251
|
Sangaletti S, Ferrara R, Tripodo C, Garassino MC, Colombo MP. Myeloid cell heterogeneity in lung cancer: implication for immunotherapy. Cancer Immunol Immunother 2021; 70:2429-2438. [PMID: 33797567 PMCID: PMC8017108 DOI: 10.1007/s00262-021-02916-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
Lung is a specialized tissue where metastases from primary lung tumors takeoff and those originating from extra-pulmonary sites land. One commonality characterizing these processes is the supportive role exerted by myeloid cells, particularly neutrophils, whose recruitment is facilitated in this tissue microenvironment. Indeed, neutrophils have important part in the pathophysiology of this organ and the key mechanisms regulating neutrophil expansion and recruitment during infection can be co-opted by tumor cells to promote growth and metastasis. Although neutrophils dominate the myeloid landscape of lung cancer other populations including macrophages, dendritic cells, mast cells, basophils and eosinophils contribute to the complexity of lung cancer TME. In this review, we discuss the origin and significance of myeloid cells heterogeneity in lung cancer, which translates not only in a different frequency of immune populations but it encompasses state of activation, morphology, localization and mutual interactions. The relevance of such heterogeneity is considered in the context of tumor growth and response to immunotherapy.
Collapse
Affiliation(s)
- Sabina Sangaletti
- Department of Research, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Roberto Ferrara
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy.,FIRC Institute of Molecular Oncology (IFOM), Milano, Italy
| | - Marina Chiara Garassino
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Mario Paolo Colombo
- Department of Research, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, via Amadeo 42, 20133, Milano, Italy.
| |
Collapse
|
252
|
Xu X, Ma J, Yu G, Qiu Q, Zhang W, Cao F. Effective Predictor of Colorectal Cancer Survival Based on Exclusive Expression Pattern Among Different Immune Cell Infiltration. J Histochem Cytochem 2021; 69:271-286. [PMID: 33550891 PMCID: PMC8013999 DOI: 10.1369/0022155421991938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022] Open
Abstract
Tumor-infiltrating immune/inflammatory cells, the important components of the tumor microenvironment (TME), remarkably affect the progression of human cancers. To understand the actual conditions within the TME of colorectal cancer (CRC), the interrelationship among tumor-infiltrating neutrophils, M2 macrophages, and regulatory T-cells (Tregs) was systematically analyzed. The infiltration conditions of CD66b+ neutrophils, CD163+ M2 macrophages, and FOXP3+ Tregs in tissue microarrays including 1021 cases of CRC were determined by immunohistochemical analysis. The prediction power of these immune cells for CRC prognosis was evaluated by subgroup analysis of the CRC cohort. Results revealed the existence pattern of infiltrating neutrophils, and Tregs/M2 macrophages fulfilled a "X-low implies Y-high" Boolean relationship, indicative of a mutually exclusive correlation between neutrophils and M2 macrophages, and between neutrophils and Tregs in the TME of CRC. What's more, the tumor-infiltrating M2 macrophages and Tregs were associated with adverse prognostic factors, whereas neutrophils were corelated with favorable factors. The high infiltration of neutrophils predicted longer survival and better chemotherapeutic response. Nonetheless, high infiltration of M2 macrophages and Tregs predicted poor prognosis. The combination of these tumor-infiltrating immune cells can serve as an effective predictor for the survival of CRC and for the chemotherapeutic outcomes of stage II-III patients. .
Collapse
Affiliation(s)
- Xiaowen Xu
- Department of Digestive Endoscopy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Ma
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qun Qiu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fuao Cao
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
253
|
Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy. J Control Release 2021; 332:109-126. [DOI: 10.1016/j.jconrel.2021.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
|
254
|
Dang MT, Gonzalez MV, Gaonkar KS, Rathi KS, Young P, Arif S, Zhai L, Alam Z, Devalaraja S, To TKJ, Folkert IW, Raman P, Rokita JL, Martinez D, Taroni JN, Shapiro JA, Greene CS, Savonen C, Mafra F, Hakonarson H, Curran T, Haldar M. Macrophages in SHH subgroup medulloblastoma display dynamic heterogeneity that varies with treatment modality. Cell Rep 2021; 34:108917. [PMID: 33789113 PMCID: PMC10450591 DOI: 10.1016/j.celrep.2021.108917] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/13/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play an important role in tumor immunity and comprise of subsets that have distinct phenotype, function, and ontology. Transcriptomic analyses of human medulloblastoma, the most common malignant pediatric brain cancer, showed that medulloblastomas (MBs) with activated sonic hedgehog signaling (SHH-MB) have significantly more TAMs than other MB subtypes. Therefore, we examined MB-associated TAMs by single-cell RNA sequencing of autochthonous murine SHH-MB at steady state and under two distinct treatment modalities: molecular-targeted inhibitor and radiation. Our analyses reveal significant TAM heterogeneity, identify markers of ontologically distinct TAM subsets, and show the impact of brain microenvironment on the differentiation of tumor-infiltrating monocytes. TAM composition undergoes dramatic changes with treatment and differs significantly between molecular-targeted and radiation therapy. We identify an immunosuppressive monocyte-derived TAM subset that emerges with radiation therapy and demonstrate its role in regulating T cell and neutrophil infiltration in MB.
Collapse
Affiliation(s)
- Mai T Dang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael V Gonzalez
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Krutika S Gaonkar
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Komal S Rathi
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patricia Young
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sherjeel Arif
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Li Zhai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zahidul Alam
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samir Devalaraja
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tsun Ki Jerrick To
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian W Folkert
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pichai Raman
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Alex's Lemonade Stand Foundation Childhood Cancer Data Lab, Philadelphia, PA, USA
| | - Daniel Martinez
- Pathology Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jaclyn N Taroni
- Alex's Lemonade Stand Foundation Childhood Cancer Data Lab, Philadelphia, PA, USA
| | - Joshua A Shapiro
- Alex's Lemonade Stand Foundation Childhood Cancer Data Lab, Philadelphia, PA, USA
| | - Casey S Greene
- Alex's Lemonade Stand Foundation Childhood Cancer Data Lab, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Candace Savonen
- Alex's Lemonade Stand Foundation Childhood Cancer Data Lab, Philadelphia, PA, USA
| | - Fernanda Mafra
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tom Curran
- Children's Research Institute at Mercy Children's Hospital, Kansas City, KS, USA
| | - Malay Haldar
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
255
|
Duan Z, Luo Y. Targeting macrophages in cancer immunotherapy. Signal Transduct Target Ther 2021; 6:127. [PMID: 33767177 PMCID: PMC7994399 DOI: 10.1038/s41392-021-00506-6] [Citation(s) in RCA: 395] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy is regarded as the most promising treatment for cancers. Various cancer immunotherapies, including adoptive cellular immunotherapy, tumor vaccines, antibodies, immune checkpoint inhibitors, and small-molecule inhibitors, have achieved certain successes. In this review, we summarize the role of macrophages in current immunotherapies and the advantages of targeting macrophages. To better understand and make better use of this type of cell, their development and differentiation characteristics, categories, typical markers, and functions were collated at the beginning of the review. Therapeutic strategies based on or combined with macrophages have the potential to improve the treatment efficacy of cancer therapies.
Collapse
Affiliation(s)
- Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.
- Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
256
|
Xiong J, Wang H, Wang Q. Suppressive Myeloid Cells Shape the Tumor Immune Microenvironment. Adv Biol (Weinh) 2021; 5:e1900311. [PMID: 33729699 DOI: 10.1002/adbi.201900311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/09/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the outcome of the conflict between the host immune system and cancer cells. The crosstalk between immune cells and tumor cells within the tumor microenvironment (TME) influences tumor progression and metastasis. Many studies have clarified the cellular and molecular events that can induce cancer cells to escape immune surveillance, including those involving tumor-induced myeloid cell-mediated immunosuppression. Emerging evidence indicates that tumor-infiltrating myeloid cells (TIMs) accelerate tumor growth and induce angiogenesis, metastasis, and therapy resistance once converted into potent immunosuppressive cells. Here, how tumor infiltrating myeloid cells participate in tumor immune evasion and the prospects of these cells in cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Jia Xiong
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, 310058, China
| | - Hui Wang
- China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, 310058, China
| |
Collapse
|
257
|
McFarlane AJ, Fercoq F, Coffelt SB, Carlin LM. Neutrophil dynamics in the tumor microenvironment. J Clin Invest 2021; 131:143759. [PMID: 33720040 PMCID: PMC7954585 DOI: 10.1172/jci143759] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment profoundly influences the behavior of recruited leukocytes and tissue-resident immune cells. These immune cells, which inherently have environmentally driven plasticity necessary for their roles in tissue homeostasis, dynamically interact with tumor cells and the tumor stroma and play critical roles in determining the course of disease. Among these immune cells, neutrophils were once considered much more static within the tumor microenvironment; however, some of these earlier assumptions were the product of the notorious difficulty in manipulating neutrophils in vitro. Technological advances that allow us to study neutrophils in context are now revealing the true roles of neutrophils in the tumor microenvironment. Here we discuss recent data generated by some of these tools and how these data might be synthesized into more elegant ways of targeting these powerful and abundant effector immune cells in the clinic.
Collapse
Affiliation(s)
| | - Frédéric Fercoq
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Seth B. Coffelt
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leo M. Carlin
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
258
|
Zhang Y, Chandra V, Riquelme Sanchez E, Dutta P, Quesada PR, Rakoski A, Zoltan M, Arora N, Baydogan S, Horne W, Burks J, Xu H, Hussain P, Wang H, Gupta S, Maitra A, Bailey JM, Moghaddam SJ, Banerjee S, Sahin I, Bhattacharya P, McAllister F. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J Exp Med 2021; 217:152058. [PMID: 32860704 PMCID: PMC7953739 DOI: 10.1084/jem.20190354] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/25/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignancy with an immunosuppressive microenvironment that is resistant to most therapies. IL17 is involved in pancreatic tumorigenesis, but its role in invasive PDAC is undetermined. We hypothesized that IL17 triggers and sustains PDAC immunosuppression. We inhibited IL17/IL17RA signaling using pharmacological and genetic strategies alongside mass cytometry and multiplex immunofluorescence techniques. We uncovered that IL17 recruits neutrophils, triggers neutrophil extracellular traps (NETs), and excludes cytotoxic CD8 T cells from tumors. Additionally, IL17 blockade increases immune checkpoint blockade (PD-1, CTLA4) sensitivity. Inhibition of neutrophils or Padi4-dependent NETosis phenocopies IL17 neutralization. NMR spectroscopy revealed changes in tumor lactate as a potential early biomarker for IL17/PD-1 combination efficacy. Higher expression of IL17 and PADI4 in human PDAC corresponds with poorer prognosis, and the serum of patients with PDAC has higher potential for NETosis. Clinical studies with IL17 and checkpoint blockade represent a novel combinatorial therapy with potential efficacy for this lethal disease.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vidhi Chandra
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Erick Riquelme Sanchez
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX.,Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - Prasanta Dutta
- Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pompeyo R Quesada
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amanda Rakoski
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michelle Zoltan
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Seyda Baydogan
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William Horne
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Jared Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hanwen Xu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Perwez Hussain
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD
| | - Huamin Wang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sonal Gupta
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anirban Maitra
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer M Bailey
- Department of Gastroenterology, University of Texas Health Sciences Center, Houston, TX
| | - Seyed J Moghaddam
- Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sulagna Banerjee
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL
| | - Ismet Sahin
- Department of Engineering, Texas Southern University, Houston, TX
| | - Pratip Bhattacharya
- Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX.,Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
259
|
Wattenberg MM, Herrera VM, Giannone MA, Gladney WL, Carpenter EL, Beatty GL. Systemic inflammation is a determinant of outcomes of CD40 agonist-based therapy in pancreatic cancer patients. JCI Insight 2021; 6:145389. [PMID: 33497362 PMCID: PMC8021099 DOI: 10.1172/jci.insight.145389] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Agonistic anti-CD40 monoclonal antibody (mAb) therapy in combination with chemotherapy (chemoimmunotherapy) shows promise for the treatment of pancreatic ductal adenocarcinoma (PDA). To gain insight into immunological mechanisms of response and resistance to chemoimmunotherapy, we analyzed blood samples from patients (n = 22) with advanced PDA treated with an anti-CD40 mAb (CP-870,893) in combination with gemcitabine. We found a stereotyped cellular response to chemoimmunotherapy characterized by transient B cell, CD56+CD11c+HLA-DR+CD141+ cell, and monocyte depletion and CD4+ T cell activation. However, these cellular pharmacodynamics did not associate with outcomes. In contrast, we identified an inflammatory network in the peripheral blood consisting of neutrophils, cytokines (IL-6 and IL-8), and acute phase reactants (C-reactive protein and serum amyloid A) that was associated with outcomes. Furthermore, monocytes from patients with elevated plasma IL-6 and IL-8 showed distinct transcriptional profiles, including upregulation of CCR2 and GAS6, genes associated with regulation of leukocyte chemotaxis and response to inflammation. Patients with systemic inflammation, defined by neutrophil/lymphocyte ratio (NLR) greater than 3.1, had a shorter median overall survival (5.8 vs. 12.3 months) as compared with patients with NLR less than 3.1. Taken together, our findings identify systemic inflammation as a potential resistance mechanism to a CD40-based chemoimmunotherapy and suggest biomarkers for future studies.
Collapse
Affiliation(s)
- Max M Wattenberg
- Division of Hematology-Oncology, Department of Medicine, and.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Veronica M Herrera
- Division of Hematology-Oncology, Department of Medicine, and.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael A Giannone
- Division of Hematology-Oncology, Department of Medicine, and.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Whitney L Gladney
- Division of Hematology-Oncology, Department of Medicine, and.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erica L Carpenter
- Division of Hematology-Oncology, Department of Medicine, and.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory L Beatty
- Division of Hematology-Oncology, Department of Medicine, and.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
260
|
Carpenter E, Nelson S, Bednar F, Cho C, Nathan H, Sahai V, di Magliano MP, Frankel TL. Immunotherapy for pancreatic ductal adenocarcinoma. J Surg Oncol 2021; 123:751-759. [PMID: 33595893 DOI: 10.1002/jso.26312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a lethal cancer with an urgent need for better medical therapies. Efforts have been made to investigate the efficacy of immunotherapy, particularly given the hallmarks of immune suppression and exhaustion in PDAC tumors. Here, we review the molecular components responsible for the immune-privileged state in PDAC and provide an overview of the immunotherapeutic strategies for PDAC including vaccine therapy, checkpoint blockade, myeloid-targeted therapy, and immune agonist therapy.
Collapse
Affiliation(s)
- Eileen Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah Nelson
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Clifford Cho
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Hari Nathan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Vaibhav Sahai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Timothy L Frankel
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
261
|
Xiang X, Wang J, Lu D, Xu X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther 2021; 6:75. [PMID: 33619259 PMCID: PMC7900181 DOI: 10.1038/s41392-021-00484-9] [Citation(s) in RCA: 524] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/30/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023] Open
Abstract
The current treatment strategies in advanced malignancies remain limited. Notably, immunotherapies have raised hope for a successful control of these advanced diseases, but their therapeutic responses are suboptimal and vary considerably among individuals. Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and are often correlated with poor prognosis and therapy resistance, including immunotherapies. Thus, a deeper understanding of the complex roles of TAMs in immunotherapy regulation could provide new insight into the TME. Furthermore, targeting of TAMs is an emerging field of interest due to the hope that these strategies will synergize with current immunotherapies. In this review, we summarize recent studies investigating the involvement of TAMs in immune checkpoint inhibition, tumor vaccines and adoptive cell transfer therapies, and discuss the therapeutic potential of targeting TAMs as an adjuvant therapy in tumor immunotherapies.
Collapse
Affiliation(s)
- Xiaonan Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China
| | - Jianguo Wang
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
262
|
Groth C, Arpinati L, Shaul ME, Winkler N, Diester K, Gengenbacher N, Weber R, Arkhypov I, Lasser S, Petrova V, Augustin HG, Altevogt P, Utikal J, Fridlender ZG, Umansky V. Blocking Migration of Polymorphonuclear Myeloid-Derived Suppressor Cells Inhibits Mouse Melanoma Progression. Cancers (Basel) 2021; 13:cancers13040726. [PMID: 33578808 PMCID: PMC7916588 DOI: 10.3390/cancers13040726] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Myeloid-derived suppressor cells (MDSC) represent a heterogeneous myeloid cell population that is expanded in tumor bearing hosts and substantially contributes to immunosuppression, representing thereby a valuable therapeutic target. Our study analyzes polymorphonuclear (PMN) and monocytic (M) MDSC subsets regarding their immunosuppressive capacity and recruitment mechanisms in murine melanoma. The immunosuppressive activity of both subsets was comparable. We identified the C-X-C Motif Chemokine Receptor (CXCR) 2/chemokine C-X-C motif ligand (CXCL) 1 axis as an important mediator of PMN-MDSC recruitment. Inhibition of CXCR2 resulted in a decreased infiltration of tumors with PMN-MDSC and increased survival of melanoma bearing mice. Furthermore, adjuvant treatment of mice with resected tumors reduced the infiltration of pre-metastatic sites with PMN-MDSC and the occurrence of distant metastasis. The decrease in PMN-MDSC infiltration was accompanied by an increase in natural killer (NK) cell frequency, suggesting an important role of PMN-MDSC in suppressing the NK cell-mediated anti-tumor response. Abstract Background: Despite recent improvement in the treatment of malignant melanoma by immune-checkpoint inhibitors, the disease can progress due to an immunosuppressive tumor microenvironment (TME) mainly represented by myeloid-derived suppressor cells (MDSC). However, the relative contribution of the polymorphonuclear (PMN) and monocytic (M) MDSC subsets to melanoma progression is not clear. Here, we compared both subsets regarding their immunosuppressive capacity and recruitment mechanisms. Furthermore, we inhibited PMN-MDSC migration in vivo to determine its effect on tumor progression. Methods: Using the RET transgenic melanoma mouse model, we investigated the immunosuppressive function of MDSC subsets and chemokine receptor expression on these cells. The effect of CXCR2 inhibition on PMN-MDSC migration and tumor progression was studied in RET transgenic mice and in C57BL/6 mice after surgical resection of primary melanomas. Results: Immunosuppressive capacity of intratumoral M- and PMN-MDSC was comparable in melanoma bearing mice. Anti-CXCR2 therapy prolonged survival of these mice and decreased the occurrence of distant metastasis. Furthermore, this therapy reduced the infiltration of melanoma lesions and pre-metastatic sites with PMN-MDSC that was associated with the accumulation of natural killer (NK) cells. Conclusions: We provide evidence for the tumor−promoting properties of PMN-MDSC as well as for the anti-tumor effects upon their targeting in melanoma bearing mice.
Collapse
Affiliation(s)
- Christopher Groth
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Ludovica Arpinati
- Institute of Pulmonary Medicine, Hebrew University Hadassah Medical Center, POB 12000, Jerusalem 9112001, Israel; (L.A.); (M.E.S.); (Z.G.F.)
| | - Merav E. Shaul
- Institute of Pulmonary Medicine, Hebrew University Hadassah Medical Center, POB 12000, Jerusalem 9112001, Israel; (L.A.); (M.E.S.); (Z.G.F.)
| | - Nina Winkler
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
| | - Klara Diester
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
| | - Nicolas Gengenbacher
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.G.); (H.G.A.)
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rebekka Weber
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Ihor Arkhypov
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Samantha Lasser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
| | - Vera Petrova
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Hellmut G. Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.G.); (H.G.A.)
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Zvi G. Fridlender
- Institute of Pulmonary Medicine, Hebrew University Hadassah Medical Center, POB 12000, Jerusalem 9112001, Israel; (L.A.); (M.E.S.); (Z.G.F.)
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Correspondence: ; Tel.: +49-621-3833773
| |
Collapse
|
263
|
Naso JR, Topham JT, Karasinska JM, Lee MK, Kalloger SE, Wong H, Nelson J, Moore RA, Mungall AJ, Jones SJ, Laskin J, Marra MA, Renouf DJ, Schaeffer DF. Tumor infiltrating neutrophils and gland formation predict overall survival and molecular subgroups in pancreatic ductal adenocarcinoma. Cancer Med 2021; 10:1155-1165. [PMID: 33372414 PMCID: PMC7897949 DOI: 10.1002/cam4.3695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/20/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND RNA-sequencing-based classifiers can stratify pancreatic ductal adenocarcinoma (PDAC) into prognostically significant subgroups but are not practical for use in clinical workflows. Here, we assess whether histomorphological features may be used as surrogate markers for predicting molecular subgroup and overall survival in PDAC. METHODS Ninety-six tissue samples from 50 patients with non-resectable PDAC were scored for gland formation, stromal maturity, mucin, necrosis, and neutrophil infiltration. Prognostic PDAC gene expression classifiers were run on all tumors using whole transcriptome sequencing data from the POG trial (NCT02155621). Findings were validated using digital TCGA slides (n = 50). Survival analysis used multivariate Cox proportional-hazards tests and log-rank tests. RESULTS The combination of low gland formation and low neutrophil infiltration was significantly associated with the poor prognosis PDAC molecular subgroup (basal-like or squamous) and was an independent predictor of shorter overall survival, in both frozen section (n = 47) and formalin-fixed paraffin-embedded (n = 49) tissue samples from POG patients, and in the TCGA samples. This finding held true in the subgroup analysis of primary (n = 17) and metastatic samples (n = 79). The combination of high gland formation and high neutrophils had low sensitivity but high specificity for favorable prognosis subgroups. CONCLUSIONS The assessment of gland formation and neutrophil infiltration on routine histological sections can aid in prognostication and allow inferences to be made about molecular subtype, which may help guide patient management decisions and contribute to our understanding of heterogeneity in treatment response.
Collapse
Affiliation(s)
- Julia R. Naso
- Division of Anatomic PathologyVancouver General HospitalVancouverBCCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | | | | | | | - Steve E. Kalloger
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Pancreas Centre BCVancouverBCCanada
| | - Hui‐li Wong
- Division of Medical OncologyBC CancerVancouverBCCanada
| | - Jessica Nelson
- Canada's Michael Smith Genome Sciences CentreVancouverBCCanada
| | | | | | | | - Janessa Laskin
- Division of Medical OncologyBC CancerVancouverBCCanada
- Canada's Michael Smith Genome Sciences CentreVancouverBCCanada
| | - Marco A. Marra
- Canada's Michael Smith Genome Sciences CentreVancouverBCCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Daniel J. Renouf
- Pancreas Centre BCVancouverBCCanada
- Division of Medical OncologyBC CancerVancouverBCCanada
| | - David F. Schaeffer
- Division of Anatomic PathologyVancouver General HospitalVancouverBCCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Pancreas Centre BCVancouverBCCanada
| |
Collapse
|
264
|
Immune Therapy Resistance and Immune Escape of Tumors. Cancers (Basel) 2021; 13:cancers13030551. [PMID: 33535559 PMCID: PMC7867077 DOI: 10.3390/cancers13030551] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary The genetic adaptability of malignant cells and their consequent heterogeneity even within the same patient poses a great obstacle to cancer patient treatment. This review summarizes the data obtained in the last decade on different preclinical mice models as well as on various immunotherapeutic clinical trials in distinct solid and hematopoietic cancers on how the immune system can be implemented in tumor therapy. Moreover, the different intrinsic and extrinsic escape strategies utilized by the tumor to avoid elimination by the immune system are recapitulated together with the different approaches proposed to overcome them in order to succeed and/or to enhance therapy efficacy. Abstract Immune therapy approaches such as checkpoint inhibitors or adoptive cell therapy represent promising therapeutic options for cancer patients, but their efficacy is still limited, since patients frequently develop innate or acquired resistances to these therapies. Thus, one major goal is to increase the efficiency of immunotherapies by overcoming tumor-induced immune suppression, which then allows for immune-mediated tumor clearance. Innate resistance to immunotherapies could be caused by a low immunogenicity of the tumor itself as well as an immune suppressive microenvironment composed of cellular, physical, or soluble factors leading to escape from immune surveillance and disease progression. So far, a number of strategies causing resistance to immunotherapy have been described in various clinical trials, which broadly overlap with the immunoediting processes of cancers. This review summarizes the novel insights in the development of resistances to immune therapy as well as different approaches that could be employed to overcome them.
Collapse
|
265
|
Kim SI, Cassella CR, Byrne KT. Tumor Burden and Immunotherapy: Impact on Immune Infiltration and Therapeutic Outcomes. Front Immunol 2021; 11:629722. [PMID: 33597954 PMCID: PMC7882695 DOI: 10.3389/fimmu.2020.629722] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer immunotherapy has revolutionized the treatment landscape in medical oncology, but its efficacy has been variable across patients. Biomarkers to predict such differential response to immunotherapy include cytotoxic T lymphocyte infiltration, tumor mutational burden, and microsatellite instability. A growing number of studies also suggest that baseline tumor burden, or tumor size, predicts response to immunotherapy. In this review, we discuss the changes in immune profile and therapeutic responses that occur with increasing tumor size. We also overview therapeutic approaches to reduce tumor burden and favorably modulate the immune microenvironment of larger tumors.
Collapse
Affiliation(s)
- Samuel I Kim
- Program in Biochemistry, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher R Cassella
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katelyn T Byrne
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
266
|
Wong W, Alouani E, Wei A, Ryu YK, Chabot JA, Manji GA. Future of immunotherapy in pancreas cancer and the trials, tribulations and successes thus far. Semin Oncol 2021; 48:57-68. [PMID: 33965249 DOI: 10.1053/j.seminoncol.2021.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/11/2022]
Abstract
Pancreas ductal adenocarcinoma (PDAC) has a dismal prognosis with a 5-year survival rate of 10%. Currently, chemotherapy remains the standard of care for systemic treatment. Immunotherapy with checkpoint inhibitors unfortunately has not been found to be effective in the treatment of PDAC to date, likely due to the highly desmoplastic and immunosuppressive tumor microenvironment (TME). Treatment targeting pathways against the immunosuppressive mechanisms of PDAC are of mounting interest to improve outcomes in PDAC. In this review, we discuss prior efforts and the current state of immunotherapy in PDAC. We will also review the emerging targets and treatments with significant clinical potential for the treatment of PDAC such as: CD40 pathway, the adenosine pathway, the CXCR4/CXCL12 axis, the CCR2/CCL2 axis, IDO pathway, and others.
Collapse
Affiliation(s)
- Winston Wong
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - Emily Alouani
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - Alexander Wei
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - Yun Kyoung Ryu
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - John A Chabot
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - Gulam A Manji
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY.
| |
Collapse
|
267
|
Li C, Xu X, Wei S, Jiang P, Xue L, Wang J. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer. J Immunother Cancer 2021; 9:jitc-2020-001341. [PMID: 33504575 PMCID: PMC8728363 DOI: 10.1136/jitc-2020-001341] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Macrophages are the most important phagocytes in vivo. However, the tumor microenvironment can affect the function and polarization of macrophages and form tumor-associated macrophages (TAMs). Usually, the abundance of TAMs in tumors is closely associated with poor prognosis. Preclinical studies have identified important pathways regulating the infiltration and polarization of TAMs during tumor progression. Furthermore, potential therapeutic strategies targeting TAMs in tumors have been studied, including inhibition of macrophage recruitment to tumors, functional repolarization of TAMs toward an antitumor phenotype, and other therapeutic strategies that elicit macrophage-mediated extracellular phagocytosis and intracellular destruction of cancer cells. Therefore, with the increasing impact of tumor immunotherapy, new antitumor strategies to target TAMs are now being discussed.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Lixiang Xue
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | | | | |
Collapse
|
268
|
Zhang X, Detering L, Sultan D, Luehmann H, Li L, Heo GS, Zhang X, Lou L, Grierson PM, Greco S, Ruzinova M, Laforest R, Dehdashti F, Lim KH, Liu Y. CC Chemokine Receptor 2-Targeting Copper Nanoparticles for Positron Emission Tomography-Guided Delivery of Gemcitabine for Pancreatic Ductal Adenocarcinoma. ACS NANO 2021; 15:1186-1198. [PMID: 33406361 PMCID: PMC7846978 DOI: 10.1021/acsnano.0c08185] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy with dire prognosis due to aggressive biology, lack of effective tools for diagnosis at an early stage, and limited treatment options. Detection of PDAC using conventional radiographic imaging is limited by the dense, hypovascular stromal component and relatively scarce neoplastic cells within the tumor microenvironment (TME). The CC motif chemokine 2 (CCL2) and its cognate receptor CCR2 (CCL2/CCR2) axis are critical in fostering and maintaining this kind of TME by recruiting immunosuppressive myeloid cells such as the tumor-associated macrophages, thereby presenting an opportunity to exploit this axis for both diagnostic and therapeutic purposes. We engineered CCR2-targeting ultrasmall copper nanoparticles (Cu@CuOx) as nanovehicles not only for targeted positron emission tomography imaging by intrinsic radiolabeling with 64Cu but also for loading and delivery of the chemotherapy drug gemcitabine to PDAC. This 64Cu-radiolabeled nanovehicle allowed sensitive and accurate detection of PDAC malignancy in autochthonous genetically engineered mouse models. The ultrasmall Cu@CuOx showed efficient renal clearance, favorable pharmacokinetics, and minimal in vivo toxicity. Systemic administration of gemcitabine-loaded Cu@CuOx effectively suppressed the progression of PDAC tumors in a syngeneic xenograft mouse model and prolonged survival. These CCR2-targeted ultrasmall nanoparticles offer a promising image-guided therapeutic agent and show great potential for translation.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Lin Li
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Xiuli Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Lanlan Lou
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Patrick M. Grierson
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Suellen Greco
- Division of Comparative Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Marianna Ruzinova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Farrokh Dehdashti
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
269
|
Ferguson LP, Diaz E, Reya T. The Role of the Microenvironment and Immune System in Regulating Stem Cell Fate in Cancer. Trends Cancer 2021; 7:624-634. [PMID: 33509688 PMCID: PMC8318571 DOI: 10.1016/j.trecan.2020.12.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Despite gains in knowledge of the intrinsic signals governing cancer progression, effective clinical management of cancer remains a challenge. Drug resistance and relapse, pose the greatest barriers to cancer care, and are often driven by the co-option of stem cell programs by subpopulations of aggressive cancer cells. Here, we focus on the role of the microenvironment in the acquisition and/ or maintenance of stem cell states in cancer in the context of resistance and metastasis. We further discuss the role of cancer stem cells in immune evasion through the course of metastasis, dormancy, and relapse. Understanding the niche in which cancer stem cells live and the signals that sustain them may lead to new strategies that target them by disrupting microenvironmental support.
Collapse
Affiliation(s)
- L Paige Ferguson
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA; Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Emily Diaz
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA; Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Tannishtha Reya
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA; Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
270
|
Hofschröer V, Najder K, Rugi M, Bouazzi R, Cozzolino M, Arcangeli A, Panyi G, Schwab A. Ion Channels Orchestrate Pancreatic Ductal Adenocarcinoma Progression and Therapy. Front Pharmacol 2021; 11:586599. [PMID: 33841132 PMCID: PMC8025202 DOI: 10.3389/fphar.2020.586599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease with a dismal prognosis. Therapeutic interventions are largely ineffective. A better understanding of the pathophysiology is required. Ion channels contribute substantially to the "hallmarks of cancer." Their expression is dysregulated in cancer, and they are "misused" to drive cancer progression, but the underlying mechanisms are unclear. Ion channels are located in the cell membrane at the interface between the intracellular and extracellular space. They sense and modify the tumor microenvironment which in itself is a driver of PDAC aggressiveness. Ion channels detect, for example, locally altered proton and electrolyte concentrations or mechanical stimuli and transduce signals triggered by these microenvironmental cues through association with intracellular signaling cascades. While these concepts have been firmly established for other cancers, evidence has emerged only recently that ion channels are drivers of PDAC aggressiveness. Particularly, they appear to contribute to two of the characteristic PDAC features: the massive fibrosis of the tumor stroma (desmoplasia) and the efficient immune evasion. Our critical review of the literature clearly shows that there is still a remarkable lack of knowledge with respect to the contribution of ion channels to these two typical PDAC properties. Yet, we can draw parallels from ion channel research in other fibrotic and inflammatory diseases. Evidence is accumulating that pancreatic stellate cells express the same "profibrotic" ion channels. Similarly, it is at least in part known which major ion channels are expressed in those innate and adaptive immune cells that populate the PDAC microenvironment. We explore potential therapeutic avenues derived thereof. Since drugs targeting PDAC-relevant ion channels are already in clinical use, we propose to repurpose those in PDAC. The quest for ion channel targets is both motivated and complicated by the fact that some of the relevant channels, for example, KCa3.1, are functionally expressed in the cancer, stroma, and immune cells. Only in vivo studies will reveal which arm of the balance we should put our weights on when developing channel-targeting PDAC therapies. The time is up to explore the efficacy of ion channel targeting in (transgenic) murine PDAC models before launching clinical trials with repurposed drugs.
Collapse
Affiliation(s)
| | - Karolina Najder
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Rayhana Bouazzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Marco Cozzolino
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
271
|
HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression. Oncogene 2021; 40:1836-1850. [PMID: 33564072 PMCID: PMC7946638 DOI: 10.1038/s41388-020-01636-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/30/2023]
Abstract
Despite the widespread use of the blockade of immune checkpoints, for a significant number of cancer patients, these therapies have proven ineffective, presumably due to the immunosuppressive nature of the tumor microenvironment (TME). Critical drivers of immune escape in the TME include tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), which not only mediate immune suppression, but also facilitate metastatic dissemination and impart resistance to immunotherapies. Thus, strategies that convert them into tumor fighters may offer great therapeutic potential. In this study, we evaluated whether pharmacologic modulation of macrophage phenotype by HDAC inhibitors (HDACi) could produce an anti-tumor effect. We demonstrated that low-dose HDACi trichostatin-A (TSA) markedly reshaped the tumor immune microenvironment by modulating the suppressive activity of infiltrating macrophages and inhibiting the recruitment of MDSCs in various tumors. These actions, in turn, augmented anti-tumor immune responses and further enhanced anti-tumor effects of immunotherapies. HDAC inhibition, however, also upregulated PD-L1, thereby limiting the beneficial therapeutic effects. Indeed, combining low-dose TSA with anti-PD-L1 in this model significantly enhanced the durability of tumor reduction and prolonged survival of tumor-bearing mice, compared with the effect of either treatment alone. These data introduce HDAC inhibition as a potential means to harness the anti-tumor potential of macrophages in cancer therapy.
Collapse
|
272
|
Innamarato P, Pilon-Thomas S. Reactive myelopoiesis and the onset of myeloid-mediated immune suppression: Implications for adoptive cell therapy. Cell Immunol 2020; 361:104277. [PMID: 33476931 DOI: 10.1016/j.cellimm.2020.104277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023]
Abstract
Adoptive T cell therapy (ACT) in combination with lymphodepleting chemotherapy is an effective strategy to induce the eradication of cancer, providing long-term regressions in patients. However, only a minority of patients that receive ACT with tumor-specific T cells exhibit durable benefit. Thus, there is an urgent need to characterize mechanisms of resistance and define strategies to alleviate immunosuppression in the context of ACT in cancer. This article reviews the importance of lymphodepleting regimens in promoting the optimal engraftment and expansion of T cells in hosts after adoptive transfer. In addition, we discuss the role of concomitant immunosuppression and the accumulation of myeloid derived suppressor cells (MDSCs) during immune recovery after lymphodepleting regimens and mobilization regimens.
Collapse
Affiliation(s)
- Patrick Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
273
|
Hussain S, Peng B, Cherian M, Song JW, Ahirwar DK, Ganju RK. The Roles of Stroma-Derived Chemokine in Different Stages of Cancer Metastases. Front Immunol 2020; 11:598532. [PMID: 33414786 PMCID: PMC7783453 DOI: 10.3389/fimmu.2020.598532] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
The intricate interplay between malignant cells and host cellular and non-cellular components play crucial role in different stages of tumor development, progression, and metastases. Tumor and stromal cells communicate to each other through receptors such as integrins and secretion of signaling molecules like growth factors, cytokines, chemokines and inflammatory mediators. Chemokines mediated signaling pathways have emerged as major mechanisms underlying multifaceted roles played by host cells during tumor progression. In response to tumor stimuli, host cells-derived chemokines further activates signaling cascades that support the ability of tumor cells to invade surrounding basement membrane and extra-cellular matrix. The host-derived chemokines act on endothelial cells to increase their permeability and facilitate tumor cells intravasation and extravasation. The tumor cells-host neutrophils interaction within the vasculature initiates chemokines driven recruitment of inflammatory cells that protects circulatory tumor cells from immune attack. Chemokines secreted by tumor cells and stromal immune and non-immune cells within the tumor microenvironment enter the circulation and are responsible for formation of a "pre-metastatic niche" like a "soil" in distant organs whereby circulating tumor cells "seed' and colonize, leading to formation of metastatic foci. Given the importance of host derived chemokines in cancer progression and metastases several drugs like Mogamulizumab, Plerixafor, Repertaxin among others are part of ongoing clinical trial which target chemokines and their receptors against cancer pathogenesis. In this review, we focus on recent advances in understanding the complexity of chemokines network in tumor microenvironment, with an emphasis on chemokines secreted from host cells. We especially summarize the role of host-derived chemokines in different stages of metastases, including invasion, dissemination, migration into the vasculature, and seeding into the pre-metastatic niche. We finally provide a brief description of prospective drugs that target chemokines in different clinical trials against cancer.
Collapse
Affiliation(s)
- Shahid Hussain
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Bo Peng
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mathew Cherian
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jonathan W Song
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Mechanical and Aerospace Engineering, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Dinesh K Ahirwar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
274
|
Neutrophils and Macrophages as Targets for Development of Nanotherapeutics in Inflammatory Diseases. Pharmaceutics 2020; 12:pharmaceutics12121222. [PMID: 33348630 PMCID: PMC7766591 DOI: 10.3390/pharmaceutics12121222] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Neutrophils and macrophages are major components of innate systems, playing central roles in inflammation responses to infections and tissue injury. If they are out of control, inflammation responses can cause the pathogenesis of a wide range of diseases, such as inflammatory disorders and autoimmune diseases. Precisely regulating the functions of neutrophils and macrophages in vivo is a potential strategy to develop immunotherapies to treat inflammatory diseases. Advances in nanotechnology have enabled us to design nanoparticles capable of targeting neutrophils or macrophages in vivo. This review discusses the current status of how nanoparticles specifically target neutrophils or macrophages and how they manipulate leukocyte functions to inhibit their activation for inflammation resolution or to restore their defense ability for pathogen clearance. Finally, we present a novel concept of hijacking leukocytes to deliver nanotherapeutics across the blood vessel barrier. This review highlights the challenges and opportunities in developing nanotherapeutics to target leukocytes for improved treatment of inflammatory diseases.
Collapse
|
275
|
Bear AS, Vonderheide RH, O'Hara MH. Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell 2020; 38:788-802. [PMID: 32946773 PMCID: PMC7738380 DOI: 10.1016/j.ccell.2020.08.004] [Citation(s) in RCA: 384] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is among the most immune-resistant tumor types. Its unique genomic landscape shaped by oncogenic drivers promotes immune suppression from the earliest stages of tumor inception to subvert adaptive T cell immunity. Single-agent immune modulators have thus far proven clinically ineffective, and multi-modal therapies targeting mechanisms of immunotherapy resistance are likely needed. Here, we review novel immunotherapy strategies currently under investigation to (1) confer antigen specificity, (2) enhance T cell effector function, and (3) neutralize immunosuppressive elements within the tumor microenvironment that may be rationally combined to untangle the web of immune resistance in PDA and other tumors.
Collapse
Affiliation(s)
- Adham S Bear
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert H Vonderheide
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mark H O'Hara
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA. mark.o'
| |
Collapse
|
276
|
NOX2-Derived Reactive Oxygen Species in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7095902. [PMID: 33312338 PMCID: PMC7721506 DOI: 10.1155/2020/7095902] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
The formation of reactive oxygen species (ROS) by the myeloid cell NADPH oxidase NOX2 is critical for the destruction of engulfed microorganisms. However, recent studies imply that ROS, formed by NOX2+ myeloid cells in the malignant microenvironment, exert multiple actions of relevance to the growth and spread of neoplastic cells. By generating ROS, tumor-infiltrating myeloid cells and NOX2+ leukemic myeloid cells may thus (i) compromise the function and viability of adjacent cytotoxic lymphocytes, including natural killer (NK) cells and T cells, (ii) oxidize DNA to trigger cancer-promoting somatic mutations, and (iii) affect the redox balance in cancer cells to control their proliferation and survival. Here, we discuss the impact of NOX2-derived ROS for tumorigenesis, tumor progression, regulation of antitumor immunity, and metastasis. We propose that NOX2 may be a targetable immune checkpoint in cancer.
Collapse
|
277
|
Anderson NR, Minutolo NG, Gill S, Klichinsky M. Macrophage-Based Approaches for Cancer Immunotherapy. Cancer Res 2020; 81:1201-1208. [PMID: 33203697 DOI: 10.1158/0008-5472.can-20-2990] [Citation(s) in RCA: 422] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022]
Abstract
Adoptive cell therapy with genetically modified T cells has generated exciting outcomes in hematologic malignancies, but its application to solid tumors has proven challenging. This gap has spurred the investigation of alternative immune cells as therapeutics. Macrophages are potent immune effector cells whose functional plasticity leads to antitumor as well as protumor function in different settings, and this plasticity has led to notable efforts to deplete or repolarize tumor-associated macrophages. Alternatively, macrophages could be adoptively transferred after ex vivo genetic modification. In this review, we highlight the role of macrophages in solid tumors, the progress made with macrophage-focused immunotherapeutic modalities, and the emergence of chimeric antigen receptor macrophage cell therapy.
Collapse
Affiliation(s)
| | | | - Saar Gill
- Department of Hematology Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
278
|
Geng Y, Fan J, Chen L, Zhang C, Qu C, Qian L, Chen K, Meng Z, Chen Z, Wang P. A Notch-Dependent Inflammatory Feedback Circuit between Macrophages and Cancer Cells Regulates Pancreatic Cancer Metastasis. Cancer Res 2020; 81:64-76. [PMID: 33172931 DOI: 10.1158/0008-5472.can-20-0256] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/11/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
Notch activation has been detected in pancreatic ductal adenocarcinoma (PDAC). However, its role in PDAC metastasis remains unknown. In this study, we identify a Notch-dependent feedback circuit between pancreatic cancer cells and macrophages, which contributes to PDAC metastasis. In this circuit, miR-124 regulated Notch signaling in cancer cells by directly targeting the Notch ligand Jagged 1. Autoamplified Notch signaling promoted the recruitment and activation of macrophages to a tumor-supporting M2-like phenotype via downstream IL8, CCL2, IL1α, and uPA paracrine signaling. In turn, activated macrophage-derived IL6 activated the oncogenic transcription factor STAT3 that directly repressed miR-124 genes via a conserved STAT3-binding site in their promoters, thereby promoting cancer cell epithelial-mesenchymal transition and invasion. Disrupting this circuit suppressed liver metastasis in mouse models. Thus, our study suggests that manipulation of this Notch-dependent circuit has a therapeutic potential for the treatment of PDAC metastasis. SIGNIFICANCE: This study provided potential therapeutic targets and robust preclinical evidence for PDAC treatment by interrupting feedback signaling between cancer cells and macrophages with targeted inhibitors.
Collapse
Affiliation(s)
- Yawen Geng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Fan
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lianyu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenyue Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Qu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kun Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
279
|
Vonderheide RH, Bear AS. Tumor-Derived Myeloid Cell Chemoattractants and T Cell Exclusion in Pancreatic Cancer. Front Immunol 2020; 11:605619. [PMID: 33304355 PMCID: PMC7693439 DOI: 10.3389/fimmu.2020.605619] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Like many tumor types, pancreatic ductal adenocarcinoma (PDAC) exhibits a rich network of tumor-derived cytokines and chemokines that drive recruitment of myeloid cells to the tumor microenvironment (TME). These cells, which include tumor-associated macrophages and myeloid derived suppressor cells, block the recruitment and priming of T cells, resulting in T cell exclusion within the TME. Genetic or pharmacologic disruption of this chemokine/cytokine network reliably converts the PDAC TME to a T cell-high phenotype and sensitizes tumors to immunotherapy across multiple preclinical models. Thus, neutralization of tumor-derived chemokines/cytokines or blockade of their respective receptors represents a potentially potent strategy to reverse myeloid immunosuppression in PDAC, enabling benefit from checkpoint inhibition not otherwise achievable in this disease. Inhibition of oncogenic pathways that drive tumor-intrinsic expression of chemoattractants may be similarly effective.
Collapse
Affiliation(s)
- Robert H Vonderheide
- Abramson Cancer Center, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Adham S Bear
- Abramson Cancer Center, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
280
|
Ge Z, Ding S. The Crosstalk Between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy. Front Oncol 2020; 10:590941. [PMID: 33224886 PMCID: PMC7670061 DOI: 10.3389/fonc.2020.590941] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor microenvironment (TME) is composed of tumor cells and surrounding non-tumor stromal cells, mainly including tumor associated macrophages (TAMs), endothelial cells, and carcinoma-associated fibroblasts (CAFs). The TAMs are the major components of non-tumor stromal cells, and play an important role in promoting the occurrence and development of tumors. Macrophages originate from bone marrow hematopoietic stem cells and embryonic yolk sacs. There is close crosstalk between TAMs and tumor cells. With the occurrence of tumors, tumor cells secrete various chemokines to recruit monocytes to infiltrate tumor tissues and further promote their M2-type polarization. Importantly, M2-like TAMs can in turn accelerate tumor growth, promote tumor cell invasion and metastasis, and inhibit immune killing to promote tumor progression. Therefore, targeting TAMs in tumor tissues has become one of the principal strategies in current tumor immunotherapy. Current treatment strategies focus on reducing macrophage infiltration in tumor tissues and reprogramming TAMs to M1-like to kill tumors. Although these treatments have had some success, their effects are still limited. This paper mainly summarized the recruitment and polarization of macrophages by tumors, the support of TAMs for the growth of tumors, and the research progress of TAMs targeting tumors, to provide new treatment strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Zhe Ge
- School of Physical Education & Health Care, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Shuzhe Ding
- School of Physical Education & Health Care, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
281
|
Steele NG, Carpenter ES, Kemp SB, Sirihorachai VR, The S, Delrosario L, Lazarus J, Amir EAD, Gunchick V, Espinoza C, Bell S, Harris L, Lima F, Irizarry-Negron V, Paglia D, Macchia J, Chu AKY, Schofield H, Wamsteker EJ, Kwon R, Schulman A, Prabhu A, Law R, Sondhi A, Yu J, Patel A, Donahue K, Nathan H, Cho C, Anderson MA, Sahai V, Lyssiotis CA, Zou W, Allen BL, Rao A, Crawford HC, Bednar F, Frankel TL, Pasca di Magliano M. Multimodal Mapping of the Tumor and Peripheral Blood Immune Landscape in Human Pancreatic Cancer. NATURE CANCER 2020; 1:1097-1112. [PMID: 34296197 PMCID: PMC8294470 DOI: 10.1038/s43018-020-00121-4] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an immune-suppressive tumor microenvironment that renders it largely refractory to immunotherapy. We implemented a multimodal analysis approach to elucidate the immune landscape in PDA. Using a combination of CyTOF, single-cell RNA sequencing, and multiplex immunohistochemistry on patient tumors, matched blood, and non-malignant samples, we uncovered a complex network of immune-suppressive cellular interactions. These experiments revealed heterogeneous expression of immune checkpoint receptors in individual patient's T cells and increased markers of CD8+ T cell dysfunction in advanced disease stage. Tumor-infiltrating CD8+ T cells had an increased proportion of cells expressing an exhausted expression profile that included upregulation of the immune checkpoint TIGIT, a finding that we validated at the protein level. Our findings point to a profound alteration of the immune landscape of tumors, and to patient-specific immune changes that should be taken into account as combination immunotherapy becomes available for pancreatic cancer.
Collapse
Affiliation(s)
- Nina G Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Eileen S Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Samantha B Kemp
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Stephanie The
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Jenny Lazarus
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Valerie Gunchick
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Carlos Espinoza
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Samantha Bell
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lindsey Harris
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Fatima Lima
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Daniel Paglia
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Justin Macchia
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Angel Ka Yan Chu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Erik-Jan Wamsteker
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Richard Kwon
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Allison Schulman
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Anoop Prabhu
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Ryan Law
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Arjun Sondhi
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Yu
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Arpan Patel
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Katelyn Donahue
- Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Hari Nathan
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Clifford Cho
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Michelle A Anderson
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Vaibhav Sahai
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Arvind Rao
- Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Michigan Institute of Data Science (MIDAS), University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Howard C Crawford
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI, USA.
- Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| | | | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI, USA.
- Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
282
|
Comprehensive analysis of the expression and prognostic value of CXC chemokines in colorectal cancer. Int Immunopharmacol 2020; 89:107077. [PMID: 33068862 DOI: 10.1016/j.intimp.2020.107077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/06/2020] [Accepted: 10/03/2020] [Indexed: 02/08/2023]
Abstract
The C-X-C motif (CXC) chemokines play an important role in inflammatory processes and angiogenesis and are also associated with tumor development, progression and metastasis. They can be either promoting or inhibiting factors in colorectal cancers (CRC). The expression patterns and prognostic values of the CXC family still need further investigation. In this study, we investigated data related to transcription, translation, survival and tumor immune infiltration for CXC chemokines in patients with CRC from the ONCOMINE, GEPIA, cBioPortal, HPA and TIMER databases. We found that the expression levels of CXCL1-3, CXCL5, and CXCL8 were higher in CRC tissues than in colorectal tissues. Expression among stages significantly varied for CXCL1-3 and CXCL9-11. The survival analysis revealed that high transcriptional levels of CXCL4 and CXCL9-11 could serve as positive prognostic factors for patients with CRC. CXCL9-11 were highly associated with CD8+ T cells and natural killer (NK) cells in the tumor immune infiltration analysis, indicating their role in the antitumor immune response. This study implies that CXCL1-3, CXCL5, and CXCL8 are important factors during CRC oncogenesis and that CXCL9-11 could be new biomarkers for the prognosis of CRC.
Collapse
|
283
|
Mejia I, Bodapati S, Chen KT, Díaz B. Pancreatic Adenocarcinoma Invasiveness and the Tumor Microenvironment: From Biology to Clinical Trials. Biomedicines 2020; 8:E401. [PMID: 33050151 PMCID: PMC7601142 DOI: 10.3390/biomedicines8100401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) originates in the glandular compartment of the exocrine pancreas. Histologically, PDAC tumors are characterized by a parenchyma that is embedded in a particularly prominent stromal component or desmoplastic stroma. The unique characteristics of the desmoplastic stroma shape the microenvironment of PDAC and modulate the reciprocal interactions between cancer and stromal cells in ways that have profound effects in the pathophysiology and treatment of this disease. Here, we review some of the most recent findings regarding the regulation of PDAC cell invasion by the unique microenvironment of this tumor, and how new knowledge is being translated into novel therapeutic approaches.
Collapse
Affiliation(s)
- Isabel Mejia
- Department of Medicine, Division of Medical Hematology Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
| | - Sandhya Bodapati
- College of Osteopathic Medicine, Pacific Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Kathryn T. Chen
- Department of Surgery, Division of Surgical Oncology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
| | - Begoña Díaz
- Department of Medicine, Division of Medical Hematology Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
284
|
Huber M, Brehm CU, Gress TM, Buchholz M, Alashkar Alhamwe B, Pogge von Strandmann E, Slater EP, Bartsch JW, Bauer C, Lauth M. The Immune Microenvironment in Pancreatic Cancer. Int J Mol Sci 2020; 21:E7307. [PMID: 33022971 PMCID: PMC7583843 DOI: 10.3390/ijms21197307] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
The biology of solid tumors is strongly determined by the interactions of cancer cells with their surrounding microenvironment. In this regard, pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) represents a paradigmatic example for the multitude of possible tumor-stroma interactions. PDAC has proven particularly refractory to novel immunotherapies, which is a fact that is mediated by a unique assemblage of various immune cells creating a strongly immunosuppressive environment in which this cancer type thrives. In this review, we outline currently available knowledge on the cross-talk between tumor cells and the cellular immune microenvironment, highlighting the physiological and pathological cellular interactions, as well as the resulting therapeutic approaches derived thereof. Hopefully a better understanding of the complex tumor-stroma interactions will one day lead to a significant advancement in patient care.
Collapse
Affiliation(s)
- Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University Marburg, 35043 Marburg, Germany;
| | - Corinna U. Brehm
- Institute of Pathology, University Hospital Giessen-Marburg, 35043 Marburg, Germany;
| | - Thomas M. Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| | - Bilal Alashkar Alhamwe
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (E.P.v.S.); (B.A.A.)
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (E.P.v.S.); (B.A.A.)
| | - Emily P. Slater
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Christian Bauer
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| | - Matthias Lauth
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| |
Collapse
|
285
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
286
|
Bhutiani N, Li Y, Zheng Q, Pandit H, Shi X, Chen Y, Yu Y, Pulliam ZR, Tan M, Martin RCG. Electrochemotherapy with Irreversible Electroporation and FOLFIRINOX Improves Survival in Murine Models of Pancreatic Adenocarcinoma. Ann Surg Oncol 2020; 27:4348-4359. [DOI: 10.1245/s10434-020-08782-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/05/2020] [Indexed: 08/30/2023]
|
287
|
Wu M, Ma M, Tan Z, Zheng H, Liu X. Neutrophil: A New Player in Metastatic Cancers. Front Immunol 2020; 11:565165. [PMID: 33101283 PMCID: PMC7546851 DOI: 10.3389/fimmu.2020.565165] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
The interaction between cancer cells and immune cells is important for the cancer development. However, much attention has been given to T cells and macrophages. Being the most abundant leukocytes in the blood, the functions of neutrophils in cancer have been underdetermined. They have long been considered an “audience” in the development of cancer. However, emerging evidence indicate that neutrophils are a heterogeneous population with plasticity, and subpopulation of neutrophils (such as low density neutrophils, polymorphonuclear-myeloid-derived suppressor cells) are actively involved in cancer growth and metastasis. Here, we review the current understanding of the role of neutrophils in cancer development, with a specific focus on their pro-metastatic functions. We also discuss the potential and challenges of neutrophils as therapeutic targets. A better understanding the role of neutrophils in cancer will discover new mechanisms of metastasis and develop new immunotherapies by targeting neutrophils.
Collapse
Affiliation(s)
- Mengyue Wu
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Mutian Ma
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Zhenya Tan
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Hong Zheng
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Xia Liu
- Department of Toxicology and Cancer Biology, Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
288
|
Zhou K, Cheng T, Zhan J, Peng X, Zhang Y, Wen J, Chen X, Ying M. Targeting tumor-associated macrophages in the tumor microenvironment. Oncol Lett 2020; 20:234. [PMID: 32968456 PMCID: PMC7500051 DOI: 10.3892/ol.2020.12097] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are the most abundant population type of tumor-infiltrating immune cells found in the tumor microenvironment (TME), and are evolutionarily associated with microvessel density in tumor tissues. TAMs can be broadly divided into M1-like and M2-like TAMs, which demonstrate antitumor and pro-tumor activity in the TME, respectively. Studies have indicated that: i) The predominate presence of M2-like TAMs in the TME can result in tumor immunosuppression and chemoresistance; ii) the ratio of M1-like to M2-like TAMs in the TME is positively correlated with better long-term prognosis of patients with cancer; iii) epigenetic silencing, preventing the secretion of M1-like TAM-associated molecules, is an important immune evasion mechanism during tumor progression; and iv) the transformation from M2-like to M1-like TAMs following exposure to specific conditions can result in tumor regression. The present study discusses the molecular events underlying the recruitment of macrophages and their polarization into M1-like or M2-like TAMs, and their differential roles in angiogenesis, angiostasis, invasion, metastasis and immune activity in the TME. This insight may inform the improved design of TAM-targeted cancer immunotherapy. Some of these therapeutic strategies show promising effects; however, challenges remain.
Collapse
Affiliation(s)
- Kaiwen Zhou
- Department of Molecular Biology and Biochemistry, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,The First Clinical Medical College, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tan Cheng
- Queen Mary School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinyue Zhan
- School of Public Health, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuan Peng
- The Fourth Clinical Medical College, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yue Zhang
- The Fourth Clinical Medical College, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianpei Wen
- The Fourth Clinical Medical College, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoman Chen
- Department of Molecular Biology and Biochemistry, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Muying Ying
- Department of Molecular Biology and Biochemistry, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
289
|
Yang X, Lu Y, Hang J, Zhang J, Zhang T, Huo Y, Liu J, Lai S, Luo D, Wang L, Hua R, Lin Y. Lactate-Modulated Immunosuppression of Myeloid-Derived Suppressor Cells Contributes to the Radioresistance of Pancreatic Cancer. Cancer Immunol Res 2020; 8:1440-1451. [PMID: 32917658 DOI: 10.1158/2326-6066.cir-20-0111] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/11/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022]
Abstract
The mechanisms responsible for radioresistance in pancreatic cancer have yet to be elucidated, and the suppressive tumor immune microenvironment must be considered. We investigated whether the radiotherapy-augmented Warburg effect helped myeloid cells acquire an immunosuppressive phenotype, resulting in limited treatment efficacy of pancreatic ductal adenocarcinoma (PDAC). Radiotherapy enhanced the tumor-promoting activity of myeloid-derived suppressor cells (MDSC) in pancreatic cancer. Sustained increase in lactate secretion, resulting from the radiation-augmented Warburg effect, was responsible for the enhanced immunosuppressive phenotype of MDSCs after radiotherapy. Hypoxia-inducible factor-1α (HIF-1α) was essential for tumor cell metabolism and lactate-regulated activation of MDSCs via the G protein-coupled receptor 81 (GPR81)/mTOR/HIF-1α/STAT3 pathway. Blocking lactate production in tumor cells or deleting Hif-1α in MDSCs reverted antitumor T-cell responses and effectively inhibited tumor progression after radiotherapy in pancreatic cancer. Our investigation highlighted the importance of radiation-induced lactate in regulating the inhibitory immune microenvironment of PDAC. Targeting lactate derived from tumor cells and the HIF-1α signaling in MDSCs may hold distinct promise for clinical therapies to alleviate radioresistance in PDAC.
Collapse
Affiliation(s)
- Xuguang Yang
- Cancer Institute, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Lu
- Cancer Institute, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junjie Hang
- Department of Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Junfeng Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tiening Zhang
- Oncology Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanmiao Huo
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Liu
- Oncology Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Lai
- Department of Radiation Oncology, Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dawei Luo
- Oncology Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Liwei Wang
- Department of Oncology, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yuli Lin
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
290
|
Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities. Nat Rev Clin Oncol 2020; 17:527-540. [PMID: 32398706 PMCID: PMC7442729 DOI: 10.1038/s41571-020-0363-5] [Citation(s) in RCA: 751] [Impact Index Per Article: 150.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Metastatic pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid tumours despite the use of multi-agent conventional chemotherapy regimens. Such poor outcomes have fuelled ongoing efforts to exploit the tumour microenvironment (TME) for therapy, but strategies aimed at deconstructing the surrounding desmoplastic stroma and targeting the immunosuppressive pathways have largely failed. In fact, evidence has now shown that the stroma is multi-faceted, which illustrates the complexity of exploring features of the TME as isolated targets. In this Review, we describe ways in which the PDAC microenvironment has been targeted and note the current understanding of the clinical outcomes that have unexpectedly contradicted preclinical observations. We also consider the more sophisticated therapeutic strategies under active investigation - multi-modal treatment approaches and exploitation of biologically integrated targets - which aim to remodel the TME against PDAC.
Collapse
Affiliation(s)
- Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
291
|
Siolas D, Morrissey C, Oberstein PE. The Achilles' Heel of Pancreatic Cancer: Targeting pancreatic cancer's unique immunologic characteristics and metabolic dependencies in clinical trials. JOURNAL OF PANCREATOLOGY 2020; 3:121-131. [PMID: 33133736 PMCID: PMC7595263 DOI: 10.1097/jp9.0000000000000052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a high mortality rate and is notoriously refractory to multiple cancer treatments. In recent years, cancer therapy has expanded beyond traditional cytotoxic chemotherapy to targeted agents and immunotherapy which have been successfully implemented in many cancers. Despite robust pre-clinical research, these novel therapies have only had a small impact on PDAC. However, there have been successes with emerging clinical data supporting a potential role for checkpoint inhibitor therapy and targeted therapy with poly (ADP-ribose) polymerase inhibitors for select subsets of PDAC patients. In this clinical review, we discuss recent pre-clinical evidence for targeting metabolic pathways as well as prevalent intratumoral immune subsets, and focus on clinical trials designed to test novel agents in PDAC. The challenge of translating pre-clinical findings to patients remains substantial and many clinical trials yield negative results, but collaborative efforts and renewed focus on novel clinical trials have led to optimism that we will identify additional options for PDAC patients and change outcomes for this deadly disease.
Collapse
Affiliation(s)
- Despina Siolas
- Department of Medicine, Pancreatic Cancer Center, Perlmutter Comprehensive Cancer Center, NYU Langone Health, New York, NY
| | - Christy Morrissey
- Department of Medicine, Pancreatic Cancer Center, Perlmutter Comprehensive Cancer Center, NYU Langone Health, New York, NY
| | - Paul Eliezer Oberstein
- Department of Medicine, Pancreatic Cancer Center, Perlmutter Comprehensive Cancer Center, NYU Langone Health, New York, NY
| |
Collapse
|
292
|
Hegde S. Pancreatic Cancer Immuno-oncology in the Era of Precision Medicine. Indian J Surg Oncol 2020; 12:118-127. [PMID: 33994737 DOI: 10.1007/s13193-020-01192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022] Open
Abstract
Pancreatic malignancies carry a dismal prognosis globally, with pancreatic adenocarcinomas (PDAC) being particularly aggressive and stubborn. Unfortunately, several therapeutic strategies that show promise in other cancers have failed to make sizeable impact on pancreatic tumor outcomes. Responses to immunotherapies are especially rare in pancreatic cancer, and patients are in need of innovative approaches that can result in more durable responses. Current research in preclinical models and humans has suggested this resistance is due to a uniquely inflammatory and dysfunctional tumor microenvironment; these findings lay the groundwork for targeting these barriers and improving outcomes. Clinical analyses have also revealed unprecedented heterogeneity in tumor and stromal biology of PDAC, underscoring the need for more personalized approaches and combinatorial therapies. This review will highlight the current state of translational research focusing on PDAC immunity, summarize ongoing clinical efforts to tackle PDAC vulnerabilities, and underscore some unresolved challenges in implementing therapies more broadly. A better understanding of immune contexture and tumor heterogeneity in this disease will greatly accelerate drug discovery and implementation of precision medicine for PDAC.
Collapse
Affiliation(s)
- Samarth Hegde
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
293
|
Regulation and modulation of antitumor immunity in pancreatic cancer. Nat Immunol 2020; 21:1152-1159. [PMID: 32807942 DOI: 10.1038/s41590-020-0761-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma carries a dismal prognosis, and outcomes have improved little with modern therapeutics. Checkpoint-based immunotherapy has failed to elicit responses in the vast majority of patients with pancreatic cancer. Alongside tumor cell-intrinsic mechanisms associated with oncogenic KRAS-induced inflammation, the tolerogenic myeloid cell infiltrate has emerged as a critical impediment to adaptive antitumor immune responses. Furthermore, the discovery of an intratumoral microbiome and the elucidation of host-microbe interactions that curtail antitumor immunity also present opportunities for intervention. Here we review the mechanisms of immunotherapy resistance in pancreatic ductal adenocarcinoma and discuss strategies to directly augment T cell responses in parallel with myeloid cell- and microbiome-targeted approaches that may enable immune-mediated control of this malignancy.
Collapse
|
294
|
Zhang J, Ji C, Li W, Mao Z, Shi Y, Shi H, Ji R, Qian H, Xu W, Zhang X. Tumor-Educated Neutrophils Activate Mesenchymal Stem Cells to Promote Gastric Cancer Growth and Metastasis. Front Cell Dev Biol 2020; 8:788. [PMID: 32903528 PMCID: PMC7438587 DOI: 10.3389/fcell.2020.00788] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
In response to tumor signals, mesenchymal stem cells (MSCs) are recruited to tumor sites and activated to promote tumor progression. Emerging evidences suggest that in addition to tumor cells, non-tumor cells in tumor microenvironment could also interact with MSCs to regulate their phenotype and function. However, the mechanism for MSCs regulation in gastric cancer has not been fully understood. In this study, we reported that tumor-educated neutrophils (TENs) induced the transformation of MSCs into cancer-associated fibroblasts (CAFs) which in turn remarkably facilitated gastric cancer growth and metastasis. Mechanistic study showed that TENs exerted their effects by secreting inflammatory factors including IL-17, IL-23 and TNF-α, which triggered the activation of AKT and p38 pathways in MSCs. Pre-treatment with neutralizing antibodies to these inflammatory factors or pathway inhibitors reversed TENs-induced transformation of MSCs to CAFs. Taken together, these data suggest that TENs promote gastric cancer progression through the regulation of MSCs/CAFs transformation.
Collapse
Affiliation(s)
- Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wei Li
- Center of Research Laboratory, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Zheying Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yinghong Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Runbi Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.,Department of Clinical Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
295
|
Panni RZ, Herndon JM, Zuo C, Hegde S, Hogg GD, Knolhoff BL, Breden MA, Li X, Krisnawan VE, Khan SQ, Schwarz JK, Rogers BE, Fields RC, Hawkins WG, Gupta V, DeNardo DG. Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Sci Transl Med 2020; 11:11/499/eaau9240. [PMID: 31270275 DOI: 10.1126/scitranslmed.aau9240] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Although checkpoint immunotherapies have revolutionized the treatment of cancer, not all tumor types have seen substantial benefit. Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy in which very limited responses to immunotherapy have been observed. Extensive immunosuppressive myeloid cell infiltration in PDAC tissues has been postulated as a major mechanism of resistance to immunotherapy. Strategies concomitantly targeting monocyte or granulocyte trafficking or macrophage survival, in combination with checkpoint immunotherapies, have shown promise in preclinical studies, and these studies have transitioned into ongoing clinical trials for the treatment of pancreatic and other cancer types. However, compensatory actions by untargeted monocytes, granulocytes, and/or tissue resident macrophages may limit the therapeutic efficacy of such strategies. CD11b/CD18 is an integrin molecule that is highly expressed on the cell surface of these myeloid cell subsets and plays an important role in their trafficking and cellular functions in inflamed tissues. Here, we demonstrate that the partial activation of CD11b by a small-molecule agonist (ADH-503) leads to the repolarization of tumor-associated macrophages, reduction in the number of tumor-infiltrating immunosuppressive myeloid cells, and enhanced dendritic cell responses. These actions, in turn, improve antitumor T cell immunity and render checkpoint inhibitors effective in previously unresponsive PDAC models. These data demonstrate that molecular agonism of CD11b reprograms immunosuppressive myeloid cell responses and potentially bypasses the limitations of current clinical strategies to overcome resistance to immunotherapy.
Collapse
Affiliation(s)
- Roheena Z Panni
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John M Herndon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chong Zuo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samarth Hegde
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Graham D Hogg
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brett L Knolhoff
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcus A Breden
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaobo Li
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Varintra E Krisnawan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samia Q Khan
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Julie K Schwarz
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA.,Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Buck E Rogers
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA.,Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan C Fields
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vineet Gupta
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. .,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
296
|
Yang T, Li J, Li R, Yang C, Zhang W, Qiu Y, Yang C, Rong R. Correlation between MDSC and Immune Tolerance in Transplantation: Cytokines, Pathways and Cell-cell Interaction. Curr Gene Ther 2020; 19:81-92. [PMID: 31237207 DOI: 10.2174/1566523219666190618093707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/06/2019] [Accepted: 05/24/2019] [Indexed: 11/22/2022]
Abstract
MDSCs play an important role in the induction of immune tolerance. Cytokines and chemokines (GM-CSF, IL-6) contributed to the expansion, accumulation of MDSCs, and MDSCs function through iNOS, arginase and PD-L1. MDSCs are recruited and regulated through JAK/STAT, mTOR and Raf/MEK/ERK signaling pathways. MDSCs' immunosuppressive functions were realized through Tregs-mediated pathways and their direct suppression of immune cells. All of the above contribute to the MDSC-related immune tolerance in transplantation. MDSCs have huge potential in prolonging graft survival and reducing rejection through different ways and many other factors worthy to be further investigated are also introduced.
Collapse
Affiliation(s)
- Tianying Yang
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiawei Li
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruimin Li
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunchen Yang
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weitao Zhang
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yue Qiu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruiming Rong
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
297
|
Wu X, Singh R, Hsu DK, Zhou Y, Yu S, Han D, Shi Z, Huynh M, Campbell JJ, Hwang ST. A Small Molecule CCR2 Antagonist Depletes Tumor Macrophages and Synergizes with Anti–PD-1 in a Murine Model of Cutaneous T-Cell Lymphoma (CTCL). J Invest Dermatol 2020; 140:1390-1400.e4. [DOI: 10.1016/j.jid.2019.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/27/2023]
|
298
|
Cole CL, Beck CA, Robinson D, Ye J, Mills B, Gerber SA, Schwarz EM, Linehan D. Dual Energy X-ray Absorptiometry (DEXA) as a longitudinal outcome measure of cancer-related muscle wasting in mice. PLoS One 2020; 15:e0230695. [PMID: 32559188 PMCID: PMC7304564 DOI: 10.1371/journal.pone.0230695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is notorious for its associated skeletal muscle wasting (SMW) and mortality. Currently, the relationships between PDAC, SMW, and survival are poorly understood. Thus, there is great need for a faithful small animal model with quantitative longitudinal outcome measures that recapitulate clinical PDAC, to define SMW onset and assess progression. Therefore, we aimed to validate dual energy X-ray absorptiometry (DEXA) as a longitudinal measure of lean mass, and demonstrate its utility to quantify SMW in the KCKO murine model of PDAC. Methods In vivo body composition of: 1) untreated mice at 5, 8, 12, 18, and 22 weeks of age (n = 4) and 2) a cohort of mice with (n = 5) and without PDAC (n = 5), was determined via DEXA and lean mass of the lower hind limbs was predicted via a region of interest analysis by two-independent observers. Total body weight was determined. Tibialis anterior (TA) muscles were weighed and processed for histomorphometry immediately post-mortem. Statistical differences between groups were assessed using ANOVA and Student’s t-tests. Linear regression models and correlation analysis were used to measure the association between TA and DEXA mass, and reproducibility of DEXA was quantified via the intraclass correlation coefficient (ICC). Results Lean mass in growing untreated mice determined by DEXA correlated with TA mass (r2 = 0.94; p <0.0001) and body weight (r2 = 0.89; p <0.0001). DEXA measurements were highly reproducible between observers (ICC = 0.95; 95% CI: 0.89–0.98). DEXA and TA mass also correlated in the PDAC cohort (r2 = 0.76; p <0.0001). Significant SMW in tumor-bearing mice was detected within 38 days of implantation, by DEXA, TA mass, and histomorphometry. Conclusions DEXA is a longitudinal outcome measure of lean mass in mice. The KCKO syngeneic model is a bona fide model of PDAC associated SMW that can be quantified with longitudinal DEXA.
Collapse
Affiliation(s)
- Calvin L. Cole
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, United States of America
- Cancer Control, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| | | | - Deja Robinson
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Bradley Mills
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Scott A. Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Edward M. Schwarz
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, United States of America
| | - David Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, United States of America
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
299
|
Storz P, Crawford HC. Carcinogenesis of Pancreatic Ductal Adenocarcinoma. Gastroenterology 2020; 158:2072-2081. [PMID: 32199881 PMCID: PMC7282937 DOI: 10.1053/j.gastro.2020.02.059] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Although the estimated time for development of pancreatic ductal adenocarcinoma (PDA) is more than 20 years, PDAs are usually detected at late, metastatic stages. PDAs develop from duct-like cells through a multistep carcinogenesis process, from low-grade dysplastic lesions to carcinoma in situ and eventually to metastatic disease. This process involves gradual acquisition of mutations in oncogenes and tumor suppressor genes, as well as changes in the pancreatic environment from a pro-inflammatory microenvironment that favors the development of early lesions, to a desmoplastic tumor microenvironment that is highly fibrotic and immune suppressive. This review discusses our current understanding of how PDA originates.
Collapse
Affiliation(s)
- Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida.
| | - Howard C. Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA, To whom correspondence should be addressed: Peter Storz, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL 32224. Phone: (904) 953-6909, ; or Howard Crawford, University of Michigan, 4304 Rogel Cancer Center, 1500 E. Medical Center Drive Ann Arbor, MI 48109. Phone: (734) 764-3815,
| |
Collapse
|
300
|
Noel M, O'Reilly EM, Wolpin BM, Ryan DP, Bullock AJ, Britten CD, Linehan DC, Belt BA, Gamelin EC, Ganguly B, Yin D, Joh T, Jacobs IA, Taylor CT, Lowery MA. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Invest New Drugs 2020; 38:800-811. [PMID: 31297636 PMCID: PMC7211198 DOI: 10.1007/s10637-019-00830-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
Abstract
Background In pancreatic ductal adenocarcinoma (PDAC), the chemokine (C-C motif) ligand 2 (CCL2)/chemokine (C-C motif) receptor 2 (CCR2) axis plays a key role in immunosuppressive properties of the tumor microenvironment, patient prognosis, and chemoresistance. This phase Ib study assessed the effects of the orally administered CCR2 inhibitor PF-04136309 in combination with nab-paclitaxel and gemcitabine in patients with previously untreated metastatic PDAC. Methods Patients received PF-04136309 twice daily (BID) continuously plus nab-paclitaxel (125 mg/m2) and gemcitabine (1000 mg/m2) administered on days 1, 8, and 15 of each 28-day cycle. The primary objectives were to evaluate safety and tolerability, characterize dose-limiting toxicities (DLTs), and determine the recommended phase II dose (RP2D) of PF-04136309. Results In all, 21 patients received PF-04136309 at a starting dose of 500 mg or 750 mg BID. The RP2D was identified to be 500 mg BID. Of 17 patients treated at the 500 mg BID starting dose, three (17.6%) experienced a total of four DLTs, including grade 3 dysesthesia, diarrhea, and hypokalemia and one event of grade 4 hypoxia. Relative to the small number of patients (n = 21), a high incidence (24%) of pulmonary toxicity was observed in this study. The objective response rate for 21 patients was 23.8% (95% confidence interval: 8.2-47.2%). Levels of CD14 + CCR2+ inflammatory monocytes (IM) decreased in the peripheral blood, but did not accumulate in the bone marrow. Conclusions PF-04136309 in combination with nab-paclitaxel plus gemcitabine had a safety profile that raises concern for synergistic pulmonary toxicity and did not show an efficacy signal above nab-paclitaxel and gemcitabine. ClinicalTrials.gov identifier: NCT02732938.
Collapse
Affiliation(s)
- Marcus Noel
- Department of Medicine, Division of Hematology/Oncology, University of Rochester Medical Center School of Medicine & Dentistry, Rochester, NY, USA
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David P Ryan
- MGH Cancer Center, Division of Hematogy-Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Andrea J Bullock
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Carolyn D Britten
- Division of Hematology/Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - David C Linehan
- Department of Surgery, University of Rochester Medical Center School of Medicine & Dentistry, Rochester, NY, USA
| | - Brian A Belt
- Department of Surgery, University of Rochester, Rochester, NY, USA
| | - Eric C Gamelin
- Early Oncology Development and Clinical Research, Pfizer Inc, 219 East 42nd Street, New York, NY, 10017, USA
| | - Bishu Ganguly
- Early Oncology Development and Clinical Research, Pfizer Inc, 219 East 42nd Street, New York, NY, 10017, USA
- Lyell Immunopharma Inc, Palo Alto, CA, USA
| | - Donghua Yin
- Early Oncology Development and Clinical Research, Pfizer Inc, 219 East 42nd Street, New York, NY, 10017, USA
| | - Tenshang Joh
- Early Oncology Development and Clinical Research, Pfizer Inc, 219 East 42nd Street, New York, NY, 10017, USA
| | - Ira A Jacobs
- Early Oncology Development and Clinical Research, Pfizer Inc, 219 East 42nd Street, New York, NY, 10017, USA.
| | - Carrie T Taylor
- Early Oncology Development and Clinical Research, Pfizer Inc, 219 East 42nd Street, New York, NY, 10017, USA
| | - Maeve A Lowery
- Trinity St James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|