251
|
Ryu JK, Jahn R, Yoon TY. Review: Progresses in understanding N-ethylmaleimide sensitive factor (NSF) mediated disassembly of SNARE complexes. Biopolymers 2017; 105:518-31. [PMID: 27062050 DOI: 10.1002/bip.22854] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/19/2016] [Accepted: 04/06/2016] [Indexed: 11/09/2022]
Abstract
N-ethylmaleimide sensitive factor (NSF) is a key protein of intracellular membrane traffic. NSF is a highly conserved protein belonging to the ATPases associated with other activities (AAA+ proteins). AAA+ share common domains and all transduce ATP hydrolysis into major conformational movements that are used to carry out conformational work on client proteins. Together with its cofactor SNAP, NSF is specialized on disassembling highly stable SNARE complexes that form after each membrane fusion event. Although essential for all eukaryotic cells, however, the details of this reaction have long been enigmatic. Recently, major progress has been made in both elucidating the structure of NSF/SNARE complexes and in understanding the reaction mechanism. Advances in both cryo EM and single molecule measurements suggest that NSF, together with its cofactor SNAP, imposes a tight grip on the SNARE complex. After ATP hydrolysis and phosphate release, it then builds up mechanical tension that is ultimately used to rip apart the SNAREs in a single burst. Because the AAA domains are extremely well-conserved, the molecular mechanism elucidated for NSF is presumably shared by many other AAA+ ATPases. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 518-531, 2016.
Collapse
Affiliation(s)
- Je-Kyung Ryu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, CJ, 2628, the Netherlands
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| | - Tae-Young Yoon
- Center for Nanomedicine, Institute for Basic Science (IBS) and Y-IBS Institute, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
252
|
Schubert M, Volckaert K, Karl M, Morton A, Liehm P, Miles GB, Powis SJ, Gather MC. Lasing in Live Mitotic and Non-Phagocytic Cells by Efficient Delivery of Microresonators. Sci Rep 2017; 7:40877. [PMID: 28102341 PMCID: PMC5244359 DOI: 10.1038/srep40877] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/13/2016] [Indexed: 01/03/2023] Open
Abstract
Reliable methods to individually track large numbers of cells in real time are urgently needed to advance our understanding of important biological processes like cancer metastasis, neuronal network development and wound healing. It has recently been suggested to introduce microscopic whispering gallery mode lasers into the cytoplasm of cells and to use their characteristic, size-dependent emission spectrum as optical barcode but so far there is no evidence that this approach is generally applicable. Here, we describe a method that drastically improves intracellular delivery of resonators for several cell types, including mitotic and non-phagocytic cells. In addition, we characterize the influence of resonator size on the spectral characteristics of the emitted laser light and identify an optimum size range that facilitates tagging and tracking of thousands of cells simultaneously. Finally, we observe that the microresonators remain internalized by cells during cell division, which enables tagging several generations of cells.
Collapse
Affiliation(s)
- Marcel Schubert
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Klara Volckaert
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Markus Karl
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Andrew Morton
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Philipp Liehm
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Gareth B Miles
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Simon J Powis
- School of Medicine, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Malte C Gather
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| |
Collapse
|
253
|
Abstract
Microrheology provides a technique to probe the local viscoelastic properties and dynamics of soft materials at the microscopic level by observing the motion of tracer particles embedded within them. It is divided into passive and active microrheology according to the force exerted on the embedded particles. Particles are driven by thermal fluctuations in passive microrheology, and the linear viscoelasticity of samples can be obtained on the basis of the generalized Stokes-Einstein equation. In active microrheology, tracer particles are controlled by external forces, and measurements can be extended to the nonlinear regime. Microrheology techniques have many advantages such as the need for only small sample amounts and a wider measurable frequency range. In particular, microrheology is able to examine the spatial heterogeneity of samples at the microlevel, which is not possible using traditional rheology. Therefore, microrheology has considerable potential for studying the local mechanical properties and dynamics of soft matter, particularly complex fluids, including solutions, dispersions, and other colloidal systems. Food products such as emulsions, foams, or gels are complex fluids with multiple ingredients and phases. Their macroscopic properties, such as stability and texture, are closely related to the structure and mechanical properties at the microlevel. In this article, the basic principles and methods of microrheology are reviewed, and the latest developments and achievements of microrheology in the field of food science are presented.
Collapse
Affiliation(s)
- Nan Yang
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, and Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China;
| | - Ruihe Lv
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, and Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China;
| | - Junji Jia
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, and Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China;
| | - Yapeng Fang
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, and Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China;
| |
Collapse
|
254
|
Deng Y, Asbury CL. Simultaneous Manipulation and Super-Resolution Fluorescence Imaging of Individual Kinetochores Coupled to Microtubule Tips. Methods Mol Biol 2017; 1486:437-467. [PMID: 27844439 PMCID: PMC5376289 DOI: 10.1007/978-1-4939-6421-5_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Kinetochores are large multiprotein complexes that drive mitotic chromosome movements by mechanically coupling them to the growing and shortening tips of spindle microtubules. Kinetochores are also regulatory hubs, somehow sensing when they are erroneously attached and, in response, releasing their incorrect attachments and generating diffusible wait signals to delay anaphase until proper attachments can form. The remarkable ability of a kinetochore to sense and respond to its attachment status might stem from attachment- or tension-dependent changes in the structural arrangement of its core subcomplexes. However, direct tests of the relationship between attachment, tension, and core kinetochore structure have not previously been possible because of the difficulties of applying well-controlled forces and determining unambiguously the attachment status of individual kinetochores in vivo. The recent purification of native yeast kinetochores has enabled in vitro optical trapping-based assays of kinetochore tip-coupling and, in separate experiments, fluorescence imaging of single kinetochore particles. Here we introduce a dual instrument, combining optical trapping with multicolor total internal reflection fluorescence (TIRF) imaging, to allow kinetochore structure to be monitored directly with nanometer precision while mechanical tension is simultaneously applied. Our instrument incorporates differential interference contrast (DIC) imaging as well, to minimize the photo-bleaching of fluorescent tags during preparative bead and microtubule manipulations. A simple modification also allows the trapping laser to be easily converted into a real-time focus detection and correction system. Using this combined instrument, the distance between specific subcomplexes within a single kinetochore particle can be measured with 2-nm precision after 50 s observation time, or with 11-nm precision at 1 s temporal resolution. While our instrument was constructed specifically for studying kinetochores, it should also be useful for studying other filament-binding protein complexes, such as spindle poles, cortical microtubule attachments, focal adhesions, or other motor-cytoskeletal junctions.
Collapse
Affiliation(s)
- Yi Deng
- Department of Physiology & Biophysics, University of Washington, 1959 NE Pacific Street, Box 357290, Seattle, WA, 98195, USA
| | - Charles L Asbury
- Department of Physiology & Biophysics, University of Washington, 1959 NE Pacific Street, Box 357290, Seattle, WA, 98195, USA.
| |
Collapse
|
255
|
Okoniewski SR, Carter AR, Perkins TT. A Surface-Coupled Optical Trap with 1-bp Precision via Active Stabilization. Methods Mol Biol 2017; 1486:77-107. [PMID: 27844426 PMCID: PMC5510953 DOI: 10.1007/978-1-4939-6421-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Optical traps can measure bead motions with Å-scale precision. However, using this level of precision to infer 1-bp motion of molecular motors along DNA is difficult, since a variety of noise sources degrade instrumental stability. In this chapter, we detail how to improve instrumental stability by (1) minimizing laser pointing, mode, polarization, and intensity noise using an acousto-optical-modulator mediated feedback loop and (2) minimizing sample motion relative to the optical trap using a three-axis piezo-electric-stage mediated feedback loop. These active techniques play a critical role in achieving a surface stability of 1 Å in 3D over tens of seconds and a 1-bp stability and precision in a surface-coupled optical trap over a broad bandwidth (Δf = 0.03-2 Hz) at low force (6 pN). These active stabilization techniques can also aid other biophysical assays that would benefit from improved laser stability and/or Å-scale sample stability, such as atomic force microscopy and super-resolution imaging.
Collapse
Affiliation(s)
- Stephen R Okoniewski
- JILA, National Institute of Standards and Technology, and University of Colorado, Boulder, CO, 80309, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Ashley R Carter
- Department of Physics and Astronomy, Amherst College, Amherst, MA, 01002, USA
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology, and University of Colorado, Boulder, CO, 80309, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
256
|
Jiao J, Rebane AA, Ma L, Zhang Y. Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers. Methods Mol Biol 2017; 1486:357-390. [PMID: 27844436 DOI: 10.1007/978-1-4939-6421-5_14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
How proteins fold from linear chains of amino acids to delicate three-dimensional structures remains a fundamental biological problem. Single-molecule manipulation based on high-resolution optical tweezers (OT) provides a powerful approach to study protein folding with unprecedented spatiotemporal resolution. In this method, a single protein or protein complex is tethered between two beads confined in optical traps and pulled. Protein unfolding induced by the mechanical force is counteracted by the spontaneous folding of the protein, reaching a dynamic equilibrium at a characteristic force and rate. The transition is monitored by the accompanying extension change of the protein and used to derive conformations and energies of folding intermediates and their associated transition kinetics. Here, we provide general strategies and detailed protocols to study folding of proteins and protein complexes using optical tweezers, including sample preparation, DNA-protein conjugation and methods of data analysis to extract folding energies and rates from the single-molecule measurements.
Collapse
Affiliation(s)
- Junyi Jiao
- Department of Cell Biology, School of Medicine and Integrated Graduate Program in Physical and Engineering Biology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Aleksander A Rebane
- Department of Cell Biology, School of Medicine and Integrated Graduate Program in Physical and Engineering Biology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Lu Ma
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Yongli Zhang
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
257
|
Pud S, Chao SH, Belkin M, Verschueren D, Huijben T, van Engelenburg C, Dekker C, Aksimentiev A. Mechanical Trapping of DNA in a Double-Nanopore System. NANO LETTERS 2016; 16:8021-8028. [PMID: 27960493 PMCID: PMC5523128 DOI: 10.1021/acs.nanolett.6b04642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanopores have become ubiquitous components of systems for single-molecule manipulation and detection, in particular DNA sequencing where electric field driven translocation of DNA through a nanopore is used to read out the DNA molecule. Here, we present a double-pore system where two nanopores are drilled in parallel through the same solid-state membrane, which offers new opportunities for DNA manipulation. Our experiments and molecular dynamics simulations show that simultaneous electrophoretic capture of a DNA molecule by the two nanopores mechanically traps the molecule, increasing its residence time within the nanopores by orders of magnitude. Remarkably, by using two unequal-sized nanopores, the pore of DNA entry and exit can be discerned from the ionic current blockades, and the translocation direction can be precisely controlled by small differences in the effective force applied to DNA. The mechanical arrest of DNA translocation using a double-pore system can be straightforwardly integrated into any solid-state nanopore platform, including those using optical or transverse-current readouts.
Collapse
Affiliation(s)
- Sergii Pud
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Shu-Han Chao
- Department of Physics, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Maxim Belkin
- Department of Physics, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Daniel Verschueren
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Teun Huijben
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Casper van Engelenburg
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
258
|
Hashemi Shabestari M, Meijering AEC, Roos WH, Wuite GJL, Peterman EJG. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy. Methods Enzymol 2016; 582:85-119. [PMID: 28062046 DOI: 10.1016/bs.mie.2016.09.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Over the past two decades, single-molecule techniques have evolved into robust tools to study many fundamental biological processes. The combination of optical tweezers with fluorescence microscopy and microfluidics provides a powerful single-molecule manipulation and visualization technique that has found widespread application in biology. In this combined approach, the spatial (~nm) and temporal (~ms) resolution, as well as the force scale (~pN) accessible to optical tweezers is complemented with the power of fluorescence microscopy. Thereby, it provides information on the local presence, identity, spatial dynamics, and conformational dynamics of single biomolecules. Together, these techniques allow comprehensive studies of, among others, molecular motors, protein-protein and protein-DNA interactions, biomolecular conformational changes, and mechanotransduction pathways. In this chapter, recent applications of fluorescence microscopy in combination with optical trapping are discussed. After an introductory section, we provide a description of instrumentation together with the current capabilities and limitations of the approaches. Next we summarize recent studies that applied this combination of techniques in biological systems and highlight some representative biological assays to mark the exquisite opportunities that optical tweezers combined with fluorescence microscopy provide.
Collapse
Affiliation(s)
| | | | - W H Roos
- Moleculaire Biofysica, Zernike Institute, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - G J L Wuite
- Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
259
|
Laszlo AH, Derrrington IM, Gundlach JH. Subangstrom Measurements of Enzyme Function Using a Biological Nanopore, SPRNT. Methods Enzymol 2016; 582:387-414. [PMID: 28062043 DOI: 10.1016/bs.mie.2016.09.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nanopores are emerging as new single-molecule tools in the study of enzymes. Based on the progress in nanopore sequencing of DNA, a tool called Single-molecule Picometer Resolution Nanopore Tweezers (SPRNT) was developed to measure the movement of enzymes along DNA in real time. In this new method, an enzyme is loaded onto a DNA (or RNA) molecule. A single-stranded DNA end of this complex is drawn into a nanopore by an electrostatic potential that is applied across the pore. The single-stranded DNA passes through the pore's constriction until the enzyme comes into contact with the pore. Further progression of the DNA through the pore is then controlled by the enzyme. An ion current that flows through the pore's constriction is modulated by the DNA in the constriction. Analysis of ion current changes reveals the advance of the DNA with high spatiotemporal precision, thereby providing a real-time record of the enzyme's activity. Using an engineered version of the protein nanopore MspA, SPRNT has spatial resolution as small as 40pm at millisecond timescales, while simultaneously providing the DNA's sequence within the enzyme. In this chapter, SPRNT is introduced and its extraordinary potential is exemplified using the helicase Hel308. Two distinct substates are observed for each one-nucleotide advance; one of these about half-nucleotide long steps is ATP dependent and the other is ATP independent. The spatiotemporal resolution of this low-cost single-molecule technique lifts the study of enzymes to a new level of precision, enabling exploration of hitherto unobservable enzyme dynamics in real time.
Collapse
Affiliation(s)
- A H Laszlo
- University of Washington, Seattle, WA, United States
| | | | - J H Gundlach
- University of Washington, Seattle, WA, United States.
| |
Collapse
|
260
|
Kim Y, Kim W, Park JW. Principles and Applications of Force Spectroscopy Using Atomic Force Microscopy. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.11022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Youngkyu Kim
- Department of Chemistry; Pohang University of Science and Technology; Pohang 37673 Korea
| | - Woong Kim
- Department of Chemistry; Pohang University of Science and Technology; Pohang 37673 Korea
| | - Joon Won Park
- Department of Chemistry; Pohang University of Science and Technology; Pohang 37673 Korea
| |
Collapse
|
261
|
Habibi M, Rottler J, Plotkin SS. As Simple As Possible, but Not Simpler: Exploring the Fidelity of Coarse-Grained Protein Models for Simulated Force Spectroscopy. PLoS Comput Biol 2016; 12:e1005211. [PMID: 27898663 PMCID: PMC5127490 DOI: 10.1371/journal.pcbi.1005211] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/14/2016] [Indexed: 01/18/2023] Open
Abstract
Mechanical unfolding of a single domain of loop-truncated superoxide dismutase protein has been simulated via force spectroscopy techniques with both all-atom (AA) models and several coarse-grained models having different levels of resolution: A Gō model containing all heavy atoms in the protein (HA-Gō), the associative memory, water mediated, structure and energy model (AWSEM) which has 3 interaction sites per amino acid, and a Gō model containing only one interaction site per amino acid at the Cα position (Cα-Gō). To systematically compare results across models, the scales of time, energy, and force had to be suitably renormalized in each model. Surprisingly, the HA-Gō model gives the softest protein, exhibiting much smaller force peaks than all other models after the above renormalization. Clustering to render a structural taxonomy as the protein unfolds showed that the AA, HA-Gō, and Cα-Gō models exhibit a single pathway for early unfolding, which eventually bifurcates repeatedly to multiple branches only after the protein is about half-unfolded. The AWSEM model shows a single dominant unfolding pathway over the whole range of unfolding, in contrast to all other models. TM alignment, clustering analysis, and native contact maps show that the AWSEM pathway has however the most structural similarity to the AA model at high nativeness, but the least structural similarity to the AA model at low nativeness. In comparison to the AA model, the sequence of native contact breakage is best predicted by the HA-Gō model. All models consistently predict a similar unfolding mechanism for early force-induced unfolding events, but diverge in their predictions for late stage unfolding events when the protein is more significantly disordered.
Collapse
Affiliation(s)
- Mona Habibi
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jörg Rottler
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven S. Plotkin
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
262
|
Rinklin P, Krause HJ, Wolfrum B. On-chip electromagnetic tweezers - 3-dimensional particle actuation using microwire crossbar arrays. LAB ON A CHIP 2016; 16:4749-4758. [PMID: 27847939 DOI: 10.1039/c6lc00887a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Emerging miniaturization technologies for biological and bioengineering applications require precise control over position and actuation of microparticles. While many of these applications call for high-throughput approaches, common tools for particle manipulation, such as magnetic or optical tweezers, suffer from low parallelizability. To address this issue, we introduce a chip-based platform that enables flexible three-dimensional control over individual magnetic microparticles. Our system relies on microwire crossbar arrays for simultaneous generation of magnetic and dielectric forces, which actuate the particles along highly localized traps. We demonstrate the precise spatiotemporal control of individual particles by tracing complex trajectories in three dimensions and investigate the forces that can be generated along different axes. Furthermore, we show that our approach for particle actuation can be parallelized by simultaneously controlling the position and movement of 16 particles in parallel.
Collapse
Affiliation(s)
- Philipp Rinklin
- Institute of Bioelectronics (ICS-8/PGI-8), Forschungszentrum Jülich, 52425 Jülich, Germany and Neuroelectronics, Munich School of Bioengineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstraße 11, D-85748 Garching, Germany.
| | - Hans-Joachim Krause
- Institute of Bioelectronics (ICS-8/PGI-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Bernhard Wolfrum
- Institute of Bioelectronics (ICS-8/PGI-8), Forschungszentrum Jülich, 52425 Jülich, Germany and Neuroelectronics, Munich School of Bioengineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstraße 11, D-85748 Garching, Germany.
| |
Collapse
|
263
|
Optical Torque Wrench Design and Calibration. Methods Mol Biol 2016; 1486:157-181. [PMID: 27844429 DOI: 10.1007/978-1-4939-6421-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Expanding the capabilities of optical traps with angular control of the trapped particle has numerous potential applications in all fields where standard linear optical tweezers are employed. Here we describe in detail the construction, alignment, and calibration of the Optical Torque Wrench, a mode of function that can be added to linear optical tweezers to simultaneously apply and measure both force and torque on birefringent microscopic cylindrical particles. The interaction between the linear polarization of the laser and the birefringent cylinder creates an angular trap for the particle orientation, described by a periodic potential. As a consequence of the experimental control of the tilt of the periodic potential, the dynamical excitability of the system can be observed. Angular optical tweezers remain less widespread than their linear counterpart. We hope this technical guide can foster their development and new applications.
Collapse
|
264
|
Nguyen TH. Single-molecule force spectroscopy applied to heparin-induced thrombocytopenia. J Mol Recognit 2016; 30. [PMID: 27790761 DOI: 10.1002/jmr.2585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 01/01/2023]
Abstract
Heparin-induced thrombocytopenia (HIT), occurring up to approximately 1% to 5% of patients receiving the antithrombotic drug heparins, has a complex pathogenesis involving multiple partners ranging from small molecules to cells/platelets. Recently, insights into the mechanism of HIT have been achieved by using single-molecule force spectroscopy (SMFS), a methodology that allows direct measurements of interactions among HIT partners. Here, the potential of SMFS in unraveling the mechanism of the initial steps in the pathogenesis of HIT at single-molecule resolution is highlighted. The new findings ranging from the molecular binding strengths and kinetics to the determination of the boundary between risk and non-risk heparin drugs or platelet-surface and platelet-platelet interactions will be reviewed. These novel results together have contributed to elucidate the mechanisms underlying HIT and demonstrate how SMFS can be applied to develop safer drugs with a reduced risk profile.
Collapse
Affiliation(s)
- Thi-Huong Nguyen
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, 17475, Greifswald, Germany.,ZIK HIKE - Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
265
|
Sun B, Wang MD. Single-Molecule Optical-Trapping Techniques to Study Molecular Mechanisms of a Replisome. Methods Enzymol 2016; 582:55-84. [PMID: 28062045 DOI: 10.1016/bs.mie.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The replisome is a multiprotein molecular machinery responsible for the replication of DNA. It is composed of several specialized proteins each with dedicated enzymatic activities, and in particular, helicase unwinds double-stranded DNA and DNA polymerase catalyzes the synthesis of DNA. Understanding how a replisome functions in the process of DNA replication requires methods to dissect the mechanisms of individual proteins and of multiproteins acting in concert. Single-molecule optical-trapping techniques have proved to be a powerful approach, offering the unique ability to observe and manipulate biomolecules at the single-molecule level and providing insights into the mechanisms of molecular motors and their interactions and coordination in a complex. Here, we describe a practical guide to applying these techniques to study the dynamics of individual proteins in the bacteriophage T7 replisome, as well as the coordination among them. We also summarize major findings from these studies, including nucleotide-specific helicase slippage and new lesion bypass pathway in T7 replication.
Collapse
Affiliation(s)
- B Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, PR China
| | - M D Wang
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, United States; Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
266
|
Rebane AA, Ma L, Zhang Y. Structure-Based Derivation of Protein Folding Intermediates and Energies from Optical Tweezers. Biophys J 2016; 110:441-454. [PMID: 26789767 DOI: 10.1016/j.bpj.2015.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/17/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022] Open
Abstract
Optical tweezers (OTs) measure the force-dependent time-resolved extension of a single macromolecule tethered between two trapped beads. From this measurement, it is possible to determine the folding intermediates, energies, and kinetics of the macromolecule. Previous data analysis generally has used the extension as a reaction coordinate to characterize the observed folding transitions. Despite its convenience, the extension poorly describes folding in the absence of force. Here, we chose the contour length of the unfolded polypeptide as a reaction coordinate and modeled the extensions of protein structures along their predicted folding pathways based on high-resolution structures of the proteins in their native states. We included the extension in our model to calculate the total extensions, energies, and transition rates of the proteins as a function of force. We fit these calculations to the corresponding experimental measurements and obtained the best-fit conformations and energies of proteins in different folding states. We applied our method to analyze single-molecule trajectories of two representative protein complexes responsible for membrane fusion, the HIV-1 glycoprotein 41 and the synaptic SNARE proteins, which involved transitions between two and five states, respectively. Nonlinear fitting of the model to the experimental data revealed the structures of folding intermediates and transition states and their associated energies. Our results demonstrate that the contour length is a useful reaction coordinate to characterize protein folding and that intrinsic extensions of protein structures should be taken into account to properly derive the conformations and energies of protein folding intermediates from single-molecule manipulation experiments.
Collapse
Affiliation(s)
- Aleksander A Rebane
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut; Department of Physics, Yale University, New Haven, Connecticut
| | - Lu Ma
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut
| | - Yongli Zhang
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
267
|
Pavankumar TL, Exell JC, Kowalczykowski SC. Direct Fluorescent Imaging of Translocation and Unwinding by Individual DNA Helicases. Methods Enzymol 2016; 581:1-32. [PMID: 27793277 DOI: 10.1016/bs.mie.2016.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The unique translocation and DNA unwinding properties of DNA helicases can be concealed by the stochastic behavior of enzyme molecules within the necessarily large populations used in ensemble experiments. With recent technological advances, the direct visualization of helicases acting on individual DNA molecules has contributed significantly to the current understanding of their mechanisms of action and biological functions. The combination of single-molecule techniques that enable both manipulation of individual protein or DNA molecules and visualization of their actions has made it possible to literally see novel and unique biochemical characteristics that were previously masked. Here, we describe the execution and use of single-molecule fluorescence imaging techniques, focusing on methods that include optical trapping in conjunction with epifluorescent imaging, and also surface immobilization in conjunction with total internal reflection fluorescence visualization. Combined with microchannel flow cells and microfluidic control, these methods allow individual fluorescently labeled protein and DNA molecules to be imaged and tracked, affording measurement of DNA unwinding and translocation at single-molecule resolution.
Collapse
Affiliation(s)
| | - J C Exell
- University of California, Davis, CA, United States
| | | |
Collapse
|
268
|
Kinz-Thompson CD, Bailey NA, Gonzalez RL. Precisely and Accurately Inferring Single-Molecule Rate Constants. Methods Enzymol 2016; 581:187-225. [PMID: 27793280 PMCID: PMC5746875 DOI: 10.1016/bs.mie.2016.08.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The kinetics of biomolecular systems can be quantified by calculating the stochastic rate constants that govern the biomolecular state vs time trajectories (i.e., state trajectories) of individual biomolecules. To do so, the experimental signal vs time trajectories (i.e., signal trajectories) obtained from observing individual biomolecules are often idealized to generate state trajectories by methods such as thresholding or hidden Markov modeling. Here, we discuss approaches for idealizing signal trajectories and calculating stochastic rate constants from the resulting state trajectories. Importantly, we provide an analysis of how the finite length of signal trajectories restricts the precision of these approaches and demonstrate how Bayesian inference-based versions of these approaches allow rigorous determination of this precision. Similarly, we provide an analysis of how the finite lengths and limited time resolutions of signal trajectories restrict the accuracy of these approaches, and describe methods that, by accounting for the effects of the finite length and limited time resolution of signal trajectories, substantially improve this accuracy. Collectively, therefore, the methods we consider here enable a rigorous assessment of the precision, and a significant enhancement of the accuracy, with which stochastic rate constants can be calculated from single-molecule signal trajectories.
Collapse
Affiliation(s)
| | - N A Bailey
- Columbia University, New York, NY, United States
| | - R L Gonzalez
- Columbia University, New York, NY, United States.
| |
Collapse
|
269
|
Terao K, Masuda C, Inukai R, Gel M, Oana H, Washizu M, Suzuki T, Takao H, Shimokawa F, Oohira F. Characterisation of optically driven microstructures for manipulating single DNA molecules under a fluorescence microscope. IET Nanobiotechnol 2016; 10:124-8. [PMID: 27256891 DOI: 10.1049/iet-nbt.2015.0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Optical tweezers are powerful tools for manipulating single DNA molecules using fluorescence microscopy, particularly in nanotechnology-based DNA analysis. We previously proposed a manipulation technique using microstructures driven by optical tweezers that allows the handling of single giant DNA molecules of millimetre length that cannot be manipulated by conventional techniques. To further develop this technique, the authors characterised the microstructures quantitatively from the view point of fabrication and efficiency of DNA manipulation under a fluorescence microscope. The success rate and precision of the fabrications were evaluated. The results indicate that the microstructures are obtained in an aqueous solution with a precision ∼50 nm at concentrations in the order of 10(6) particles/ml. The visibility of these microstructures under a fluorescence microscope was also characterised, along with the elucidation of the fabrication parameters needed to fine tune visibility. Manipulating yeast chromosomal DNA molecules with the microstructures illustrated the relationship between the efficiency of manipulation and the geometrical shape of the microstructure. This report provides the guidelines for designing microstructures used in single DNA molecule analysis based on on-site DNA manipulation, and is expected to broaden the applications of this technique in the future.
Collapse
Affiliation(s)
| | - Chihiro Masuda
- Department of Intelligent Mechanical Systems Engineering, Kagawa University, Takamatsu 761-0396, Japan
| | - Ryo Inukai
- Department of Intelligent Mechanical Systems Engineering, Kagawa University, Takamatsu 761-0396, Japan
| | - Murat Gel
- CSIRO, Material Science and Engineering, Clayton, VIC 3030, Australia
| | - Hidehiro Oana
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Masao Washizu
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takaaki Suzuki
- Department of Intelligent Mechanical Systems Engineering, Kagawa University, Takamatsu 761-0396, Japan
| | - Hidekuni Takao
- Department of Intelligent Mechanical Systems Engineering, Kagawa University, Takamatsu 761-0396, Japan
| | - Fusao Shimokawa
- Department of Intelligent Mechanical Systems Engineering, Kagawa University, Takamatsu 761-0396, Japan
| | - Fumikazu Oohira
- Department of Intelligent Mechanical Systems Engineering, Kagawa University, Takamatsu 761-0396, Japan
| |
Collapse
|
270
|
Devi A, De AK. Theoretical investigation on nonlinear optical effects in laser trapping of dielectric nanoparticles with ultrafast pulsed excitation. OPTICS EXPRESS 2016; 24:21485-21496. [PMID: 27661888 DOI: 10.1364/oe.24.021485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of low-power high-repetition-rate ultrafast pulsed excitation in stable optical trapping of dielectric nanoparticles has been demonstrated in the recent past; the high peak power of each pulse leads to instantaneous trapping of a nanoparticle with fast inertial response and the high repetition-rate ensures repetitive trapping by successive pulses However, with such high peak power pulsed excitation under a tight focusing condition, nonlinear optical effects on trapping efficiency also become significant and cannot be ignored. Thus, in addition to the above mentioned repetitive instantaneous trapping, trapping efficiency under pulsed excitation is also influenced by the optical Kerr effect, which we theoretically investigate here. Using dipole approximation we show that with an increase in laser power the radial component of the trapping potential becomes progressively more stable but the axial component is dramatically modulated due to increased Kerr nonlinearity. We justify that the relevant parameter to quantify the trapping efficiency is not the absolute depth of the highly asymmetric axial trapping potential but the height of the potential barrier along the beam propagation direction. We also discuss the optimal excitation parameters leading to the most stable dipole trap. Our results show excellent agreement with previous experiments.
Collapse
|
271
|
Hou X, DeSantis MC, Tian C, Cheng W. Optical manipulation of a single human virus for study of viral-cell interactions. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9922. [PMID: 27746582 DOI: 10.1117/12.2239051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although Ashkin and Dziedzic first demonstrated optical trapping of individual tobacco mosaic viruses in suspension as early as 1987, this pioneering work has not been followed up only until recently. Using human immunodeficiency virus type 1 (HIV-1) as a model virus, we have recently demonstrated that a single HIV-1 virion can be stabled trapped, manipulated and measured in physiological media with high precision. The capability to optically trap a single virion in suspension not only allows us to determine, for the first time, the refractive index of a single virus with high precision, but also quantitate the heterogeneity among individual virions with single-molecule resolution, the results of which shed light on the molecular mechanisms of virion infectivity. Here we report the further development of a set of microscopic techniques to physically deliver a single HIV-1 virion to a single host cell in solution. Combined with simultaneous epifluorescence imaging, the attachment and dissociation events of individual manipulated virions on host cell surface can be measured and the results help us understand the role of diffusion in mediating viral attachment to host cells. The establishment of these techniques opens up new ways for investigation of a wide range of virion-cell interactions, and should be applicable for study of B cell interactions with particulate antigens such as viruses.
Collapse
Affiliation(s)
- Ximiao Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan Medical School, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Michael C DeSantis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan Medical School, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Chunjuan Tian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan Medical School, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Wei Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan Medical School, 428 Church Street, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan Medical School, 428 Church Street, Ann Arbor, MI 48109, USA; Department of Biophysics, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| |
Collapse
|
272
|
The Power of Force: Insights into the Protein Folding Process Using Single-Molecule Force Spectroscopy. J Mol Biol 2016; 428:4245-4257. [PMID: 27639437 DOI: 10.1016/j.jmb.2016.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 01/03/2023]
Abstract
One of the major challenges in modern biophysics is observing and understanding conformational changes during complex molecular processes, from the fundamental protein folding to the function of molecular machines. Single-molecule techniques have been one of the major driving forces of the huge progress attained in the last few years. Recent advances in resolution of the experimental setups, aided by theoretical developments and molecular dynamics simulations, have revealed a much higher degree of complexity inside these molecular processes than previously reported using traditional ensemble measurements. This review sums up the evolution of these developments and gives an outlook on prospective discoveries.
Collapse
|
273
|
Dulin D, Cui TJ, Cnossen J, Docter MW, Lipfert J, Dekker NH. High Spatiotemporal-Resolution Magnetic Tweezers: Calibration and Applications for DNA Dynamics. Biophys J 2016; 109:2113-25. [PMID: 26588570 DOI: 10.1016/j.bpj.2015.10.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 11/16/2022] Open
Abstract
The observation of biological processes at the molecular scale in real time requires high spatial and temporal resolution. Magnetic tweezers are straightforward to implement, free of radiation or photodamage, and provide ample multiplexing capability, but their spatiotemporal resolution has lagged behind that of other single-molecule manipulation techniques, notably optical tweezers and AFM. Here, we present, to our knowledge, a new high-resolution magnetic tweezers apparatus. We systematically characterize the achievable spatiotemporal resolution for both incoherent and coherent light sources, different types and sizes of beads, and different types and lengths of tethered molecules. Using a bright coherent laser source for illumination and tracking at 6 kHz, we resolve 3 Å steps with a 1 s period for surface-melted beads and 5 Å steps with a 0.5 s period for double-stranded-dsDNA-tethered beads, in good agreement with a model of stochastic bead motion in the magnetic tweezers. We demonstrate how this instrument can be used to monitor the opening and closing of a DNA hairpin on millisecond timescales in real time, together with attendant changes in the hairpin dynamics upon the addition of deoxythymidine triphosphate. Our approach opens up the possibility of observing biological events at submillisecond timescales with subnanometer resolution using camera-based detection.
Collapse
Affiliation(s)
- David Dulin
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| | - Tao Ju Cui
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Jelmer Cnossen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Margreet W Docter
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich and Center for Nanoscience, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
274
|
Chen X, Xiao G, Yang K, Xiong W, Luo H. Characteristics of the orbital rotation in dual-beam fiber-optic trap with transverse offset. OPTICS EXPRESS 2016; 24:16952-60. [PMID: 27464147 DOI: 10.1364/oe.24.016952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The orbital rotation is an important type of motion of trapped particles apart from translation and spin rotation. It could be realized by introducing a transverse offset to the dual-beam fiber-optic trap. The characteristics (e.g. rotation perimeter and frequency) of the orbital rotation have been analyzed in this article. We demonstrate the influences of offset distance, beam waist separation distance, light power, and radius of the microsphere by both experimental and numerical work. The experiment results, i.e. orbital rotation perimeter and frequency as functions of these parameters, are consistent with the theoretical model in the present work. The orbital rotation amplitude and frequency could be exactly controlled by varying these parameters. This controllable orbital rotation can be easily applied to the area where microfluidic mixing is required.
Collapse
|
275
|
Chemla YR. High‐resolution, hybrid optical trapping methods, and their application to nucleic acid processing proteins. Biopolymers 2016; 105:704-14. [DOI: 10.1002/bip.22880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Yann R. Chemla
- Department of Physics, Center for the Physics of Living Cells, Center for Biophysics and Quantitative BiologyUniversity of IllinoisUrbana‐Champaign
| |
Collapse
|
276
|
Gwo S, Chen HY, Lin MH, Sun L, Li X. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. Chem Soc Rev 2016; 45:5672-5716. [PMID: 27406697 DOI: 10.1039/c6cs00450d] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Localized surface plasmon resonances (LSPRs) associated with metallic nanostructures offer unique possibilities for light concentration beyond the diffraction limit, which can lead to strong field confinement and enhancement in deep subwavelength regions. In recent years, many transformative plasmonic applications have emerged, taking advantage of the spectral and spatial tunability of LSPRs enabled by near-field coupling between constituent metallic nanostructures in a variety of plasmonic metastructures (dimers, metamolecules, metasurfaces, metamaterials, etc.). For example, the "hot spot" formed at the interstitial site (gap) between two coupled metallic nanostructures in a plasmonic dimer can be spectrally tuned via the gap size. Capitalizing on these capabilities, there have been significant advances in plasmon enhanced or enabled applications in light-based science and technology, including ultrahigh-sensitivity spectroscopies, light energy harvesting, photocatalysis, biomedical imaging and theranostics, optical sensing, nonlinear optics, ultrahigh-density data storage, as well as plasmonic metamaterials and metasurfaces exhibiting unusual linear and nonlinear optical properties. In this review, we present two complementary approaches for fabricating plasmonic metastructures. We discuss how meta-atoms can be assembled into unique plasmonic metastructures using a variety of nanomanipulation methods based on single- or multiple-probes in an atomic force microscope (AFM) or a scanning electron microscope (SEM), optical tweezers, and focused electron-beam nanomanipulation. We also provide a few examples of nanoparticle metamolecules with designed properties realized in such well-controlled plasmonic metastructures. For the spatial controllability on the mesoscopic and macroscopic scales, we show that controlled self-assembly is the method of choice to realize scalable two-dimensional, and three-dimensional plasmonic metastructures. In the section of applications, we discuss some key examples of plasmonic applications based on individual hot spots or ensembles of hot spots with high uniformity and improved controllability.
Collapse
Affiliation(s)
- Shangjr Gwo
- Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan.
| | | | | | | | | |
Collapse
|
277
|
Shrestha P, Emura T, Koirala D, Cui Y, Hidaka K, Maximuck WJ, Endo M, Sugiyama H, Mao H. Mechanical properties of DNA origami nanoassemblies are determined by Holliday junction mechanophores. Nucleic Acids Res 2016; 44:6574-82. [PMID: 27387283 PMCID: PMC5001620 DOI: 10.1093/nar/gkw610] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 06/24/2016] [Indexed: 01/13/2023] Open
Abstract
DNA nanoassemblies have demonstrated wide applications in various fields including nanomaterials, drug delivery and biosensing. In DNA origami, single-stranded DNA template is shaped into desired nanostructure by DNA staples that form Holliday junctions with the template. Limited by current methodologies, however, mechanical properties of DNA origami structures have not been adequately characterized, which hinders further applications of these materials. Using laser tweezers, here, we have described two mechanical properties of DNA nanoassemblies represented by DNA nanotubes, DNA nanopyramids and DNA nanotiles. First, mechanical stability of DNA origami structures is determined by the effective density of Holliday junctions along a particular stress direction. Second, mechanical isomerization observed between two conformations of DNA nanotubes at 10–35 pN has been ascribed to the collective actions of individual Holliday junctions, which are only possible in DNA origami with rotational symmetric arrangements of Holliday junctions, such as those in DNA nanotubes. Our results indicate that Holliday junctions control mechanical behaviors of DNA nanoassemblies. Therefore, they can be considered as ‘mechanophores’ that sustain mechanical properties of origami nanoassemblies. The mechanical properties observed here provide insights for designing better DNA nanostructures. In addition, the unprecedented mechanical isomerization process brings new strategies for the development of nano-sensors and actuators.
Collapse
Affiliation(s)
- Prakash Shrestha
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Deepak Koirala
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Yunxi Cui
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - William J Maximuck
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
278
|
Dieterich E, Camunas-Soler J, Ribezzi-Crivellari M, Seifert U, Ritort F. Control of force through feedback in small driven systems. Phys Rev E 2016; 94:012107. [PMID: 27575077 DOI: 10.1103/physreve.94.012107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 06/06/2023]
Abstract
Controlling a time-dependent force applied to single molecules or colloidal particles is crucial for many types of experiments. Since in optical tweezers the primary controlled variable is the position of the trap, imposing a target force requires an active feedback process. We analyze this feedback process for the paradigmatic case of a nonequilibrium steady state generated by a dichotomous force protocol, first theoretically for a colloidal particle in a harmonic trap and then with both simulations and experiments for a long DNA hairpin. For the first setup, we find there is an optimal feedback gain separating monotonic from oscillatory response, whereas a too strong feedback leads to an instability. For the DNA molecule, reaching the target force requires substantial feedback gain since weak feedback cannot overcome the tendency to relax towards the equilibrium force.
Collapse
Affiliation(s)
- E Dieterich
- II. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - J Camunas-Soler
- Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
- CIBER-BBN de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - M Ribezzi-Crivellari
- Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
- CIBER-BBN de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - U Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - F Ritort
- Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
- CIBER-BBN de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
279
|
Hughes ML, Dougan L. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:076601. [PMID: 27309041 DOI: 10.1088/0034-4885/79/7/076601] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.
Collapse
Affiliation(s)
- Megan L Hughes
- School of Physics and Astronomy, University of Leeds, LS2 9JT, UK. Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, UK
| | | |
Collapse
|
280
|
Broekmans OD, King GA, Stephens GJ, Wuite GJL. DNA Twist Stability Changes with Magnesium(2+) Concentration. PHYSICAL REVIEW LETTERS 2016; 116:258102. [PMID: 27391755 DOI: 10.1103/physrevlett.116.258102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Indexed: 06/06/2023]
Abstract
To understand DNA elasticity at high forces (F>30 pN), its helical nature must be taken into account, as a coupling between twist and stretch. The prevailing model, the wormlike chain, was previously extended to include this twist-stretch coupling. Motivated by DNA's charged nature, and the known effects of ionic charges on its elasticity, we set out to systematically measure the impact of buffer ionic conditions on twist-stretch coupling. After developing a robust fitting approach, we show, using our new data set, that DNA's helical twist is stabilized at high concentrations of the magnesium divalent cation. DNA's persistence length and stretch modulus are, on the other hand, relatively insensitive to the applied range of ionic strengths.
Collapse
Affiliation(s)
- Onno D Broekmans
- LaserLaB Amsterdam and Department of Physics and Astronomy VU University Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Graeme A King
- LaserLaB Amsterdam and Department of Physics and Astronomy VU University Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Greg J Stephens
- LaserLaB Amsterdam and Department of Physics and Astronomy VU University Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Gijs J L Wuite
- LaserLaB Amsterdam and Department of Physics and Astronomy VU University Amsterdam, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
281
|
Khan SA, Chang CM, Zaidi Z, Shin W, Shi Y, Ellerbee Bowden AK, Solgaard O. Metal-insulator-metal waveguides for particle trapping and separation. LAB ON A CHIP 2016; 16:2302-2308. [PMID: 27216706 DOI: 10.1039/c6lc00366d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Optical particle trapping and separation are essential techniques in the fields of biology and chemistry. In many applications, it is important to identify passive separation techniques that only rely on intrinsic forces in a system with a fixed device geometry. We present a dual-waveguide sorter that utilizes the loss of metal-insulator-metal (MIM) waveguides for completely passive particle trapping and separation and is created using a unique angle sidewall deposition process. Our experiments show that an inner Au-Si3N4-Au waveguide is able to trap particles within the propagation distance of its dominant modes and release the particles into an outer Au-H2O-Au waveguide. The outer waveguide then propels the particles and separates them by size. The separation results are accurately modeled by a first-principles, analytical model.
Collapse
Affiliation(s)
- Saara A Khan
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
282
|
Carter AR, Seaberg MH, Fan HF, Sun G, Wilds CJ, Li HW, Perkins TT. Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes. Nucleic Acids Res 2016; 44:5849-60. [PMID: 27220465 PMCID: PMC4937329 DOI: 10.1093/nar/gkw445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 05/09/2016] [Indexed: 01/02/2023] Open
Abstract
RecBCD is a multifunctional enzyme that possesses both helicase and nuclease activities. To gain insight into the mechanism of its helicase function, RecBCD unwinding at low adenosine triphosphate (ATP) (2-4 μM) was measured using an optical-trapping assay featuring 1 base-pair (bp) precision. Instead of uniformly sized steps, we observed forward motion convolved with rapid, large-scale (∼4 bp) variations in DNA length. We interpret this motion as conformational dynamics of the RecBCD-DNA complex in an unwinding-competent state, arising, in part, by an enzyme-induced, back-and-forth motion relative to the dsDNA that opens and closes the duplex. Five observations support this interpretation. First, these dynamics were present in the absence of ATP. Second, the onset of the dynamics was coupled to RecBCD entering into an unwinding-competent state that required a sufficiently long 5' strand to engage the RecD helicase. Third, the dynamics were modulated by the GC-content of the dsDNA. Fourth, the dynamics were suppressed by an engineered interstrand cross-link in the dsDNA that prevented unwinding. Finally, these dynamics were suppressed by binding of a specific non-hydrolyzable ATP analog. Collectively, these observations show that during unwinding, RecBCD binds to DNA in a dynamic mode that is modulated by the nucleotide state of the ATP-binding pocket.
Collapse
Affiliation(s)
- Ashley R Carter
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Maasa H Seaberg
- Department of Physics, University of Colorado, Boulder, CO 80309, USA JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA
| | - Hsiu-Fang Fan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 11221, Taiwan Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B1R6, Canada
| | - Gang Sun
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | | | - Hung-Wen Li
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B1R6, Canada
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
283
|
Roy M, Grazioli G, Andricioaei I. Rate turnover in mechano-catalytic coupling: A model and its microscopic origin. J Chem Phys 2016; 143:045105. [PMID: 26233168 DOI: 10.1063/1.4926664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A novel aspect in the area of mechano-chemistry concerns the effect of external forces on enzyme activity, i.e., the existence of mechano-catalytic coupling. Recent experiments on enzyme-catalyzed disulphide bond reduction in proteins under the effect of a force applied on the termini of the protein substrate reveal an unexpected biphasic force dependence for the bond cleavage rate. Here, using atomistic molecular dynamics simulations combined with Smoluchowski theory, we propose a model for this behavior. For a broad range of forces and systems, the model reproduces the experimentally observed rates by solving a reaction-diffusion equation for a "protein coordinate" diffusing in a force-dependent effective potential. The atomistic simulations are used to compute, from first principles, the parameters of the model via a quasiharmonic analysis. Additionally, the simulations are also used to provide details about the microscopic degrees of freedom that are important for the underlying mechano-catalysis.
Collapse
Affiliation(s)
- Mahua Roy
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Gianmarc Grazioli
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Ioan Andricioaei
- Department of Chemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
284
|
Zhou R, Wang C. Multiphase ferrofluid flows for micro-particle focusing and separation. BIOMICROFLUIDICS 2016; 10:034101. [PMID: 27190567 PMCID: PMC4859830 DOI: 10.1063/1.4948656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/25/2016] [Indexed: 05/16/2023]
Abstract
Ferrofluids have demonstrated great potential for a variety of manipulations of diamagnetic (or non-magnetic) micro-particles/cells in microfluidics, including sorting, focusing, and enriching. By utilizing size dependent magnetophoresis velocity, most of the existing techniques employ single phase ferrofluids to push the particles towards the channel walls. In this work, we demonstrate a novel strategy for focusing and separating diamagnetic micro-particles by using the laminar fluid interface of two co-flowing fluids-a ferrofluid and a non-magnetic fluid. Next to the microfluidic channel, microscale magnets are fabricated to generate strong localized magnetic field gradients and forces. Due to the magnetic force, diamagnetic particles suspended in the ferrofluid phase migrate across the ferrofluid stream at the size-dependent velocities. Because of the low Reynolds number and high Péclet number associated with the flow, the fluid interface is sharp and stable. When the micro-particles migrate to the interface, they are accumulated near the interface, resulting in effective focusing and separation of particles. We investigated several factors that affect the focusing and separation efficiency, including susceptibility of the ferrofluid, distance between the microfluidic channel and microscale magnet, and width of the microfluidic channel. This concept can be extended to multiple fluid interfaces. For example, a complete separation of micro-particles was demonstrated by using a three-stream multiphase flow configuration.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology , 400 W. 13th St., Rolla, Missouri 65409, USA
| | - Cheng Wang
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology , 400 W. 13th St., Rolla, Missouri 65409, USA
| |
Collapse
|
285
|
Timonen JVI, Demirörs AF, Grzybowski BA. Magnetofluidic Tweezing of Nonmagnetic Colloids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:3453-3459. [PMID: 26990182 DOI: 10.1002/adma.201506072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/22/2016] [Indexed: 06/05/2023]
Abstract
Magnetofluidic tweezing based on negative magnetophoresis and microfabricated core-shell magnetic microtips allows controlled on-demand assembly of colloids and microparticles into various static and dynamic structures such as colloidal crystals (as shown for 3.2 μm silica particles).
Collapse
Affiliation(s)
- Jaakko V I Timonen
- Harvard John A. Paulson School of Engineeringand Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | | | - Bartosz A Grzybowski
- IBS Center for Soft and Living Matter and the Department of Chemistry, UNIST, Ulsan, South Korea
| |
Collapse
|
286
|
Jagannathan B, Marqusee S. Protein folding and unfolding under force. Biopolymers 2016; 99:860-9. [PMID: 23784721 DOI: 10.1002/bip.22321] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 06/07/2013] [Indexed: 12/27/2022]
Abstract
The recent revolution in optics and instrumentation has enabled the study of protein folding using extremely low mechanical forces as the denaturant. This exciting development has led to the observation of the protein folding process at single molecule resolution and its response to mechanical force. Here, we describe the principles and experimental details of force spectroscopy on proteins, with a focus on the optical tweezers instrument. Several recent results will be discussed to highlight the importance of this technique in addressing a variety of questions in the protein folding field.
Collapse
Affiliation(s)
- Bharat Jagannathan
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA
| | | |
Collapse
|
287
|
Xu H, Jones S, Choi BC, Gordon R. Characterization of Individual Magnetic Nanoparticles in Solution by Double Nanohole Optical Tweezers. NANO LETTERS 2016; 16:2639-43. [PMID: 26977716 DOI: 10.1021/acs.nanolett.6b00288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We study individual superparamagnetic Fe3O4 (magnetite) nanoparticles in solution using a double nanohole optical tweezer with magnetic force setup. By analysis of the trapping optical transmission signal (step size, autocorrelation, the root-mean-square signal, and the distribution with applied magnetic field), we are able to measure the refractive index, magnetic susceptibility, remanence and size of each trapped nanoparticle. The size distribution is found to agree well with scanning electron microscopy measurements, and the permeability, magnetic susceptibility and remanence values are all in agreement with published results. Our approach demonstrates the versatility of the optical tweezer with magnetic field setup to characterize nanoparticles in fluidic mixtures with potential for isolation of desired particles and pick-and-place functionality.
Collapse
Affiliation(s)
- Haitian Xu
- Department of Physics and Astronomy and ‡Department of Electrical and Computer Engineering, University of Victoria , Victoria V8P 5C2, Canada
| | - Steven Jones
- Department of Physics and Astronomy and ‡Department of Electrical and Computer Engineering, University of Victoria , Victoria V8P 5C2, Canada
| | - Byoung-Chul Choi
- Department of Physics and Astronomy and ‡Department of Electrical and Computer Engineering, University of Victoria , Victoria V8P 5C2, Canada
| | - Reuven Gordon
- Department of Physics and Astronomy and ‡Department of Electrical and Computer Engineering, University of Victoria , Victoria V8P 5C2, Canada
| |
Collapse
|
288
|
Chen X, Xiao G, Luo H, Xiong W, Yang K. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset. OPTICS EXPRESS 2016; 24:7575-84. [PMID: 27137046 DOI: 10.1364/oe.24.007575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems.
Collapse
|
289
|
Laszlo AH, Derrington IM, Gundlach JH. MspA nanopore as a single-molecule tool: From sequencing to SPRNT. Methods 2016; 105:75-89. [PMID: 27045943 PMCID: PMC4967004 DOI: 10.1016/j.ymeth.2016.03.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/10/2016] [Accepted: 03/29/2016] [Indexed: 11/15/2022] Open
Abstract
Single-molecule picometer resolution nanopore tweezers (SPRNT) is a new tool for analyzing the motion of nucleic acids through molecular motors. With SPRNT, individual enzymatic motions along DNA as small as 40 pm can be resolved on sub-millisecond time scales. Additionally, SPRNT reveals an enzyme’s exact location with respect to a DNA strand’s nucleotide sequence, enabling identification of sequence-specific behaviors. SPRNT is enabled by a mutant version of the biological nanopore formed by Mycobacterium smegmatis porin A (MspA). SPRNT is strongly rooted in nanopore sequencing and therefore requires a solid understanding of basic principles of nanopore sequencing. Furthermore, SPRNT shares tools developed for nanopore sequencing and extends them to analysis of single-molecule kinetics. As such, this review begins with a brief history of our work developing the nanopore MspA for nanopore sequencing. We then describe the underlying principles of SPRNT, how it works in detail, and propose some potential future uses. We close with a comparison of SPRNT to other techniques and we present the methods that will enable others to use SPRNT.
Collapse
Affiliation(s)
- Andrew H Laszlo
- University of Washington, Department of Physics, 3910 15th Ave NE, Seattle, WA 98195, USA
| | - Ian M Derrington
- University of Washington, Department of Physics, 3910 15th Ave NE, Seattle, WA 98195, USA
| | - Jens H Gundlach
- University of Washington, Department of Physics, 3910 15th Ave NE, Seattle, WA 98195, USA.
| |
Collapse
|
290
|
Naqvi MM, Heidarsson PO, Otazo MR, Mossa A, Kragelund BB, Cecconi C. Single-molecule folding mechanisms of the apo- and Mg(2+)-bound states of human neuronal calcium sensor-1. Biophys J 2016; 109:113-23. [PMID: 26153708 DOI: 10.1016/j.bpj.2015.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/08/2015] [Accepted: 05/20/2015] [Indexed: 01/21/2023] Open
Abstract
Neuronal calcium sensor-1 (NCS-1) is the primordial member of a family of proteins responsible primarily for sensing changes in neuronal Ca(2+) concentration. NCS-1 is a multispecific protein interacting with a number of binding partners in both calcium-dependent and independent manners, and acting in a variety of cellular processes in which it has been linked to a number of disorders such as schizophrenia and autism. Despite extensive studies on the Ca(2+)-activated state of NCS proteins, little is known about the conformational dynamics of the Mg(2+)-bound and apo states, both of which are populated, at least transiently, at resting Ca(2+) conditions. Here, we used optical tweezers to study the folding behavior of individual NCS-1 molecules in the presence of Mg(2+) and in the absence of divalent ions. Under tension, the Mg(2+)-bound state of NCS-1 unfolds and refolds in a three-state process by populating one intermediate state consisting of a folded C-domain and an unfolded N-domain. The interconversion at equilibrium between the different molecular states populated by NCS-1 was monitored in real time through constant-force measurements and the energy landscapes underlying the observed transitions were reconstructed through hidden Markov model analysis. Unlike what has been observed with the Ca(2+)-bound state, the presence of Mg(2+) allows both the N- and C-domain to fold through all-or-none transitions with similar refolding rates. In the absence of divalent ions, NCS-1 unfolds and refolds reversibly in a two-state reaction involving only the C-domain, whereas the N-domain has no detectable transitions. Overall, the results allowed us to trace the progression of NCS-1 folding along its energy landscapes and provided a solid platform for understanding the conformational dynamics of similar EF-hand proteins.
Collapse
Affiliation(s)
- Mohsin M Naqvi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy; CNR Institute of Nanoscience S3, Modena, Italy
| | - Pétur O Heidarsson
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Mariela R Otazo
- CNR Institute of Nanoscience S3, Modena, Italy; Department of Physics, Center of Applied Technologies and Nuclear Development (CEADEN), Miramar, La Habana, Cuba
| | - Alessandro Mossa
- Department of Physics, University of Bari and INFN, Sezione di Bari, Bari, Italy
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy; CNR Institute of Nanoscience S3, Modena, Italy.
| |
Collapse
|
291
|
Yehoshua S, Pollari R, Milstein JN. Axial Optical Traps: A New Direction for Optical Tweezers. Biophys J 2016; 108:2759-66. [PMID: 26083913 DOI: 10.1016/j.bpj.2015.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/24/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022] Open
Abstract
Optical tweezers have revolutionized our understanding of the microscopic world. Axial optical tweezers, which apply force to a surface-tethered molecule by directly moving either the trap or the stage along the laser beam axis, offer several potential benefits when studying a range of novel biophysical phenomena. This geometry, although it is conceptually straightforward, suffers from aberrations that result in variation of the trap stiffness when the distance between the microscope coverslip and the trap focus is being changed. Many standard techniques, such as back-focal-plane interferometry, are difficult to employ in this geometry due to back-scattered light between the bead and the coverslip, whereas the noise inherent in a surface-tethered assay can severely limit the resolution of an experiment. Because of these complications, precision force spectroscopy measurements have adapted alternative geometries such as the highly successful dumbbell traps. In recent years, however, most of the difficulties inherent in constructing a precision axial optical tweezers have been solved. This review article aims to inform the reader about recent progress in axial optical trapping, as well as the potential for these devices to perform innovative biophysical measurements.
Collapse
Affiliation(s)
- Samuel Yehoshua
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Russell Pollari
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Joshua N Milstein
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
292
|
Konstantinou G, Kirkby PA, Evans GJ, Nadella KMNS, Griffiths VA, Mitchell JE, Silver RA. Dynamic wavefront shaping with an acousto-optic lens for laser scanning microscopy. OPTICS EXPRESS 2016; 24:6283-99. [PMID: 27136821 PMCID: PMC6145446 DOI: 10.1364/oe.24.006283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Acousto-optic deflectors (AODs) arranged in series and driven with linearly chirped frequencies can rapidly focus and tilt optical wavefronts, enabling high-speed 3D random access microscopy. Non-linearly chirped acoustic drive frequencies can also be used to shape the optical wavefront allowing a range of higher-order aberrations to be generated. However, to date, wavefront shaping with AODs has been achieved by using single laser pulses for strobed illumination to 'freeze' the moving acoustic wavefront, limiting voxel acquisition rates. Here we show that dynamic wavefront shaping can be achieved by applying non-linear drive frequencies to a pair of AODs with counter-propagating acoustic waves, which comprise a cylindrical acousto-optic lens (AOL). Using a cylindrical AOL we demonstrate high-speed continuous axial line scanning and the first experimental AOL-based correction of a cylindrical lens aberration at 30 kHz, accurate to 1/35th of a wave at 800 nm. Furthermore, we develop a model to show how spherical aberration, which is the major aberration in AOL-based remote-focusing systems, can be partially or fully corrected with AOLs consisting of four or six AODs, respectively.
Collapse
Affiliation(s)
- George Konstantinou
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Paul A. Kirkby
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Geoffrey J. Evans
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - K. M. Naga Srinivas Nadella
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Victoria A. Griffiths
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - John E. Mitchell
- Department of Electronic and Electrical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - R. Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
293
|
Affiliation(s)
- Sanjin Hosic
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Shashi K. Murthy
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Abigail N. Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
294
|
Patra PP, Chikkaraddy R, Thampi S, Tripathi RPN, Kumar GVP. Large-scale dynamic assembly of metal nanostructures in plasmofluidic field. Faraday Discuss 2016; 186:95-106. [PMID: 26765282 DOI: 10.1039/c5fd00127g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We discuss two aspects of the plasmofluidic assembly of plasmonic nanostructures at the metal–fluid interface. First, we experimentally show how three and four spot evanescent-wave excitation can lead to unconventional assembly of plasmonic nanoparticles at the metal–fluid interface. We observed that the pattern of assembly was mainly governed by the plasmon interference pattern at the metal–fluid interface, and further led to interesting dynamic effects within the assembly. The interference patterns were corroborated by 3D finite-difference time-domain simulations. Secondly, we show how anisotropic geometry, such as Ag nanowires, can be assembled and aligned in unstructured and structured plasmofluidic fields. We found that by structuring the metal-film, Ag nanowires can be aligned at the metal–fluid interface with a single evanescent-wave excitation, thus highlighting the prospect of assembling plasmonic circuits in a fluid. An interesting aspect of our method is that we obtain the assembly at locations away from the excitation points, thus leading to remote assembly of nanostructures. The results discussed herein may have implications in realizing a platform for reconfigurable plasmonic metamaterials, and a test-bed to understand the effect of plasmon interference on assembly of nanostructures in fluids.
Collapse
Affiliation(s)
- Partha Pratim Patra
- Photonics & Optical Nanoscopy Laboratory
- Division of Physics and Center for Energy Science
- Indian Institute of Science Education and Research
- Pune-411008
- India
| | - Rohit Chikkaraddy
- Photonics & Optical Nanoscopy Laboratory
- Division of Physics and Center for Energy Science
- Indian Institute of Science Education and Research
- Pune-411008
- India
| | - Sreeja Thampi
- Photonics & Optical Nanoscopy Laboratory
- Division of Physics and Center for Energy Science
- Indian Institute of Science Education and Research
- Pune-411008
- India
| | - Ravi P. N. Tripathi
- Photonics & Optical Nanoscopy Laboratory
- Division of Physics and Center for Energy Science
- Indian Institute of Science Education and Research
- Pune-411008
- India
| | - G. V. Pavan Kumar
- Photonics & Optical Nanoscopy Laboratory
- Division of Physics and Center for Energy Science
- Indian Institute of Science Education and Research
- Pune-411008
- India
| |
Collapse
|
295
|
Probing DNA interactions with proteins using a single-molecule toolbox: inside the cell, in a test tube and in a computer. Biochem Soc Trans 2016; 43:139-45. [PMID: 26020443 DOI: 10.1042/bst20140253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA-interacting proteins have roles in multiple processes, many operating as molecular machines which undergo dynamic meta-stable transitions to bring about their biological function. To fully understand this molecular heterogeneity, DNA and the proteins that bind to it must ideally be interrogated at a single molecule level in their native in vivo environments, in a time-resolved manner, fast enough to sample the molecular transitions across the free-energy landscape. Progress has been made over the past decade in utilizing cutting-edge tools of the physical sciences to address challenging biological questions concerning the function and modes of action of several different proteins which bind to DNA. These physiologically relevant assays are technically challenging but can be complemented by powerful and often more tractable in vitro experiments which confer advantages of the chemical environment with enhanced detection signal-to-noise of molecular signatures and transition events. In the present paper, we discuss a range of techniques we have developed to monitor DNA-protein interactions in vivo, in vitro and in silico. These include bespoke single-molecule fluorescence microscopy techniques to elucidate the architecture and dynamics of the bacterial replisome and the structural maintenance of bacterial chromosomes, as well as new computational tools to extract single-molecule molecular signatures from live cells to monitor stoichiometry, spatial localization and mobility in living cells. We also discuss recent developments from our laboratory made in vitro, complementing these in vivo studies, which combine optical and magnetic tweezers to manipulate and image single molecules of DNA, with and without bound protein, in a new super-resolution fluorescence microscope.
Collapse
|
296
|
Simple horizontal magnetic tweezers for micromanipulation of single DNA molecules and DNA-protein complexes. Biotechniques 2016; 60:21-7. [PMID: 26757808 DOI: 10.2144/000114369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/08/2015] [Indexed: 12/16/2022] Open
Abstract
We report the development of a simple-to-implement magnetic force transducer that can apply a wide range of piconewton (pN) scale forces on single DNA molecules and DNA-protein complexes in the horizontal plane. The resulting low-noise force-extension data enable very high-resolution detection of changes in the DNA tether's extension: ~0.05 pN in force and <10 nm change in extension. We have also verified that we can manipulate DNA in near equilibrium conditions through the wide range of forces by ramping the force from low to high and back again, and observing minimal hysteresis in the molecule's force response. Using a calibration technique based on Stokes' drag law, we have confirmed our force measurements from DNA force-extension experiments obtained using the fluctuation-dissipation theorem applied to transverse fluctuations of the magnetic microsphere. We present data on the force-distance characteristics of a DNA molecule complexed with histones. The results illustrate how the tweezers can be used to study DNA binding proteins at the single molecule level.
Collapse
|
297
|
Henley RY, Carson S, Wanunu M. Studies of RNA Sequence and Structure Using Nanopores. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 139:73-99. [PMID: 26970191 DOI: 10.1016/bs.pmbts.2015.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanopores are powerful single-molecule sensors with nanometer scale dimensions suitable for detection, quantification, and characterization of nucleic acids and proteins. Beyond sequencing applications, both biological and solid-state nanopores hold great promise as tools for studying the biophysical properties of RNA. In this review, we highlight selected landmark nanopore studies with regards to RNA sequencing, microRNA detection, RNA/ligand interactions, and RNA structural/conformational analysis.
Collapse
Affiliation(s)
- Robert Y Henley
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
| | - Spencer Carson
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts, USA; Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|
298
|
Zhou Z, Leake MC. Force Spectroscopy in Studying Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:307-27. [PMID: 27193551 DOI: 10.1007/978-3-319-32189-9_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biophysical force spectroscopy tools-for example, optical tweezers, magnetic tweezers, atomic force microscopy-have been used to study elastic, mechanical, conformational and dynamic properties of single biological specimens from single proteins to whole cells to reveal information not accessible by ensemble average methods such as X-ray crystallography, mass spectroscopy, gel electrophoresis and so on. Here, we review the application of these tools on a range of infection-related questions from antibody-inhibited protein processivity to virus-cell adhesion. In each case, we focus on how the instrumental design tailored to the biological system in question translates into the functionality suitable for that particular study. The unique insights that force spectroscopy has gained to complement knowledge learned through population averaging techniques in interrogating biomolecular details prove to be instrumental in therapeutic innovations such as those in structure-based drug design.
Collapse
Affiliation(s)
- Zhaokun Zhou
- Departments of Physics and Biology, Biological Physical Sciences Institute, University of York, York, YO10 5DD, UK.
| | - Mark C Leake
- Departments of Physics and Biology, Biological Physical Sciences Institute, University of York, York, YO10 5DD, UK
| |
Collapse
|
299
|
Herman-Bausier P, Formosa-Dague C, Feuillie C, Valotteau C, Dufrêne YF. Forces guiding staphylococcal adhesion. J Struct Biol 2015; 197:65-69. [PMID: 26707623 DOI: 10.1016/j.jsb.2015.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
Staphylococcus epidermidis and Staphylococcus aureus are two important nosocomial pathogens that form biofilms on indwelling medical devices. Biofilm infections are difficult to fight as cells within the biofilm show increased resistance to antibiotics. Our understanding of the molecular interactions driving bacterial adhesion, the first stage of biofilm formation, has long been hampered by the paucity of appropriate force-measuring techniques. In this minireview, we discuss how atomic force microscopy techniques have enabled to shed light on the molecular forces at play during staphylococcal adhesion. Specific highlights include the study of the binding mechanisms of adhesion molecules by means of single-molecule force spectroscopy, the measurement of the forces involved in whole cell interactions using single-cell force spectroscopy, and the probing of the nanobiophysical properties of living bacteria via multiparametric imaging. Collectively, these findings emphasize the notion that force and function are tightly connected in staphylococcal adhesion.
Collapse
Affiliation(s)
- Philippe Herman-Bausier
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Cécile Formosa-Dague
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Cécile Feuillie
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Claire Valotteau
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Belgium.
| |
Collapse
|
300
|
Barato AC, Seifert U. Skewness and Kurtosis in Statistical Kinetics. PHYSICAL REVIEW LETTERS 2015; 115:188103. [PMID: 26565501 DOI: 10.1103/physrevlett.115.188103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 06/05/2023]
Abstract
We obtain lower and upper bounds on the skewness and kurtosis associated with the cycle completion time of unicyclic enzymatic reaction schemes. Analogous to a well-known lower bound on the randomness parameter, the lower bounds on skewness and kurtosis are related to the number of intermediate states in the underlying chemical reaction network. Our results demonstrate that evaluating these higher order moments with single molecule data can lead to information about the enzymatic scheme that is not contained in the randomness parameter.
Collapse
Affiliation(s)
- Andre C Barato
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
- Max Planck Institute for the Physics of Complex Systems, Nöthnizer Straße 38, 01187 Dresden, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|