251
|
Kaus K, Lary JW, Cole JL, Olson R. Glycan specificity of the Vibrio vulnificus hemolysin lectin outlines evolutionary history of membrane targeting by a toxin family. J Mol Biol 2014; 426:2800-12. [PMID: 24862282 DOI: 10.1016/j.jmb.2014.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/15/2014] [Accepted: 05/18/2014] [Indexed: 01/22/2023]
Abstract
Pore-forming toxins (PFTs) are a class of pathogen-secreted molecules that oligomerize to form transmembrane channels in cellular membranes. Determining the mechanism for how PFTs bind membranes is important in understanding their role in disease and for developing possible ways to block their action. Vibrio vulnificus, an aquatic pathogen responsible for severe food poisoning and septicemia in humans, secretes a PFT called V. vulnificus hemolysin (VVH), which contains a single C-terminal targeting domain predicted to resemble a β-trefoil lectin fold. In order to understand the selectivity of the lectin for glycan motifs, we expressed the isolated VVH β-trefoil domain and used glycan-chip screening to identify that VVH displays a preference for terminal galactosyl groups including N-acetyl-d-galactosamine and N-acetyl-d-lactosamine. The X-ray crystal structure of the VVH lectin domain solved to 2.0Å resolution reveals a heptameric ring arrangement similar to the oligomeric form of the related, but inactive, lectin from Vibrio cholerae cytolysin. Structures bound to glycerol, N-acetyl-d-galactosamine, and N-acetyl-d-lactosamine outline a common and versatile mode of recognition allowing VVH to target a wide variety of cell-surface ligands. Sequence analysis in light of our structural and functional data suggests that VVH may represent an earlier step in the evolution of Vibrio PFTs.
Collapse
Affiliation(s)
- Katherine Kaus
- Department of Molecular Biology and Biochemistry, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Jeffrey W Lary
- Biotechnology-Bioservices Center, University of Connecticut, Storrs, CT 06269, USA
| | - James L Cole
- Biotechnology-Bioservices Center, University of Connecticut, Storrs, CT 06269, USA; Department of Molecular and Cell Biology and Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Rich Olson
- Department of Molecular Biology and Biochemistry, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA.
| |
Collapse
|
252
|
Kamiya Y, Satoh T, Kato K. Recent advances in glycoprotein production for structural biology: toward tailored design of glycoforms. Curr Opin Struct Biol 2014; 26:44-53. [PMID: 24841384 DOI: 10.1016/j.sbi.2014.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 01/01/2023]
Abstract
Because of the complexity, heterogeneity, and flexibility of the glycans, the structural analysis of glycoproteins has been eschewed until recently, with a few prominent exceptions. This aversion may have branded structural biologists as glycophobics. However, recent technological advancements in glycoprotein expression systems, employing genetically engineered production vehicles derived from mammalian, insect, yeast, and even bacterial cells, have yielded encouraging breakthroughs. The major advance is the active control of glycoform expression of target glycoproteins based on the genetic manipulation of glycan biogenetic pathways, which was previously overlooked, abolished, or considered unmanageable. Moreover, synthetic and/or chemoenzymatic approaches now enable the preparation of glycoproteins with uniform glycoforms designed in a tailored fashion.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; JST, PRESTO, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Koichi Kato
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; The Glycoscience Institute, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan; GLYENCE Co., Ltd., 2-22-8 Chikusa, Chikusa-ku, Nagoya 464-0858, Japan.
| |
Collapse
|
253
|
Leney AC, Fan X, Kitova EN, Klassen JS. Nanodiscs and Electrospray Ionization Mass Spectrometry: A Tool for Screening Glycolipids Against Proteins. Anal Chem 2014; 86:5271-7. [DOI: 10.1021/ac4041179] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aneika C. Leney
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Xuxin Fan
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N. Kitova
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S. Klassen
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
254
|
Broecker F, Aretz J, Yang Y, Hanske J, Guo X, Reinhardt A, Wahlbrink A, Rademacher C, Anish C, Seeberger PH. Epitope recognition of antibodies against a Yersinia pestis lipopolysaccharide trisaccharide component. ACS Chem Biol 2014; 9:867-73. [PMID: 24479563 DOI: 10.1021/cb400925k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Today, the process of selecting carbohydrate antigens as a basis for active vaccination and the generation of antibodies for therapeutic and diagnostic purposes is based on intuition combined with trial and error experiments. In efforts to establish a rational process for glycan epitope selection, we employed glycan array screening, surface plasmon resonance, and saturation transfer difference (STD)-NMR to elucidate the interactions between antibodies and glycans representing the Yersinia pestis lipopolysaccharide (LPS). A trisaccharide epitope of the LPS inner core glycan and different LPS-derived oligosaccharides from various Gram-negative bacteria were analyzed using this combination of techniques. The antibody-glycan interaction with a heptose substructure was determined at atomic-level detail. Antibodies specifically recognize the Y. pestis trisaccharide and some substructures with high affinity and specificity. No significant binding to LPS glycans from other bacteria was observed, which suggests that the epitopes for just one particular bacterial species can be identified. On the basis of these results we are beginning to understand the rules for structure-based design and selection of carbohydrate antigens.
Collapse
Affiliation(s)
- Felix Broecker
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jonas Aretz
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - You Yang
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Jonas Hanske
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Xiaoqiang Guo
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Anika Reinhardt
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Annette Wahlbrink
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | | | - Chakkumkal Anish
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Peter H. Seeberger
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
255
|
Humoral response to a viral glycan correlates with survival on PROSTVAC-VF. Proc Natl Acad Sci U S A 2014; 111:E1749-58. [PMID: 24733910 DOI: 10.1073/pnas.1314722111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Therapeutic cancer vaccines can be effective for treating patients, but clinical responses vary considerably from patient to patient. Early indicators of a favorable response are crucial for making individualized treatment decisions and advancing vaccine design, but no validated biomarkers are currently available. In this study, we used glycan microarrays to profile antiglycan antibody responses induced by PROSTVAC-VF, a poxvirus-based cancer vaccine currently in phase III clinical trials. Although the vaccine is designed to induce T-cell responses to prostate-specific antigen, we demonstrate that this vaccine also induces humoral responses to a carbohydrate on the poxvirus, the Forssman disaccharide (GalNAcα1-3GalNAcβ). These responses had a statistically significant correlation with overall survival in two independent sample sets (P = 0.015 and 0.008) comprising more than 100 patients. Additionally, anti-Forssman humoral responses correlated with clinical outcome in a separate study of PROSTVAC-VF combined with a radiopharmaceutical (Quadramet). Studies on control subjects demonstrated that the survival correlation was specific to the vaccine. The results provide evidence that antiglycan antibody responses may serve as early biomarkers of a favorable response to PROSTVAC-VF and offer unique insights for improving vaccine design.
Collapse
|
256
|
Baycin Hizal D, Wolozny D, Colao J, Jacobson E, Tian Y, Krag SS, Betenbaugh MJ, Zhang H. Glycoproteomic and glycomic databases. Clin Proteomics 2014; 11:15. [PMID: 24725457 PMCID: PMC3996109 DOI: 10.1186/1559-0275-11-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/20/2014] [Indexed: 11/17/2022] Open
Abstract
Protein glycosylation serves critical roles in the cellular and biological processes of many organisms. Aberrant glycosylation has been associated with many illnesses such as hereditary and chronic diseases like cancer, cardiovascular diseases, neurological disorders, and immunological disorders. Emerging mass spectrometry (MS) technologies that enable the high-throughput identification of glycoproteins and glycans have accelerated the analysis and made possible the creation of dynamic and expanding databases. Although glycosylation-related databases have been established by many laboratories and institutions, they are not yet widely known in the community. Our study reviews 15 different publicly available databases and identifies their key elements so that users can identify the most applicable platform for their analytical needs. These databases include biological information on the experimentally identified glycans and glycopeptides from various cells and organisms such as human, rat, mouse, fly and zebrafish. The features of these databases - 7 for glycoproteomic data, 6 for glycomic data, and 2 for glycan binding proteins are summarized including the enrichment techniques that are used for glycoproteome and glycan identification. Furthermore databases such as Unipep, GlycoFly, GlycoFish recently established by our group are introduced. The unique features of each database, such as the analytical methods used and bioinformatical tools available are summarized. This information will be a valuable resource for the glycobiology community as it presents the analytical methods and glycosylation related databases together in one compendium. It will also represent a step towards the desired long term goal of integrating the different databases of glycosylation in order to characterize and categorize glycoproteins and glycans better for biomedical research.
Collapse
Affiliation(s)
- Deniz Baycin Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Wolozny
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Colao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Elena Jacobson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuan Tian
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Sharon S Krag
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
257
|
Badr HA, Alsadek DMM, Darwish AA, Elsayed AI, Bekmanov BO, Khussainova EM, Zhang X, Cho WCS, Djansugurova LB, Li CZ. Lectin approaches for glycoproteomics in FDA-approved cancer biomarkers. Expert Rev Proteomics 2014; 11:227-236. [PMID: 24611567 DOI: 10.1586/14789450.2014.897611] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The nine FDA-approved protein biomarkers for the diagnosis and management of cancer are approaching maturity, but their different glycosylation compositions relevant to early diagnosis still remain practically unexplored at the sub-glycoproteome scale. Lectins generally exhibit strong binding to specific sub-glycoproteome components and this property has been quite poorly addressed as the basis for the early diagnosis methods. Here, we discuss some glycoproteome issues that make tackling the glycoproteome particularly challenging in the cancer biomarkers field and include a brief view for next generation technologies.
Collapse
Affiliation(s)
- Haitham A Badr
- Laboratory of Molecular Genetics, Institute of General Genetics and Cytology, Almaty 050060, Kazakhstan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Wang L, Cummings RD, Smith DF, Huflejt M, Campbell CT, Gildersleeve JC, Gerlach JQ, Kilcoyne M, Joshi L, Serna S, Reichardt NC, Parera Pera N, Pieters RJ, Eng W, Mahal LK. Cross-platform comparison of glycan microarray formats. Glycobiology 2014; 24:507-17. [PMID: 24658466 DOI: 10.1093/glycob/cwu019] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Carbohydrates participate in almost every aspect of biology from protein sorting to modulating cell differentiation and cell-cell interactions. To date, the majority of data gathered on glycan expression has been obtained via analysis with either anti-glycan antibodies or lectins. A detailed understanding of the specificities of these reagents is critical to the analysis of carbohydrates in biological systems. Glycan microarrays are increasingly used to determine the binding specificity of glycan-binding proteins (GBPs). In this study, six different glycan microarray platforms with different modes of glycan presentation were compared using five well-known lectins; concanavalin A, Helix pomatia agglutinin, Maackia amurensis lectin I, Sambucus nigra agglutinin and wheat germ agglutinin. A new method (universal threshold) was developed to facilitate systematic comparisons across distinct array platforms. The strongest binders of each lectin were identified using the universal threshold across all platforms while identification of weaker binders was influenced by platform-specific factors including presentation of determinants, array composition and self-reported thresholding methods. This work compiles a rich dataset for comparative analysis of glycan array platforms and has important implications for the implementation of microarrays in the characterization of GBPs.
Collapse
Affiliation(s)
- Linlin Wang
- Biomedical Chemistry Institute, New York University Department of Chemistry, 100 Washington Square East, Room 1001, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Palma AS, Feizi T, Childs RA, Chai W, Liu Y. The neoglycolipid (NGL)-based oligosaccharide microarray system poised to decipher the meta-glycome. Curr Opin Chem Biol 2014; 18:87-94. [PMID: 24508828 DOI: 10.1016/j.cbpa.2014.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 01/01/2023]
Abstract
The neoglycolipid (NGL) technology is the basis of a state-of-the-art oligosaccharide microarray system. The NGL-based microarray system in the Glycosciences Laboratory Imperial College London (http://www3.imperial.ac.uk/glycosciences) is one of the two leading platforms for glycan microarrays, being offered for screening analyses to the broad biomedical community. Highlighted in this review are the sensitivity of the analysis system and, coupled with mass spectrometry, the provision for generating 'designer' microarrays from glycomes to identify novel ligands of biological relevance. Among recent applications are assignments of ligands for apicomplexan parasites, pandemic 2009 influenza virus, polyoma and reoviruses, an innate immune receptor against fungal pathogens, Dectin-1, and a novel protein of the endoplasmic reticulum, malectin; also the characterization of an elusive cancer-associated antigen. Some other contemporary advances in glycolipid-containing arrays and microarrays are also discussed.
Collapse
Affiliation(s)
- Angelina S Palma
- The Glycosciences Laboratory, Department of Medicine, Imperial College London, United Kingdom; REQUIMTE/CQFB, Faculty of Science and Technology, New University of Lisbon, Caparica, Portugal.
| | - Ten Feizi
- The Glycosciences Laboratory, Department of Medicine, Imperial College London, United Kingdom.
| | - Robert A Childs
- The Glycosciences Laboratory, Department of Medicine, Imperial College London, United Kingdom
| | - Wengang Chai
- The Glycosciences Laboratory, Department of Medicine, Imperial College London, United Kingdom
| | - Yan Liu
- The Glycosciences Laboratory, Department of Medicine, Imperial College London, United Kingdom.
| |
Collapse
|
260
|
Freeze HH, Chong JX, Bamshad MJ, Ng BG. Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet 2014; 94:161-75. [PMID: 24507773 DOI: 10.1016/j.ajhg.2013.10.024] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Indexed: 11/30/2022] Open
Abstract
Over 100 human genetic disorders result from mutations in glycosylation-related genes. In 2013, a new glycosylation disorder was reported every 17 days. This trend will probably continue given that at least 2% of the human genome encodes glycan-biosynthesis and -recognition proteins. Established biosynthetic pathways provide many candidate genes, but finding unanticipated mutated genes will offer new insights into glycosylation. Simple glycobiomarkers can be used in narrowing the candidates identified by exome and genome sequencing, and those can be validated by glycosylation analysis of serum or cells from affected individuals. Model organisms will expand the understanding of these mutations' impact on glycosylation and pathology. Here, we highlight some recently discovered glycosylation disorders and the barriers, breakthroughs, and surprises they presented. We predict that some glycosylation disorders might occur with greater frequency than current estimates of their prevalence. Moreover, the prevalence of some disorders differs substantially between European and African Americans.
Collapse
Affiliation(s)
- Hudson H Freeze
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Bobby G Ng
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
261
|
DNA directed immobilization glycocluster array: applications and perspectives. Curr Opin Chem Biol 2014; 18:46-54. [DOI: 10.1016/j.cbpa.2013.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/02/2013] [Accepted: 12/10/2013] [Indexed: 12/28/2022]
|
262
|
Song X, Heimburg-Molinaro J, Cummings RD, Smith DF. Chemistry of natural glycan microarrays. Curr Opin Chem Biol 2014; 18:70-7. [PMID: 24487062 DOI: 10.1016/j.cbpa.2014.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 12/30/2013] [Accepted: 01/03/2014] [Indexed: 12/16/2022]
Abstract
Glycan microarrays have become indispensable tools for studying protein-glycan interactions. Along with chemo-enzymatic synthesis, glycans isolated from natural sources have played important roles in array development and will continue to be a major source of glycans. N-glycans and O-glycans from glycoproteins, and glycans from glycosphingolipids (GSLs) can be released from corresponding glycoconjugates with relatively mature methods, although isolation of large numbers and quantities of glycans is still very challenging. Glycosylphosphatidylinositol (GPI) anchors and glycosaminoglycans (GAGs) are less represented on current glycan microarrays. Glycan microarray development has been greatly facilitated by bifunctional fluorescent linkers, which can be applied in a 'Shotgun Glycomics' approach to incorporate isolated natural glycans. Glycan presentation on microarrays may affect glycan binding by GBPs, often through multivalent recognition by the GBP.
Collapse
Affiliation(s)
- Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States.
| | - Jamie Heimburg-Molinaro
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| |
Collapse
|
263
|
Adaptive immune activation: glycosylation does matter. Nat Chem Biol 2014; 9:776-84. [PMID: 24231619 DOI: 10.1038/nchembio.1403] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
Abstract
Major histocompatibility complex (MHC) class I and II are glycoproteins that can present antigenic peptides at the cell surface for recognition and activation of circulating T lymphocytes. Here, the importance of the modification of protein antigens by glycans on cellular uptake, proteolytic processing, presentation by MHC and subsequent T-cell priming is reviewed. Antigen glycosylation is important for a number of diseases and vaccine design. All of the key proteins involved in antigen recognition and the orchestration of downstream effector functions are glycosylated. The influence of protein glycosylation on immune function and disease is covered.
Collapse
|
264
|
Cummings RD, Pierce JM. The challenge and promise of glycomics. CHEMISTRY & BIOLOGY 2014; 21:1-15. [PMID: 24439204 PMCID: PMC3955176 DOI: 10.1016/j.chembiol.2013.12.010] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 12/27/2013] [Accepted: 12/30/2013] [Indexed: 01/22/2023]
Abstract
Glycomics is a broad and emerging scientific discipline focused on defining the structures and functional roles of glycans in biological systems. The staggering complexity of the glycome, minimally defined as the repertoire of glycans expressed in a cell or organism, has resulted in many challenges that must be overcome; these are being addressed by new advances in mass spectrometry as well as by the expansion of genetic and cell biology studies. Conversely, identifying the specific glycan recognition determinants of glycan-binding proteins by employing the new technology of glycan microarrays is providing insights into how glycans function in recognition and signaling within an organism and with microbes and pathogens. The promises of a more complete knowledge of glycomes are immense in that glycan modifications of intracellular and extracellular proteins have critical functions in almost all biological pathways.
Collapse
Affiliation(s)
- Richard D Cummings
- Department of Biochemistry, Emory Glycomics Center, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| | - J Michael Pierce
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| |
Collapse
|
265
|
Wagner C, Barlag B, Gerlach RG, Deiwick J, Hensel M. TheSalmonella entericagiant adhesin SiiE binds to polarized epithelial cells in a lectin-like manner. Cell Microbiol 2014; 16:962-75. [DOI: 10.1111/cmi.12253] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Carolin Wagner
- Abteilung Mikrobiologie; Universität Osnabrück; Osnabrück Germany
- Mikrobiologisches Institut; Universitätsklinikum Erlangen; Erlangen Germany
| | - Britta Barlag
- Abteilung Mikrobiologie; Universität Osnabrück; Osnabrück Germany
| | | | - Jörg Deiwick
- Abteilung Mikrobiologie; Universität Osnabrück; Osnabrück Germany
| | - Michael Hensel
- Abteilung Mikrobiologie; Universität Osnabrück; Osnabrück Germany
| |
Collapse
|
266
|
Yu Y, Song X, Smith DF, Cummings RD. Applications of Glycan Microarrays to Functional Glycomics. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-62651-6.00012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
267
|
Donczo B, Kerekgyarto J, Szurmai Z, Guttman A. Glycan microarrays: new angles and new strategies. Analyst 2014; 139:2650-7. [DOI: 10.1039/c3an02289g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
268
|
Cohen M, Varki A. Modulation of glycan recognition by clustered saccharide patches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:75-125. [PMID: 24411170 DOI: 10.1016/b978-0-12-800097-7.00003-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All cells in nature are covered with a dense and complex array of glycan chains. Specific recognition and binding of glycans is a critical aspect of cellular interactions, both within and between species. Glycan-protein interactions tend to be of low affinity but high specificity, typically utilizing multivalency to generate the affinity required for biologically relevant binding. This review focuses on a higher level of glycan organization, the formation of clustered saccharide patches (CSPs), which can constitute unique ligands for highly specific interactions. Due to technical challenges, this aspect of glycan recognition remains poorly understood. We present a wealth of evidence for CSPs-mediated interactions, and discuss recent advances in experimental tools that are beginning to provide new insights into the composition and organization of CSPs. The examples presented here are likely the tip of the iceberg, and much further work is needed to elucidate fully this higher level of glycan organization.
Collapse
Affiliation(s)
- Miriam Cohen
- Department Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, USA.
| | - Ajit Varki
- Department of Medicine, University of California, San Diego, California, USA; Department Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, USA.
| |
Collapse
|
269
|
Geissner A, Anish C, Seeberger PH. Glycan arrays as tools for infectious disease research. Curr Opin Chem Biol 2013; 18:38-45. [PMID: 24534751 DOI: 10.1016/j.cbpa.2013.11.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/15/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
Infectious diseases cause millions of deaths worldwide each year and are a major burden for economies, especially in underdeveloped countries. Glycans and their interactions with other biomolecules are involved in all major steps of infection. Glycan arrays enable the rapid and sensitive detection of those interactions and are among the most powerful techniques to study the molecular biology of infectious diseases. This review will focus on recent developments and discuss the applications of glycan arrays to the elucidation of host-pathogen and pathogen-pathogen interactions, the development of tools for infection diagnosis and the use of glycan arrays in modern vaccine design.
Collapse
Affiliation(s)
- Andreas Geissner
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany; Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Chakkumkal Anish
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany; Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
| |
Collapse
|
270
|
How Do Gangliosides Regulate RTKs Signaling? Cells 2013; 2:751-67. [PMID: 24709879 PMCID: PMC3972652 DOI: 10.3390/cells2040751] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 01/14/2023] Open
Abstract
Gangliosides, the glycosphingolipids carrying one or several sialic acid residues, are located on the outer leaflet of the plasma membrane in glycolipid-enriched microdomains, where they interact with molecules of signal transduction pathways including receptors tyrosine kinases (RTKs). The role of gangliosides in the regulation of signal transduction has been reported in many cases and in a large number of cell types. In this review, we summarize the current knowledge on the biosynthesis of gangliosides and the mechanism by which they regulate RTKs signaling.
Collapse
|
271
|
Paulson JC, de Vries RP. H5N1 receptor specificity as a factor in pandemic risk. Virus Res 2013; 178:99-113. [PMID: 23619279 PMCID: PMC3805702 DOI: 10.1016/j.virusres.2013.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 02/13/2013] [Accepted: 02/24/2013] [Indexed: 12/12/2022]
Abstract
The high pathogenicity of H5N1 viruses in sporadic infections of humans has raised concerns for its potential to acquire the ability to transmit between humans and emerge as a highly pathogenic pandemic virus. Because avian and human influenza viruses differ in their specificity for recognition of their host cell receptors, receptor specificity represents one barrier for efficient transmission of avian viruses in human hosts. Over the last century, each influenza virus pandemic has coincided with the emergence of virus with an immunologically distinct hemagglutinin exhibiting a 'human-type' receptor specificity, distinct from that of viruses with the same hemagglutinin circulating in zoonotic species. Recent studies suggest that it is possible for H5N1 to acquire human type receptor specificity, but this has not occurred in nature. This review covers what is known about the molecular basis for the switch between avian and human-type receptor specificity for influenza viruses that have successfully adapted to man, the potential for H5N1 to evolve to human-type receptor specificity and its relevance to pandemic risk.
Collapse
MESH Headings
- Animals
- Birds
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A Virus, H5N1 Subtype/chemistry
- Influenza A Virus, H5N1 Subtype/classification
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/metabolism
- Influenza in Birds/epidemiology
- Influenza in Birds/genetics
- Influenza in Birds/metabolism
- Influenza in Birds/virology
- Influenza, Human/epidemiology
- Influenza, Human/genetics
- Influenza, Human/metabolism
- Influenza, Human/virology
- Pandemics
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Species Specificity
Collapse
Affiliation(s)
- James C Paulson
- Department of Chemical Physiology, The Scripps Research Institute, San Diego, CA 92037, USA.
| | | |
Collapse
|
272
|
Jiménez Blanco JL, Ortiz Mellet C, García Fernández JM. Multivalency in heterogeneous glycoenvironments: hetero-glycoclusters, -glycopolymers and -glycoassemblies. Chem Soc Rev 2013; 42:4518-31. [PMID: 22911174 DOI: 10.1039/c2cs35219b] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite efficiently imitating functional ligand presentations in terms of valency and density, most of the reported multivalent carbohydrate prototypes barely reflect the inherent heterogeneity of biological systems, therefore underestimating the potential contribution of synergistic or antagonistic effects to molecular recognition events. To address this question, the design of novel molecular and supramolecular entities displaying different saccharide motifs in a controlled manner is of critical importance. In this review we highlight the current efforts made to synthesize heteromultivalent glycosystems on different platforms (peptides, dendrimers, polymers, oligonucleotides, calixarenes, cyclodextrins, microarrays, vesicles) and to evaluate the influence of heterogeneity in carbohydrate-protein (lectin, antibody) recognition phenomena. Although the number of publications on this topic is limited as compared to the huge volume of reports on homomultivalent sugar displays, the current body of results has already unravelled the existence of new binding mechanisms that operate in heterogeneous environments whose exact biological significance remains to be unveiled.
Collapse
Affiliation(s)
- José L Jiménez Blanco
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, E-41071 Sevilla, Spain.
| | | | | |
Collapse
|
273
|
Matsushita T, Takada W, Igarashi K, Naruchi K, Miyoshi R, Garcia-Martin F, Amano M, Hinou H, Nishimura SI. A straightforward protocol for the preparation of high performance microarray displaying synthetic MUC1 glycopeptides. Biochim Biophys Acta Gen Subj 2013; 1840:1105-16. [PMID: 24246952 DOI: 10.1016/j.bbagen.2013.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/07/2013] [Accepted: 11/08/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Human serum MUC1 peptide fragments bearing aberrant O-glycans are secreted from columnar epithelial cell surfaces and known as clinically important serum biomarkers for the epithelial carcinoma when a specific monoclonal antibody can probe disease-relevant epitopes. Despite the growing importance of MUC1 glycopeptides as biomarkers, the precise epitopes of most anti-MUC1 monoclonal antibodies remains unclear. METHODS A novel protocol for the fabrication of versatile microarray displaying peptide/glycopeptide library was investigated for the construction of highly sensitive and accurate epitope mapping assay of various anti-MUC1 antibodies. RESULTS Selective imine-coupling between aminooxy-functionalized methacrylic copolymer with phosphorylcholine unit and synthetic MUC1 glycopeptides-capped by a ketone linker at N-terminus provided a facile and seamless protocol for the preparation of glycopeptides microarray platform. It was demonstrated that anti-KL-6 monoclonal antibody shows an extremely specific and strong binding affinity toward MUC1 fragments carrying sialyl T antigen (Neu5Acα2,3Galβ1,3GalNAcα1→) at Pro-Asp-Thr-Arg motif when compared with other seven anti-MUC1 monoclonal antibodies such as VU-3D1, VU-12E1, VU-11E2, Ma552, VU-3C6, SM3, and DF3. The present microarray also uncovered the occurrence of IgG autoantibodies in healthy human sera that bind specifically with sialyl T antigen attached at five potential O-glycosylation sites of MUC1 tandem repeats. CONCLUSION We established a straightforward strategy toward the standardized microarray platform allowing highly sensitive and accurate epitope mapping analysis by reducing the background noise due to nonspecific protein adsorption. GENERAL SIGNIFICANCE The present approach would greatly accelerate the discovery research of new class autoantibodies as well as the development of therapeutic mAbs reacting specifically with disease-relevant epitopes.
Collapse
Affiliation(s)
- Takahiko Matsushita
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, N22, W11 Kita-ku, Sapporo 001-0021, Japan
| | | | | | - Kentaro Naruchi
- Medicinal Chemistry Pharmaceuticals, Co. Ltd., N22, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Risho Miyoshi
- Medicinal Chemistry Pharmaceuticals, Co. Ltd., N22, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Fayna Garcia-Martin
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, N22, W11 Kita-ku, Sapporo 001-0021, Japan
| | - Maho Amano
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, N22, W11 Kita-ku, Sapporo 001-0021, Japan; Medicinal Chemistry Pharmaceuticals, Co. Ltd., N22, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, N22, W11 Kita-ku, Sapporo 001-0021, Japan; Medicinal Chemistry Pharmaceuticals, Co. Ltd., N22, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, N22, W11 Kita-ku, Sapporo 001-0021, Japan; Medicinal Chemistry Pharmaceuticals, Co. Ltd., N22, W12, Kita-ku, Sapporo 001-0021, Japan.
| |
Collapse
|
274
|
Anish C, Martin CE, Wahlbrink A, Bogdan C, Ntais P, Antoniou M, Seeberger PH. Immunogenicity and diagnostic potential of synthetic antigenic cell surface glycans of Leishmania. ACS Chem Biol 2013; 8:2412-22. [PMID: 24004239 DOI: 10.1021/cb400602k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Detection and quantification of pathogen-derived antigenic structures is a key method for the initial diagnosis and follow-up of various infectious diseases. Complex parasitic diseases such as leishmaniasis require highly sensitive and specific tests prior to treatment with potentially toxic drugs. To investigate the diagnostic potential of cell surface glycans found on Leishmania parasites, we identified diagnostically relevant glycan epitopes and used synthetic glycan microarrays to screen sera from infected humans and dogs. On the basis of the screening results, we selected a tetrasaccharide to generate anti-glycan antibodies. The corresponding tetrasaccharide-carrier protein conjugate was immunogenic in mice, and sera obtained from immunized mice specifically detected the Leishmania parasite. These results demonstrate how synthetic glycan arrays, in combination with immunological methods, help to identify promising carbohydrate antigens for pathogen detection.
Collapse
Affiliation(s)
- Chakkumkal Anish
- Max-Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Christopher E. Martin
- Max-Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Annette Wahlbrink
- Max-Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Christian Bogdan
- Mikrobiologisches
Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum
Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Pantelis Ntais
- Laboratory
of Clinical Bacteriology Parasitology Zoonoses and Geographical Medicine,
Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Maria Antoniou
- Laboratory
of Clinical Bacteriology Parasitology Zoonoses and Geographical Medicine,
Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Peter H. Seeberger
- Max-Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
275
|
Sattelle BM, Almond A. Shaping up for structural glycomics: a predictive protocol for oligosaccharide conformational analysis applied to N-linked glycans. Carbohydr Res 2013; 383:34-42. [PMID: 24252626 PMCID: PMC3909462 DOI: 10.1016/j.carres.2013.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 11/28/2022]
Abstract
Aqueous 10 μs simulations of N-linked mannosyl cores and sialyl Lewis (sLe) antennae are validated. Sequence dependent glycosidic linkage and pyranose ring μs motions are implicated in bioactivity. Stacked pyranoses in sLea and sLex are predicted to be atypically rigid on μs timescales. In a 25 μs simulation of sLex, all known conformers were sampled within the initial 10 μs of dynamics. Unbiased 10 μs simulations are proposed as a route to systematic and accurate glycomic 3D-analysis.
The human glycome comprises a vast untapped repository of 3D-structural information that holds the key to glycan recognition and a new era of rationally designed mimetic chemical probes, drugs, and biomaterials. Toward routine prediction of oligosaccharide conformational populations and exchange rates at thermodynamic equilibrium, we apply hardware-accelerated aqueous molecular dynamics to model μs motions in N-glycans that underpin inflammation and immunity. In 10 μs simulations, conformational equilibria of mannosyl cores, sialyl Lewis (sLe) antennae, and constituent sub-sequences agreed with prior refinements (X-ray and NMR). Glycosidic linkage and pyranose ring flexing were affected by branching, linkage position, and secondary structure, implicating sequence dependent motions in glycomic functional diversity. Linkage and ring conformational transitions that have eluded precise quantification by experiment and conventional (ns) simulations were predicted to occur on μs timescales. All rings populated non-chair shapes and the stacked galactose and fucose pyranoses of sLea and sLex were rigidified, suggesting an exploitable 3D-signature of cell adhesion protein binding. Analyses of sLex dynamics over 25 μs revealed that only 10 μs were sufficient to explore all aqueous conformers. This simulation protocol, which yields conformational ensembles that are independent of initial 3D-structure, is proposed as a route to understanding oligosaccharide recognition and structure–activity relationships, toward development of carbohydrate-based novel chemical entities.
Collapse
Affiliation(s)
- Benedict M Sattelle
- Faculty of Life Sciences, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Andrew Almond
- Faculty of Life Sciences, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
276
|
Protein arrays as tool for studies at the host-pathogen interface. J Proteomics 2013; 94:387-400. [PMID: 24140974 DOI: 10.1016/j.jprot.2013.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 09/06/2013] [Accepted: 10/08/2013] [Indexed: 01/10/2023]
Abstract
Pathogens and parasites encode a wide spectrum of multifunctional proteins interacting to and modifying proteins in host cells. However, the current lack of a reliable method to unveil the protein-protein interactions (PPI) at the host-pathogen interface is retarding our understanding of many important pathogenic processes. Thus, the identification of proteins involved in host-pathogen interactions is important for the elucidation of virulence determinants, mechanisms of infection, host susceptibility and/or disease resistance. In this sense, proteomic technologies have experienced major improvements in recent years and protein arrays are a powerful and modern method for studying PPI in a high-throughput format. This review focuses on these techniques analyzing the state-of-the-art of proteomic technologies and their possibilities to diagnose and explore host-pathogen interactions. Major technical advancements, applications and protocol concerns are presented, so readers can appreciate the immense progress achieved and the current technical options available for studying the host-pathogen interface. Finally, future uses of this kind of array-based proteomic tools in the fight against infectious and parasitic diseases are discussed.
Collapse
|
277
|
Deng L, Chen X, Varki A. Exploration of sialic acid diversity and biology using sialoglycan microarrays. Biopolymers 2013; 99:650-65. [PMID: 23765393 PMCID: PMC7161822 DOI: 10.1002/bip.22314] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 06/04/2013] [Indexed: 12/13/2022]
Abstract
Sialic acids (Sias) are a group of α-keto acids with a nine-carbon backbone, which display many types of modifications in nature. The diversity of natural Sia presentations is magnified by a variety of glycosidic linkages to underlying glycans, the sequences and classes of such glycans, as well as the spatial organization of Sias with their surroundings. This diversity is closely linked to the numerous and varied biological functions of Sias. Relatively large libraries of natural and unnatural Sias have recently been chemically/chemoenzymatically synthesized and/or isolated from natural sources. The resulting sialoglycan microarrays have proved to be valuable tools for the exploration of diversity and biology of Sias. Here we provide an overview of Sia diversity in nature, the approaches used to generate sialoglycan microarrays, and the achievements and challenges arising.
Collapse
Affiliation(s)
- Lingquan Deng
- Departments of Medicine and Cellular & Molecular MedicineGlycobiology Research and Training Center, University of CaliforniaSan Diego, La JollaCA92093‐0687
| | - Xi Chen
- Department of ChemistryUniversity of CaliforniaDavisCA95616
| | - Ajit Varki
- Departments of Medicine and Cellular & Molecular MedicineGlycobiology Research and Training Center, University of CaliforniaSan Diego, La JollaCA92093‐0687
| |
Collapse
|
278
|
Galectins as new prognostic markers and potential therapeutic targets for advanced prostate cancers. Prostate Cancer 2013; 2013:519436. [PMID: 24205440 PMCID: PMC3800608 DOI: 10.1155/2013/519436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 12/21/2022] Open
Abstract
A better understanding of multimolecular interactions involved in tumor dissemination is required to identify new effective therapies for advanced prostate cancer (PCa). Several groups investigated protein-glycan interactions as critical factors for crosstalk between prostate tumors and their microenvironment. This review both discusses whether the “galectin-signature” might serve as a reliable biomarker for the identification of patients with high risk of metastasis and assesses the galectin-glycan lattices as potential novel targets for anticancer therapies. The ultimate goal of this review is to convey how basic findings related to galectins could be in turn translated into clinical settings for patients with advanced PCa.
Collapse
|
279
|
Campbell CT, Llewellyn SR, Damberg T, Morgan IL, Robert-Guroff M, Gildersleeve JC. High-throughput profiling of anti-glycan humoral responses to SIV vaccination and challenge. PLoS One 2013; 8:e75302. [PMID: 24086502 PMCID: PMC3781036 DOI: 10.1371/journal.pone.0075302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/13/2013] [Indexed: 11/18/2022] Open
Abstract
Recent progress toward an HIV vaccine highlights both the potential of vaccines to end the AIDS pandemic and the need to boost efficacy by incorporating additional vaccine strategies. Although many aspects of the immune response can contribute to vaccine efficacy, the key factors have not been defined fully yet. A particular area that may yield new insights is anti-glycan immune responses, such as those against the glycan shield that HIV uses to evade the immune system. In this study, we used glycan microarray technology to evaluate anti-glycan antibody responses induced by SIV vaccination and infection in a non-human primate model of HIV infection. This comprehensive profiling of circulating anti-glycan antibodies found changes in anti-glycan antibody levels after both vaccination with the Ad5hr-SIV vaccine and SIV infection. Notably, SIV infection produced generalized declines in anti-glycan IgM antibodies in a number of animals. Additionally, some infected animals generated antibodies to the Tn antigen, which is a cryptic tumor-associated antigen exposed by premature termination of O-linked glycans; however, the Ad5hr-SIV vaccine did not induce anti-Tn IgG antibodies. Overall, this study demonstrates the potential contributions that glycan microarrays can make for HIV vaccine development.
Collapse
Affiliation(s)
- Christopher T. Campbell
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Sean R. Llewellyn
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Thorsten Damberg
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ian L. Morgan
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marjorie Robert-Guroff
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JCG); (MR)
| | - Jeffrey C. Gildersleeve
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- * E-mail: (JCG); (MR)
| |
Collapse
|
280
|
Chiodo F, Marradi M, Tefsen B, Snippe H, van Die I, Penadés S. High sensitive detection of carbohydrate binding proteins in an ELISA-solid phase assay based on multivalent glyconanoparticles. PLoS One 2013; 8:e73027. [PMID: 24014084 PMCID: PMC3754922 DOI: 10.1371/journal.pone.0073027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/16/2013] [Indexed: 11/19/2022] Open
Abstract
Improved detection of anti-carbohydrate antibodies is a need in clinical identification of biomarkers for cancer cells or pathogens. Here, we report a new ELISA approach for the detection of specific immunoglobulins (IgGs) against carbohydrates. Two nanometer gold glyconanoparticles bearing oligosaccharide epitopes of HIV or Streptococcus pneumoniae were used as antigens to coat ELISA-plates. A ~3,000-fold improved detection of specific IgGs in mice immunized against S. pneumoniae respect to the well known BSA-glycoconjugate ELISA was achieved. Moreover, these multivalent glyconanoparticles have been employed in solid phase assays to detect the carbohydrate-dependent binding of human dendritic cells and the lectin DC-SIGN. Multivalent glyconanoparticles in ELISA provide a versatile, easy and highly sensitive method to detect and quantify the binding of glycan to proteins and to facilitate the identification of biomarkers.
Collapse
Affiliation(s)
- Fabrizio Chiodo
- Laboratory of GlycoNanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, San Sebastián, Spain
| | - Marco Marradi
- Laboratory of GlycoNanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, San Sebastián, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), San Sebastián, Spain
| | - Boris Tefsen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Harm Snippe
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Soledad Penadés
- Laboratory of GlycoNanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, San Sebastián, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), San Sebastián, Spain
| |
Collapse
|
281
|
Topin J, Arnaud J, Sarkar A, Audfray A, Gillon E, Perez S, Jamet H, Varrot A, Imberty A, Thomas A. Deciphering the glycan preference of bacterial lectins by glycan array and molecular docking with validation by microcalorimetry and crystallography. PLoS One 2013; 8:e71149. [PMID: 23976992 PMCID: PMC3747263 DOI: 10.1371/journal.pone.0071149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022] Open
Abstract
Recent advances in glycobiology revealed the essential role of lectins for deciphering the glycocode by specific recognition of carbohydrates. Integrated multiscale approaches are needed for characterizing lectin specificity: combining on one hand high-throughput analysis by glycan array experiments and systematic molecular docking of oligosaccharide libraries and on the other hand detailed analysis of the lectin/oligosaccharide interaction by x-ray crystallography, microcalorimetry and free energy calculations. The lectins LecB from Pseudomonas aeruginosa and BambL from Burkholderia ambifaria are part of the virulence factors used by the pathogenic bacteria to invade the targeted host. These two lectins are not related but both recognize fucosylated oligosaccharides such as the histo-blood group oligosaccharides of the ABH(O) and Lewis epitopes. The specificities were characterized using semi-quantitative data from glycan array and analyzed by molecular docking with the Glide software. Reliable prediction of protein/oligosaccharide structures could be obtained as validated by existing crystal structures of complexes. Additionally, the crystal structure of BambL/Lewis x was determined at 1.6 Å resolution, which confirms that Lewis x has to adopt a high-energy conformation so as to bind to this lectin. Free energies of binding were calculated using a procedure combining the Glide docking protocol followed by free energy rescoring with the Prime/Molecular Mechanics Generalized Born Surface Area (MM-GBSA) method. The calculated data were in reasonable agreement with experimental free energies of binding obtained by titration microcalorimetry. The established predictive protocol is proposed to rationalize large sets of data such as glycan arrays and to help in lead discovery projects based on such high throughput technology.
Collapse
Affiliation(s)
- Jeremie Topin
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
- Département de Chimie Moléculaire, UMR- Centre national de la recherche scientifique 5250 & ICMG FR 2607, Université Joseph Fourier, BP 53, 38041 Grenoble, France
| | - Julie Arnaud
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
| | - Anita Sarkar
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
| | - Aymeric Audfray
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
| | - Emilie Gillon
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
| | - Serge Perez
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
| | - Helene Jamet
- Département de Chimie Moléculaire, UMR- Centre national de la recherche scientifique 5250 & ICMG FR 2607, Université Joseph Fourier, BP 53, 38041 Grenoble, France
| | - Annabelle Varrot
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
| | - Anne Imberty
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
- * E-mail:
| | - Aline Thomas
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
| |
Collapse
|
282
|
Affiliation(s)
- Laura L Kiessling
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
283
|
Wang Z, Chinoy ZS, Ambre SG, Peng W, McBride R, de Vries RP, Glushka J, Paulson JC, Boons GJ. A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans. Science 2013; 341:379-83. [PMID: 23888036 DOI: 10.1126/science.1236231] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A systematic, efficient means of producing diverse libraries of asymmetrically branched N-glycans is needed to investigate the specificities and biology of glycan-binding proteins. To that end, we describe a core pentasaccharide that at potential branching positions is modified by orthogonal protecting groups to allow selective attachment of specific saccharide moieties by chemical glycosylation. The appendages were selected so that the antenna of the resulting deprotected compounds could be selectively extended by glycosyltransferases to give libraries of asymmetrical multi-antennary glycans. The power of the methodology was demonstrated by the preparation of a series of complex oligosaccharides that were printed as microarrays and screened for binding to lectins and influenza-virus hemagglutinins, which showed that recognition is modulated by presentation of minimal epitopes in the context of complex N-glycans.
Collapse
Affiliation(s)
- Zhen Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
284
|
El-Hawiet A, Kitova EN, Klassen JS. Quantifying Protein Interactions with Isomeric Carbohydrate Ligands Using a Catch and Release Electrospray Ionization-Mass Spectrometry Assay. Anal Chem 2013; 85:7637-44. [DOI: 10.1021/ac401627t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amr El-Hawiet
- Alberta Glycomics Centre and Department
of Chemistry, University of Alberta, Edmonton,
Alberta, Canada T6G 2G2
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department
of Chemistry, University of Alberta, Edmonton,
Alberta, Canada T6G 2G2
| | - John S. Klassen
- Alberta Glycomics Centre and Department
of Chemistry, University of Alberta, Edmonton,
Alberta, Canada T6G 2G2
| |
Collapse
|
285
|
Yegorova S, Chavaroche AE, Rodriguez MC, Minond D, Cudic M. Development of an AlphaScreen assay for discovery of inhibitors of low-affinity glycan–lectin interactions. Anal Biochem 2013; 439:123-31. [DOI: 10.1016/j.ab.2013.04.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 12/31/2022]
|
286
|
Ribeiro JP, Mahal LK. Dot by dot: analyzing the glycome using lectin microarrays. Curr Opin Chem Biol 2013; 17:827-31. [PMID: 23856055 DOI: 10.1016/j.cbpa.2013.06.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/11/2013] [Indexed: 02/08/2023]
Abstract
The glycome, that is, the cohort of carbohydrates within a cell or tissue, plays a key part in diverse biological interactions involved in health and disease. Glycans are structurally complex and notoriously difficult to analyze. Lectin microarrays, a sensitive and high-throughput method for glycomic profiling, provide a global view of the glycome. In recent work, this technology has been successfully applied to a wide range of studies, from identification of glycan-based stem cell markers to the detection of pathogens and early diagnosis of disease. This review focuses on advances in the field of lectin microarrays.
Collapse
Affiliation(s)
- João P Ribeiro
- Biomedical Chemistry Institute, New York University, 100 Washington Square East, Room 1001, New York, NY 10003, USA
| | | |
Collapse
|
287
|
Gondran C, Dubois MP, Fort S, Cosnier S. Electrogenerated poly(pyrrole-lactosyl) and poly(pyrrole-3'-sialyllactosyl) interfaces: toward the impedimetric detection of lectins. Front Chem 2013; 1:10. [PMID: 24790939 PMCID: PMC3982578 DOI: 10.3389/fchem.2013.00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/21/2013] [Indexed: 11/13/2022] Open
Abstract
This paper reports on the impedimetric transduction of binding reaction between polymerized saccharides and target lectins. The controlled potential electro-oxidation of pyrrole-lactosyl and pyrrole-3'-sialyllactosyl at 0.95 V vs. Ag/AgCl, provides thin and reproducible poly(pyrrole-saccharide) films. The affinity binding of two lectins: Arachis hypogaea, (PNA) and Maackia amurensis (MAA) onto poly(pyrrole-lactosyl) and poly(pyrrole-3'-sialyllactosyl) electrodes, was demonstrated by cyclic voltammetry in presence of ruthenium hexamine and hydroquinone. In addition, rotating disk experiments were carried out to determine the permeability of both polypyrrole films and its evolution after incubating with lectin target. Finally, the possibility of using the poly(pyrrole-lactosyl) or poly(pyrrole-3'-siallyllactosyl) films for the impedimetric transduction of the lectin binding reaction, was investigated with hydroquinone (2 × 10(-3) mol L(-1)) as a redox probe in phosphate buffer. The resulting impedance spectra were interpreted and modeled as an equivalent circuit indicating that charge transfer resistance (R ct) and relaxation frequency (f°) parameters are sensitive to the lectin binding. R ct increases from 77 to 97 Ω cm(2) for PNA binding and from 93 to 131 Ω cm(2) for MAA binding. In parallel, f° decreases from 276 to 222 Hz for PNA binding and from 223 to 131 Hz for MAA binding. This evolution of both parameters reflects the steric hindrances generated by the immobilized lectins towards the permeation of the redox probe.
Collapse
Affiliation(s)
- Chantal Gondran
- Département de Chimie Moléculaire (DCM-UMR CNRS 5250), Institut de Chimie Moléculaire de Grenoble, (ICMG-FR CNRS 2607), Université Joseph Fourier Grenoble, France
| | - Marie-Pierre Dubois
- Département de Chimie Moléculaire (DCM-UMR CNRS 5250), Institut de Chimie Moléculaire de Grenoble, (ICMG-FR CNRS 2607), Université Joseph Fourier Grenoble, France ; Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR CNRS 5301), Institut de Chimie Moléculaire de Grenoble, (ICMG-FR CNRS 2607) Grenoble, France
| | - Sébastien Fort
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR CNRS 5301), Institut de Chimie Moléculaire de Grenoble, (ICMG-FR CNRS 2607) Grenoble, France
| | - Serge Cosnier
- Département de Chimie Moléculaire (DCM-UMR CNRS 5250), Institut de Chimie Moléculaire de Grenoble, (ICMG-FR CNRS 2607), Université Joseph Fourier Grenoble, France
| |
Collapse
|
288
|
Feizi T. Carbohydrate recognition in the immune system: contributions of neoglycolipid-based microarrays to carbohydrate ligand discovery. Ann N Y Acad Sci 2013; 1292:33-44. [PMID: 23834439 PMCID: PMC4260124 DOI: 10.1111/nyas.12210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligosaccharide sequences in glycomes of eukaryotes and prokaryotes are enormously diverse. The reasons are not fully understood, but there is an increasing number of examples of the involvement of specific oligosaccharide sequences as ligands in protein-carbohydrate interactions in health and, directly or indirectly, in every major disease, be it infectious or noninfectious. The pinpointing and characterizing of oligosaccharide ligands within glycomes has been one of the most challenging aspects of molecular cell biology, as oligosaccharides cannot be cloned and are generally available in limited amounts. This overview recounts the background to the development of a microarray system that is poised for surveying proteomes for carbohydrate-binding activities and glycomes for assigning the oligosaccharide ligands. Examples are selected by way of illustrating the potential of "designer" microarrays for ligand discovery at the interface of infection, immunity, and glycobiology. Particularly highlighted are sulfo-oligosaccharide and gluco-oligosaccharide recognition systems elucidated using microarrays.
Collapse
Affiliation(s)
- Ten Feizi
- The Glycosciences Laboratory, Department of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
289
|
Stocker BL, Timmer MSM. Chemical Tools for Studying the Biological Function of Glycolipids. Chembiochem 2013; 14:1164-84. [DOI: 10.1002/cbic.201300064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Indexed: 01/04/2023]
|
290
|
Beloqui A, Calvo J, Serna S, Yan S, Wilson IBH, Martin-Lomas M, Reichardt NC. Analysis of Microarrays by MALDI-TOF MS. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
291
|
Beloqui A, Calvo J, Serna S, Yan S, Wilson IBH, Martin-Lomas M, Reichardt NC. Analysis of microarrays by MALDI-TOF MS. Angew Chem Int Ed Engl 2013; 52:7477-81. [PMID: 23757366 DOI: 10.1002/anie.201302455] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Indexed: 01/21/2023]
Abstract
Ligand libraries can be printed onto a sandwich composed of activated lipids embedded in a hydrophobic layer conjugated to an indium-tin oxide (ITO) surface. Arrays produced this way can be analyzed by fluorescence spectroscopy and mass spectrometry. Applications include the assignment of enzyme specificity, the profiling of glycoforms and the identification of lectins.
Collapse
Affiliation(s)
- Ana Beloqui
- CICbiomaGUNE, Biofunctional Nanomaterials Unit, Paseo Miramon 182, 20009 San Sebastian, Spain
| | | | | | | | | | | | | |
Collapse
|
292
|
Yan 闫石 S, Serna S, Reichardt NC, Paschinger K, Wilson IBH. Array-assisted characterization of a fucosyltransferase required for the biosynthesis of complex core modifications of nematode N-glycans. J Biol Chem 2013; 288:21015-21028. [PMID: 23754284 DOI: 10.1074/jbc.m113.479147] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fucose is a common monosaccharide component of cell surfaces and is involved in many biological recognition events. Therefore, definition and exploitation of the specificity of the enzymes (fucosyltransferases) involved in fucosylation is a recurrent theme in modern glycosciences. Despite various studies, the specificities of many fucosyltransferases are still unknown, so new approaches are required to study these. The model nematode Caenorhabditis elegans expresses a wide range of fucosylated glycans, including N-linked oligosaccharides with unusual complex core modifications. Up to three fucose residues can be present on the standard N,N'-diacetylchitobiose unit of these N-glycans, but only the fucosyltransferases responsible for transfer of two of these (the core α1,3-fucosyltransferase FUT-1 and the core α1,6-fucosyltransferase FUT-8) were previously characterized. By use of a glycan library in both array and solution formats, we were able to reveal that FUT-6, another C. elegans α1,3-fucosyltransferase, modifies nematode glycan cores, specifically the distal N-acetylglucosamine residue; this result is in accordance with glycomic analysis of fut-6 mutant worms. This core-modifying activity of FUT-6 in vitro and in vivo is in addition to its previously determined ability to synthesize Lewis X epitopes in vitro. A larger scale synthesis of a nematode N-glycan core in vitro using all three fucosyltransferases was performed, and the nature of the glycosidic linkages was determined by NMR. FUT-6 is probably the first eukaryotic glycosyltransferase whose specificity has been redefined with the aid of glycan microarrays and so is a paradigm for the study of other unusual glycosidic linkages in model and parasitic organisms.
Collapse
Affiliation(s)
- Shi Yan 闫石
- From the Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria and
| | - Sonia Serna
- the Biofunctional Nanomaterials Unit, CICbiomaGUNE, 20009 San Sebastian, Spain
| | | | - Katharina Paschinger
- From the Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria and
| | - Iain B H Wilson
- From the Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria and.
| |
Collapse
|
293
|
Bernardi A, Jiménez-Barbero J, Casnati A, De Castro C, Darbre T, Fieschi F, Finne J, Funken H, Jaeger KE, Lahmann M, Lindhorst TK, Marradi M, Messner P, Molinaro A, Murphy PV, Nativi C, Oscarson S, Penadés S, Peri F, Pieters RJ, Renaudet O, Reymond JL, Richichi B, Rojo J, Sansone F, Schäffer C, Turnbull WB, Velasco-Torrijos T, Vidal S, Vincent S, Wennekes T, Zuilhof H, Imberty A. Multivalent glycoconjugates as anti-pathogenic agents. Chem Soc Rev 2013; 42:4709-27. [PMID: 23254759 PMCID: PMC4399576 DOI: 10.1039/c2cs35408j] [Citation(s) in RCA: 424] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multivalency plays a major role in biological processes and particularly in the relationship between pathogenic microorganisms and their host that involves protein-glycan recognition. These interactions occur during the first steps of infection, for specific recognition between host and bacteria, but also at different stages of the immune response. The search for high-affinity ligands for studying such interactions involves the combination of carbohydrate head groups with different scaffolds and linkers generating multivalent glycocompounds with controlled spatial and topology parameters. By interfering with pathogen adhesion, such glycocompounds including glycopolymers, glycoclusters, glycodendrimers and glyconanoparticles have the potential to improve or replace antibiotic treatments that are now subverted by resistance. Multivalent glycoconjugates have also been used for stimulating the innate and adaptive immune systems, for example with carbohydrate-based vaccines. Bacteria present on their surfaces natural multivalent glycoconjugates such as lipopolysaccharides and S-layers that can also be exploited or targeted in anti-infectious strategies.
Collapse
Affiliation(s)
- Anna Bernardi
- Università di Milano, Dipartimento di Chimica Organica e Industriale and Centro di Eccellenza CISI, via Venezian 21, 20133 Milano, Italy
| | | | - Alessandro Casnati
- Università degli Studi di Parma, Dipartimento di Chimica, Parco Area delle Scienze 17/a, 43100 Parma, Italy
| | - Cristina De Castro
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland
| | - Franck Fieschi
- Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | - Jukka Finne
- Department of Biosciences, University of Helsinki, P. O. Box 56, FI-00014 Helsinki, Finland
| | - Horst Funken
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-42425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-42425 Jülich, Germany
| | - Martina Lahmann
- School of Chemistry, Bangor University, Deiniol Road Bangor, Gwynedd LL57 2UW, UK
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, D-24098 Kiel, Germany
| | - Marco Marradi
- Laboratory of GlycoNanotechnology, CIC biomaGUNE and CIBER-BBN, P1 de Miramón 182, 20009 San Sebastián, Spain
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria
| | - Antonio Molinaro
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Paul V. Murphy
- School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Cristina Nativi
- Dipartimento di Chimica, Universitá degli Studi di Firenze, Via della Lastruccia, 13, I-50019 Sesto Fiorentino – Firenze, Italy
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Soledad Penadés
- Laboratory of GlycoNanotechnology, CIC biomaGUNE and CIBER-BBN, P1 de Miramón 182, 20009 San Sebastián, Spain
| | - Francesco Peri
- Organic and Medicinal Chemistry, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Roland J. Pieters
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Olivier Renaudet
- Département de Chimie Moléculaire, UMR-CNRS 5250 & ICMG FR 2607, Université Joseph Fourier, BP53, 38041 Grenoble Cedex 9, France
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland
| | - Barbara Richichi
- Dipartimento di Chimica, Universitá degli Studi di Firenze, Via della Lastruccia, 13, I-50019 Sesto Fiorentino – Firenze, Italy
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas, CSIC – Universidad de Sevilla, Av. Américo Vespucio, 49, Seville 41092, Spain
| | - Francesco Sansone
- Università degli Studi di Parma, Dipartimento di Chimica, Parco Area delle Scienze 17/a, 43100 Parma, Italy
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, CNRS, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Stéphane Vincent
- University of Namur (FUNDP), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anne Imberty
- Centre de Recherche sur les Macromolécules Végétales (CERMAV – CNRS), affiliated with Grenoble-Université and ICMG, F-38041 Grenoble, France
| |
Collapse
|
294
|
Wang K, Luo Y. Defined Surface Immobilization of Glycosaminoglycan Molecules for Probing and Modulation of Cell–Material Interactions. Biomacromolecules 2013; 14:2373-82. [DOI: 10.1021/bm4004942] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kai Wang
- Department of Biomedical
Engineering,
College of Engineering, Peking University, Room 206, Fang-Zheng Building, 298 Chengfu Road, Haidian District,
Beijing, China 100871
| | - Ying Luo
- Department of Biomedical
Engineering,
College of Engineering, Peking University, Room 206, Fang-Zheng Building, 298 Chengfu Road, Haidian District,
Beijing, China 100871
- National Engineering Laboratory for Regenerative and Implantable Medical Devices, 12 Yu-Yan Road, Luogang Dist, Guangzhou, China 510663
| |
Collapse
|
295
|
Bouchet-Spinelli A, Reuillard B, Coche-Guérente L, Armand S, Labbé P, Fort S. Oligosaccharide biosensor for direct monitoring of enzymatic activities using QCM-D. Biosens Bioelectron 2013; 49:290-6. [PMID: 23774166 DOI: 10.1016/j.bios.2013.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/13/2013] [Accepted: 05/20/2013] [Indexed: 11/30/2022]
Abstract
Enzymatic modification of saccharidic biomass is a subject of intensive research with potential applications in plant or human health, design of biomaterials and biofuel production. Bioengineering and metagenomics provide access to libraries of glycoside hydrolases but the biochemical characterization of these enzymes remains challenging, requiring fastidious colorimetric tests in discontinuous assays. Here, we describe a highly sensitive carbohydrate biosensor for the detection and characterization of glycoside hydrolases. Immobilization of oligosaccharides was achieved using copper-catalyzed azide-alkyne cycloaddition of maltoheptaose-modified probes onto self-assembled monolayers bearing azide reactive groups. This biosensor allowed detection of glycoside hydrolase activities at the picomolar level using quartz-crystal microbalance with dissipation monitoring (QCM-D). To our knowledge, this protocol provides the best performance to date for the detection of glycoside hydrolase activities. For each enzyme tested, we could determine the kinetic constant from the QCM-D data, and derive conclusions that correlated well with those of standard colorimetric tests. This opens the way to a new generation of rapid and direct tests characterizing functionally carbohydrate-active enzymes.
Collapse
Affiliation(s)
- Aurélie Bouchet-Spinelli
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), affiliated with Université de Grenoble, 38041 Grenoble cedex 9, France.
| | | | | | | | | | | |
Collapse
|
296
|
Abstract
Glycans are key participants in biological processes ranging from reproduction to cellular communication to infection. Revealing glycan roles and the underlying molecular mechanisms by which glycans manifest their function requires access to glycan derivatives that vary systematically. To this end, glycopolymers (polymers bearing pendant carbohydrates) have emerged as valuable glycan analogs. Because glycopolymers can readily be synthesized, their overall shape can be varied, and they can be altered systematically to dissect the structural features that underpin their activities. This review provides examples in which glycopolymers have been used to effect carbohydrate-mediated signal transduction. Our objective is to illustrate how these powerful tools can reveal the molecular mechanisms that underlie carbohydrate-mediated signal transduction.
Collapse
Affiliation(s)
- Laura L Kiessling
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA.
| | | |
Collapse
|
297
|
Abstract
In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray-based technology has been widely employed for rapid analysis of the glycan binding properties of lectins and antibodies, the quantitative measurements of glycan-protein interactions, detection of cells and pathogens, identification of disease-related anti-glycan antibodies for diagnosis, and fast assessment of substrate specificities of glycosyltransferases. This review covers the construction of carbohydrate microarrays, detection methods of carbohydrate microarrays and their applications in biological and biomedical research.
Collapse
Affiliation(s)
- Sungjin Park
- National Creative Research Initiative Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | | | |
Collapse
|
298
|
Campbell MP, Nguyen-Khuong T, Hayes CA, Flowers SA, Alagesan K, Kolarich D, Packer NH, Karlsson NG. Validation of the curation pipeline of UniCarb-DB: building a global glycan reference MS/MS repository. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:108-16. [PMID: 23624262 DOI: 10.1016/j.bbapap.2013.04.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/01/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
The UniCarb-DB database is an emerging public glycomics data repository, containing over 500 tandem mass spectra (as of March 2013) of glycans released from glycoproteins. A major challenge in glycomics research is to provide and maintain high-quality datasets that will offer the necessary diversity to support the development of accurate bioinformatics tools for data deposition and analysis. The role of UniCarb-DB, as an archival database, is to provide the glycomics community with open-access to a comprehensive LC MS/MS library of N- and O- linked glycans released from glycoproteins that have been annotated with glycosidic and cross-ring fragmentation ions, retention times, and associated experimental metadata descriptions. Here, we introduce the UniCarb-DB data submission pipeline and its practical application to construct a library of LC-MS/MS glycan standards that forms part of this database. In this context, an independent consortium of three laboratories was established to analyze the same 23 commercially available oligosaccharide standards, all by using graphitized carbon-liquid chromatography (LC) electrospray ionization (ESI) ion trap mass spectrometry in the negative ion mode. A dot product score was calculated for each spectrum in the three sets of data as a measure of the comparability that is necessary for use of such a collection in library-based spectral matching and glycan structural identification. The effects of charge state, de-isotoping and threshold levels on the quality of the input data are shown. The provision of well-characterized oligosaccharide fragmentation data provides the opportunity to identify determinants of specific glycan structures, and will contribute to the confidence level of algorithms that assign glycan structures to experimental MS/MS spectra. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan.
Collapse
Affiliation(s)
- Matthew P Campbell
- Biomolecular Frontiers Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
299
|
Bertok T, Sediva A, Katrlik J, Gemeiner P, Mikula M, Nosko M, Tkac J. Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles. Talanta 2013; 108:11-8. [PMID: 23601864 PMCID: PMC4881810 DOI: 10.1016/j.talanta.2013.02.052] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/15/2013] [Accepted: 02/21/2013] [Indexed: 01/17/2023]
Abstract
We present here an ultrasensitive electrochemical biosensor based on a lectin biorecognition capable to detect concentrations of glycoproteins down to attomolar (aM) level by investigation of changes in the charge transfer resistance (Rct) using electrochemical impedance spectroscopy (EIS). On polycrystalline gold modified by an aminoalkanethiol linker layer, gold nanoparticles were attached. A Sambucus nigra agglutinin was covalently immobilised on a mixed self-assembled monolayer formed on gold nanoparticles and finally, the biosensor surface was blocked by poly(vinyl alcohol). The lectin biosensor was applied for detection of sialic acid containing glycoproteins fetuin and asialofetuin. Building of a biosensing interface was carefully characterised by a broad range of techniques such as electrochemistry, EIS, atomic force microscopy, scanning electron microscopy and surface plasmon resonance with the best performance of the biosensor achieved by application of HS-(CH2)11-NH2 linker and gold nanoparticles with a diameter of 20 nm. The lectin biosensor responded to an addition of fetuin (8.7% of sialic acid) with sensitivity of (338 ± 11) Ω decade(-1) and to asialofetuin (≤ 0.5% of sialic acid) with sensitivity of (109 ± 10) Ω decade(-1) with a blank experiment with oxidised asialofetuin (without recognisable sialic acid) revealing sensitivity of detection of (79 ± 13) Ω decade(-1). These results suggest the lectin biosensor responded to changes in the glycan amount in a quantitative way with a successful validation by a lectin microarray. Such a biosensor device has a great potential to be employed in early biomedical diagnostics of diseases such as arthritis or cancer, which are connected to aberrant glycosylation of protein biomarkers in biological fluids.
Collapse
Affiliation(s)
- Tomas Bertok
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Alena Sediva
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Jaroslav Katrlik
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Pavol Gemeiner
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Milan Mikula
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Martin Nosko
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Račianska 75, 831 02, Bratislava, Slovak Republic
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| |
Collapse
|
300
|
Ogiso M, Kobayashi J, Imai T, Matsuoka K, Itoh M, Imamura T, Okada T, Miura H, Nishiyama T, Hatanaka K, Minoura N. Carbohydrate immobilized on a dendrimer-coated colloidal gold surface for fabrication of a lectin-sensing device based on localized surface plasmon resonance spectroscopy. Biosens Bioelectron 2013; 41:465-70. [DOI: 10.1016/j.bios.2012.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 04/07/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
|