251
|
Makinodan E, Marneros AG. Protein kinase A activation inhibits oncogenic Sonic hedgehog signalling and suppresses basal cell carcinoma of the skin. Exp Dermatol 2013; 21:847-52. [PMID: 23163650 DOI: 10.1111/exd.12016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Basal cell carcinoma of the skin (BCC) is caused by constitutive activation of the Sonic hedgehog (Shh) pathway, mainly through mutations either in the Shh receptor Patched (PTCH) or in its co-receptor Smoothened (Smo). Inhibitors of this pathway that are currently in clinical trials inhibit Smo. However, mutations in Smo can result in resistance to these inhibitors. To target most BCCs and avoid acquired resistance because of Smo mutations, inhibiting the Shh-pathway downstream of Smo is critical. Attractive downstream targets would be at the level of Gli proteins, the transcriptional activators of this pathway in BCCs. Previously it has been shown that Gli1 and Gli2, when phosphorylated by protein kinase A (PKA), are targeted for proteosomal degradation. Here we show that PKA activation via the cAMP agonist forskolin is sufficient to completely abolish oncogenic Smo activity in vitro. In an inducible BCC mouse model due to a Smo mutation that confers resistance to current Smo inhibitors, topical forskolin treatment significantly reduced Gli1 mRNA levels and resulted in strongly suppressed BCC tumor growth. Our data show that forskolin inhibits the growth of even those BCCs that are resistant to Smo inhibitors and provide a proof-of-principle framework for the development of topically applied human skin-permeable novel pharmacologic inhibitors of oncogenic Shh-signaling through PKA activation.
Collapse
Affiliation(s)
- Eri Makinodan
- Department of Dermatology, Harvard Medical School, Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | |
Collapse
|
252
|
Targeted therapy for advanced Basal-cell carcinoma: vismodegib and beyond. Dermatol Ther (Heidelb) 2013; 3:17-31. [PMID: 23888252 PMCID: PMC3680638 DOI: 10.1007/s13555-013-0019-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Indexed: 11/16/2022] Open
Abstract
Basal-cell carcinoma is a commonly occurring skin malignancy that has the potential to progress into locally invasive or resistant disease, as well as spread distantly. Due to advances in the molecular understanding of the disease over the last two decades, it has been discovered that the Hedgehog pathway plays an important role in the pathogenesis of this disease and can be exploited as a treatment target. Several agents that inhibit the Hedgehog pathway have reached clinical studies and one drug, vismodegib, has recently been US Food and Drug Administration (FDA) approved based on clinical activity and tolerability in patients with advanced basal-cell carcinoma. This review will describe the clinical development of vismodegib, as well as the proper application of the drug in clinical practice. Other important clinical questions, such as mechanisms of resistance to vismodegib and the role of other Hedgehog pathway inhibitors currently in development will also be discussed.
Collapse
|
253
|
Chang ALS, Oro AE. Initial assessment of tumor regrowth after vismodegib in advanced Basal cell carcinoma. ACTA ACUST UNITED AC 2013; 148:1324-5. [PMID: 22910979 DOI: 10.1001/archdermatol.2012.2354] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
254
|
Katagiri S, Tauchi T, Okabe S, Minami Y, Kimura S, Maekawa T, Naoe T, Ohyashiki K. Combination of ponatinib with Hedgehog antagonist vismodegib for therapy-resistant BCR-ABL1-positive leukemia. Clin Cancer Res 2013; 19:1422-32. [PMID: 23319824 DOI: 10.1158/1078-0432.ccr-12-1777] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The Hedgehog signaling pathway is a key regulator of cell growth and differentiation during development. Whereas the Hedgehog pathway is inactive in most normal adult tissues, Hedgehog pathway reactivation has been implicated in the pathogenesis of several neoplasms including BCR-ABL1-positive leukemia. The clear link between the Hedgehog pathway and BCR-ABL1-positive leukemia led to an effort to identify small molecules to block the pathway. EXPERIMENTAL DESIGN We investigated the combined effects of vismodegib and ponatinib, a pan-ABL1 kinase inhibitor, in nonobese diabetic/severe-combined immunodeficiency (NOD/SCID) repopulating T315I BCR-ABL1-positive cells in vitro and in vivo. RESULTS We observed that combination with vismodegib and ponatinib helps to eliminate therapy-resistant NOD/SCID repopulating T315I BCR-ABL1-positive cells. The percentage of CD19-positive leukemia cells in peripheral blood was significantly lower in vismodegib + ponatinib-treated mice than that of the vehicle or ponatinib alone (P < 0.001). Spleen weights were also lower in vismodegib + ponatinib-treated mice than in ponatinib alone (P < 0.05). Overall tumor burden, as assessed by BCR-ABL mRNA from bone marrow cells, was significantly lower in vismodegib + ponatinib-treated mice than in ponatinib alone (P < 0.005). We also found that vismodegib significantly reduced BCR-ABL1-positive leukemia cell self-renewal in vitro as well as during serial transplantation in vivo. CONCLUSIONS The combination with a Smo inhibitor and ABL1 tyrosine kinase inhibitors may help eliminate therapy-resistant T315I BCR-ABL1-positive leukemia cells. Our preclinical results indicate that vismodegib has potential as an important option for controlling minimal residual cells in BCR-ABL1-positive leukemia.
Collapse
Affiliation(s)
- Seiichiro Katagiri
- First Department of Internal Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
255
|
Kim J, Aftab BT, Tang JY, Kim D, Lee AH, Rezaee M, Kim J, Chen B, King EM, Borodovsky A, Riggins GJ, Epstein EH, Beachy PA, Rudin CM. Itraconazole and arsenic trioxide inhibit Hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell 2013; 23:23-34. [PMID: 23291299 PMCID: PMC3548977 DOI: 10.1016/j.ccr.2012.11.017] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/27/2012] [Accepted: 11/28/2012] [Indexed: 01/07/2023]
Abstract
Recognition of the multiple roles of Hedgehog signaling in cancer has prompted intensive efforts to develop targeted pathway inhibitors. Leading inhibitors in clinical development act by binding to a common site within Smoothened, a critical pathway component. Acquired Smoothened mutations, including SMO(D477G), confer resistance to these inhibitors. Here, we report that itraconazole and arsenic trioxide, two agents in clinical use that inhibit Hedgehog signaling by mechanisms distinct from that of current Smoothened antagonists, retain inhibitory activity in vitro in the context of all reported resistance-conferring Smoothened mutants and GLI2 overexpression. Itraconazole and arsenic trioxide, alone or in combination, inhibit the growth of medulloblastoma and basal cell carcinoma in vivo, and prolong survival of mice with intracranial drug-resistant SMO(D477G) medulloblastoma.
Collapse
Affiliation(s)
- James Kim
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Departments of Biochemistry and of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Blake T. Aftab
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jean Y. Tang
- Department of Dermatology, Stanford University, Stanford, CA 94305, USA
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Daniel Kim
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Dermatology, Stanford University, Stanford, CA 94305, USA
| | - Alex H. Lee
- Department of Dermatology, Stanford University, Stanford, CA 94305, USA
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Melika Rezaee
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Jynho Kim
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Departments of Biochemistry and of Developmental Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Baozhi Chen
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern, Dallas, TX, 75390-8593
| | - Emily M. King
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Alexandra Borodovsky
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Gregory J. Riggins
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ervin H. Epstein
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Philip A. Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Departments of Biochemistry and of Developmental Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Corresponding authors: Philip A. Beachy, PhD, Professor of Biochemistry Lokey Stem Cell Research Building, Rm G3120a, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5463, Tel: 650-723-4521, . Charles M. Rudin, MD, PhD, Professor of Oncology, The Johns Hopkins University, Cancer Research Building 2, Room 544, 1550 Orleans Street, Baltimore, MD 21231, Tel: 410-502-0678, Fax: 410-502-0677,
| | - Charles M. Rudin
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Corresponding authors: Philip A. Beachy, PhD, Professor of Biochemistry Lokey Stem Cell Research Building, Rm G3120a, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5463, Tel: 650-723-4521, . Charles M. Rudin, MD, PhD, Professor of Oncology, The Johns Hopkins University, Cancer Research Building 2, Room 544, 1550 Orleans Street, Baltimore, MD 21231, Tel: 410-502-0678, Fax: 410-502-0677,
| |
Collapse
|
256
|
Atwood SX, Chang ALS, Oro AE. Hedgehog pathway inhibition and the race against tumor evolution. ACTA ACUST UNITED AC 2013; 199:193-7. [PMID: 23071148 PMCID: PMC3471227 DOI: 10.1083/jcb.201207140] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dependence of basal cell carcinomas and medulloblastomas on the Hedgehog pathway provides an opportunity for targeted or "personalized" therapy. The recent effectiveness and FDA approval of the first Smoothened inhibitors validates this class of agents, but has revealed drug-resistant tumor variants that bypass Smoothened inhibition. Here, we summarize the effectiveness of Hedgehog pathway inhibitors and highlight promising areas for the development of next generation drug antagonists for Hedgehog-dependent cancers.
Collapse
Affiliation(s)
- Scott X Atwood
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
257
|
Abstract
INTRODUCTION The hedgehog (Hh) pathway is a developmental signaling pathway that plays a key role in directing cellular growth and tissue patterning during embryonic development. Dysregulation of Hh signaling has been linked to the development of a variety of human tumors, and numerous drug development programs in both academia and industry are actively exploring inhibitors of the pathway as anti-cancer agents. AREAS COVERED This review surveys the recent patent literature (2009 - 2012) for Hh pathway inhibitors as treatments for a variety of human malignancies. EXPERT OPINION To date, all of the pathway inhibitors that have entered clinical trials and the majority of compounds identified via high-throughput screens target smoothened (Smo), a transmembrane protein that is essential for pathway signaling. While these compounds have shown initial promise in preclinical and clinical trials, several mechanisms of resistance to Smo inhibitors have been identified. Even with this knowledge, the majority of small-molecule pathway inhibitors disclosed in the recent patent literature directly target Smo. The continued identification of Hh pathway inhibitors that function either upstream or downstream is warranted not only to combat these emerging resistance mechanisms, but also to help elucidate the various cellular mechanisms that control both normal and oncogenic pathway signaling.
Collapse
Affiliation(s)
- Matthew Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT 06269-3092, USA
| |
Collapse
|
258
|
Lackner MR, Wilson TR, Settleman J. Mechanisms of acquired resistance to targeted cancer therapies. Future Oncol 2012; 8:999-1014. [PMID: 22894672 DOI: 10.2217/fon.12.86] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drugs that target genomically defined vulnerabilities in human tumors have now been clinically validated as effective cancer therapies. However, the relatively rapid acquisition of resistance to such treatments that is observed in virtually all cases significantly limits their utility and remains a substantial challenge to the clinical management of advanced cancers. As molecular mechanisms of resistance have begun to be elucidated, new strategies to overcome or prevent the development of resistance have begun to emerge. In some cases, specific mutational mechanisms contribute directly to acquired drug resistance, and in other cases it appears that nonmutational and possibly epigenetic mechanisms play a significant role. This article discusses the various genetic and nongenetic mechanisms of acquired drug resistance that have been reported in the context of 'rationally targeted' drug therapies.
Collapse
Affiliation(s)
- Mark R Lackner
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| | | | | |
Collapse
|
259
|
Cucchi D, Occhione MA, Gulino A, De Smaele E. Hedgehog signaling pathway and its targets for treatment in basal cell carcinoma. J Exp Pharmacol 2012; 4:173-85. [PMID: 27186130 PMCID: PMC4863577 DOI: 10.2147/jep.s28553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Basal cell carcinoma (BCC) of the skin is the most common type of cancer and accounts for up to 40% of all cancers in the US, with a growing incidence rate over recent decades in all developed countries. Surgery is curative for most patients, although it leaves unaesthetic scars, but those that develop locally advanced or metastatic BCC require different therapeutic approaches. Furthermore, patients with BCC present a high risk of developing additional tumors. The increasing economic burden and the morbidity of BCC render primary interest in the development of targeted treatments for this disease. Among the molecular signals involved in the development of BCC, the critical role of the morphogenetic Hedgehog (Hh) pathway has become evident. This pathway is found altered and activated in almost all BCCs, both sporadic and inherited. Given the centrality of the Hh pathway in the pathophysiology of BCC, the primary efforts to identify molecular targets for the topical or systemic treatment of this cancer have focused on the Hh components. Several Hh inhibitors have been so far identified - from the first identified natural cyclopamine to the recently Food and Drug Administration-approved synthetic vismodegib - most of which target the Hh receptor Smoothened (either its function or its translocation to the primary cilium). Other molecules await further characterization (bisamide compounds), while drugs currently approved for other diseases such as itraconazole (an antimicotic agent) and vitamin D3 have been tested on BCC with encouraging results. The outcomes of the numerous ongoing clinical trials are expected to expand the field in the very near future. Further research is needed to obtain drugs targeting downstream components of the Hh pathway (eg, Gli) or to exploit combinatorial therapies (eg, with phosphatidylinositol 3-kinase inhibitors or retinoids) in order to overcome potential drug resistance.
Collapse
Affiliation(s)
- Danilo Cucchi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Alberto Gulino
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Center of Life NanoScience @ La Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
260
|
Northcott PA, Jones DTW, Kool M, Robinson GW, Gilbertson RJ, Cho YJ, Pomeroy SL, Korshunov A, Lichter P, Taylor MD, Pfister SM. Medulloblastomics: the end of the beginning. Nat Rev Cancer 2012; 12:818-34. [PMID: 23175120 PMCID: PMC3889646 DOI: 10.1038/nrc3410] [Citation(s) in RCA: 495] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The division of medulloblastoma into different subgroups by microarray expression profiling has dramatically changed our perspective of this malignant childhood brain tumour. Now, the availability of next-generation sequencing and complementary high-density genomic technologies has unmasked novel driver mutations in each medulloblastoma subgroup. The implications of these findings for the management of patients are readily apparent, pinpointing previously unappreciated diagnostic and therapeutic targets. In this Review, we summarize the 'explosion' of data emerging from the application of modern genomics to medulloblastoma, and in particular the recurrent targets of mutation in medulloblastoma subgroups. These data are currently making their way into clinical trials as we seek to integrate conventional and molecularly targeted therapies.
Collapse
Affiliation(s)
- Paul A Northcott
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Dockendorff C, Nagiec MM, Weïwer M, Buhrlage S, Ting A, Nag PP, Germain A, Kim HJ, Youngsaye W, Scherer C, Bennion M, Xue L, Stanton BZ, Lewis TA, MacPherson L, Palmer M, Foley MA, Perez JR, Schreiber SL. Macrocyclic Hedgehog Pathway Inhibitors: Optimization of Cellular Activity and Mode of Action Studies. ACS Med Chem Lett 2012; 3:808-813. [PMID: 23074541 PMCID: PMC3469069 DOI: 10.1021/ml300172p] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/18/2012] [Indexed: 12/16/2022] Open
Abstract
![]()
Macrocyclic Hedgehog (Hh) pathway inhibitors have been
discovered
with improved potency and maximal inhibition relative to the previously
reported macrocycle robotnikinin. Analogues were prepared using a
modular and efficient build-couple-pair (BCP) approach, with a ring-closing
metathesis step to form the macrocyclic ring. Varying the position
of the macrocycle nitrogen and oxygen atoms provided inhibitors with
improved activity in cellular assays; the most potent analogue was 29 (BRD-6851), with an IC50 of 0.4 μM against
C3H10T1/2 cells undergoing Hh-induced activation, as measured by Gli1 transcription and alkaline phosphatase induction. Studies
with Patched knockout (Ptch–/–) cells and competition studies with the Smoothened (Smo) agonists
SAG and purmorphamine demonstrate that in contrast to robotnikinin,
select analogues are Smo antagonists.
Collapse
Affiliation(s)
- Chris Dockendorff
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Marek M. Nagiec
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Michel Weïwer
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Sara Buhrlage
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Amal Ting
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Partha P. Nag
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Andrew Germain
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Han-Je Kim
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Willmen Youngsaye
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Christina Scherer
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Melissa Bennion
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Linlong Xue
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Benjamin Z. Stanton
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Timothy A. Lewis
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Lawrence MacPherson
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Michelle Palmer
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Michael A. Foley
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - José R. Perez
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Stuart L. Schreiber
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
262
|
Perrot CY, Javelaud D, Mauviel A. Overlapping activities of TGF-β and Hedgehog signaling in cancer: therapeutic targets for cancer treatment. Pharmacol Ther 2012; 137:183-99. [PMID: 23063491 DOI: 10.1016/j.pharmthera.2012.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 12/11/2022]
Abstract
Recent advances in the field of cancer therapeutics come from the development of drugs that specifically recognize validated oncogenic or pro-metastatic targets. The latter may be mutated proteins with altered function, such as kinases that become constitutively active, or critical components of growth factor signaling pathways, whose deregulation leads to aberrant malignant cell proliferation and dissemination to metastatic sites. We herein focus on the description of the overlapping activities of two important developmental pathways often exacerbated in cancer, namely Transforming Growth Factor-β (TGF-β) and Hedgehog (HH) signaling, with a special emphasis on the unifying oncogenic role played by GLI1/2 transcription factors. The latter are the main effectors of the canonical HH pathway, yet are direct target genes of TGF-β/SMAD signal transduction. While tumor-suppressor in healthy and pre-malignant tissues, TGF-β is often expressed at high levels in tumors and contributes to tumor growth, escape from immune surveillance, invasion and metastasis. HH signaling regulates cell proliferation, differentiation and apoptosis, and aberrant HH signaling is found in a variety of cancers. We discuss the current knowledge on HH and TGF-β implication in cancer including cancer stem cell biology, as well as the current state, both successes and failures, of targeted therapeutics aimed at blocking either of these pathways in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Carole Y Perrot
- Institut Curie, Team TGF-β and Oncogenesis, 91400, Orsay, France; INSERM U1021, 91400, Orsay, France
| | | | | |
Collapse
|
263
|
Cirrone F, Harris CS. Vismodegib and the Hedgehog Pathway: A New Treatment for Basal Cell Carcinoma. Clin Ther 2012; 34:2039-50. [DOI: 10.1016/j.clinthera.2012.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 11/28/2022]
|
264
|
Wang J, Mook RA, Lu J, Gooden DM, Ribeiro A, Guo A, Barak LS, Lyerly HK, Chen W. Identification of a novel Smoothened antagonist that potently suppresses Hedgehog signaling. Bioorg Med Chem 2012; 20:6751-7. [PMID: 23063522 DOI: 10.1016/j.bmc.2012.09.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/31/2012] [Accepted: 09/10/2012] [Indexed: 12/21/2022]
Abstract
The Hedgehog signaling pathway plays an essential role in embryo development and adult tissue homeostasis, in regulating stem cells and is abnormally activated in many cancers. Given the importance of this signaling pathway, we developed a novel and versatile high-throughput, cell-based screening platform using confocal imaging, based on the role of β-arrestin in Hedgehog signal transduction, that can identify agonists or antagonist of the pathway by a simple change to the screening protocol. Here we report the use of this assay in the antagonist mode to identify novel antagonists of Smoothened, including a compound (A8) with low nanomolar activity against wild-type Smo also capable of binding the Smo point mutant D473H associated with clinical resistance in medulloblastoma. Our data validate this novel screening approach in the further development of A8 and related congeners to treat Hedgehog related diseases, including the treatment of basal cell carcinoma and medulloblastoma.
Collapse
Affiliation(s)
- Jiangbo Wang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Gu D, Fan Q, Zhang X, Xie J. A role for transcription factor STAT3 signaling in oncogene smoothened-driven carcinogenesis. J Biol Chem 2012; 287:38356-66. [PMID: 22992748 DOI: 10.1074/jbc.m112.377382] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of the Hedgehog (Hh) pathway is known to drive development of basal cell carcinoma and medulloblastomas and to associate with many other types of cancer, but the exact molecular mechanisms underlying the carcinogenesis process remain elusive. We discovered that skin tumors derived from epidermal expression of oncogenic Smo, SmoM2, have elevated levels of IL-11, IL-11Rα, and STAT3 phosphorylation at Tyr(705). The relevance of our data to human conditions was reflected by the fact that all human basal cell carcinomas examined have detectable STAT3 phosphorylation, mostly in keratinocytes. The functional relevance of STAT3 in Smo-mediated carcinogenesis was revealed by epidermal specific knockout of STAT3. We showed that removal of STAT3 from mouse epidermis dramatically reduced SmoM2-mediated cell proliferation, leading to a significant decrease in epidermal thickness and tumor development. We also observed a significant reduction of epidermal stem/progenitor cell population and cyclin D1 expression in mice with epidermis-specific knockout of STAT3. Our evidence indicates that STAT3 signaling activation may be mediated by the IL-11/IL-11Rα signaling axis. We showed that tumor development was reduced after induced expression of SmoM2 in IL-11Rα null mice. Similarly, neutralizing antibodies for IL-11 reduced the tumor size. In two Hh-responsive cell lines, ES14 and C3H10T1/2, we found that addition of Smo agonist purmorphamine is sufficient to induce STAT3 phosphorylation at Tyr(705), but this effect was abolished after IL-11Rα down-regulation by shRNAs. Taken together, our results support an important role of the IL-11Rα/STAT3 signaling axis for Hh signaling-mediated signaling and carcinogenesis.
Collapse
Affiliation(s)
- Dongsheng Gu
- Wells Center for Pediatric Research, Departments of Pediatrics, Biochemistry/Molecular Biology and Pharmacology/ Toxicology, The Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46074, USA
| | | | | | | |
Collapse
|
266
|
Yun JI, Kim HR, Park H, Kim SK, Lee J. Small molecule inhibitors of the hedgehog signaling pathway for the treatment of cancer. Arch Pharm Res 2012; 35:1317-33. [PMID: 22941475 DOI: 10.1007/s12272-012-0801-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 12/28/2022]
Abstract
Over the past decade, the Hedgehog signaling pathway has attracted considerable interest because the pathway plays important roles in the tumorigenesis of several types of cancer as well as developmental processes. It has also been observed that Hedgehog signaling regulates the proliferation and self-renewal of cancer stem cells. A great number of Hedgehog pathway inhibitors have been discovered through small molecule screens and subsequent medicinal chemistry efforts. Among the inhibitors, several Smo antagonists have reached the clinical trial phase. It has been proved that the inhibition of Hedgehog signaling with Smo antagonists is beneficial to cancer patients with basal cell carcinoma and medulloblastoma. In this review, we provide an overview of Hedgehog pathway inhibitors with focusing on the preclinical and/or clinical efficacy and molecular mechanisms of these inhibitors.
Collapse
Affiliation(s)
- Jeong In Yun
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Deajeon, 305-600, Korea
| | | | | | | | | |
Collapse
|
267
|
Wang Y, Davidow L, Arvanites AC, Blanchard J, Lam K, Xu K, Oza V, Yoo JW, Ng JM, Curran T, Rubin LL, McMahon AP. Glucocorticoid compounds modify smoothened localization and hedgehog pathway activity. CHEMISTRY & BIOLOGY 2012; 19:972-82. [PMID: 22921064 PMCID: PMC3724998 DOI: 10.1016/j.chembiol.2012.06.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 05/24/2012] [Accepted: 06/11/2012] [Indexed: 01/10/2023]
Abstract
The Hedgehog signaling pathway is linked to a variety of diseases, notably a range of cancers. The first generation of drug screens identified Smoothened (Smo), a membrane protein essential for signaling, as an attractive drug target. Smo localizes to the primary cilium upon pathway activation, and this transition is critical for the response to Hedgehog ligands. In a high content screen directly monitoring Smo distribution in Hedgehog-responsive cells, we identified different glucocorticoids as specific modulators of Smo ciliary accumulation. One class promoted Smo accumulation, conferring cellular hypersensitivity to Hedgehog stimulation. In contrast, a second class inhibited Smo ciliary localization and signaling activity by both wild-type Smo, and mutant forms of Smo, SmoM2, and SmoD473H, that are refractory to previously identified Smo antagonists. These findings point to the potential for developing glucocorticoid-based pharmacological modulation of Smo signaling to treat mutated drug-resistant forms of Smo, an emerging problem in long-term cancer therapy. They also raise a concern about potential crosstalk of glucocorticoid drugs in the Hedgehog pathway, if therapeutic administration exceeds levels associated with on-target transcriptional mechanisms of glucocorticoid action.
Collapse
Affiliation(s)
- Yu Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Lance Davidow
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Anthony C. Arvanites
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Joel Blanchard
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Kelvin Lam
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Ke Xu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Vatsal Oza
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Jin Woo Yoo
- Harvard College, Harvard University, Cambridge, MA 02138
| | | | - Tom Curran
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Andrew P. McMahon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| |
Collapse
|
268
|
Galimberti F, Busch AM, Chinyengetere F, Ma T, Sekula D, Memoli VA, Dragnev KH, Liu F, Johnson KC, Guo Y, Freemantle SJ, Andrew AS, Greninger P, Robbins DJ, Settleman J, Benes C, Dmitrovsky E. Response to inhibition of smoothened in diverse epithelial cancer cells that lack smoothened or patched 1 mutations. Int J Oncol 2012; 41:1751-61. [PMID: 22923130 PMCID: PMC3583816 DOI: 10.3892/ijo.2012.1599] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/19/2012] [Indexed: 12/11/2022] Open
Abstract
Hedgehog (HH) pathway Smoothened (Smo) inhibitors are active against Gorlin syndrome-associated basal cell carcinoma (BCC) and medulloblastoma where Patched (Ptch) mutations occur. We interrogated 705 epithelial cancer cell lines for growth response to the Smo inhibitor cyclopamine and for expressed HH pathway-regulated species in a linked genetic database. Ptch and Smo mutations that respectively conferred Smo inhibitor response or resistance were undetected. Previous studies revealed HH pathway activation in lung cancers. Therefore, findings were validated using lung cancer cell lines, transgenic and transplantable murine lung cancer models, and human normal-malignant lung tissue arrays in addition to testing other Smo inhibitors. Cyclopamine sensitivity most significantly correlated with high cyclin E (P=0.000009) and low insulin-like growth factor binding protein 6 (IGFBP6) (P=0.000004) levels. Gli family members were associated with response. Cyclopamine resistance occurred with high GILZ (P=0.002) expression. Newer Smo inhibitors exhibited a pattern of sensitivity similar to cyclopamine. Gain of cyclin E or loss of IGFBP6 in lung cancer cells significantly increased Smo inhibitor response. Cyclin E-driven transgenic lung cancers expressed a gene profile implicating HH pathway activation. Cyclopamine treatment significantly reduced proliferation of murine and human lung cancers. Smo inhibition reduced lung cancer formation in a syngeneic mouse model. In human normal-malignant lung tissue arrays cyclin E, IGFBP6, Gli1 and GILZ were each differentially expressed. Together, these findings indicate that Smo inhibitors should be considered in cancers beyond those with activating HH pathway mutations. This includes tumors that express genes indicating basal HH pathway activation.
Collapse
Affiliation(s)
- Fabrizio Galimberti
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Queiroz KCS, Spek CA, Peppelenbosch MP. Targeting Hedgehog signaling and understanding refractory response to treatment with Hedgehog pathway inhibitors. Drug Resist Updat 2012; 15:211-22. [PMID: 22910179 DOI: 10.1016/j.drup.2012.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/25/2012] [Accepted: 05/26/2012] [Indexed: 12/01/2022]
Abstract
Hedgehog (Hh) signaling is a principal component of the morphogenetic code best known to direct pattern formation during embryogenesis. The Hh pathway remains active in adulthood however where it guides tissue regeneration and remodeling and Hh production in the niche plays an important role in maintaining stem cell compartment size. Deregulated Hh signaling activity is associated, depending on the context, with both cancer initiation and progression. Interestingly, the Hh pathway is remarkably druggable, raising hopes that inhibition of the pathway could support anticancer therapy. Indeed, a large body of preclinical data supports such an action, but promising clinical data are still limited to basal cell carcinoma (BSC) and medulloblastoma. Nevertheless cancer resistance against Hh targeting has already emerged as a major problem. Here we shall review the current situation with respect to targeting the Hh pathway in cancer in general and in chemotolerance in particular with a focus on the problems associated with the emergence of tumors resistant to treatment with inhibitors targeting the Hh receptor Smoothened (SMO).
Collapse
Affiliation(s)
- Karla C S Queiroz
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
270
|
Ramaswamy B, Lu Y, Teng KY, Nuovo G, Li X, Shapiro CL, Majumder S. Hedgehog signaling is a novel therapeutic target in tamoxifen-resistant breast cancer aberrantly activated by PI3K/AKT pathway. Cancer Res 2012; 72:5048-59. [PMID: 22875023 DOI: 10.1158/0008-5472.can-12-1248] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endocrine resistance is a major challenge in the management of estrogen receptor (ER)-positive breast cancers. Although multiple mechanisms leading to endocrine resistance have been proposed, the poor outcome of patients developing resistance to endocrine therapy warrants additional studies. Here we show that noncanonical Hedgehog (Hh) signaling is an alternative growth promoting mechanism that is activated in tamoxifen-resistant tumors. Importantly, phosphoinositide 3-kinase inhibitor/protein kinase B (PI3K/AKT) pathway plays a key role in regulating Hh signaling by protecting key components of this pathway from proteasomal degradation. The levels of Hh-signaling molecules SMO and GLI1 and the targets were significantly elevated in tamoxifen-resistant MCF-7 cells and T47D cells. Serial passage of the resistant cells in mice resulted in aggressive tumors that metastasized to distant organs with concurrent increases in Hh marker expression and epithelial mesenchymal transition. RNAi-mediated depletion of SMO or GLI1 in the resistant cells resulted in reduced proliferation, clonogenic survival and delayed G(1)-S transition. Notably, treatment of resistant cells with PI3K inhibitors decreased SMO and GLI1 protein levels and activity that was rescued upon blocking GSK3β and proteasomal degradation. Furthermore, treatment of tamoxifen-resistant xenografts with anti-Hh compound GDC-0449 blocked tumor growth in mice. Importantly, high GLI1 expression correlated inversely with disease-free and overall survival in a cohort of 315 patients with breast cancer. In summary, our results describe a signaling event linking PI3K/AKT pathway with Hh signaling that promotes tamoxifen resistance. Targeting Hh pathway alone or in combination with PI3K/AKT pathway could therefore be a novel therapeutic option in treating endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Bhuvaneswari Ramaswamy
- Division of Medical Oncology, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Yuanzhi Lu
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio
| | - Kun-Yu Teng
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio
| | - Gerard Nuovo
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Xiaobai Li
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Charles L Shapiro
- Division of Medical Oncology, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Sarmila Majumder
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
271
|
Bi X, Han X, Zhang F, He M, Zhang Y, Zhi XY, Zhao H. Triparanol suppresses human tumor growth in vitro and in vivo. Biochem Biophys Res Commun 2012; 425:613-8. [PMID: 22877755 DOI: 10.1016/j.bbrc.2012.07.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 12/28/2022]
Abstract
Despite the improved contemporary multidisciplinary regimens treating cancer, majority of cancer patients still suffer from adverse effects and relapse, therefore posing a significant challenge to uncover more efficacious molecular therapeutics targeting signaling pathways central to tumorigenesis. Here, our study have demonstrated that Triparanol, a cholesterol synthesis inhibitor, can block proliferation and induce apoptosis in multiple human cancer cells including lung, breast, liver, pancreatic, prostate cancer and melanoma cells, and growth inhibition can be rescued by exogenous addition of cholesterol. Remarkably, we have proved Triparanol can significantly repress Hedgehog pathway signaling in these human cancer cells. Furthermore, study in a mouse xenograft model of human lung cancer has validated that Triparanol can impede tumor growth in vivo. We have therefore uncovered Triparanol as potential new cancer therapeutic in treating multiple types of human cancers with deregulated Hedgehog signaling.
Collapse
Affiliation(s)
- Xinyu Bi
- Department of Abdominal Surgical Oncology, Lab of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | | | | | | | | | | | |
Collapse
|
272
|
Abstract
The Hedgehog (Hh) signaling pathway has been implicated in tumor initiation and metastasis across different malignancies. Major mechanisms by which the Hh pathway is aberrantly activated can be attributed to mutations of members of Hh pathway or excessive/inappropriate expression of Hh pathway ligands. The Hh signaling pathway also affects the regulation of cancer stem cells, leading to their capabilities in tumor formation, disease progression, and metastasis. Preliminary results of early phase clinical trials of Hh inhibitors administered as monotherapy demonstrated promising results in patients with basal cell carcinoma and medulloblastoma, but clinically meaningful anticancer efficacy across other tumor types seems to be lacking. Additionally, cases of resistance have been already observed. Mutations of SMO, activation of Hh pathway components downstream to SMO, and upregulation of alternative signaling pathways are possible mechanisms of resistance development. Determination of effective Hh inhibitor-based combination regimens and development of correlative biomarkers relevant to this pathway should remain as clear priorities for future research.
Collapse
Affiliation(s)
- Solmaz Sahebjam
- Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
273
|
Abstract
Primary brain tumours are difficult to manage clinically due to their abilities to invade adjacent tissue and infiltrate distant neuropil. These contribute to challenges in surgical management and also limit the effectiveness of radiotherapy. Despite initial responses to chemotherapy, most tumours become chemo-resistant, leading to relapse. Recent identification and isolation of brain cancer stem cells (BCSCs) have broadened our understanding of the molecular pathogenesis and potential Achilles' heel of brain tumours. BCSCs are thought to drive and propagate the tumour and therefore present an important target for further investigations. This review explores the history of the discovery of BCSCs and the evolving concept of "cancer stem cells" in neuro-oncology. We attempt to present a balanced view on the subject and also to update the readers on the molecular biology of BCSCs. Lastly, we outline the potential strategies to target BCSCs which will translate into specific and effective therapies for brain tumours.
Collapse
|
274
|
Rodriguez-Blanco J, Schilling NS, Tokhunts R, Giambelli C, Long J, Liang Fei D, Singh S, Black KE, Wang Z, Galimberti F, Bejarano PA, Elliot S, Glassberg MK, Nguyen DM, Lockwood WW, Lam WL, Dmitrovsky E, Capobianco AJ, Robbins DJ. The hedgehog processing pathway is required for NSCLC growth and survival. Oncogene 2012; 32:2335-45. [PMID: 22733134 DOI: 10.1038/onc.2012.243] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Considerable interest has been generated from the results of recent clinical trials using smoothened (SMO) antagonists to inhibit the growth of hedgehog (HH) signaling-dependent tumors. This interest is tempered by the discovery of SMO mutations mediating resistance, underscoring the rationale for developing therapeutic strategies that interrupt HH signaling at levels distinct from those inhibiting SMO function. Here, we demonstrate that HH-dependent non-small cell lung carcinoma (NSCLC) growth is sensitive to blockade of the HH pathway upstream of SMO, at the level of HH ligand processing. Individually, the use of different lentivirally delivered shRNA constructs targeting two functionally distinct HH-processing proteins, skinny hedgehog (SKN) or dispatched-1 (DISP-1), in NSCLC cell lines produced similar decreases in cell proliferation and increased cell death. Further, providing either an exogenous source of processed HH or a SMO agonist reverses these effects. The attenuation of HH processing, by knocking down either of these gene products, also abrogated tumor growth in mouse xenografts. Finally, we extended these findings to primary clinical specimens, showing that SKN is frequently overexpressed in NSCLC and that higher DISP-1 expression is associated with an unfavorable clinical outcome. Our results show a critical role for HH processing in HH-dependent tumors, identifies two potential druggable targets in the HH pathway, and suggest that similar therapeutic strategies could be explored to treat patients harboring HH ligand-dependent cancers.
Collapse
Affiliation(s)
- J Rodriguez-Blanco
- Molecular Oncology Program, Department of Surgery, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Wang Y, Arvanites AC, Davidow L, Blanchard J, Lam K, Yoo JW, Coy S, Rubin LL, McMahon AP. Selective identification of hedgehog pathway antagonists by direct analysis of smoothened ciliary translocation. ACS Chem Biol 2012; 7:1040-8. [PMID: 22554036 DOI: 10.1021/cb300028a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hedgehog (Hh) signaling promotes tumorigenesis. The accumulation of the membrane protein Smoothened (Smo) within the primary cilium (PC) is a key event in Hh signal transduction, and many pharmacological inhibitors identified to date target Smo's actions. Smo ciliary translocation is inhibited by some pathway antagonists, while others promote ciliary accumulation, an outcome that can lead to a hypersensitive state on renewal of Hh signaling. To identify novel inhibitory compounds acting on the critical mechanistic transition of Smo accumulation, we established a high content screen to directly analyze Smo ciliary translocation. Screening thousands of compounds from annotated libraries of approved drugs and other agents, we identified several new classes of compounds that block Sonic hedgehog-driven Smo localization within the PC. Selective analysis was conducted on two classes of Smo antagonists. One of these, DY131, appears to inhibit Smo signaling through a common binding site shared by previously reported Smo agonists and antagonists. Antagonism by this class of compound is competed by high doses of Smo-binding agonists such as SAG and impaired by a mutation that generates a ligand-independent, oncogenic form of Smo (SmoM2). In contrast, a second antagonist of Smo accumulation within the PC, SMANT, was less sensitive to SAG-mediated competition and inhibited SmoM2 at concentrations similar to those that inhibit wild-type Smo. Our observations identify important differences among Hh antagonists and the potential for development of novel therapeutic approaches against mutant forms of Smo that are resistant to current therapeutic strategies.
Collapse
Affiliation(s)
- Yu Wang
- Department
of Stem Cell and Regenerative Biology, ‡Department of Molecular and Cellular
Biology, §Harvard Stem Cell Institute, ∥Department of Chemistry and Chemical Biology, and ⊥Harvard College, Harvard University, Cambridge, Massachusetts
02138, United States
| | - Anthony C. Arvanites
- Department
of Stem Cell and Regenerative Biology, ‡Department of Molecular and Cellular
Biology, §Harvard Stem Cell Institute, ∥Department of Chemistry and Chemical Biology, and ⊥Harvard College, Harvard University, Cambridge, Massachusetts
02138, United States
| | - Lance Davidow
- Department
of Stem Cell and Regenerative Biology, ‡Department of Molecular and Cellular
Biology, §Harvard Stem Cell Institute, ∥Department of Chemistry and Chemical Biology, and ⊥Harvard College, Harvard University, Cambridge, Massachusetts
02138, United States
| | - Joel Blanchard
- Department
of Stem Cell and Regenerative Biology, ‡Department of Molecular and Cellular
Biology, §Harvard Stem Cell Institute, ∥Department of Chemistry and Chemical Biology, and ⊥Harvard College, Harvard University, Cambridge, Massachusetts
02138, United States
| | - Kelvin Lam
- Department
of Stem Cell and Regenerative Biology, ‡Department of Molecular and Cellular
Biology, §Harvard Stem Cell Institute, ∥Department of Chemistry and Chemical Biology, and ⊥Harvard College, Harvard University, Cambridge, Massachusetts
02138, United States
| | - Jin Woo Yoo
- Department
of Stem Cell and Regenerative Biology, ‡Department of Molecular and Cellular
Biology, §Harvard Stem Cell Institute, ∥Department of Chemistry and Chemical Biology, and ⊥Harvard College, Harvard University, Cambridge, Massachusetts
02138, United States
| | - Shannon Coy
- Department
of Stem Cell and Regenerative Biology, ‡Department of Molecular and Cellular
Biology, §Harvard Stem Cell Institute, ∥Department of Chemistry and Chemical Biology, and ⊥Harvard College, Harvard University, Cambridge, Massachusetts
02138, United States
| | - Lee L. Rubin
- Department
of Stem Cell and Regenerative Biology, ‡Department of Molecular and Cellular
Biology, §Harvard Stem Cell Institute, ∥Department of Chemistry and Chemical Biology, and ⊥Harvard College, Harvard University, Cambridge, Massachusetts
02138, United States
| | - Andrew P. McMahon
- Department
of Stem Cell and Regenerative Biology, ‡Department of Molecular and Cellular
Biology, §Harvard Stem Cell Institute, ∥Department of Chemistry and Chemical Biology, and ⊥Harvard College, Harvard University, Cambridge, Massachusetts
02138, United States
| |
Collapse
|
276
|
Li Y, Maitah MY, Ahmad A, Kong D, Bao B, Sarkar FH. Targeting the Hedgehog signaling pathway for cancer therapy. Expert Opin Ther Targets 2012; 16:49-66. [PMID: 22243133 DOI: 10.1517/14728222.2011.617367] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Hedgehog (Hh) signaling pathway plays key roles in embryonic development, formation and maintenance of cancer stem cells (CSCs) and acquisition of epithelial-to-mesenchymal transition (EMT). Since CSCs and EMT are important biological factors responsible for cancer cell invasion, metastasis, drug resistance and tumor recurrence, the Hh signaling pathway is believed to be an important target for cancer therapy. AREAS COVERED In recent years, small-molecule inhibitors of Hh signaling have been synthesized for cancer treatment. Clinical trials using these inhibitors are being conducted to determine their toxicity profiles and efficacies. In addition, nutraceuticals (such as isoflavones, curcumin, vitamin D, etc) have been shown to inhibit cancer growth through downregulation of Hh signaling. EXPERT OPINION Inhibition of Hh signaling is important for suppression of cancer growth, invasion, metastasis and recurrence in cancer therapy. However, targeting only one molecule in Hh signaling may not be sufficient to kill cancer cells because cancers show deregulation of multiple signals. Therefore, utilizing new technologies to determine alterations in Hh and other signals for individuals and designing combination strategies with small-molecule Hh inhibitors, nutraceuticals and other chemotherapeutics in targeted personalized therapy could have a significant effect on improving the overall survival of patients with cancers.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
277
|
Chen YJ, Kuo CD, Chen SH, Chen WJ, Huang WC, Chao KSC, Liao HF. Small-molecule synthetic compound norcantharidin reverses multi-drug resistance by regulating Sonic hedgehog signaling in human breast cancer cells. PLoS One 2012; 7:e37006. [PMID: 22615870 PMCID: PMC3352857 DOI: 10.1371/journal.pone.0037006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 04/11/2012] [Indexed: 11/18/2022] Open
Abstract
Multi-drug resistance (MDR), an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC) transporters and activated Sonic hedgehog (Shh) signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX), we examined the effect and mechanism of norcantharidin (NCTD), a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S) and DOX-resistant (MCF-7R) cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, National Yang Ming University, Taipei, Taiwan
| | - Cheng-Deng Kuo
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Szu-Han Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Wei-Jen Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Wen-Chien Huang
- Division of Thoracic Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - K. S. Clifford Chao
- Department of Radiation Oncology, Columbia University, New York, New York, United States of America
| | - Hui-Fen Liao
- Institute of Traditional Medicine, National Yang Ming University, Taipei, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
- * E-mail:
| |
Collapse
|
278
|
Markant SL, Wechsler-Reya RJ. Personalized mice: modelling the molecular heterogeneity of medulloblastoma. Neuropathol Appl Neurobiol 2012; 38:228-40. [DOI: 10.1111/j.1365-2990.2011.01235.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
279
|
Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model. Proc Natl Acad Sci U S A 2012; 109:7859-64. [PMID: 22550175 DOI: 10.1073/pnas.1114718109] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors.
Collapse
|
280
|
Guldal CG, Ahmad A, Korshunov A, Squatrito M, Awan A, Mainwaring LA, Bhatia B, Parathath SR, Nahle Z, Pfister S, Kenney AM. An essential role for p38 MAPK in cerebellar granule neuron precursor proliferation. Acta Neuropathol 2012; 123:573-86. [PMID: 22302101 DOI: 10.1007/s00401-012-0946-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Development of the cerebellum occurs postnatally and is marked by a rapid proliferation of cerebellar granule neuron precursors (CGNPs). CGNPs are the cells of origin for SHH-driven medulloblastoma, the most common malignant brain tumor in children. Here, we investigated the role of ERK, JNK, and p38 mitogen-activated protein kinases in CGNP proliferation. We found high levels of p38α in proliferating CGNPs. Concomitantly, members of the p38 pathway, such as ASK1, MKK3 and ATF-2, were also elevated. Inhibition of the Shh pathway or CGNP proliferation blunts p38α levels, irrespective of Shh treatment. Strikingly, p38α levels were high in vivo in the external granule layer of the postnatal cerebellum, Shh-dependent mouse medulloblastomas and human medulloblastomas of the SHH subtype. Finally, knocking down p38α by short hairpin RNA-carrying lentiviruses as well as the pharmacologically inhibiting of its kinase activity caused a marked decrease in CGNP proliferation, underscoring its requirement for Shh-dependent proliferation in CGNPs. The inhibition of p38α also caused a decrease in Gli1 and N-myc transcript levels, consistent with reduced proliferation. These findings suggest p38 inhibition as a potential way to increase the efficacy of treatments available for malignancies associated with deregulated SHH signaling, such as basal cell carcinoma and medulloblastoma.
Collapse
Affiliation(s)
- Cemile G Guldal
- Departments of Neurological Surgery and Cancer Biology, Vanderbilt University, Nashville, TN, 37212, USA; Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Lau J, Schmidt C, Markant SL, Taylor MD, Wechsler-Reya RJ, Weiss WA. Matching mice to malignancy: molecular subgroups and models of medulloblastoma. Childs Nerv Syst 2012; 28:521-32. [PMID: 22315164 PMCID: PMC3515664 DOI: 10.1007/s00381-012-1704-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 01/17/2012] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Medulloblastoma, the largest group of embryonal brain tumors, has historically been classified into five variants based on histopathology. More recently, epigenetic and transcriptional analyses of primary tumors have subclassified medulloblastoma into four to six subgroups, most of which are incongruous with histopathological classification. DISCUSSION Improved stratification is required for prognosis and development of targeted treatment strategies, to maximize cure and minimize adverse effects. Several mouse models of medulloblastoma have contributed both to an improved understanding of progression and to developmental therapeutics. In this review, we summarize the classification of human medulloblastoma subtypes based on histopathology and molecular features. We describe existing genetically engineered mouse models, compare these to human disease, and discuss the utility of mouse models for developmental therapeutics. Just as accurate knowledge of the correct molecular subtype of medulloblastoma is critical to the development of targeted therapy in patients, we propose that accurate modeling of each subtype of medulloblastoma in mice will be necessary for preclinical evaluation and optimization of those targeted therapies.
Collapse
Affiliation(s)
- Jasmine Lau
- Department of Neurology, University of California, San Francisco, CA, USA. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA. Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, CA, USA. Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Christin Schmidt
- Department of Neurology, University of California, San Francisco, CA, USA. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA. Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, CA, USA. Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Shirley L. Markant
- Tumor Development Program, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA. Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Michael D. Taylor
- Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada. Arthur and Sonia Labatt Brain Tumour Research Centre, Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Robert J. Wechsler-Reya
- Tumor Development Program, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA. Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - William A. Weiss
- Department of Neurology, University of California, San Francisco, CA, USA. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA. Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, CA, USA. Department of Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
282
|
Ectopic overexpression of Sonic Hedgehog (Shh) induces stromal expansion and metaplasia in the adult murine pancreas. Neoplasia 2012; 13:923-30. [PMID: 22028618 DOI: 10.1593/neo.11088] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 12/23/2022] Open
Abstract
Ligand-dependent activation of the Hedgehog (Hh) signaling pathway has been implicated in both tumor initiation and metastasis of pancreatic ductal adenocarcinoma (PDAC). Prior studies in genetically engineered mouse models (GEMMs) have assessed the role of Hh signaling by cell autonomous expression of a constitutively active Gli2 within epithelial cells. On the contrary, aberrant pathway reactivation in the human exocrine pancreas occurs principally as a consequence of Sonic Hh ligand (Shh) overexpression from epithelial cells. To recapitulate the cognate pathophysiology of Hh signaling observed in the human pancreas, we examined GEMM where Hh ligand is conditionally overexpressed within the mature exocrine pancreas using a tamoxifen-inducible Elastase-Cre promoter (Ela-CreERT2;LSL-mShh). We also facilitated potential cell autonomous epithelial responsiveness to secreted Hh ligand by generating compound transgenic mice with concomitant expression of the Hh receptor Smoothened (Ela-CreERT2;LSL-mShh;LSL-mSmo). Of interest, none of these mice developed intraductal precursor lesions or PDAC during the follow-up period of up to 12 months after tamoxifen induction. Instead, all animals demonstrated marked expansion of stromal cells, consistent with the previously described epithelial-to-stromal paracrine Hh signaling. Hh responsiveness was mirrored by the expression of primary cilia within the expanded mesenchymal compartment and the absence within mature acinar cells. In the absence of cooperating mutations, Hh ligand overexpression in the mature exocrine pancreas is insufficient to induce neoplasia, even when epithelial cells coexpress the Smo receptor. This autochthonous model serves as a platform for studying epithelial stromal interactions in pancreatic carcinogenesis.
Collapse
|
283
|
Han JB. Advances in Smoothened-targeting therapies for pancreatic cancer: implication for drug discovery from herbal medicines. ACTA ACUST UNITED AC 2012; 10:256-63. [DOI: 10.3736/jcim20120303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
284
|
Abstract
Emerging laboratory and clinical investigations demonstrate that Hedgehog signaling (Hh) represents a novel therapeutic target in various human cancers. This conserved signaling pathway precisely regulates self-renewal and terminal differentiation in embryonic development, but is typically silenced in adult tissues, with reactivation usually only during tissue repair. Aberrant Hh pathway signaling has been implicated in the pathogenesis, self-renewal, and chemotherapy resistance of a growing number of solid and hematologic malignancies. Major components of the Hh pathway include the Hh ligands (Sonic, Desert, and Indian), the transmembrane receptor Patched, the signal transducer Smoothened (Smo), and transcription factors Gli1–3 which regulate the transcription of Hh target genes. Mutations in Hh pathway genes, increased Hh signaling in tumor stroma, and Hh overexpression in self-renewing cells (cancer stem cells) have been described, and these different modes of Hh signaling have implications for the design of Hh pathway inhibitors and their integration into conventional treatment regimens. Discovery of a naturally-occurring Smo inhibitor, cyclopamine, and the identification of Hh pathway mutations and over expression in cancer cells prompted the development of several cyclopamine derivatives. Encouraging laboratory and in vivo data has resulted in Phase I and II clinical trials of Smo inhibitors. In this review, we will discuss the current understanding of Hh pathway signaling in malignancy and Smo antagonists in development. Recent data with these agents shows that they are well-tolerated and may be effective for subsets of patients. Challenges remain for appropriate patient selection and the optimal combination and sequence of these targeted therapies into current treatment paradigms.
Collapse
Affiliation(s)
- Tara L Lin
- Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas, Kansas City, MO, USA
| | | |
Collapse
|
285
|
Abstract
G-protein-coupled receptors (GPCRs), which represent the largest gene family in the human genome, play a crucial role in multiple physiological functions as well as in tumor growth and metastasis. For instance, various molecules like hormones, lipids, peptides and neurotransmitters exert their biological effects by binding to these seven-transmembrane receptors coupled to heterotrimeric G-proteins, which are highly specialized transducers able to modulate diverse signaling pathways. Furthermore, numerous responses mediated by GPCRs are not dependent on a single biochemical route, but result from the integration of an intricate network of transduction cascades involved in many physiological activities and tumor development. This review highlights the emerging information on the various responses mediated by a selected choice of GPCRs and the molecular mechanisms by which these receptors exert a primary action in cancer progression. These findings provide a broad overview on the biological activity elicited by GPCRs in tumor cells and contribute to the identification of novel pharmacological approaches for cancer patients.
Collapse
|
286
|
Xu Y, Chenna V, Hu C, Sun HX, Khan M, Bai H, Yang XR, Zhu QF, Sun YF, Maitra A, Fan J, Anders RA. Polymeric nanoparticle-encapsulated hedgehog pathway inhibitor HPI-1 (NanoHHI) inhibits systemic metastases in an orthotopic model of human hepatocellular carcinoma. Clin Cancer Res 2012; 18:1291-1302. [PMID: 21868763 PMCID: PMC3233659 DOI: 10.1158/1078-0432.ccr-11-0950] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE To illustrate the prognostic significance of hedgehog (Hh) signaling in patients with hepatocellular carcinoma (HCC) and to evaluate the efficacy of a novel nanoparticle-encapsulated inhibitor of the Hh transcription factor, Gli1 (NanoHHI) using in vitro and in vivo models of human HCCs. EXPERIMENTAL DESIGN Patched1 (Ptch1) expression was detected in tumor tissue microarrays of 396 patients with HCC who underwent curative surgical resection during February 2000 to December 2002. Prognostic significance was assessed using Kaplan-Meier survival estimates and log-rank tests. The effects of NanoHHI alone and in combination with sorafenib were investigated on HCC cell lines. Primary HCC tumor growth and metastasis were examined in vivo using subcutaneous and orthotopic HCC xenografts in nude mice. RESULTS Elevated expression of Ptch1 in HCC tissues was significantly related to disease recurrence, as well as a shorter time to recurrence in patients with HCC. In vitro, NanoHHI significantly inhibited the proliferation and invasion of HCC cell lines. NanoHHI potently suppressed in vivo tumor growth of HCC xenografts in both subcutaneous and orthotopic milieus, and in contrast to sorafenib, resulted in significant attenuation of systemic metastases in the orthotopic setting. Furthermore, NanoHHI significantly decreased the population of CD133-expressing HCC cells, which have been implicated in tumor initiation and metastases. CONCLUSION Downstream Hh signaling has prognostic significance in patients with HCC as it predicts early recurrence. Gli inhibition through NanoHHI has profound tumor growth inhibition and antimetastatic effects in HCC models, which may provide a new strategy in the treatment of patients with HCC and prevention post-operative recurrence.
Collapse
Affiliation(s)
- Yang Xu
- Liver Cancer Institute, Zhong Shan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, PR China
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Venugopal Chenna
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chaoxin Hu
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hai-Xiang Sun
- Liver Cancer Institute, Zhong Shan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, PR China
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Institute of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Mehtab Khan
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Haibo Bai
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xin-Rong Yang
- Liver Cancer Institute, Zhong Shan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, PR China
| | - Qin-Feng Zhu
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Institute of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Yun-Fan Sun
- Liver Cancer Institute, Zhong Shan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, PR China
| | - Anirban Maitra
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sol Goldman Pancreatic Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jia Fan
- Liver Cancer Institute, Zhong Shan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, PR China
- Institute of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Robert A. Anders
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
287
|
Solinas A, Faure H, Roudaut H, Traiffort E, Schoenfelder A, Mann A, Manetti F, Taddei M, Ruat M. Acylthiourea, Acylurea, and Acylguanidine Derivatives with Potent Hedgehog Inhibiting Activity. J Med Chem 2012; 55:1559-71. [DOI: 10.1021/jm2013369] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Antonio Solinas
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro
2, I-53100 Siena, Italy
| | - Hélène Faure
- CNRS, UPR-3294, Laboratoire de Neurobiologie et Développement, Institut de Neurobiologie Alfred Fessard IFR2118, Signal
Transduction and Developmental Neuropharmacology Team, 1 Avenue de
la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Hermine Roudaut
- CNRS, UPR-3294, Laboratoire de Neurobiologie et Développement, Institut de Neurobiologie Alfred Fessard IFR2118, Signal
Transduction and Developmental Neuropharmacology Team, 1 Avenue de
la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Elisabeth Traiffort
- CNRS, UPR-3294, Laboratoire de Neurobiologie et Développement, Institut de Neurobiologie Alfred Fessard IFR2118, Signal
Transduction and Developmental Neuropharmacology Team, 1 Avenue de
la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Angèle Schoenfelder
- Laboratoire d’Innovation Thérapeutique,
UMR-7200, CNRS—Université de Strasbourg, 74 Route du Rhin, F-67401 Illkirch, France
| | - André Mann
- Laboratoire d’Innovation Thérapeutique,
UMR-7200, CNRS—Université de Strasbourg, 74 Route du Rhin, F-67401 Illkirch, France
| | - Fabrizio Manetti
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro
2, I-53100 Siena, Italy
| | - Maurizio Taddei
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro
2, I-53100 Siena, Italy
| | - Martial Ruat
- CNRS, UPR-3294, Laboratoire de Neurobiologie et Développement, Institut de Neurobiologie Alfred Fessard IFR2118, Signal
Transduction and Developmental Neuropharmacology Team, 1 Avenue de
la Terrasse, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
288
|
Kasper M, Jaks V, Hohl D, Toftgård R. Basal cell carcinoma - molecular biology and potential new therapies. J Clin Invest 2012; 122:455-63. [PMID: 22293184 DOI: 10.1172/jci58779] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Basal cell carcinoma (BCC) of the skin, the most common malignancy in individuals of mixed European descent, is increasing in incidence due to an aging population and sun exposure habits. The realization that aberrant activation of Hedgehog signaling is a pathognomonic feature of BCC development has opened the way for exciting progress toward understanding BCC biology and translation of this knowledge to the clinic. Genetic mouse models closely mimicking human BCCs have provided answers about the tumor cell of origin, and inhibition of Hedgehog signaling is emerging as a potentially useful targeted therapy for patients with advanced or multiple BCCs that have hitherto lacked effective treatment.
Collapse
Affiliation(s)
- Maria Kasper
- Karolinska Institutet, Center for Biosciences and Department of Biosciences and Nutrition, Novum, Huddinge, Sweden
| | | | | | | |
Collapse
|
289
|
Beauchamp EM, Uren A. A new era for an ancient drug: arsenic trioxide and Hedgehog signaling. VITAMINS AND HORMONES 2012; 88:333-54. [PMID: 22391311 DOI: 10.1016/b978-0-12-394622-5.00015-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arsenic has been used for ages as a therapeutic agent. Currently, it is an FDA approved drug to treat acute promyelocytic leukemia where it leads to degradation of the PML-RAR fusion protein. It has been shown to have various other targets in cells such as JNK, NFκB, thioredoxin reductase, and MAPK pathways. Most of its effects in cells have been through arsenic's ability to bind to thiol groups in cysteine residues. Recent evidence has shown that arsenic can inhibit the Hedgehog pathway by inhibiting GLI proteins. The proposed mechanism of action is through direct binding. Potential binding sites include the critical cysteine residues in GLI zinc finger domains. The role of the Hedgehog pathway has been implicated in many cancers such as basal cell carcinoma, medulloblastoma, Ewing sarcoma, and rhabdoid tumors. Current Hedgehog pathway inhibitors have been fraught with resistance issues and so arsenic trioxide may provide an alternative therapy when combined with these other inhibitors or after acquired resistance.
Collapse
Affiliation(s)
- Elspeth M Beauchamp
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | | |
Collapse
|
290
|
Abstract
Dysregulated Hedgehog (Hh) signaling has been implicated in a growing number of human cancers. Although first identified as an important developmental signaling pathway crucial for cellular proliferation, differentiation, and migration during organogenesis in invertebrates, these fundamental processes have been co-opted in human cancers. Initial evidence for the Hh pathway in tumor biology comes from mutations of signaling pathway components in a hereditary cancer syndrome that typically results in basal-cell carcinoma and medulloblastoma. Subsequent analysis revealed that Hh pathway mutations are found in sporadic tumors as well as activated Hh signaling in several epithelial cancers independent of Hh pathway mutation status. Further, recent evidence has demonstrated paracrine Hh signaling within stromal cells of the tumor microenvironment with implications for drug delivery. Several Hh antagonists targeting the Hh receptor, Smoothened (SMO), have been developed and show efficacy in preclinical studies and early-stage clinical trials in humans. However, major issues with these small molecule compounds include rapid acquired resistance, potential developmental toxicities secondary to use in children, and limited efficacy in cancers driven by Hh signaling downstream of the SMO receptor.
Collapse
|
291
|
Batty N, Kossoff E, Dy GK. Investigational agents in metastatic basal cell carcinoma: focus on vismodegib. J Exp Pharmacol 2012; 4:97-103. [PMID: 27186122 PMCID: PMC4863308 DOI: 10.2147/jep.s26591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vismodegib (GDC-0449, 2-chloro-N-(4-chloro-3-(pyridin-2-yl)phenyl)-4-(methylsulfonyl)benzamide, Erivedge™) is a novel first-in-human, first-in class, orally bio-available Hedgehog pathway signaling inhibitor of the G-protein coupled receptor-like protein smoothened (SMO) which was approved in the United States on January 2012. This signaling pathway is involved in the carcinogenesis of several types of tumor, as exemplified by basal cell carcinoma. This review focuses on the role of the Hedgehog pathway in the pathogenesis of basal cell carcinoma, the pharmacology and the clinical activity of vismodegib, as well as a brief summary of investigational agents in development targeting this pathway.
Collapse
Affiliation(s)
- Nicolas Batty
- Department of Medicine, Roswell Park Cancer Center, Buffalo, NY, USA
| | - Ellen Kossoff
- Department of Pharmacy, Roswell Park Cancer Center, Buffalo, NY, USA
| | - Grace K Dy
- Department of Medicine, Roswell Park Cancer Center, Buffalo, NY, USA
| |
Collapse
|
292
|
Chenna V, Hu C, Pramanik D, Aftab BT, Karikari C, Campbell NR, Hong SM, Zhao M, Rudek MA, Khan SR, Rudin CM, Maitra A. A polymeric nanoparticle encapsulated small-molecule inhibitor of Hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to Smoothened antagonists. Mol Cancer Ther 2011; 11:165-73. [PMID: 22027695 DOI: 10.1158/1535-7163.mct-11-0341] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aberrant activation of the hedgehog (Hh) signaling pathway is one of the most prevalent abnormalities in human cancer. Tumors with cell autonomous Hh activation (e.g., medulloblastomas) can acquire secondary mutations at the Smoothened (Smo) antagonist binding pocket, which render them refractory to conventional Hh inhibitors. A class of Hh pathway inhibitors (HPI) has been identified that block signaling downstream of Smo; one of these compounds, HPI-1, is a potent antagonist of the Hh transcription factor Gli1 and functions independent of upstream components in the pathway. Systemic administration of HPI-1 is challenging due to its minimal aqueous solubility and poor bioavailability. We engineered a polymeric nanoparticle from [poly(lactic-co-glycolic acid); (PLGA)] conjugated with polyethylene glycol (PEG), encapsulating HPI-1 (NanoHHI). NanoHHI particles have an average diameter of approximately 60 nm, forms uniform aqueous suspension, and improved systemic bioavailability compared with the parent compound. In contrast to the prototype targeted Smo antagonist, HhAntag (Genentech), NanoHHI markedly inhibits the growth of allografts derived from Ptch(-/+); Trp53(-/-) mouse medulloblastomas that harbor a Smo(D477G) binding site mutation (P < 0.001), which is accompanied by significant downregulation of mGli1 as well as bona fide Hh target genes (Akna, Cltb, and Olig2). Notably, NanoHHI combined with gemcitabine also significantly impedes the growth of orthotopic Pa03C pancreatic cancer xenografts that have a ligand-dependent, paracrine mechanism of Hh activation when compared with gemcitabine alone. No demonstrable hematologic or biochemical abnormalities were observed with NanoHHI administration. NanoHHI should be amenable to clinical translation in settings where tumors acquire mutational resistance to current Smo antagonists.
Collapse
Affiliation(s)
- Venugopal Chenna
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Maliniemi P, Carlsson E, Kaukola A, Ovaska K, Niiranen K, Saksela O, Jeskanen L, Hautaniemi S, Ranki A. NAV3 copy number changes and target genes in basal and squamous cell cancers. Exp Dermatol 2011; 20:926-31. [DOI: 10.1111/j.1600-0625.2011.01358.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
294
|
Tao H, Jin Q, Koo DI, Liao X, Englund NP, Wang Y, Ramamurthy A, Schultz PG, Dorsch M, Kelleher J, Wu X. Small molecule antagonists in distinct binding modes inhibit drug-resistant mutant of smoothened. ACTA ACUST UNITED AC 2011; 18:432-7. [PMID: 21513879 DOI: 10.1016/j.chembiol.2011.01.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Several small molecule antagonists for Smoothened (Smo) have been developed, and achieved promising preclinical efficacy in cancers that are dependent on Hedgehog (Hh) signaling. However, in a recent clinical study, a drug-resistant D473H SMO mutant was identified that is thought to be responsible for cancer relapse in a patient with medulloblastoma. Here, we report two Smo antagonists that bind to distinct sites, as compared to known antagonists and agonists, and inhibit both wild-type and mutant Smo. These findings provide an insight of the ligand-binding sites of Smo and a basis for the development of potential therapeutics for tumors with drug-resistant Smo mutations.
Collapse
Affiliation(s)
- Haiyan Tao
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Sakata T, Chen JK. Chemical 'Jekyll and Hyde's: small-molecule inhibitors of developmental signaling pathways. Chem Soc Rev 2011; 40:4318-31. [PMID: 21505654 PMCID: PMC3137710 DOI: 10.1039/c1cs15019g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small molecules that perturb developmental signaling pathways can have devastating effects on embryonic patterning, as evidenced by the chemically induced onset of cyclopic lambs and children with severely shortened limbs during the 1950s. Recent studies, however, have revealed critical roles for these pathways in human disorders and diseases, spurring the re-examination of these compounds as new targeted therapies. In this tutorial review, we describe four case studies of teratogenic compounds, including inhibitors of the Hedgehog (Hh), Wnt, and bone morphogenetic protein (BMP) pathways. We discuss how these teratogens were discovered, their mechanisms of action, their utility as molecular probes, and their potential as therapeutic agents. We also consider current challenges in the field and possible directions for future research.
Collapse
Affiliation(s)
- Tomoyo Sakata
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James K. Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
296
|
Metcalfe C, de Sauvage FJ. Hedgehog fights back: mechanisms of acquired resistance against Smoothened antagonists. Cancer Res 2011; 71:5057-61. [PMID: 21771911 DOI: 10.1158/0008-5472.can-11-0923] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acquired resistance to targeted therapies threatens the value of these otherwise very promising agents. The recent description of resistance to the Hedgehog pathway inhibitor vismodegib (GDC-0449) in a medulloblastoma patient who had a dramatic initial response has spurred efforts to understand potential mechanisms of drug resistance. Elucidating these mechanisms will play a significant role in informing strategies to overcome this meaningful limitation.
Collapse
MESH Headings
- Anilides/pharmacology
- Anilides/therapeutic use
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Basal Cell Nevus Syndrome/genetics
- Biphenyl Compounds/therapeutic use
- Carcinoma, Basal Cell/drug therapy
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/metabolism
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Hedgehog Proteins/physiology
- Humans
- Medulloblastoma/drug therapy
- Medulloblastoma/genetics
- Medulloblastoma/metabolism
- Medulloblastoma/secondary
- Mice
- Mice, Knockout
- Mice, Nude
- Molecular Targeted Therapy
- Mutation, Missense
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Patched Receptors
- Phosphoinositide-3 Kinase Inhibitors
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Signal Transduction/drug effects
- Skin Neoplasms/drug therapy
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Smoothened Receptor
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ciara Metcalfe
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA, USA
| | | |
Collapse
|
297
|
Strand MF, Wilson SR, Dembinski JL, Holsworth DD, Khvat A, Okun I, Petersen D, Krauss S. A novel synthetic smoothened antagonist transiently inhibits pancreatic adenocarcinoma xenografts in a mouse model. PLoS One 2011; 6:e19904. [PMID: 21698280 PMCID: PMC3115942 DOI: 10.1371/journal.pone.0019904] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/20/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Hedgehog (Hh) signaling is over-activated in several solid tumors where it plays a central role in cell growth, stroma recruitment and tumor progression. In the Hh signaling pathway, the Smoothened (SMO) receptor comprises a primary drug target with experimental small molecule SMO antagonists currently being evaluated in clinical trials. PRINCIPAL FINDINGS Using Shh-Light II (Shh-L2) and alkaline phosphatase (AP) based screening formats on a "focused diversity" library we identified a novel small molecule inhibitor of the Hh pathway, MS-0022 (2-bromo-N-(4-(8-methylimidazo[1,2-a]pyridin-2-yl)phenyl)benzamide). MS-0022 showed effective Hh signaling pathway inhibition at the level of SMO in the low nM range, and Hh pathway inhibition downstream of Suppressor of fused (SUFU) in the low µM range. MS-0022 reduced growth in the tumor cell lines PANC-1, SUIT-2, PC-3 and FEMX in vitro. MS-0022 treatment led to a transient delay of tumor growth that correlated with a reduction of stromal Gli1 levels in SUIT-2 xenografts in vivo. SIGNIFICANCE We document the in vitro and in vivo efficacy and bioavailability of a novel small molecule SMO antagonist, MS-0022. Although MS-0022 primarily interferes with Hh signaling at the level of SMO, it also has a downstream inhibitory effect and leads to a stronger reduction of growth in several tumor cell lines when compared to related SMO antagonists.
Collapse
Affiliation(s)
- Martin F. Strand
- Unit for Cell Signalling, Institute for Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Jennifer L. Dembinski
- Unit for Cell Signalling, Institute for Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Alexander Khvat
- ChemDiv Inc., San Diego, California, United States of America
| | - Ilya Okun
- ChemDiv Inc., San Diego, California, United States of America
| | - Dirk Petersen
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Stefan Krauss
- Unit for Cell Signalling, Institute for Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
298
|
Determination of unbound vismodegib (GDC-0449) concentration in human plasma using rapid equilibrium dialysis followed by solid phase extraction and high-performance liquid chromatography coupled to mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2119-26. [PMID: 21704573 DOI: 10.1016/j.jchromb.2011.05.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/27/2011] [Accepted: 05/29/2011] [Indexed: 11/22/2022]
Abstract
A rapid equilibrium dialysis (RED) assay followed by a solid phase extraction (SPE) high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for the quantitative determination of unbound vismodegib in human plasma was developed and validated. The equilibrium dialysis was carried out using 0.3 mL plasma samples in the single-use plate RED system at 37°C for 6h. The dialysis samples (0.1 mL) were extracted using a Strata-X-C 33u Polymeric Strong Cation SPE plate and the resulting extracts were analyzed using reverse-phase chromatography and positive electrospray ionization (ESI) mass spectrometry. The standard curve, which ranged from 0.100 to 100 ng/mL for vismodegib, was fitted to a 1/x(2) weighted linear regression model. The lower limit of quantitation (LLOQ, 0.100 ng/mL) was sufficient to quantify unbound concentrations of vismodegib after dialysis. The intra-assay precision of the LC-MS/MS assay, based on the four analytical QC levels (LLOQ, low, medium and high), was within 7.7% CV and inter-assay precision was within 5.5% CV. The assay accuracy, expressed as %Bias, was within ±4.0% of the nominal concentration values. Extraction recovery of vismodegib was between 77.9 and 84.0%. The assay provides a means for accurate assessment of unbound vismodegib plasma concentrations in clinical studies.
Collapse
|
299
|
Abstract
Research into basic developmental biology has frequently yielded insights into cancer biology. This is particularly true for the Hedgehog (HH) pathway. Activating mutations in the HH pathway cause a subset of sporadic and familial, skin (basal cell carcinoma) and brain (medulloblastoma) tumours. Furthermore, the growth of many human tumours is supported by HH pathway activity in stromal cells. Naturally occurring and synthetic inhibitors of HH signalling show great promise in animal models and in early clinical studies. However, it remains unclear how many cancers will ultimately benefit from these new, molecularly targeted therapies.
Collapse
|