanol fraction (PCMF) reduced QS-regulated virulence functions in C. violaceum CVO26 (violacein); Pseudomonas aeruginosa (elastase, protease, pyocyanin, chitinase, exopolysaccharides (EPS), and swarming motility), A. hydrophila (protease, EPS), and Serratia marcescens (prodigiosin). Biofilm formation in all the test pathogens was reduced significantly (p ≤ 0.005) in a concentration-dependent manner. The β-galactosidase assay showed that the PCMF at 1,000 μg/ml downregulated las-controlled transcription in PAO1. In vivo studies with C. elegans demonstrated increased survival of the nematodes after treatment with the PCMF. Bakuchiol, a phytoconstituent of the extract, demonstrated significant inhibition of QS-regulated violacein production in C. violaceum and impaired biofilm formation in the test pathogens. The molecular docking results suggested that bakuchiol efficiently binds to the active pockets of LasR and RhlR, and the complexes were stabilized by several hydrophobic interactions. Additionally, the molecular dynamics simulation of LasR, LasR-bakuchiol, RhlR, and RhlR-bakuchiol complexes for 50 ns revealed that the binding of bakuchiol to LasR and RhlR was fairly stable. The study highlights the anti-infective potential of the PCMF and bakuchiol instead of bactericidal or bacteriostatic action, as the extract targets QS-controlled virulence and the biofilm.
Collapse
Affiliation(s)
- Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | - Iqbal Ahmad
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Faez Iqbal Khan
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| | - Nasser A Al-Shabib
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Kevin A Lobb
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
271
|
Taunk A, Chen R, Iskander G, Ho KKK, Black DS, Willcox MDP, Kumar N. Dual-Action Biomaterial Surfaces with Quorum Sensing Inhibitor and Nitric Oxide To Reduce Bacterial Colonization. ACS Biomater Sci Eng 2018; 4:4174-4182. [DOI: 10.1021/acsbiomaterials.8b00816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Aditi Taunk
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Renxun Chen
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - George Iskander
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kitty K. K. Ho
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Mark D. P. Willcox
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
272
|
Besset-Manzoni Y, Rieusset L, Joly P, Comte G, Prigent-Combaret C. Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:29953-29970. [PMID: 29313197 DOI: 10.1007/s11356-017-1152-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 12/26/2017] [Indexed: 05/23/2023]
Abstract
The rhizosphere hosts a considerable microbial community. Among that community, bacteria called plant growth-promoting rhizobacteria (PGPR) can promote plant growth and defense against diseases using diverse distinct plant-beneficial functions. Crop inoculation with PGPR could allow to reduce the use of pesticides and fertilizers in agrosystems. However, microbial crop protection and growth stimulation would be more efficient if cooperation between rhizosphere bacterial populations was taken into account when developing biocontrol agents and biostimulants. Rhizospheric bacteria live in multi-species biofilms formed all along the root surface or sometimes inside the plants (i.e., endophyte). PGPR cooperate with their host plants and also with other microbial populations inside biofilms. These interactions are mediated by a large diversity of microbial metabolites and physical signals that trigger cell-cell communication and appropriate responses. A better understanding of bacterial behavior and microbial cooperation in the rhizosphere could allow for a more successful use of bacteria in sustainable agriculture. This review presents an ecological view of microbial cooperation in agrosystems and lays the emphasis on the main microbial metabolites involved in microbial cooperation, plant health protection, and plant growth stimulation. Eco-friendly inoculant consortia that will foster microbe-microbe and microbe-plant cooperation can be developed to promote crop growth and restore biodiversity and functions lost in agrosystems.
Collapse
Affiliation(s)
- Yoann Besset-Manzoni
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne cedex, France
- Biovitis, 15 400, Saint Etienne-de-Chomeil, France
| | - Laura Rieusset
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne cedex, France
| | - Pierre Joly
- Biovitis, 15 400, Saint Etienne-de-Chomeil, France
| | - Gilles Comte
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne cedex, France
| | - Claire Prigent-Combaret
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne cedex, France.
| |
Collapse
|
273
|
Rezzoagli C, Wilson D, Weigert M, Wyder S, Kümmerli R. Probing the evolutionary robustness of two repurposed drugs targeting iron uptake in Pseudomonas aeruginosa. Evol Med Public Health 2018; 2018:246-259. [PMID: 30455950 PMCID: PMC6234326 DOI: 10.1093/emph/eoy026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
LAY SUMMARY We probed the evolutionary robustness of two antivirulence drugs, gallium and flucytosine, targeting the iron-scavenging pyoverdine in the opportunistic pathogen Pseudomonas aeruginosa. Using an experimental evolution approach in human serum, we showed that antivirulence treatments are not evolutionarily robust per se, but vary in their propensity to select for resistance. BACKGROUND AND OBJECTIVES Treatments that inhibit the expression or functioning of bacterial virulence factors hold great promise to be both effective and exert weaker selection for resistance than conventional antibiotics. However, the evolutionary robustness argument, based on the idea that antivirulence treatments disarm rather than kill pathogens, is controversial. Here, we probe the evolutionary robustness of two repurposed drugs, gallium and flucytosine, targeting the iron-scavenging pyoverdine of the opportunistic human pathogen Pseudomonas aeruginosa. METHODOLOGY We subjected replicated cultures of bacteria to two concentrations of each drug for 20 consecutive days in human serum as an ex vivo infection model. We screened evolved populations and clones for resistance phenotypes, including the restoration of growth and pyoverdine production, and the evolution of iron uptake by-passing mechanisms. We whole-genome sequenced evolved clones to identify the genetic basis of resistance. RESULTS We found that mutants resistant against antivirulence treatments readily arose, but their selective spreading varied between treatments. Flucytosine resistance quickly spread in all populations due to disruptive mutations in upp, a gene encoding an enzyme required for flucytosine activation. Conversely, resistance against gallium arose only sporadically, and was based on mutations in transcriptional regulators, upregulating pyocyanin production, a redox-active molecule promoting siderophore-independent iron acquisition. The spread of gallium resistance was presumably hampered because pyocyanin-mediated iron delivery benefits resistant and susceptible cells alike. CONCLUSIONS AND IMPLICATIONS Our work highlights that antivirulence treatments are not evolutionarily robust per se. Instead, evolutionary robustness is a relative measure, with specific treatments occupying different positions on a continuous scale.
Collapse
Affiliation(s)
- Chiara Rezzoagli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - David Wilson
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Michael Weigert
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Stefan Wyder
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
274
|
Quorum sensing inhibitory activity of the metabolome from endophytic Kwoniella sp. PY016: characterization and hybrid model-based optimization. Appl Microbiol Biotechnol 2018; 102:7389-7406. [PMID: 29934653 DOI: 10.1007/s00253-018-9168-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 10/28/2022]
Abstract
Quorum sensing, the microbial communication system, is gaining importance as a therapeutic target against pathogens. The two key reasons for the rising demand of quorum sensing (QS) inhibitory molecules are low selective pressure to develop resistance by pathogens and possibility of more species-specific effects. Due to complex interactions in a unique niche of live plant tissues, endophytes, as a survival mechanism, potentially produce various bioactive compounds such as QS inhibitors. We report the isolation of an endophytic fungus Kwoniella sp. PY016 from the medicinal plant "Bahera" (Terminalia bellirica), which exhibits substantial quorum sensing inhibition and anti-biofilm activities against the standard test organism, Chromobacterium violaceum. Sugar, sugar alcohol, carboxylic acid, lipid, and phenolic classes of metabolites (predominantly xylitol) are responsible components of the metabolome for the desired bioactivity. A judicious combination of single-factor-at-a-time strategy and artificial neural network modeling combined with genetic algorithm was employed for the selection and optimization of the critical process and medium parameters. Through this newly adopted hybrid model-based optimization, the quorum sensing inhibitory activity of the endophytic metabolome was increased by ~ 30%. This is the first report on optimization of QS inhibitory activity from any fungal endophyte using such a hybrid advanced approach.
Collapse
|
275
|
Yang Y, Cornilescu G, Tal-Gan Y. Structural Characterization of Competence-Stimulating Peptide Analogues Reveals Key Features for ComD1 and ComD2 Receptor Binding in Streptococcus pneumoniae. Biochemistry 2018; 57:5359-5369. [PMID: 30125091 DOI: 10.1021/acs.biochem.8b00653] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Streptococcus pneumoniae is an important pathogen that utilizes quorum sensing (QS) to regulate genetic transformation, virulence, and biofilm formation. The competence-stimulating peptide (CSP) is a 17-amino acid signal peptide that is used by S. pneumoniae to trigger QS. S. pneumoniae strains can be divided into two main specificity groups based on the CSP signal they produce (CSP1 or CSP2) and their compatible receptors (ComD1 or ComD2, respectively). Modulation of QS in S. pneumoniae can be achieved by targeting the CSP:ComD interaction using synthetic CSP analogues. However, to rationally design CSP-based QS modulators with enhanced activities, an in-depth understanding of the structural features that are required for receptor binding is needed. Herein, we report a comprehensive in-solution three-dimensional structural characterization of eight CSP1 and CSP2 analogues with varied biological activities using nuclear magnetic resonance spectroscopy. Analysis of these structures revealed two distinct hydrophobic patches required for effective ComD1 and ComD2 binding.
Collapse
Affiliation(s)
- Yifang Yang
- Department of Chemistry , University of Nevada, Reno , 1664 North Virginia Street , Reno , Nevada 89557 , United States
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison , University of Wisconsin-Madison , 433 Babcock Drive , Madison , Wisconsin 53706 , United States
| | - Yftah Tal-Gan
- Department of Chemistry , University of Nevada, Reno , 1664 North Virginia Street , Reno , Nevada 89557 , United States
| |
Collapse
|
276
|
Zhang Y, Sass A, Van Acker H, Wille J, Verhasselt B, Van Nieuwerburgh F, Kaever V, Crabbé A, Coenye T. Coumarin Reduces Virulence and Biofilm Formation in Pseudomonas aeruginosa by Affecting Quorum Sensing, Type III Secretion and C-di-GMP Levels. Front Microbiol 2018; 9:1952. [PMID: 30186266 PMCID: PMC6110822 DOI: 10.3389/fmicb.2018.01952] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023] Open
Abstract
As one of the major pathogens in wound infections, Pseudomonas aeruginosa produces several virulence factors and forms biofilms; these processes are under the regulation of various quorum sensing (QS) systems. Therefore, QS has been regarded as a promising target to treat P. aeruginosa infections. In the present study, we evaluated the effect of the plant-derived QS inhibitor coumarin on P. aeruginosa biofilms and virulence. Coumarin inhibited QS in the P. aeruginosa QSIS2 biosensor strain, reduced protease and pyocyanin production, and inhibited biofilm formation in microtiter plates in different P. aeruginosa strains. The effects of coumarin in inhibiting biofilm formation in an in vitro wound model and reducing P. aeruginosa virulence in the Lucilia sericata infection model were strain-dependent. Transcriptome analysis revealed that several key genes involved in the las, rhl, Pseudomonas quinolone signal (PQS), and integrated QS (IQS) systems were downregulated in coumarin-treated biofilms of P. aeruginosa PAO1. Coumarin also changed the expression of genes related to type III secretion and cyclic diguanylate (c-di-GMP) metabolism. The cellular c-di-GMP level of P. aeruginosa PAO1 and recent clinical P. aeruginosa strains was significantly reduced by coumarin. These results provide new evidence for the possible application of coumarin as an anti-biofilm and anti-virulence agent against P. aeruginosa in wound infections.
Collapse
Affiliation(s)
- Yunhui Zhang
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Heleen Van Acker
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Jasper Wille
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- Department of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
| | | | - Volkhard Kaever
- Research Core Unit Metabolomics, Institute of Pharmacology, Hannover Medical School, Hanover, Germany
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
277
|
Raffatellu M. Learning from bacterial competition in the host to develop antimicrobials. Nat Med 2018; 24:1097-1103. [DOI: 10.1038/s41591-018-0145-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 05/24/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
|
278
|
González-Rivas F, Ripolles-Avila C, Fontecha-Umaña F, Ríos-Castillo AG, Rodríguez-Jerez JJ. Biofilms in the Spotlight: Detection, Quantification, and Removal Methods. Compr Rev Food Sci Food Saf 2018; 17:1261-1276. [DOI: 10.1111/1541-4337.12378] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Fabián González-Rivas
- Faculty of Health Sciences at Manresa; Univ. of Vic Central Univ. of Catalonia; Manresa Spain
| | - Carolina Ripolles-Avila
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| | - Fabio Fontecha-Umaña
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| | - Abel Guillermo Ríos-Castillo
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| | - José Juan Rodríguez-Jerez
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| |
Collapse
|
279
|
Bergonzi C, Schwab M, Naik T, Daudé D, Chabrière E, Elias M. Structural and Biochemical Characterization of AaL, a Quorum Quenching Lactonase with Unusual Kinetic Properties. Sci Rep 2018; 8:11262. [PMID: 30050039 PMCID: PMC6062542 DOI: 10.1038/s41598-018-28988-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/29/2018] [Indexed: 11/10/2022] Open
Abstract
Quorum quenching lactonases are enzymes that are capable of disrupting bacterial signaling based on acyl homoserine lactones (AHL) via their enzymatic degradation. In particular, lactonases have therefore been demonstrated to inhibit bacterial behaviors that depend on these chemicals, such as the formation of biofilms or the expression of virulence factors. Here we characterized biochemically and structurally a novel representative from the metallo-β-lactamase superfamily, named AaL that was isolated from the thermoacidophilic bacterium Alicyclobacillus acidoterrestris. AaL is a potent quorum quenching enzyme as demonstrated by its ability to inhibit the biofilm formation of Acinetobacter baumannii. Kinetic studies demonstrate that AaL is both a proficient and a broad spectrum enzyme, being capable of hydrolyzing a wide range of lactones with high rates (kcat/KM > 105 M-1.s-1). Additionally, AaL exhibits unusually low KM values, ranging from 10 to 80 µM. Analysis of AaL structures bound to phosphate, glycerol, and C6-AHL reveals a unique hydrophobic patch (W26, F87 and I237), involved in substrate binding, possibly accounting for the enzyme's high specificity. Identifying the specificity determinants will aid the development of highly specific quorum quenching enzymes as potential therapeutics.
Collapse
Affiliation(s)
- Celine Bergonzi
- Biochemistry, Molecular Biology & Biophysics Dpt and BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Michael Schwab
- Biochemistry, Molecular Biology & Biophysics Dpt and BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Tanushree Naik
- Biochemistry, Molecular Biology & Biophysics Dpt and BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Eric Chabrière
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Mikael Elias
- Biochemistry, Molecular Biology & Biophysics Dpt and BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA.
| |
Collapse
|
280
|
Topa SH, Subramoni S, Palombo EA, Kingshott P, Rice SA, Blackall LL. Cinnamaldehyde disrupts biofilm formation and swarming motility of Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2018; 164:1087-1097. [PMID: 29993359 DOI: 10.1099/mic.0.000692] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial biofilms can cause serious health care complications associated with increased morbidity and mortality. There is an urge to discover and develop new biofilm inhibitors from natural products or by modifying natural compounds or understanding the modes of action of existing compounds. Cinnamaldehyde (CAD), one of the major components of cinnamon oil, has been demonstrated to act as an antimicrobial agent against a number of Gram-negative and Gram-positive pathogens, including Pseudomonas aeruginosa, Helicobacter pylori and Listeria monocytogenes. Despite the mechanism of action of CAD against the model organism P. aeruginosa being undefined, based on its antimicrobial properties, we hypothesized that it may disrupt preformed biofilms of P. aeruginosa. The minimum inhibitory concentration (MIC) of CAD for planktonic P. aeruginosa was determined to be 11.8 mM. Membrane depolarization assays demonstrated disruption of the transmembrane potential of P. aeruginosa. CAD at 5.9 mM (0.5 MIC) disrupted preformed biofilms by 75.6 % and 3 mM CAD (0.25 MIC) reduced the intracellular concentrations of the secondary messenger, bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), which controls P. aeruginosa biofilm formation. The swarming motility of P. aeruginosa was also reduced by CAD in a concentration-dependent manner. Collectively, these findings show that sub-MICs of CAD can disrupt biofilms and other surface colonization phenotypes through the modulation of intracellular signalling processes.
Collapse
Affiliation(s)
- Sanjida Halim Topa
- 1Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sujatha Subramoni
- 2Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Nanyang Avenue, Singapore
| | - Enzo A Palombo
- 1Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Peter Kingshott
- 1Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Scott A Rice
- 2Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Nanyang Avenue, Singapore.,3The School of Biological Sciences, Nanyang Technological University, Nanyang Avenue, Singapore.,4The ithree Institute, The University of Technology Sydney, Sydney, Australia
| | - Linda L Blackall
- 1Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria, Australia.,5School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
281
|
Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR. Nano-Strategies to Fight Multidrug Resistant Bacteria-"A Battle of the Titans". Front Microbiol 2018; 9:1441. [PMID: 30013539 PMCID: PMC6036605 DOI: 10.3389/fmicb.2018.01441] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.
Collapse
Affiliation(s)
- Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Matthew P. McCusker
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Dublin, Ireland
| | - Andreia Carvalho
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Daniela A. Ferreira
- Department of Microbiology, Moyne Institute of Preventive Medicine, Schools of Genetics and Microbiology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Niamh M. Mohan
- Department of Microbiology, Moyne Institute of Preventive Medicine, Schools of Genetics and Microbiology, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Nuritas Limited, Dublin, Ireland
| | - Marta Martins
- Department of Microbiology, Moyne Institute of Preventive Medicine, Schools of Genetics and Microbiology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
282
|
Phenotypic Variation during Biofilm Formation: Implications for Anti-Biofilm Therapeutic Design. MATERIALS 2018; 11:ma11071086. [PMID: 29949876 PMCID: PMC6073711 DOI: 10.3390/ma11071086] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022]
Abstract
Various bacterial species cycle between growth phases and biofilm formation, of which the latter facilitates persistence in inhospitable environments. These phases can be generally characterized by one or more cellular phenotype(s), each with distinct virulence factor functionality. In addition, a variety of phenotypes can often be observed within the phases themselves, which can be dependent on host conditions or the presence of nutrient and oxygen gradients within the biofilm itself (i.e., microenvironments). Currently, most anti-biofilm strategies have targeted a single phenotype; this approach has driven effective, yet incomplete, protection due to the lack of consideration of gene expression dynamics throughout the bacteria’s pathogenesis. As such, this article provides an overview of the distinct phenotypes found within each biofilm development phase and demonstrates the unique anti-biofilm solutions each phase offers. However, we conclude that a combinatorial approach must be taken to provide complete protection against biofilm forming bacterial and their resulting diseases.
Collapse
|
283
|
Liu Y, Wu HC, Bhokisham N, Li J, Hong KL, Quan DN, Tsao CY, Bentley WE, Payne GF. Biofabricating Functional Soft Matter Using Protein Engineering to Enable Enzymatic Assembly. Bioconjug Chem 2018; 29:1809-1822. [PMID: 29745651 PMCID: PMC7045599 DOI: 10.1021/acs.bioconjchem.8b00197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biology often provides the inspiration for functional soft matter, but biology can do more: it can provide the raw materials and mechanisms for hierarchical assembly. Biology uses polymers to perform various functions, and biologically derived polymers can serve as sustainable, self-assembling, and high-performance materials platforms for life-science applications. Biology employs enzymes for site-specific reactions that are used to both disassemble and assemble biopolymers both to and from component parts. By exploiting protein engineering methodologies, proteins can be modified to make them more susceptible to biology's native enzymatic activities. They can be engineered with fusion tags that provide (short sequences of amino acids at the C- and/or N- termini) that provide the accessible residues for the assembling enzymes to recognize and react with. This "biobased" fabrication not only allows biology's nanoscale components (i.e., proteins) to be engineered, but also provides the means to organize these components into the hierarchical structures that are prevalent in life.
Collapse
Affiliation(s)
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology , National Taiwan University , Taipei City , Taiwan
| | | | | | - Kai-Lin Hong
- Department of Biochemical Science and Technology , National Taiwan University , Taipei City , Taiwan
| | | | | | | | | |
Collapse
|
284
|
Borges A, Simões M, Todorović TR, Filipović NR, García-Sosa AT. Cobalt Complex with Thiazole-Based Ligand as New Pseudomonas aeruginosa Quorum Quencher, Biofilm Inhibitor and Virulence Attenuator. Molecules 2018; 23:E1385. [PMID: 29890626 PMCID: PMC6099793 DOI: 10.3390/molecules23061385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/30/2018] [Accepted: 06/07/2018] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most dreaded human pathogens, because of its intrinsic resistance to a number of commonly used antibiotics and ability to form sessile communities (biofilms). Innovative treatment strategies are required and that can rely on the attenuation of the pathogenicity and virulence traits. The interruption of the mechanisms of intercellular communication in bacteria (quorum sensing) is one of such promising strategies. A cobalt coordination compound (Co(HL)₂) synthesized from (E)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-4-(p-tolyl)thiazole (HL) is reported herein for the first time to inhibit P. aeruginosa 3-oxo-C12-HSL-dependent QS system (LasI/LasR system) and underling phenotypes (biofilm formation and virulence factors). Its interactions with a possible target, the transcriptional activator protein complex LasR-3-oxo-C12-HSL, was studied by molecular modeling with the coordination compound ligand having stronger predicted interactions than those of co-crystallized ligand 3-oxo-C12-HSL, as well as known-binder furvina. Transition metal group 9 coordination compounds may be explored in antipathogenic/antibacterial drug design.
Collapse
Affiliation(s)
- Anabela Borges
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
| | - Tamara R Todorović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12⁻16, Belgrade 11000, Serbia.
| | - Nenad R Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade 11000, Serbia.
| | | |
Collapse
|
285
|
Barriuso J, Martínez MJ. In Silico Analysis of the Quorum Sensing Metagenome in Environmental Biofilm Samples. Front Microbiol 2018; 9:1243. [PMID: 29930547 PMCID: PMC6000730 DOI: 10.3389/fmicb.2018.01243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/23/2018] [Indexed: 01/09/2023] Open
Abstract
Quorum sensing (QS) is a sophisticated cell to cell signaling mechanism mediated by small diffusible molecules called “autoinducers.” This phenomenon is well studied in bacteria, where different QS systems are described that differ between Gram-negative and Gram-positive bacteria. However, a common system to these groups was discovered, the autoinducer 2. QS has implications in biofilm formation, where the application of metagenomic techniques to study these phenomena may be useful to understand the communication networks established by the different components of the community, and to discover new targets for microbial control. Here we present an in silico screening of QS proteins in all publicly available biofilm metagenomes from the JGI database. We performed sequence, conserved motifs, phylogenetic, and three-dimensional structure analyses of the candidates, resulting in an effective strategy to search QS proteins in metagenomes sequences. The number of QS proteins present in each sample, and its phylogenetic affiliation, was clearly related to the bacterial diversity and the origin of the biofilm. The samples isolated from natural habitats presented clear differences with those from artificial habitats. Interesting findings have been made in the abundance of LuxR-like proteins finding an unbalanced ratio between the synthases and the receptor proteins in Bacteroidetes bacteria, pointing out the existence of “cheaters” in this group. Moreover, we have shown the presence of the LuxI/R QS system in bacteria from the Nitrospira taxonomic group. Finally, some undescribed proteins from the HdtS family have been found in Gamma-proteobacteria.
Collapse
Affiliation(s)
- Jorge Barriuso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María J Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
286
|
Lu HD, Pearson E, Ristroph KD, Duncan GA, Ensign LM, Suk JS, Hanes J, Prud'homme RK. Pseudomonas aeruginosa pyocyanin production reduced by quorum-sensing inhibiting nanocarriers. Int J Pharm 2018; 544:75-82. [DOI: 10.1016/j.ijpharm.2018.03.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 01/04/2023]
|
287
|
Naik MM, Naik SP, Dubey SK, Bhat C, Charya LS. Enhanced exopolysaccharide production and biofilm forming ability in methicillin resistant Staphylococcus sciuri isolated from dairy in response to acyl homoserine lactone (AHL). JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:2087-2094. [PMID: 29892109 PMCID: PMC5976592 DOI: 10.1007/s13197-018-3123-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/13/2017] [Accepted: 03/12/2018] [Indexed: 11/26/2022]
Abstract
Staphylococcus sciuri is an emerging human pathogen widely found in dairy industries. In this study, we have isolated methicillin resistant Staphylococcus sp. from biofilm formed on utensil used in the dairy society situated at Raia, Goa and was designated as NN14. The isolate NN14 was identified through 16S rRNA sequencing as S. sciuri (GenBank accession number MF621976). This report reveals that the S. sciuri strain NN14 responds positively to the, acyl-homoserine lactone (AHL) having 6-carbon long acyl chain i.e. N-hexanoyl-homoserine lactone molecule (C6-HSL) with gradual rise in their biofilm establishing potential as the concentration of AHL was increased from 250 nM, 500 nM to 1 µM when compared to control (without C6-HSL) by performing crystal violet assay using 48 well microtiter plate. Also, exopolysaccharide (EPS) production was found to increase with gradual increase in C6-HSL concentration from 250 nM, 500 nM to 1 µM proving potential role of EPS in biofilm formation. These results were further proved by scanning electron microscopy where increased in biofilm and EPS production with increase in C6-HSL concentration was observed. The biofilm forming capability of S. sciuri strain NN14 was found to decreased significantly when it was subjected to 10 µg/ml of (R)-2-(2-hydroxynaphthalen-1-yl)-thiazolidine-4-carboxylic acid, however with the addition of 250 and 500 nM, C6-HSL in presence of the antimicrobial compound (R)-2-(2-hydroxynaphthalen-1-yl)-thiazolidine-4-carboxylic acid, the biofilm development in bacterial strain NN14 was increased when compared with control. Our results demonstrated that the C6-HSL molecule neutralize the effect of antibacterial compound and enhances EPS production and biofilm development in S. sciuri.
Collapse
Affiliation(s)
- Milind Mohan Naik
- Department of Microbiology, Goa University, Taleigao Plateau, 403206 Goa India
| | - Shivangi P. Naik
- Department of Microbiology, Goa University, Taleigao Plateau, 403206 Goa India
| | - Santosh Kumar Dubey
- Department of Microbiology, Goa University, Taleigao Plateau, 403206 Goa India
- Department of Botany, Banaras Hindu University, Varanasi, India
| | - Chinmay Bhat
- Department of Chemistry, Goa University, Goa, India
- Government First Grade College, Chamarajanagar, Karnataka India
| | - Lakshangy S. Charya
- Department of Microbiology, Goa University, Taleigao Plateau, 403206 Goa India
| |
Collapse
|
288
|
Omonijo FA, Ni L, Gong J, Wang Q, Lahaye L, Yang C. Essential oils as alternatives to antibiotics in swine production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:126-136. [PMID: 30140752 PMCID: PMC6104524 DOI: 10.1016/j.aninu.2017.09.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/02/2017] [Accepted: 09/08/2017] [Indexed: 11/18/2022]
Abstract
This review article summarizes the efficacy, feasibility and potential mechanisms of the application of essential oils as antibiotic alternatives in swine production. Although there are numerous studies demonstrating that essential oils have several properties, such as antimicrobial, antioxidative and anti-inflammatory effects, feed palatability enhancement and improvement in gut growth and health, there is still a need of further investigations to elucidate the mechanisms underlying their functions. In the past, the results has been inconsistent in both laboratory and field studies because of the varied product compositions, dosages, purities and growing stages and conditions of animals. The minimal inhibitory concentration (MIC) of essential oils needed for killing enteric pathogens may not ensure the optimal feed intake and the essential oils inclusion cost may be too high in swine production. With the lipophilic and volatile nature of essential oils, there is a challenge in effective delivery of essential oils within pig gut and this challenge can partially be resolved by microencapsulation and nanotechnology. The effects of essential oils on inflammation, oxidative stress, microbiome, gut chemosensing and bacterial quorum sensing (QS) have led to better production performance of animals fed essential oils in a number of studies. It has been demonstrated that essential oils have good potential as antibiotic alternatives in feeds for swine production. The combination of different essential oils and other compounds (synergistic effect) such as organic acids seems to be a promising approach to improve the efficacy and safety of essential oils in applications. High-throughput systems technologies have been developed recently, which will allow us to dissect the mechanisms underlying the functions of essential oils and facilitate the use of essential oils in swine production.
Collapse
Affiliation(s)
- Faith A. Omonijo
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Liju Ni
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Shanghai Lab-Animal Research Center, Shanghai 201203, China
| | - Joshua Gong
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Qi Wang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Ludovic Lahaye
- Jefo Nutrition Inc., Saint-Hyacinthe, QC J2S 7B6, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
289
|
Colino CI, Millán CG, Lanao JM. Nanoparticles for Signaling in Biodiagnosis and Treatment of Infectious Diseases. Int J Mol Sci 2018; 19:E1627. [PMID: 29857492 PMCID: PMC6032068 DOI: 10.3390/ijms19061627] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/09/2023] Open
Abstract
Advances in nanoparticle-based systems constitute a promising research area with important implications for the treatment of bacterial infections, especially against multidrug resistant strains and bacterial biofilms. Nanosystems may be useful for the diagnosis and treatment of viral and fungal infections. Commercial diagnostic tests based on nanosystems are currently available. Different methodologies based on nanoparticles (NPs) have been developed to detect specific agents or to distinguish between Gram-positive and Gram-negative microorganisms. Also, biosensors based on nanoparticles have been applied in viral detection to improve available analytical techniques. Several point-of-care (POC) assays have been proposed that can offer results faster, easier and at lower cost than conventional techniques and can even be used in remote regions for viral diagnosis. Nanoparticles functionalized with specific molecules may modulate pharmacokinetic targeting recognition and increase anti-infective efficacy. Quorum sensing is a stimuli-response chemical communication process correlated with population density that bacteria use to regulate biofilm formation. Disabling it is an emerging approach for combating its pathogenicity. Natural or synthetic inhibitors may act as antibiofilm agents and be useful for treating multi-drug resistant bacteria. Nanostructured materials that interfere with signal molecules involved in biofilm growth have been developed for the control of infections associated with biofilm-associated infections.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| | - Carmen Gutiérrez Millán
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
290
|
Qin X, Kräft T, Goycoolea FM. Chitosan encapsulation modulates the effect of trans-cinnamaldehyde on AHL-regulated quorum sensing activity. Colloids Surf B Biointerfaces 2018; 169:453-461. [PMID: 29852434 DOI: 10.1016/j.colsurfb.2018.05.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaofei Qin
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossgarten 3, D-48149, Münster, Germany
| | - Tabea Kräft
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossgarten 3, D-48149, Münster, Germany
| | - Francisco M Goycoolea
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossgarten 3, D-48149, Münster, Germany.
| |
Collapse
|
291
|
Soler A, Arregui L, Arroyo M, Mendoza JA, Muras A, Álvarez C, García-Vera C, Marquina D, Santos A, Serrano S. Quorum Sensing versus Quenching Bacterial Isolates Obtained from MBR Plants Treating Leachates from Municipal Solid Waste. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1019. [PMID: 29783658 PMCID: PMC5982058 DOI: 10.3390/ijerph15051019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022]
Abstract
Quorum sensing (QS) is a mechanism dependent on bacterial density. This coordinated process is mediated by the synthesis and the secretion of signal molecules, called autoinducers (AIs). N-acyl-homoserine lactones (AHLs) are the most common AIs that are used by Gram-negative bacteria and are involved in biofilm formation. Quorum Quenching (QQ) is the interference of QS by producing hydrolyzing enzymes, among other strategies. The main objective of the present study was to identify QS and QQ strains from MBR wastewater treatment plants. A total of 99 strains were isolated from two Spanish plants that were intended to treat leachate from municipal solid waste. Five AHL producers were detected using AHL biosensor strains (Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NT1). Fifteen strains of seventy-one Gram-positive were capable of eliminating or reducing at least one AHL activity. The analysis of 16S rRNA gene sequence showed the importance of the Pseudomonas genus in the production of biofilms and the relevance of the genus Bacillus in the disruption of the QS mechanism, in which the potential activity of lactonase or acylase enzymes was investigated with the aim to contribute to solve biofouling problems and to increase the useful lifespan of membranes.
Collapse
Affiliation(s)
- Albert Soler
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Lucía Arregui
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Miguel Arroyo
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, 28040 Madrid, Spain.
| | - José Antonio Mendoza
- Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, 46022 Valencia, Spain.
| | - Andrea Muras
- Department of Microbiology and Parasitology-CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | | - Domingo Marquina
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Susana Serrano
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
292
|
Bodelón G, Montes-García V, Pérez-Juste J, Pastoriza-Santos I. Surface-Enhanced Raman Scattering Spectroscopy for Label-Free Analysis of P. aeruginosa Quorum Sensing. Front Cell Infect Microbiol 2018; 8:143. [PMID: 29868499 PMCID: PMC5958199 DOI: 10.3389/fcimb.2018.00143] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Bacterial quorum sensing systems regulate the production of an ample variety of bioactive extracellular compounds that are involved in interspecies microbial interactions and in the interplay between the microbes and their hosts. The development of new approaches for enabling chemical detection of such cellular activities is important in order to gain new insight into their function and biological significance. In recent years, surface-enhanced Raman scattering (SERS) spectroscopy has emerged as an ultrasensitive analytical tool employing rationally designed plasmonic nanostructured substrates. This review highlights recent advances of SERS spectroscopy for label-free detection and imaging of quorum sensing-regulated processes in the human opportunistic pathogen Pseudomonas aeruginosa. We also briefly describe the challenges and limitations of the technique and conclude with a summary of future prospects for the field.
Collapse
Affiliation(s)
- Gustavo Bodelón
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| | - Verónica Montes-García
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| | - Jorge Pérez-Juste
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| | - Isabel Pastoriza-Santos
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| |
Collapse
|
293
|
Almohaywi B, Taunk A, Wenholz DS, Nizalapur S, Biswas NN, Ho KKK, Rice SA, Iskander G, Black DS, Griffith R, Kumar N. Design and Synthesis of Lactams Derived from Mucochloric and Mucobromic Acids as Pseudomonas aeruginosa Quorum Sensing Inhibitors. Molecules 2018; 23:molecules23051106. [PMID: 29735954 PMCID: PMC6100351 DOI: 10.3390/molecules23051106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 11/24/2022] Open
Abstract
Bacterial infections, particularly hospital-acquired infections caused by Pseudomonas aeruginosa, have become a global threat with a high mortality rate. Gram-negative bacteria including P. aeruginosa employ N-acyl homoserine lactones (AHLs) as chemical signals to regulate the expression of pathogenic phenotypes through a mechanism called quorum sensing (QS). Recently, strategies targeting bacterial behaviour or QS have received great attention due to their ability to disarm rather than kill pathogenic bacteria, which lowers the evolutionary burden on bacteria and the risk of resistance development. In the present study, we report the design and synthesis of N-alkyl- and N-aryl 3,4 dichloro- and 3,4-dibromopyrrole-2-one derivatives through the reductive amination of mucochloric and mucobromic acid with aliphatic and aromatic amines. The quorum sensing inhibition (QSI) activity of the synthesized compounds was determined against a P. aeruginosa MH602 reporter strain. The phenolic compounds exhibited the best activity with 80% and 75% QSI at 250 µM and were comparable in activity to the positive control compound Fu-30. Computational docking studies performed using the LasR receptor protein of P. aeruginosa suggested the importance of hydrogen bonding and hydrophobic interactions for QSI.
Collapse
Affiliation(s)
- Basmah Almohaywi
- School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia.
- School of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Aditi Taunk
- School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Daniel S Wenholz
- School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia.
| | | | | | - Kitty K K Ho
- School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Scott A Rice
- The Singapore Centre of Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - George Iskander
- School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia.
| | - David StC Black
- School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Renate Griffith
- School of Medical Science, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Naresh Kumar
- School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia.
| |
Collapse
|
294
|
Shastry RP, Dolan SK, Abdelhamid Y, Vittal RR, Welch M. Purification and characterisation of a quorum quenching AHL-lactonase from the endophytic bacterium Enterobacter sp. CS66. FEMS Microbiol Lett 2018; 365:4923023. [PMID: 29518220 PMCID: PMC5905603 DOI: 10.1093/femsle/fny054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
The quorum quenching (QQ) activity of endophytic bacteria associated with medicinal plants was explored. Extracts of the Gram-negative Enterobacter sp. CS66 possessed potent N-acylhomoserine lactone (AHL) hydrolytic activity in vitro. Using degenerate primers, we PCR-amplified an open reading frame (denoted aiiE) from CS66 that was 96% identical to the well-characterised AHL-lactonase AiiA from Bacillus thuringiensis, but only 30% was identical to AHL-lactonases from other Gram-negative species. This confirms that close AiiA homologs can be found in both Gram-positive and Gram-negative bacteria. Purified AiiE exhibited potent AHL-lactonase activity against a broad range of AHLs. Furthermore, aiiE was able to reduce the production of secreted plant cell wall-degrading hydrolytic enzymes when expressed in trans in the economically important plant pathogen, Pectobacterium atrosepticum. Our results indicate the presence of a novel AHL-lactonase in Enterobacter sp. CS66 with significant potential as a biocontrol agent.
Collapse
Affiliation(s)
- Rajesh Padumane Shastry
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore 570006, India
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Stephen K Dolan
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Yassmin Abdelhamid
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Ravishankar Rai Vittal
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
295
|
El-Gohary N, Shaaban M. New pyrazolopyridine analogs: Synthesis, antimicrobial, antiquorum-sensing and antitumor screening. Eur J Med Chem 2018; 152:126-136. [DOI: 10.1016/j.ejmech.2018.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/31/2018] [Accepted: 04/10/2018] [Indexed: 01/12/2023]
|
296
|
Utari PD, Setroikromo R, Melgert BN, Quax WJ. PvdQ Quorum Quenching Acylase Attenuates Pseudomonas aeruginosa Virulence in a Mouse Model of Pulmonary Infection. Front Cell Infect Microbiol 2018; 8:119. [PMID: 29755959 PMCID: PMC5932173 DOI: 10.3389/fcimb.2018.00119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/03/2018] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa is the predominant pathogen in pulmonary infections associated with cystic fibrosis. Quorum sensing (QS) systems regulate the production of virulence factors and play an important role in the establishment of successful P. aeruginosa infections. Inhibition of the QS system (termed quorum quenching) renders the bacteria avirulent thus serving as an alternative approach in the development of novel antibiotics. Quorum quenching in Gram negative bacteria can be achieved by preventing the accumulation of N-acyl homoserine lactone (AHL) signaling molecule via enzymatic degradation. Previous work by us has shown that PvdQ acylase hydrolyzes AHL signaling molecules irreversibly, thereby inhibiting QS in P. aeruginosa in vitro and in a Caenorhabditis elegans model of P. aeruginosa infection. The aim of the present study is to assess the therapeutic efficacy of intranasally instilled PvdQ acylase in a mouse model of pulmonary P. aeruginosa infection. First, we evaluated the deposition pattern of intranasally administered fluorochrome-tagged PvdQ (PvdQ-VT) in mice at different stages of pulmonary infection by in vivo imaging studies. Following intranasal instillation, PvdQ-VT could be traced in all lung lobes with 42 ± 7.5% of the delivered dose being deposited at 0 h post-bacterial-infection, and 34 ± 5.2% at 72 h post bacterial-infection. We then treated mice with PvdQ during lethal P. aeruginosa pulmonary infection and that resulted in a 5-fold reduction of lung bacterial load and a prolonged survival of the infected animals with the median survival time of 57 hin comparison to 42 h for the PBS-treated group. In a sublethal P. aeruginosa pulmonary infection, PvdQ treatment resulted in less lung inflammation as well as decrease of CXCL2 and TNF-α levels at 24 h post-bacterial-infection by 15 and 20%, respectively. In conclusion, our study has shown therapeutic efficacy of PvdQ acylase as a quorum quenching agent during P. aeruginosa infection.
Collapse
Affiliation(s)
- Putri D. Utari
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Groningen, Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Groningen, Netherlands
| | - Barbro N. Melgert
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, Netherlands
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
297
|
Huedo P, Coves X, Daura X, Gibert I, Yero D. Quorum Sensing Signaling and Quenching in the Multidrug-Resistant Pathogen Stenotrophomonas maltophilia. Front Cell Infect Microbiol 2018; 8:122. [PMID: 29740543 PMCID: PMC5928129 DOI: 10.3389/fcimb.2018.00122] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
Abstract
Stenotrophomonas maltophilia is an opportunistic Gram-negative pathogen with increasing incidence in clinical settings. The most critical aspect of S. maltophilia is its frequent resistance to a majority of the antibiotics of clinical use. Quorum Sensing (QS) systems coordinate bacterial populations and act as major regulatory mechanisms of pathogenesis in both pure cultures and poly-microbial communities. Disruption of QS systems, a phenomenon known as Quorum Quenching (QQ), represents a new promising paradigm for the design of novel antimicrobial strategies. In this context, we review the main advances in the field of QS in S. maltophilia by paying special attention to Diffusible Signal Factor (DSF) signaling, Acyl Homoserine Lactone (AHL) responses and the controversial Ax21 system. Advances in the DSF system include regulatory aspects of DSF synthesis and perception by both rpf-1 and rpf-2 variant systems, as well as their reciprocal communication. Interaction via DSF of S. maltophilia with unrelated organisms including bacteria, yeast and plants is also considered. Finally, an overview of the different QQ mechanisms involving S. maltophilia as quencher and as object of quenching is presented, revealing the potential of this species for use in QQ applications. This review provides a comprehensive snapshot of the interconnected QS network that S. maltophilia uses to sense and respond to its surrounding biotic or abiotic environment. Understanding such cooperative and competitive communication mechanisms is essential for the design of effective anti QS strategies.
Collapse
Affiliation(s)
- Pol Huedo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Coves
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
298
|
Kamal AAM, Petrera L, Eberhard J, Hartmann RW. Structure-functionality relationship and pharmacological profiles of Pseudomonas aeruginosa alkylquinolone quorum sensing modulators. Org Biomol Chem 2018; 15:4620-4630. [PMID: 28513746 DOI: 10.1039/c7ob00263g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An important paradigm in anti-infective research is the antivirulence concept. Pathoblockers are compounds which disarm bacteria of their arsenal of virulence factors. PqsR is a transcriptional regulator controlling the production of such factors in Pseudomonas aeruginosa, most prominently pyocyanin. In this work, a series of tool compounds based on the structure of the natural ligand 2-heptyl-4-quinolone (HHQ) were used for probing the structure-functionality relationship. Four different profiles are identified namely agonists, antagonists, inverse agonists and biphasic modulators. Molecular docking studies revealed that each class of the PqsR modulators showed distinctive interactions in the PqsR binding domain. It was found that the substituents in position 3 of the quinolone core act as a switch between the different profiles, according to their ability to donate or accept a hydrogen bond, or form a hydrophobic interaction. Finally, it was shown that only inverse agonists were able to strongly inhibit pyocyanin production.
Collapse
Affiliation(s)
- Ahmed A M Kamal
- Helmholtz-Institute for Pharmaceutical Research Saarland, Department of Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, Germany
| | | | | | | |
Collapse
|
299
|
Sharma K, Pagedar Singh A. Antibiofilm Effect of DNase against Single and Mixed Species Biofilm. Foods 2018; 7:E42. [PMID: 29562719 PMCID: PMC5867557 DOI: 10.3390/foods7030042] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 01/12/2023] Open
Abstract
Biofilms are aggregates of microorganisms that coexist in socially coordinated micro-niche in a self-produced polymeric matrix on pre-conditioned surfaces. The biofilm matrix reduces the efficacy of antibiofilm strategies. DNase degrades the extracellular DNA (e-DNA) present in the matrix, rendering the matrix weak and susceptible to antimicrobials. In the current study, the effect of DNase I was evaluated during biofilm formation (pre-treatment), on preformed biofilms (post-treatment) and both (dual treatment). The DNase I pre-treatment was optimized for P. aeruginosa PAO1 (model biofilm organism) at 10 µg/mL and post-treatment at 10 µg/mL with 15 min of contact duration. Inclusion of Mg2+ alongside DNase I post-treatment resulted in 90% reduction in biofilm within only 5 min of contact time (irrespective of age of biofilm). On extension of these findings, DNase I was found to be less effective against mixed species biofilm than individual biofilms. DNase I can be used as potent antibiofilm agent and with further optimization can be effectively used for biofilm prevention and reduction in situ.
Collapse
Affiliation(s)
- Komal Sharma
- Ashok & Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, New Vallabh Vidya Nagar, Anand 388121, Gujarat, India.
| | - Ankita Pagedar Singh
- Department of Food Processing Technology, AD Patel Institute of Technology, New Vallabh Vidya Nagar, Anand 388121, Gujarat, India.
| |
Collapse
|
300
|
Kalia M, Yadav VK, Singh PK, Sharma D, Narvi SS, Agarwal V. Exploring the impact of parthenolide as anti-quorum sensing and anti-biofilm agent against Pseudomonas aeruginosa. Life Sci 2018. [PMID: 29524516 DOI: 10.1016/j.lfs.2018.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIMS Pseudomonas aeruginosa is a well-known pathogen responsible for various infections due to its capability to develop biofilm and various virulent phenotypes that are regulated by quorum sensing. Pathogenesis of the bacteria may be halted by interfering with the signaling molecules and the quorum sensing receptors. Therefore, the present study explores the potential of parthenolide, a sesquiterpene lactone of feverfew plant, as a promising candidate against P. aeruginosa PAO1 associated virulence factors and biofilm. MAIN METHODS Effect of parthenolide on virulence and biofilm formation of P. aeruginosa was studied using standard protocols. Mechanism of action was studied using Real-time PCR as well as molecular docking studies. KEY FINDINGS Significant decrease in virulence factors and biofilm formation was observed when treated with the sub-MIC concentration (1 mM) of parthenolide. Gene expression studies showed the down-regulation of autoinducer synthase (lasI, rhlI) as well as their receptors (lasR and rhlR) with remarked repression of lasR by 57% compared to the control. Biofilm-associated fluorescent microscopic studies after staining with FITC-ConA and propidium iodide showed reduced extracellular polymeric substance (EPS) production and killing of bacterial cells after treatment with parthenolide. SIGNIFICANCE The study is important as it reports for the first time the potential of parthenolide as an anti-quorum and anti-biofilm agent. This study will be helpful in designing of new quorum sensing inhibitors that help in the eradication of infections and can be given in combination with the antibiotics.
Collapse
Affiliation(s)
- Manmohit Kalia
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211004, India
| | - Vivek Kumar Yadav
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211004, India
| | - Pradeep Kumar Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211004, India
| | - Deepmala Sharma
- Department of Mathematics, National Institute of Technology, Raipur 492013, India
| | - Shahid Suhail Narvi
- Department of Chemistry, Motilal Nehru National Institute of Technology, Allahabad 211004, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211004, India.
| |
Collapse
|