251
|
Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, Chow A, O'Connor STF, Li S, Chin AR, Somlo G, Palomares M, Li Z, Tremblay JR, Tsuyada A, Sun G, Reid MA, Wu X, Swiderski P, Ren X, Shi Y, Kong M, Zhong W, Chen Y, Wang SE. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 2015; 17:183-94. [PMID: 25621950 PMCID: PMC4380143 DOI: 10.1038/ncb3094] [Citation(s) in RCA: 851] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023]
Abstract
Reprogrammed glucose metabolism as a result of increased glycolysis and glucose uptake is a hallmark of cancer. Here we show that cancer cells can suppress glucose uptake by non-tumour cells in the pre-metastatic niche, by secreting vesicles that carry high levels of the miR-122 microRNA. High miR-122 levels in the circulation have been associated with metastasis in breast cancer patients and we show that cancer-cell-secreted miR-122 facilitates metastasis by increasing nutrient availability in the pre-metastatic niche. Mechanistically cancer-cell-derived miR-122 suppresses glucose uptake by niche cells in vitro and in vivo by downregulating the glycolytic enzyme pyruvate kinase (PKM). In vivo inhibition of miR-122 restores glucose uptake in distant organs, including brain and lungs, and decreases the incidence of metastasis. These results demonstrate that by modifying glucose utilization by recipient pre-metastatic niche cells, cancer-derived extracellular miR-122 is able to reprogram systemic energy metabolism to facilitate disease progression.
Collapse
Affiliation(s)
- Miranda Y Fong
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, California 91010, USA
| | - Weiying Zhou
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, California 91010, USA
| | - Liang Liu
- 1] Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, California 91010, USA [2] Department of Biotherapy and Key Laboratory of Cancer Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Aileen Y Alontaga
- Department of Molecular Medicine, City of Hope Beckman Research Institute, Duarte, California 91010, USA
| | - Manasa Chandra
- 1] Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, California 91010, USA [2] City of Hope Irell &Manella Graduate School of Biological Sciences, Duarte, California 91010, USA
| | - Jonathan Ashby
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | - Amy Chow
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, California 91010, USA
| | | | - Shasha Li
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, California 91010, USA
| | - Andrew R Chin
- 1] Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, California 91010, USA [2] City of Hope Irell &Manella Graduate School of Biological Sciences, Duarte, California 91010, USA
| | - George Somlo
- Department of Medical Oncology, City of Hope Medical Center, Duarte, California 91010, USA
| | - Melanie Palomares
- 1] Department of Medical Oncology, City of Hope Medical Center, Duarte, California 91010, USA [2] Department of Population Sciences, City of Hope Beckman Research Institute, Duarte, California 91010, USA
| | - Zhuo Li
- Core of Electron Microscopy, City of Hope Comprehensive Cancer Center, Duarte, California 91010, USA
| | - Jacob R Tremblay
- 1] Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, California 91010, USA [2] City of Hope Irell &Manella Graduate School of Biological Sciences, Duarte, California 91010, USA
| | - Akihiro Tsuyada
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, California 91010, USA
| | - Guoqiang Sun
- Department of Neurosciences, City of Hope Beckman Research Institute, Duarte, California 91010, USA
| | - Michael A Reid
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, California 91010, USA
| | - Xiwei Wu
- Core of Integrative Genomics, City of Hope Comprehensive Cancer Center, Duarte, California 91010, USA
| | - Piotr Swiderski
- Core of Synthetic and Biopolymer Chemistry, City of Hope Comprehensive Cancer Center, Duarte, California 91010, USA
| | - Xiubao Ren
- Department of Biotherapy and Key Laboratory of Cancer Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yanhong Shi
- Department of Neurosciences, City of Hope Beckman Research Institute, Duarte, California 91010, USA
| | - Mei Kong
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, California 91010, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | - Yuan Chen
- Department of Molecular Medicine, City of Hope Beckman Research Institute, Duarte, California 91010, USA
| | - Shizhen Emily Wang
- 1] Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, California 91010, USA [2] Department of Biotherapy and Key Laboratory of Cancer Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| |
Collapse
|
252
|
Penfornis P, Vallabhaneni KC, Whitt J, Pochampally R. Extracellular vesicles as carriers of microRNA, proteins and lipids in tumor microenvironment. Int J Cancer 2015; 138:14-21. [PMID: 25559768 DOI: 10.1002/ijc.29417] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/05/2014] [Accepted: 12/23/2014] [Indexed: 12/13/2022]
Abstract
In recent years, the knowledge about the control of tumor microenvironment has increased and emerged as an important player in tumorigenesis. The role of normal stromal cells in the tumor initiation and progression has brought our vision in to the forefront of cell-to-cell communication. In this review, we focus on the mechanism of communication between stromal and tumor cells, which is based on the exchange of extracellular vesicles (EVs). We describe several, evergrowing, pieces of evidence that EVs transfer messages through their miRNA, lipid, protein and nucleic acid contents. A better understanding of this sophisticated method of communication between normal cancer cells may lead to developing novel approaches for personalized diagnostics and therapeutics.
Collapse
Affiliation(s)
- Patrice Penfornis
- Department of Biochemistry and Cancer Institute, University of Mississippi Medical Center, Jackson, MS
| | - Krishna C Vallabhaneni
- Department of Biochemistry and Cancer Institute, University of Mississippi Medical Center, Jackson, MS
| | - Jason Whitt
- Department of Biochemistry and Cancer Institute, University of Mississippi Medical Center, Jackson, MS
| | - Radhika Pochampally
- Department of Biochemistry and Cancer Institute, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
253
|
Mao Y, Zhang Y, Qu Q, Zhao M, Lou Y, Liu J, huang O, Chen X, Wu J, Shen K. Cancer-associated fibroblasts induce trastuzumab resistance in HER2 positive breast cancer cells. MOLECULAR BIOSYSTEMS 2015; 11:1029-40. [PMID: 25648538 DOI: 10.1039/c4mb00710g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CAFs isolated from HER2+ patients secreted higher levels of IL6 which expanded cancer stem cells and activated multiple pathways, then induced trastuzumab resistance in HER2 positive breast cancer cells.
Collapse
|
254
|
The sphingosine-1-phosphate/sphingosine-1-phosphate receptor 2 axis regulates early airway T-cell infiltration in murine mast cell-dependent acute allergic responses. J Allergy Clin Immunol 2014; 135:1008-1018.e1. [PMID: 25512083 DOI: 10.1016/j.jaci.2014.10.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid produced by mast cells (MCs) on cross-linking of their high-affinity receptors for IgE by antigen that can amplify MC responses by binding to its S1P receptors. An acute MC-dependent allergic reaction can lead to systemic shock, but the early events of its development in lung tissues have not been investigated, and S1P functions in the onset of allergic processes remain to be examined. OBJECTIVE We used a highly specific neutralizing anti-S1P antibody (mAb) and the sphingosine-1-phosphate receptor 2 (S1PR2) antagonist JTE-013 to study the signaling contributions of S1P and S1PR2 to MC- and IgE-dependent airway allergic responses in mice within minutes after antigen challenge. METHODS Allergic reaction was triggered by a single intraperitoneal dose of antigen in sensitized mice pretreated intraperitoneally with anti-S1P, isotype control mAb, JTE-013, or vehicle before antigen challenge. RESULTS Kinetics experiments revealed early pulmonary infiltration of mostly T cells around blood vessels of sensitized mice 20 minutes after antigen exposure. Pretreatment with anti-S1P mAb inhibited in vitro MC activation, as well as in vivo development of airway infiltration and MC activation, reducing serum levels of histamine, cytokines, and the chemokines monocyte chemoattractant protein 1/CCL2, macrophage inflammatory protein 1α/CCL3, and RANTES/CCL5. S1PR2 antagonism or deficiency or MC deficiency recapitulated these results. Both in vitro and in vivo experiments demonstrated MC S1PR2 dependency for chemokine release and the necessity for signal transducer and activator of transcription 3 activation. CONCLUSION Activation of S1PR2 by S1P and downstream signal transducer and activator of transcription 3 signaling in MCs regulate early T-cell recruitment to antigen-challenged lungs through chemokine production.
Collapse
|
255
|
Becuwe P, Ennen M, Klotz R, Barbieux C, Grandemange S. Manganese superoxide dismutase in breast cancer: from molecular mechanisms of gene regulation to biological and clinical significance. Free Radic Biol Med 2014; 77:139-51. [PMID: 25224035 DOI: 10.1016/j.freeradbiomed.2014.08.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 01/06/2023]
Abstract
Breast cancer is one of the most common malignancies of all cancers in women worldwide. Many difficulties reside in the prediction of tumor metastatic progression because of the lack of sufficiently reliable predictive biological markers, and this is a permanent preoccupation for clinicians. Manganese superoxide dismutase (MnSOD) may represent a rational candidate as a predictive biomarker of breast tumor metastatic progression, because its gene expression is profoundly altered between early and advanced breast cancer, in contrast to expression in the normal mammary gland. In this review, we report the characterization of some gene polymorphisms and molecular mechanisms of SOD2 gene regulation, which allows a better understanding of how MnSOD is decreased in early breast cancer and increased in advanced breast cancer. Several studies display the biological significance of MnSOD level in proliferation as well as in invasive and angiogenic abilities of breast tumor cells by controlling superoxide anion radical (O2(•-)) and hydrogen peroxide (H2O2). Particularly, they report how these reactive oxygen species may activate some signaling pathways involved in breast tumor growth. Emerging understanding of these findings provides an interesting framework for guiding translational research and suggests a way to define precisely the clinical interest of MnSOD as a prognostic and/or predicting marker in breast cancer, by associating with some regulators involved in SOD2 gene regulation and other well-known biomarkers, in addition to the typical clinical parameters.
Collapse
Affiliation(s)
- Philippe Becuwe
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France.
| | - Marie Ennen
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Rémi Klotz
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Claire Barbieux
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Stéphanie Grandemange
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
256
|
Yasuda K, Torigoe T, Mariya T, Asano T, Kuroda T, Matsuzaki J, Ikeda K, Yamauchi M, Emori M, Asanuma H, Hasegawa T, Saito T, Hirohashi Y, Sato N. Fibroblasts induce expression of FGF4 in ovarian cancer stem-like cells/cancer-initiating cells and upregulate their tumor initiation capacity. J Transl Med 2014; 94:1355-69. [PMID: 25329002 DOI: 10.1038/labinvest.2014.122] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/05/2014] [Accepted: 08/18/2014] [Indexed: 12/23/2022] Open
Abstract
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cells within cancer that contribute to cancer initiation and progression. Cancer-associated fibroblasts (CAFs) are stromal fibroblasts surrounding tumor cells, and they have important roles in tumor growth and tumor progression. It has been suggested that stromal fibroblasts and CSCs/CICs might mutually cooperate to enhance their growth and tumorigenic capacity. In this study, we investigated the effects of fibroblasts on tumor-initiating capacity and stem-like properties of ovarian CSCs/CICs. CSCs/CICs were isolated from the ovarian carcinoma cell line HTBoA as aldehyde dehydrogenase 1 high (ALDH1(high)) population by the ALDEFLUOR assay. Histological examination of tumor tissues derived from ALDH1(high) cells revealed few fibrous stroma, whereas those derived from fibroblast-mixed ALDH1(high) cells showed abundant fibrous stroma formation. In vivo tumor-initiating capacity and in vitro sphere-forming capacity of ALDH1(high) cells were enhanced in the presence of fibroblasts. Gene expression analysis revealed that fibroblast-mixed ALDH1(high) cells had enhanced expression of fibroblast growth factor 4 (FGF4) as well as stemness-associated genes such as SOX2 and POU5F1. Sphere-forming capacity of ALDH1(high) cells was suppressed by small-interfering RNA (siRNA)-mediated knockdown of FGFR2, the receptor for FGF4 which was expressed preferentially in ALDH1(high) cells. Taken together, the results indicate that interaction of fibroblasts with ovarian CSCs/CICs enhanced tumor-initiating capacity and stem-like properties through autocrine and paracrine FGF4-FGFR2 signaling.
Collapse
Affiliation(s)
- Kazuyo Yasuda
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tasuku Mariya
- 1] Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan [2] Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takuya Asano
- 1] Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan [2] Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takafumi Kuroda
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junichi Matsuzaki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kanae Ikeda
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Yamauchi
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Emori
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroko Asanuma
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
257
|
Kurashige J, Mima K, Sawada G, Takahashi Y, Eguchi H, Sugimachi K, Mori M, Yanagihara K, Yashiro M, Hirakawa K, Baba H, Mimori K. Epigenetic modulation and repression of miR-200b by cancer-associated fibroblasts contribute to cancer invasion and peritoneal dissemination in gastric cancer. Carcinogenesis 2014; 36:133-41. [PMID: 25411357 DOI: 10.1093/carcin/bgu232] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) have recently been linked to the invasion and metastasis of gastric cancer. In addition, the microRNA (miR)-200 family plays a central role in the regulation of the epithelial-mesenchymal transition process during cancer metastasis, and aberrant DNA methylation is one of the key mechanisms underlying regulation of the miR-200 family. In this study, we clarified whether epigenetic changes of miR-200b by CAFs stimulate cancer invasion and peritoneal dissemination in gastric cancer. We evaluated the relationship between miR-200b and CAFs using a coculture model. In addition, we established a peritoneal metastasis mouse model and investigated the expression and methylation status of miR-200b. We also investigated the expression and methylation status of miR-200b and CAFs expression in primary gastric cancer samples. CAFs (CAF-37 and CAF-50) contributed to epigenetic changes of miR-200b, reduced miR-200b expression and promoted tumor invasion and migration in NUGC3 and OCUM-2M cells in coculture. In the model mice, epigenetic changes of miR-200b were observed in the inoculated high-frequency peritoneal dissemination cells. In the 173 gastric cancer samples, the low miR-200b expression group demonstrated a significantly poorer prognosis compared with the high miR-200b expression group and was associated with peritoneal metastasis. In addition, downregulation of miR-200b in cancer cells was significantly correlated with alpha-smooth muscle actin expression. Our data provide evidence that CAFs reduce miR-200b expression and promote tumor invasion through epigenetic changes of miR-200b in gastric cancer. Thus, CAFs might be a therapeutic target for inhibition of gastric cancer.
Collapse
Affiliation(s)
- Junji Kurashige
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan, Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, Kumamoto 860-8556, Japan
| | - Kosuke Mima
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan, Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, Kumamoto 860-8556, Japan
| | - Genta Sawada
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan, Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yusuke Takahashi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan, Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Keishi Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuyoshi Yanagihara
- Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba 277-8577, Japan and
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, Kumamoto 860-8556, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan,
| |
Collapse
|
258
|
Liu L, Zhou W, Cheng CT, Ren X, Somlo G, Fong MY, Chin AR, Li H, Yu Y, Xu Y, O'Connor STF, O'Connor TR, Ann DK, Stark JM, Wang SE. TGFβ induces "BRCAness" and sensitivity to PARP inhibition in breast cancer by regulating DNA-repair genes. Mol Cancer Res 2014; 12:1597-609. [PMID: 25103497 DOI: 10.1158/1541-7786.mcr-14-0201] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UNLABELLED Transforming growth factor beta (TGFβ) proteins are multitasking cytokines, in which high levels at tumor sites generally correlate with poor prognosis in human patients with cancer. Previously, it was reported that TGFβ downregulates the expression of ataxia telangiectasia-mutated (ATM) and mutS homolog 2 (MSH2) in breast cancer cells through an miRNA-mediated mechanism. In this study, expression of a panel of DNA-repair genes was examined, identifying breast cancer 1, early onset (BRCA1) as a target downregulated by TGFβ through the miR181 family. Correlations between the expression levels of TGFβ1 and the miR181/BRCA1 axis were observed in primary breast tumor specimens. By downregulating BRCA1, ATM, and MSH2, TGFβ orchestrates DNA damage response in certain breast cancer cells to induce a "BRCAness" phenotype, including impaired DNA-repair efficiency and synthetic lethality to the inhibition of poly (ADP-ribose) polymerase (PARP). Xenograft tumors with active TGFβ signaling exhibited resistance to the DNA-damaging agent doxorubicin but increased sensitivity to the PARP inhibitor ABT-888. Combination of doxorubicin with ABT-888 significantly improved the treatment efficacy in TGFβ-active tumors. Thus, TGFβ can induce "BRCAness" in certain breast cancers carrying wild-type BRCA genes and enhance the responsiveness to PARP inhibition, and the molecular mechanism behind this is characterized. IMPLICATIONS These findings enable better selection of patients with sporadic breast cancer for PARP interventions, which have exhibited beneficial effects in patients carrying BRCA mutations.
Collapse
Affiliation(s)
- Liang Liu
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, California. Department of Biotherapy and Key Laboratory of Cancer Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Weiying Zhou
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, California. Department of Pharmacology, College of Pharmacy, The Third Military Medical University, Chongqing, China
| | - Chun-Ting Cheng
- Department of Molecular Pharmacology, City of Hope Beckman Research Institute and Medical Center, Duarte, California. City of Hope Irell and Manella Graduate School of Biological Sciences, Duarte, California
| | - Xiubao Ren
- Department of Biotherapy and Key Laboratory of Cancer Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - George Somlo
- Department of Medical Oncology, City of Hope Beckman Research Institute and Medical Center, Duarte, California
| | - Miranda Y Fong
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, California
| | - Andrew R Chin
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, California. City of Hope Irell and Manella Graduate School of Biological Sciences, Duarte, California
| | - Hui Li
- Department of Biotherapy and Key Laboratory of Cancer Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yang Yu
- Department of Biotherapy and Key Laboratory of Cancer Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yang Xu
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, California
| | | | - Timothy R O'Connor
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, California
| | - David K Ann
- Department of Molecular Pharmacology, City of Hope Beckman Research Institute and Medical Center, Duarte, California
| | - Jeremy M Stark
- Department of Radiation Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, California
| | - Shizhen Emily Wang
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, California. Department of Biotherapy and Key Laboratory of Cancer Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
259
|
The role of chemokines in breast cancer pathology and its possible use as therapeutic targets. J Immunol Res 2014; 2014:849720. [PMID: 25165728 PMCID: PMC4139084 DOI: 10.1155/2014/849720] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/05/2014] [Indexed: 12/30/2022] Open
Abstract
Chemokines are small proteins that primarily regulate the traffic of leukocytes under homeostatic conditions and during specific immune responses. The chemokine-chemokine receptor system comprises almost 50 chemokines and approximately 20 chemokine receptors; thus, there is no unique ligand for each receptor and the binding of different chemokines to the same receptor might have disparate effects. Complicating the system further, these effects depend on the cellular milieu. In cancer, although chemokines are associated primarily with the generation of a protumoral microenvironment and organ-directed metastasis, they also mediate other phenomena related to disease progression, such as angiogenesis and even chemoresistance. Therefore, the chemokine system is becoming a target in cancer therapeutics. We review the emerging data and correlations between chemokines/chemokine receptors and breast cancer, their implications in cancer progression, and possible therapeutic strategies that exploit the chemokine system.
Collapse
|
260
|
Non-tumorigenic epithelial cells secrete MCP-1 and other cytokines that promote cell division in breast cancer cells by activating ERα via PI3K/Akt/mTOR signaling. Int J Biochem Cell Biol 2014; 53:281-94. [DOI: 10.1016/j.biocel.2014.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 05/09/2014] [Accepted: 05/19/2014] [Indexed: 01/19/2023]
|
261
|
Ernst M, Putoczki TL. Molecular Pathways: IL11 as a Tumor-Promoting Cytokine—Translational Implications for Cancers. Clin Cancer Res 2014; 20:5579-88. [DOI: 10.1158/1078-0432.ccr-13-2492] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
262
|
Systemic DNA damage accumulation under in vivo tumor growth can be inhibited by the antioxidant Tempol. Cancer Lett 2014; 353:248-57. [PMID: 25069035 DOI: 10.1016/j.canlet.2014.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 12/18/2022]
Abstract
Recently we found that mice bearing subcutaneous non-metastatic tumors exhibited elevated levels of two types of complex DNA damage, i.e., double-strand breaks and oxidatively-induced clustered DNA lesions in various tissues throughout the body, both adjacent to and distant from the tumor site. This DNA damage was dependent on CCL2, a cytokine involved in the recruitment and activation of macrophages, suggesting that this systemic DNA damage was mediated via tumor-induced chronic inflammatory responses involving cytokines, activation of macrophages, and consequent free radical production. If free radicals are involved, then a diet containing an antioxidant may decrease the distant DNA damage. Here we repeated our standard protocol in cohorts of two syngeneic tumor-bearing C57BL/6NCr mice that were on a Tempol-supplemented diet. We show that double-strand break and oxidatively-induced clustered DNA lesion levels were considerably decreased, about two- to three fold, in the majority of tissues studied from the tumor-bearing mice fed the antioxidant Tempol compared to the control tumor-bearing mice. Similar results were also observed in nude mice suggesting that the Tempol effects are independent of functioning adaptive immunity. This is the first in vivo study demonstrating the effect of a dietary antioxidant on abscopal DNA damage in tissues distant from a localized source of genotoxic stress. These findings may be important for understanding the mechanisms of genomic instability and carcinogenesis caused by chronic stress-induced systemic DNA damage and for developing preventative strategies.
Collapse
|
263
|
Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB. Sci Rep 2014; 4:5750. [PMID: 25034888 PMCID: PMC4102923 DOI: 10.1038/srep05750] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/03/2014] [Indexed: 02/08/2023] Open
Abstract
Growing evidence links tumor progression with chronic inflammatory processes and dysregulated activity of various immune cells. In this study, we demonstrate that various types of macrophages internalize microvesicles, called exosomes, secreted by breast cancer and non-cancerous cell lines. Although both types of exosomes targeted macrophages, only cancer-derived exosomes stimulated NF-κB activation in macrophages resulting in secretion of pro-inflammatory cytokines such as IL-6, TNFα, GCSF, and CCL2. In vivo mouse experiments confirmed that intravenously injected exosomes are efficiently internalized by macrophages in the lung and brain, which correlated with upregulation of inflammatory cytokines. In mice bearing xenografted human breast cancers, tumor-derived exosomes were internalized by macrophages in axillary lymph nodes thereby triggering expression of IL-6. Genetic ablation of Toll-like receptor 2 (TLR2) or MyD88, a critical signaling adaptor in the NF-κB pathway, completely abolished the effect of tumor-derived exosomes. In contrast, inhibition of TLR4 or endosomal TLRs (TLR3/7/8/9) failed to abrogate NF-κB activation by exosomes. We further found that palmitoylated proteins present on the surface of tumor-secreted exosomes contributed to NF-κB activation. Thus, our results highlight a novel mechanism used by breast cancer cells to induce pro-inflammatory activity of distant macrophages through circulating exosomal vesicles secreted during cancer progression.
Collapse
|
264
|
Boyle ST, Kochetkova M. Breast cancer stem cells and the immune system: promotion, evasion and therapy. J Mammary Gland Biol Neoplasia 2014; 19:203-11. [PMID: 24997735 DOI: 10.1007/s10911-014-9323-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells are believed to be a subset of heterogeneous tumour cells responsible for tumour initiation, growth, local invasion, and metastasis. In breast cancer, numerous factors have been implicated in regulation of cancer stem cells, but there is still a paucity of information regarding precise molecular and cellular mechanisms guiding their pathobiology. Components of both the adaptive and the innate immune system have been shown to play a crucial role in supporting breast cancer growth and spread, and recently some immune mediators, both molecules and cells, have been reported to influence breast cancer stem cell biology. This review summarises a small, pioneering body of evidence for the potentially important function of the "immuniche" in maintaining and supporting breast cancer stem cells.
Collapse
Affiliation(s)
- Sarah T Boyle
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | | |
Collapse
|
265
|
De Veirman K, Rao L, De Bruyne E, Menu E, Van Valckenborgh E, Van Riet I, Frassanito MA, Di Marzo L, Vacca A, Vanderkerken K. Cancer associated fibroblasts and tumor growth: focus on multiple myeloma. Cancers (Basel) 2014; 6:1363-81. [PMID: 24978438 PMCID: PMC4190545 DOI: 10.3390/cancers6031363] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/17/2014] [Accepted: 06/04/2014] [Indexed: 12/18/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease.
Collapse
Affiliation(s)
- Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium.
| | - Luigia Rao
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium.
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium.
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium.
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium.
| | - Ivan Van Riet
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium.
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari Medical School, Bari I-70124, Italy.
| | - Lucia Di Marzo
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Medical School, Bari I-70124, Italy.
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Medical School, Bari I-70124, Italy.
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium.
| |
Collapse
|
266
|
Bournazou E, Bromberg J. Targeting the tumor microenvironment: JAK-STAT3 signaling. JAKSTAT 2014; 2:e23828. [PMID: 24058812 PMCID: PMC3710325 DOI: 10.4161/jkst.23828] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/30/2013] [Indexed: 11/19/2022] Open
Abstract
Persistent JAK-STAT3 signaling is implicated in many aspects of tumorigenesis. Apart from its tumor-intrinsic effects, STAT3 also exerts tumor-extrinsic effects, supporting tumor survival and metastasis. These involve the regulation of paracrine cytokine signaling, alterations in metastatic sites rendering these permissive for the growth of cancer cells and subversion of host immune responses to create an immunosuppressive environment. Targeting this signaling pathway is considered a novel promising therapeutic approach, especially in the context of tumor immunity. In this article, we will review to what extent JAK-STAT3-targeted therapies affect the tumor microenvironment and whether the observed effects underlie responsiveness to therapy.
Collapse
Affiliation(s)
- Eirini Bournazou
- Department of Medicine; Memorial Sloan-Kettering Cancer Center (MSKCC); New York, NY USA
| | | |
Collapse
|
267
|
Abstract
Hayflick and Moorhead first described senescence in the late 1960's as a permanent growth arrest that primary cells underwent after a defined number of cellular divisions in culture. This observation gave rise to the hypothesis that cells contained an internal counting mechanism that limited cellular division and that this limit was an important barrier to cellular transformation. What began as an in vitro observation has led to an immense body of work that reaches into all fields of biology and is of particular interest in the areas of aging, tissue regeneration, and tumorigenesis. The initially simplistic view that senescence limits cellular division and contributes to aging while stymying tumorigenesis has now evolved into an important and complex biological process that has numerous caveats and often opposing effects on tumorigenesis. In this review, we limit our discussion to the complex role senescence plays in tumorigenesis. Throughout the review we attempt to draw many parallels to other systems including the role senescent cells play in the tumor microenvironment and their significant molecular and phenotypic similarities to cancer associated fibroblasts (CAFs).
Collapse
Affiliation(s)
- Elise Alspach
- Department of Cell Biology and Physiology; BRIGHT Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Yujie Fu
- Department of Cell Biology and Physiology, BRIGHT Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Sheila A Stewart
- Department of Cell Biology and Physiology, BRIGHT Institute, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
268
|
Microenvironment, oncoantigens, and antitumor vaccination: lessons learned from BALB-neuT mice. BIOMED RESEARCH INTERNATIONAL 2014; 2014:534969. [PMID: 25136593 PMCID: PMC4065702 DOI: 10.1155/2014/534969] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022]
Abstract
The tyrosine kinase human epidermal growth factor receptor 2 (HER2) gene is amplified in approximately 20% of human breast cancers and is associated with an aggressive clinical course and the early development of metastasis. Its crucial role in tumor growth and progression makes HER2 a prototypic oncoantigen, the targeting of which may be critical for the development of effective anticancer therapies. The setup of anti-HER2 targeting strategies has revolutionized the clinical outcome of HER2+ breast cancer. However, their initial success has been overshadowed by the onset of pharmacological resistance that renders them ineffective. Since the tumor microenvironment (TME) plays a crucial role in drug resistance, the design of more effective anticancer therapies should depend on the targeting of both cancer cells and their TME as a whole. In this review, starting from the successful know-how obtained with a HER2+ mouse model of mammary carcinogenesis, the BALB-neuT mice, we discuss the role of TME in mammary tumor development. Indeed, a deeper knowledge of antigens critical for cancer outbreak and progression and of the mechanisms that regulate the interplay between cancer and stromal cell populations could advise promising ways for the development of the best anticancer strategy.
Collapse
|
269
|
Moisan F, Francisco EB, Brozovic A, Duran GE, Wang YC, Chaturvedi S, Seetharam S, Snyder LA, Doshi P, Sikic BI. Enhancement of paclitaxel and carboplatin therapies by CCL2 blockade in ovarian cancers. Mol Oncol 2014; 8:1231-9. [PMID: 24816187 DOI: 10.1016/j.molonc.2014.03.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 11/27/2022] Open
Abstract
Ovarian cancer is associated with a leukocyte infiltrate and high levels of chemokines such as CCL2. We tested the hypothesis that CCL2 inhibition can enhance chemotherapy with carboplatin and paclitaxel. Elevated CCL2 expression was found in three non-MDR paclitaxel resistant ovarian cancer lines ES-2/TP, MES-OV/TP and OVCAR-3/TP, compared to parental cells. Mice xenografted with these cells were treated with the anti-human CCL2 antibody CNTO 888 and the anti-mouse MCP-1 antibody C1142, with and without paclitaxel or carboplatin. Our results show an additive effect of CCL2 blockade on the efficacy of paclitaxel and carboplatin. This therapeutic effect was largely due to inhibition of mouse stromal CCL2. We show that inhibition of CCL2 can enhance paclitaxel and carboplatin therapy of ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | - Yan C Wang
- Stanford University, Stanford, CA 94305-5151, USA
| | | | - Shobha Seetharam
- Janssen Research and Development, LLC, Spring House, PA 19477, USA
| | - Linda A Snyder
- Janssen Research and Development, LLC, Spring House, PA 19477, USA
| | - Parul Doshi
- Janssen Research and Development, LLC, Spring House, PA 19477, USA
| | | |
Collapse
|
270
|
Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, Yu Y, Chow A, O'Connor STF, Chin AR, Yen Y, Wang Y, Marcusson EG, Chu P, Wu J, Wu X, Li AX, Li Z, Gao H, Ren X, Boldin MP, Lin PC, Wang SE. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 2014; 25:501-15. [PMID: 24735924 PMCID: PMC4016197 DOI: 10.1016/j.ccr.2014.03.007] [Citation(s) in RCA: 1100] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/23/2013] [Accepted: 03/07/2014] [Indexed: 12/11/2022]
Abstract
Cancer-secreted microRNAs (miRNAs) are emerging mediators of cancer-host crosstalk. Here we show that miR-105, which is characteristically expressed and secreted by metastatic breast cancer cells, is a potent regulator of migration through targeting the tight junction protein ZO-1. In endothelial monolayers, exosome-mediated transfer of cancer-secreted miR-105 efficiently destroys tight junctions and the integrity of these natural barriers against metastasis. Overexpression of miR-105 in nonmetastatic cancer cells induces metastasis and vascular permeability in distant organs, whereas inhibition of miR-105 in highly metastatic tumors alleviates these effects. miR-105 can be detected in the circulation at the premetastatic stage, and its levels in the blood and tumor are associated with ZO-1 expression and metastatic progression in early-stage breast cancer.
Collapse
Affiliation(s)
- Weiying Zhou
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA; Department of Pharmacology, College of Pharmacy, The Third Military Medical University, Chongqing, 400038, China
| | - Miranda Y Fong
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Yongfen Min
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - George Somlo
- Department of Medical Oncology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Liang Liu
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA; Department of Biotherapy and Key Laboratory of Cancer Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Melanie R Palomares
- Department of Medical Oncology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA; Department of Population Sciences, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Yang Yu
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA; Department of Biotherapy and Key Laboratory of Cancer Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Amy Chow
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | | | - Andrew R Chin
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA; City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, CA 91010, USA
| | - Yun Yen
- Department of Molecular Pharmacology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA; Core of Translational Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Yafan Wang
- Core of Translational Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Eric G Marcusson
- Oncology and Basic Mechanisms, Regulus Therapeutics, San Diego, CA 92121, USA
| | - Peiguo Chu
- Department of Pathology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Jun Wu
- Department of Comparative Medicine, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Xiwei Wu
- Core of Integrative Genomics, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Arthur Xuejun Li
- Department of Information Science, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Zhuo Li
- Core of Electron Microscopy, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Hanlin Gao
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA; Core of Integrative Genomics, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Xiubao Ren
- Department of Biotherapy and Key Laboratory of Cancer Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Mark P Boldin
- Department of Molecular and Cellular Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | | | - Shizhen Emily Wang
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
271
|
Azizidoost S, Bavarsad MS, Bavarsad MS, Shahrabi S, Jaseb K, Rahim F, Shahjahani M, Saba F, Ghorbani M, Saki N. The role of notch signaling in bone marrow niche. Hematology 2014; 20:93-103. [DOI: 10.1179/1607845414y.0000000167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shirin Azizidoost
- Health Research InstituteResearch Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahsa Shanaki Bavarsad
- Health Research InstituteResearch Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and HematologyFaculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Kaveh Jaseb
- Health Research InstituteResearch Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Health Research InstituteHearing Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shahjahani
- Department of HematologySchool of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fakhredin Saba
- Department of HematologySchool of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdi Ghorbani
- Department of Laboratory ScienceParamedical Faculty, AJA University of Medical Sciences, Tehran, Iran
| | - Najmaldin Saki
- Health Research InstituteResearch Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
272
|
The Multifaceted Roles of STAT3 Signaling in the Progression of Prostate Cancer. Cancers (Basel) 2014; 6:829-59. [PMID: 24722453 PMCID: PMC4074806 DOI: 10.3390/cancers6020829] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023] Open
Abstract
The signal transducer and activator of transcription (STAT)3 governs essential functions of epithelial and hematopoietic cells that are often dysregulated in cancer. While the role for STAT3 in promoting the progression of many solid and hematopoietic malignancies is well established, this review will focus on the importance of STAT3 in prostate cancer progression to the incurable metastatic castration-resistant prostate cancer (mCRPC). Indeed, STAT3 integrates different signaling pathways involved in the reactivation of androgen receptor pathway, stem like cells and the epithelial to mesenchymal transition that drive progression to mCRPC. As equally important, STAT3 regulates interactions between tumor cells and the microenvironment as well as immune cell activation. This makes it a major factor in facilitating prostate cancer escape from detection of the immune response, promoting an immunosuppressive environment that allows growth and metastasis. Based on the multifaceted nature of STAT3 signaling in the progression to mCRPC, the promise of STAT3 as a therapeutic target to prevent prostate cancer progression and the variety of STAT3 inhibitors used in cancer therapies is discussed.
Collapse
|
273
|
Kehlen A, Greither T, Wach S, Nolte E, Kappler M, Bache M, Holzhausen HJ, Lautenschläger C, Göbel S, Würl P, Immel UD, Agaimy A, Wullich B, Taubert H. High coexpression of CCL2 and CX3CL1 is gender-specifically associated with good prognosis in soft tissue sarcoma patients. Int J Cancer 2014; 135:2096-106. [PMID: 24676787 DOI: 10.1002/ijc.28867] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/13/2014] [Accepted: 01/27/2014] [Indexed: 12/14/2022]
Abstract
Chemokines are involved in both the negative and positive regulation of inflammatory processes, angiogenesis and cancer/cancer stem cell proliferation as well as the chemoattraction of tumor cells to metastatic sites. The aim of this study was to measure the mRNA expression levels of three chemokines, CCL2, CCL7 and CX3CL1, in soft tissue sarcomas (STSs) and to assess the correlations between these levels as well as their correlations with clinicopathological data and the disease-specific survival of STS patients. The mRNA levels of CCL2, CCL7 and CX3CL1 were analyzed in tumor tissues from 126 STS patients using qPCR. Low mRNA expression of CCL2 and CX3CL1 was significantly correlated with a worse prognosis (RR = 1.98; p = 0.019 and RR = 2.10; p = 0.014; multivariate Cox's regression analysis). A combined low expression of CCL2 and CX3CL1 was associated with a significantly increased risk of tumor-related death as compared to patients with high expression levels of both chemokines (RR = 3.08; p = 0.003). A gender-specific multivariate analysis revealed that female STS patients with low CX3CL1 mRNA expression had a 3.46-fold increased risk of death (p = 0.004). Low expression of both CCL2 and CX3CL1 mRNAs resulted in an additive 5.37-fold increased risk of tumor-related death (p = 0.003) as compared to those with high expression of both parameters in female patients. In conclusion, this is the first study to show a significant correlation between combined low expression of CCL2 and CX3CL1 and a poor prognosis for STS patients, particularly in female patients.
Collapse
Affiliation(s)
- Astrid Kehlen
- Institute of Physiological Chemistry, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Fang WB, Yao M, Cheng N. Priming cancer cells for drug resistance: role of the fibroblast niche. ACTA ACUST UNITED AC 2014; 9:114-126. [PMID: 25045348 DOI: 10.1007/s11515-014-1300-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional and targeted chemotherapies remain integral strategies to treat solid tumors. Despite the large number of anti-cancer drugs available, chemotherapy does not completely eradicate disease. Disease recurrence and the growth of drug resistant tumors remain significant problems in anti-cancer treatment. To develop more effective treatment strategies, it is important to understand the underlying cellular and molecular mechanisms of drug resistance. It is generally accepted that cancer cells do not function alone, but evolve through interactions with the surrounding tumor microenvironment. As key cellular components of the tumor microenvironment, fibroblasts regulate the growth and progression of many solid tumors. Emerging studies demonstrate that fibroblasts secrete a multitude of factors that enable cancer cells to become drug resistant. This review will explore how fibroblast secretion of soluble factors act on cancer cells to enhance cancer cell survival and cancer stem cell renewal, contributing to the development of drug resistant cancer.
Collapse
Affiliation(s)
- Wei Bin Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Min Yao
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nikki Cheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
275
|
Augsten M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol 2014; 4:62. [PMID: 24734219 PMCID: PMC3973916 DOI: 10.3389/fonc.2014.00062] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/14/2014] [Indexed: 01/02/2023] Open
Abstract
Tumor- or cancer-associated fibroblasts (CAFs) are one of the most abundant stromal cell types in different carcinomas and comprise a heterogeneous cell population. Classically, CAFs are assigned with pro-tumorigenic effects stimulating tumor growth and progression. More recent studies demonstrated also tumor-inhibitory effects of CAFs suggesting that tumor-residing fibroblasts exhibit a similar degree of plasticity as other stromal cell types. Reciprocal interactions with the tumor milieu and different sources of origin are emerging as two important factors underlying CAF heterogeneity. This review highlights recent advances in our understanding of CAF biology and proposes to expand the term of cellular “polarization,” previously introduced to describe different activation states of various immune cells, onto CAFs to reflect their phenotypic diversity.
Collapse
Affiliation(s)
- Martin Augsten
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
276
|
HiJAK'd Signaling; the STAT3 Paradox in Senescence and Cancer Progression. Cancers (Basel) 2014; 6:741-55. [PMID: 24675570 PMCID: PMC4074801 DOI: 10.3390/cancers6020741] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 12/11/2022] Open
Abstract
Clinical and epidemiological data have associated chronic inflammation with cancer progression. Most tumors show evidence of infiltrating immune and inflammatory cells, and chronic inflammatory disorders are known to increase the overall risk of cancer development. While immune cells are often observed in early hyperplastic lesions in vivo, there remains debate over whether these immune cells and the cytokines they produce in the developing hyperplastic microenvironment act to inhibit or facilitate tumor development. The interleukin-6 (IL-6) family of cytokines, which includes IL-6 and oncostatin M (OSM), among others (LIF, CT-1, CNTF, and CLC), are secreted by immune cells, stromal cells, and epithelial cells, and regulate diverse biological processes. Each of the IL-6 family cytokines signals through a distinct receptor complex, yet each receptor complex uses a shared gp130 subunit, which is critical for signal transduction following cytokine binding. Activation of gp130 results in the activation of Signal Transducer and Activator of Transcription 3 (STAT3), and the Mitogen-Activated Protein Kinase (MAPK) and Phosphatidylinositol 3-Kinase (PI3K) signaling cascades. Tumor suppressive signaling can often be observed in normal cells following prolonged STAT3 activation. However, there is mounting evidence that the IL-6 family cytokines can contribute to later stages of tumor progression in many ways. Here we will review how the microenvironmental IL-6 family cytokine OSM influences each stage of the transformation process. We discuss the intrinsic adaptations a developing cancer cell must make in order to tolerate and circumvent OSM-mediated growth suppression, as well as the OSM effectors that are hijacked during tumor expansion and metastasis. We propose that combining current therapies with new ones that suppress the signals generated from the tumor microenvironment will significantly impact an oncologist’s ability to treat cancer.
Collapse
|
277
|
Park TS, Donnenberg VS, Donnenberg AD, Zambidis ET, Zimmerlin L. Dynamic Interactions Between Cancer Stem Cells And Their Stromal Partners. CURRENT PATHOBIOLOGY REPORTS 2014; 2:41-52. [PMID: 24660130 PMCID: PMC3956651 DOI: 10.1007/s40139-013-0036-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cancer stem cell (CSC) paradigm presumes the existence of self-renewing cancer cells capable of regenerating all tumor compartments and exhibiting stem cell-associated phenotypes. Recent interpretations of the CSC hypothesis envision stemness as a dynamic trait of tumor-initiating cells rather than a defined and unique cell type. Bidirectional crosstalk between the tumor microenvironment and the cancer bulk is well described in the literature and the tumor-associated stroma, vasculature and immune infiltrate have all been implicated as direct contributors to tumor development. These non-neoplastic cell types have also been shown to organize specific niches within the tumor bulk where they can control the intra-tumor CSC content and alter the fate of CSCs and tumor progenitors during tumorigenesis to acquire phenotypic features for invasion, metastasis and dormancy. Despite the complexity of the tumor-stroma interactome, novel therapeutic approaches envision combining tumor-ablative treatment with manipulation of the tumor microenvironment. We will review the currently available literature that provides clues about the complex cellular network that regulate the CSC phenotype and its niches during tumor progression.
Collapse
Affiliation(s)
- Tea Soon Park
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Vera S. Donnenberg
- University of Pittsburgh School of Medicine, Department of Cardiothoracic Surgery, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Albert D. Donnenberg
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Hematology/Oncology, Pittsburgh, Pennsylvania, United States of America
| | - Elias T. Zambidis
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Ludovic Zimmerlin
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| |
Collapse
|
278
|
Sims-Mourtada J, Niamat RA, Samuel S, Eskridge C, Kmiec EB. Enrichment of breast cancer stem-like cells by growth on electrospun polycaprolactone-chitosan nanofiber scaffolds. Int J Nanomedicine 2014; 9:995-1003. [PMID: 24570583 PMCID: PMC3933718 DOI: 10.2147/ijn.s55720] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A small population of highly tumorigenic breast cancer cells has recently been identified. These cells, known as breast-cancer stem-like cells (BCSC), express markers similar to mammary stem cells, and are highly resistant to chemotherapy. Currently, study of BCSC is hampered by the inability to propagate these cells in tissue culture without inducing differentiation. Recently, it was reported that proliferation and differentiation can be modified by culturing cells on electrospun nanofibers. Here, we sought to characterize the chemoresistance and stem-like properties of breast cancer cell lines grown on nanofiber scaffolds. Cells cultured on three-dimensional templates of electrospun poly(ε-caprolactone)-chitosan nanofibers showed increases in mammary stem cell markers and in sphere-forming ability compared with cells cultured on polystyrene culture dishes. There was no increase in proliferation of stem cell populations, indicating that culture on nanofibers may inhibit differentiation of BCSC. The increase in stemness was accompanied by increases in resistance to docetaxel and doxorubicin. These data indicate that BCSC populations are enriched in cells cultured on electrospun poly(ε-caprolactone)-chitosan nanofibers, scaffolds that may provide a useful system to study BCSC and their response to anticancer drug treatment.
Collapse
Affiliation(s)
- Jennifer Sims-Mourtada
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc, Newark
| | - Rohina A Niamat
- Department of Chemistry, Delaware State University, Dover, DE, USA
| | - Shani Samuel
- Department of Chemistry, Delaware State University, Dover, DE, USA
| | - Chris Eskridge
- Department of Chemistry, Delaware State University, Dover, DE, USA
| | - Eric B Kmiec
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc, Newark ; Department of Chemistry, Delaware State University, Dover, DE, USA
| |
Collapse
|
279
|
Li X, Xu Q, Wu Y, Li J, Tang D, Han L, Fan Q. A CCL2/ROS autoregulation loop is critical for cancer-associated fibroblasts-enhanced tumor growth of oral squamous cell carcinoma. Carcinogenesis 2014; 35:1362-70. [DOI: 10.1093/carcin/bgu046] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
280
|
Lin WJ, Izumi K. Androgen receptor, ccl2, and epithelial-mesenchymal transition: A dangerous affair in the tumor microenvironment. Oncoimmunology 2014; 3:e27871. [PMID: 25339999 PMCID: PMC4203538 DOI: 10.4161/onci.27871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/15/2014] [Indexed: 01/19/2023] Open
Abstract
High levels of chemokine (C-C motif) ligand 2 (CCL2) promote the metastatic dissemination of prostate cancer by recruiting macrophages to neoplastic lesions. We have recently discovered that inhibiting the androgen receptor (AR) in prostate cancer cells or tumor-infiltrating macrophages results in the upregulation CCL2 and promotes disease progression by activating signal transducer and activator of transcription 3 (STAT3) and by favoring the epithelial-to-mesenchymal transition. Our results indicate that the sole inhibition of AR as a therapeutic intervention against prostate cancer is intrinsically destined to failed.
Collapse
Affiliation(s)
- Wen-Jye Lin
- Immunology Research Center; National Health Research Institutes; Zhunan, Taiwan
| | - Kouji Izumi
- Department of Integrative Cancer Therapy and Urology; Kanazawa University; Kanazawa, Japan
| |
Collapse
|
281
|
Immunology of cancer stem cells in solid tumours. A review. Eur J Cancer 2014; 50:649-55. [DOI: 10.1016/j.ejca.2013.11.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/12/2013] [Indexed: 12/13/2022]
|
282
|
Effect of glycyrrhizin on pseudomonal skin infections in human-mouse chimeras. PLoS One 2014; 9:e83747. [PMID: 24497916 PMCID: PMC3907411 DOI: 10.1371/journal.pone.0083747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 11/07/2013] [Indexed: 01/12/2023] Open
Abstract
In our previous studies, peripheral blood lineage(-)CD34(+)CD31(+) cells (CD31(+) IMC) appearing in severely burned patients have been characterized as inhibitor cells for the production of β-defensins (HBDs) by human epidermal keratinocytes (NHEK). In this study, the effect of glycyrrhizin on pseudomonal skin infections was studied in a chimera model of thermal injury. Two different chimera models were utilized. Patient chimeras were created in murine antimicrobial peptide-depleted NOD-SCID IL-2rγ(null) mice that were grafted with unburned skin tissues of severely burned patients and inoculated with the same patient peripheral blood CD31(+) IMC. Patient chimera substitutes were created in the same mice that were grafted with NHEK and inoculated with experimentally induced CD31(+) IMC. In the results, both groups of chimeras treated with glycyrrhizin resisted a 20 LD50 dose of P. aeruginosa skin infection, while all chimeras in both groups treated with saline died within 3 days of the infection. Human antimicrobial peptides were detected from the grafted site tissues of both groups of chimeras treated with glycyrrhizin, while the peptides were not detected in the same area tissues of controls. HBD-1 was produced by keratinocytes in transwell-cultures performed with CD31(+) IMC and glycyrrhizin. Also, inhibitors (IL-10 and CCL2) of HBD-1 production by keratinocytes were not detected in cultures of patient CD31(+) IMC treated with glycyrrhizin. These results indicate that sepsis stemming from pseudomonal grafted site infections in a chimera model of burn injury is controllable by glycyrrhizin. Impaired antimicrobial peptide production at the infection site of severely burned patients may be restored after treatment with glycyrrhizin.
Collapse
|
283
|
Resemann HK, Watson CJ, Lloyd-Lewis B. The Stat3 paradox: a killer and an oncogene. Mol Cell Endocrinol 2014; 382:603-611. [PMID: 23827176 DOI: 10.1016/j.mce.2013.06.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 06/21/2013] [Indexed: 01/05/2023]
Abstract
Stat proteins regulate many aspects of mammary gland development, including the profound changes that occur during pregnancy, lactation and involution. Stat3 induces transcriptional activation of genes involved in the inflammatory response, and in seemingly contradictory cellular events such as apoptosis, differentiation and stem cell maintenance. While Stat3 signalling during mammary gland involution induces epithelial cell death, aberrant Stat3 activation is widely implicated in breast tumourigenesis. Specific cytokines may initiate either a Stat3-driven proliferative or death response depending on the cell-type and cell-context specific availability of particular combinations of signals and receptors. The paradoxical functions of Stat3 may also be due to the degree and extent of activation in different circumstances, in addition to paracrine signalling between mammary epithelial cells and the surrounding microenvironment. Deciphering the enigmatic nature of Stat3 in the mammary gland may benefit future therapeutic strategies for inducing cell death in breast tumours.
Collapse
Affiliation(s)
- Henrike K Resemann
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Bethan Lloyd-Lewis
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
284
|
Haricharan S, Li Y. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis. Mol Cell Endocrinol 2014; 382:560-569. [PMID: 23541951 PMCID: PMC3748257 DOI: 10.1016/j.mce.2013.03.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/18/2013] [Indexed: 01/10/2023]
Abstract
The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programmed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- S Haricharan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Y Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
285
|
Abstract
There is increasing evidence for the cancer stem cell model in which a subset of cancer cells possessing stem cell properties, referred to as tumor-initiating or cancer stem-like cells (CSCs), play crucial roles in multiple aspects of cancer. Recent studies have started to characterize the crucial role of various cytokines in the tumor microenvironment in regulating the fate of CSCs. In this review, we summarized some of the latest findings on cytokines that drive breast cancer stemness and their mechanisms of action. These cytokines, including IL-6, IL-8, CCL2 and TGF-β, are frequently elevated in breast tumors and may hold promise as potential therapeutic targets to eradicate CSCs. In combination with conventional chemotherapy and radiotherapy targeting rapidly proliferating cancer cells, intervention of the cancer stemness-driving cytokines may achieve additional benefits for breast cancer patients by suppressing CSC-promoted cancer progression, recurrence, and drug refractoriness.
Collapse
Affiliation(s)
- Andrew R Chin
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, CA 91010, USA
| | - Shizhen Emily Wang
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
286
|
|
287
|
Mao Y, Keller ET, Garfield DH, Shen K, Wang J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 2013; 32:303-15. [PMID: 23114846 DOI: 10.1007/s10555-012-9415-3] [Citation(s) in RCA: 497] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a systemic disease encompassing multiple components of both tumor cells themselves and host stromal cells. It is now clear that stromal cells in the tumor microenvironment play an important role in cancer development. Molecular events through which reactive stromal cells affect cancer cells can be defined so that biomarkers and therapeutic targets can be identified. Cancer-associated fibroblasts (CAFs) make up the bulk of cancer stroma and affect the tumor microenvironment such that they promote cancer initiation, angiogenesis, invasion, and metastasis. In breast cancer, CAFs not only promote tumor progression but also induce therapeutic resistance. Accordingly, targeting CAFs provides a novel way to control tumors with therapeutic resistance. This review summarizes the current understandings of tumor stroma in breast cancer with a particular emphasis on the role of CAFs and the therapeutic implications of CAFs. In addition, the effects of other stromal components such as endothelial cells, macrophages, and adipocytes in breast cancer are also discussed. Finally, we describe the biologic markers to categorize patients into a specific and confirmed subtype for personalized treatment.
Collapse
Affiliation(s)
- Yan Mao
- Shanghai Ruijin Hospital, Comprehensive Breast Health Center, Shanghai, China
| | | | | | | | | |
Collapse
|
288
|
Rajaram M, Li J, Egeblad M, Powers RS. System-wide analysis reveals a complex network of tumor-fibroblast interactions involved in tumorigenicity. PLoS Genet 2013; 9:e1003789. [PMID: 24068959 PMCID: PMC3778011 DOI: 10.1371/journal.pgen.1003789] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/26/2013] [Indexed: 12/21/2022] Open
Abstract
Many fibroblast-secreted proteins promote tumorigenicity, and several factors secreted by cancer cells have in turn been proposed to induce these proteins. It is not clear whether there are single dominant pathways underlying these interactions or whether they involve multiple pathways acting in parallel. Here, we identified 42 fibroblast-secreted factors induced by breast cancer cells using comparative genomic analysis. To determine what fraction was active in promoting tumorigenicity, we chose five representative fibroblast-secreted factors for in vivo analysis. We found that the majority (three out of five) played equally major roles in promoting tumorigenicity, and intriguingly, each one had distinct effects on the tumor microenvironment. Specifically, fibroblast-secreted amphiregulin promoted breast cancer cell survival, whereas the chemokine CCL7 stimulated tumor cell proliferation while CCL2 promoted innate immune cell infiltration and angiogenesis. The other two factors tested had minor (CCL8) or minimally (STC1) significant effects on the ability of fibroblasts to promote tumor growth. The importance of parallel interactions between fibroblasts and cancer cells was tested by simultaneously targeting fibroblast-secreted amphiregulin and the CCL7 receptor on cancer cells, and this was significantly more efficacious than blocking either pathway alone. We further explored the concept of parallel interactions by testing the extent to which induction of critical fibroblast-secreted proteins could be achieved by single, previously identified, factors produced by breast cancer cells. We found that although single factors could induce a subset of genes, even combinations of factors failed to induce the full repertoire of functionally important fibroblast-secreted proteins. Together, these results delineate a complex network of tumor-fibroblast interactions that act in parallel to promote tumorigenicity and suggest that effective anti-stromal therapeutic strategies will need to be multi-targeted.
Collapse
Affiliation(s)
- Megha Rajaram
- Cancer Genome Center, Cold Spring Harbor Laboratory, Woodbury, New York, United States of America
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | - Jinyu Li
- Cancer Genome Center, Cold Spring Harbor Laboratory, Woodbury, New York, United States of America
| | - Mikala Egeblad
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, United States of America
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - R. Scott Powers
- Cancer Genome Center, Cold Spring Harbor Laboratory, Woodbury, New York, United States of America
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
289
|
Sprung CN, Ivashkevich A, Forrester HB, Redon CE, Georgakilas A, Martin OA. Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects. Cancer Lett 2013; 356:72-81. [PMID: 24041866 DOI: 10.1016/j.canlet.2013.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 12/25/2022]
Abstract
A spectrum of radiation-induced non-targeted effects has been reported during the last two decades since Nagasawa and Little first described a phenomenon in cultured cells that was later called the "bystander effect". These non-targeted effects include radiotherapy-related abscopal effects, where changes in organs or tissues occur distant from the irradiated region. The spectrum of non-targeted effects continue to broaden over time and now embrace many types of exogenous and endogenous stressors that induce a systemic genotoxic response including a widely studied tumor microenvironment. Here we discuss processes and factors leading to DNA damage induction in non-targeted cells and tissues and highlight similarities in the regulation of systemic effects caused by different stressors.
Collapse
Affiliation(s)
- Carl N Sprung
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| | - Alesia Ivashkevich
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Helen B Forrester
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Christophe E Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alexandros Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, Athens, Greece
| | - Olga A Martin
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre and the University of Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
290
|
Izumi K, Fang LY, Mizokami A, Namiki M, Li L, Lin WJ, Chang C. Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Mol Med 2013; 5:1383-401. [PMID: 23982944 PMCID: PMC3799493 DOI: 10.1002/emmm.201202367] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 06/21/2013] [Accepted: 06/26/2013] [Indexed: 12/22/2022] Open
Abstract
Increased CCL2 expression in prostate cancer (PCa) cells enhanced metastasis via macrophage recruitment. However, its linkage to androgen receptor (AR)-mediated PCa progression remains unclear. Here, we identified a previously unrecognized regulation: targeting AR with siRNA in PCa cells increased macrophage recruitment via CCL2 up-regulation, which might then result in enhancing PCa invasiveness. Molecular mechanism dissection revealed that targeting PCa AR with siRNA promoted PCa cell migration/invasion via CCL2-dependent STAT3 activation and epithelial–mesenchymal transition (EMT) pathways. Importantly, pharmacologic interruption of the CCL2/CCR2-STAT3 axis suppressed EMT and PCa cell migration, providing a new mechanism linking CCL2 and EMT. Simultaneously targeting PCa AR with siRNA and the CCL2/CCR2-STAT3 axis resulted in better suppression of PCa growth and metastasis in a xenograft PCa mouse model. Human PCa tissue microarray analysis suggests that increased CCL2 expression may be potentially associated with poor prognosis of PCa patients. Together, these results may provide a novel therapeutic approach to better battle PCa progression and metastasis at the castration resistant stage via the combination of targeting AR with siRNA and anti-CCL2/CCR2-STAT3 signalling.
Collapse
Affiliation(s)
- Kouji Izumi
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | | | |
Collapse
|
291
|
Liu R, Li J, Xie K, Zhang T, Lei Y, Chen Y, Zhang L, Huang K, Wang K, Wu H, Wu M, Nice EC, Huang C, Wei Y. FGFR4 promotes stroma-induced epithelial-to-mesenchymal transition in colorectal cancer. Cancer Res 2013; 73:5926-35. [PMID: 23943801 DOI: 10.1158/0008-5472.can-12-4718] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tumor cells evolve by interacting with the local microenvironment; however, the tumor-stroma interactions that govern tumor metastasis are poorly understood. In this study, proteomic analyses reveal that coculture with tumor-associated fibroblasts (TAF) induces significant overexpression of FGFR4, but not other FGFRs, in colorectal cancer cell lines. Mechanistic study shows that FGFR4 plays crucial roles in TAF-induced epithelial-to-mesenchymal transition (EMT) in colorectal cancer cell lines. Accumulated FGFR4 in cell membrane phosphorylates β-catenin, leading to translocation of β-catenin into the nucleus. Further, TAF-derived CCL2 and its downstream transcription factor, Ets-1, are prerequisites for TAF-induced FGFR4 upregulation. Furthermore, FGFR4-associated pathways are shown to be preferentially activated in colorectal tumor samples, and direct tumor metastasis in a mouse metastasis model. Our study shows a pivotal role of FGFR4 in tumor-stroma interactions during colorectal cancer metastasis, and suggests novel therapeutic opportunities for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Rui Liu
- Authors' Affiliations: The State Key Laboratory of Biotherapy and Cancer Center, and Department of Hepatobiliary Pancreatic Surgery, West China Hospital, Sichuan University; The School of Biomedical Sciences, Chengdu Medical College; Department of Oncology, Sichuan Provincial People's Hospital, Chengdu, People's Republic of China; Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota; and Monash University, Department of Biochemistry and Molecular Biology, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Borsig L, Wolf MJ, Roblek M, Lorentzen A, Heikenwalder M. Inflammatory chemokines and metastasis--tracing the accessory. Oncogene 2013; 33:3217-24. [PMID: 23851506 DOI: 10.1038/onc.2013.272] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 12/20/2022]
Abstract
The tumor microenvironment consists of stromal cells and leukocytes that contribute to cancer progression. Cross-talk between tumor cells and their microenvironment is facilitated by a variety of soluble factors, including growth factors and cytokines such as chemokines. Due to a wide expression of chemokine receptors on cells in the tumor microenvironment, including tumor cells, chemokines affect various processes such as leukocyte recruitment, angiogenesis, tumor cell survival, tumor cell adhesion, proliferation, vascular permeability, immune suppression, invasion and metastasis. Inflammatory chemokines are instrumental players in cancer-related inflammation and significantly contribute to numerous steps during metastasis. Recruitment of myeloid-derived cells to metastatic sites is mainly mediated by the inflammatory chemokines CCL2 and CCL5. Tumor cell homing and extravasation from the circulation to distant organs are also regulated by inflammatory chemokines. Recent experimental evidence demonstrated that besides leukocyte recruitment, tumor cell-derived CCL2 directly activated endothelial cells and together with monocytes facilitated tumor cell extravasation, in a CCL2- and CCL5-dependent manner. Furthermore, CX3CL1 expression in the bone facilitated metastasis of CX3CR1 expressing tumor cells to this site. Current findings in preclinical models strongly suggest that inflammatory chemokines have an important role during metastasis and targeting of the chemokine axis might have a therapeutic potential.
Collapse
Affiliation(s)
- L Borsig
- Institute of Physiology, University of Zurich and Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - M J Wolf
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - M Roblek
- Institute of Physiology, University of Zurich and Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - A Lorentzen
- Institute of Virology, Technische Universität München/Helmholtz Zentrum Munich, Munich, Germany
| | - M Heikenwalder
- Institute of Virology, Technische Universität München/Helmholtz Zentrum Munich, Munich, Germany
| |
Collapse
|
293
|
Yu SD, Liu FY, Wang QR. Notch inhibitor: a promising carcinoma radiosensitizer. Asian Pac J Cancer Prev 2013; 13:5345-51. [PMID: 23317182 DOI: 10.7314/apjcp.2012.13.11.5345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Radiotherapy is an important part of modern cancer management for many malignancies, and enhancing the radiosensitivity of tumor cells is critical for effective cancer therapies. The Notch signaling pathway plays a key role in regulation of numerous fundamental cellular processes. Further, there is accumulating evidence that dysregulated Notch activity is involved in the genesis of many human cancers. As such, Notch inhibitors are attractive therapeutic agents, although as for other anticancer agents, they exhibit significant and potential side effects. Thus, Notch inhibitors may be best used in combination with other agents or therapy. Herein, we describe evidence supporting the use of Notch inhibitors as novel and potent radiosensitizers in cancer therapy.
Collapse
Affiliation(s)
- Shu-Dong Yu
- Department of Otolaryngology, Qianfoshan Hospital Affiliated to Shandong University, Shandong, China.
| | | | | |
Collapse
|
294
|
Yu YRA, Mao L, Piantadosi CA, Gunn MD. CCR2 deficiency, dysregulation of Notch signaling, and spontaneous pulmonary arterial hypertension. Am J Respir Cell Mol Biol 2013; 48:647-54. [PMID: 23492191 DOI: 10.1165/rcmb.2012-0182oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In pulmonary arterial hypertension (PAH), there is overexpression of the chemokine, C-C chemokine ligand type 2 (CCL2), and infiltration of myeloid cells into the pulmonary vasculature. Inhibition of CCL2 in animals decreases PAH, suggesting that the CCL2 receptor (CCR2) plays a role in PAH development. To test this hypothesis, we exposed wild-type (WT) and CCR2-deficient (Ccr2(-/-)) mice to chronic hypobaric hypoxia to induce PAH. After hypoxic stress, Ccr2(-/-) mice displayed a more severe PAH phenotype, as demonstrated by increased right ventricular (RV) systolic pressures, RV hypertrophy, and tachycardia relative to WT mice. However, these mice also exhibited increased RV systolic pressures and increased pulmonary artery muscularization under normoxic conditions. Moreover, Ccr2(-/-) mice displayed decreased pulmonary vascular branching at 3 weeks of age and increased vascular muscularization at birth, suggesting that an abnormality in pulmonary vascular development leads to spontaneous PAH in these animals. No significant differences in cytokine responses were observed between WT and Ccr2(-/-) mice during either normoxia or hypoxia. However, Ccr2(-/-) mice displayed increased Notch-3 signaling and dysregulated Notch ligand expression, suggesting a possible cause for their abnormal pulmonary vascular development. Our findings imply that CCR2 does not directly contribute to the development of PAH, but does play a previously unrecognized role in pulmonary vasculature development and remodeling wherein the absence of CCR2 results in spontaneous PAH, most likely via dysregulation of Notch signaling. Our results demonstrate that CCR2 has impacts beyond leukocyte recruitment, and is required for the proper expression of Notch signaling molecules.
Collapse
Affiliation(s)
- Yen-Rei A Yu
- Division of Pulmonary and Critical Care, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
295
|
Polanska UM, Orimo A. Carcinoma-associated fibroblasts: non-neoplastic tumour-promoting mesenchymal cells. J Cell Physiol 2013; 228:1651-7. [PMID: 23460038 DOI: 10.1002/jcp.24347] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 12/11/2022]
Abstract
Cancerous stroma coevolves alongside tumour progression, thereby promoting the malignant conversion of epithelial carcinoma cells. To date, an abundance of data have supported crucial roles of the tumour microenvironment (TME) in providing cancer cells with proliferative, migratory, survival and invasive propensities favouring the processes of tumourigenesis. The cancerous reactive stroma is frequently populated by a large number of myofibroblasts (MFs), which are activated, non-transformed fibroblasts expressing α-smooth muscle actin (α-SMA). MFs together with non-MF cells present in the tumour-associated stroma are collectively referred to as carcinoma-associated fibroblasts (CAFs), one of the major stromal cell types recognised in various human carcinomas. Recruitment of fibroblasts and/or their progenitors to a tumour mass and their subsequent transdifferentiation into MFs, as well as ongoing maintenance of their activated state, are believed to be essential processes facilitating tumour progression. However, the complex networks of signalling pathways mediating the phenotypic conversion into CAFs, as well as those underlying their tumour-promoting interactions with other tumour-constituting cells, have yet to be fully explored. Histopathological confirmation of the presence of large numbers of CAF MFs within TME and their altered gene expression profiles are known to be associated with disease progression and to serve as independent negative prognostic factors for a wide range of tumour types. In this review, we examine the current evidence shedding light on the emerging roles of tumour-promoting CAFs, cells that are pivotal for epithelial cancer development and progression, and discuss the therapeutic potential of targeting these cells.
Collapse
Affiliation(s)
- Urszula M Polanska
- CR-UK Stromal-Tumour Interaction Group, Paterson Institute for Cancer Research, The University of Manchester, Manchester, UK.
| | | |
Collapse
|
296
|
Abstract
Cancer is a systemic disease encompassing multiple components of both tumor cells themselves and host stromal cells. It is now clear that stromal cells in the tumor microenvironment play an important role in cancer development. Molecular events through which reactive stromal cells affect cancer cells can be defined so that biomarkers and therapeutic targets can be identified. Cancer-associated fibroblasts (CAFs) make up the bulk of cancer stroma and affect the tumor microenvironment such that they promote cancer initiation, angiogenesis, invasion, and metastasis. In breast cancer, CAFs not only promote tumor progression but also induce therapeutic resistance. Accordingly, targeting CAFs provides a novel way to control tumors with therapeutic resistance. This review summarizes the current understandings of tumor stroma in breast cancer with a particular emphasis on the role of CAFs and the therapeutic implications of CAFs. In addition, the effects of other stromal components such as endothelial cells, macrophages, and adipocytes in breast cancer are also discussed. Finally, we describe the biologic markers to categorize patients into a specific and confirmed subtype for personalized treatment.
Collapse
Affiliation(s)
- Yan Mao
- Shanghai Ruijin Hospital, Comprehensive Breast Health Center, Shanghai, China
| | | | | | | | | |
Collapse
|
297
|
Wang H, Zhang L, Zhang IY, Chen X, Da Fonseca A, Wu S, Ren H, Badie S, Sadeghi S, Ouyang M, Warden CD, Badie B. S100B promotes glioma growth through chemoattraction of myeloid-derived macrophages. Clin Cancer Res 2013; 19:3764-75. [PMID: 23719262 DOI: 10.1158/1078-0432.ccr-12-3725] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE S100B is member of a multigenic family of Ca(2+)-binding proteins, which is overexpressed by gliomas. Recently, we showed that low concentrations of S100B attenuated microglia activation through the induction of Stat3. We hypothesized that overexpression of S100B in gliomas could promote tumor growth by modulating the activity of tumor-associated macrophages (TAM). EXPERIMENTAL DESIGN We stably transfected GL261 glioma cell lines with constructs that overexpressed (S100B(high)) or underexpressed (S100B(low)) S100B and compared their growth characteristics to intracranial wild-type (S100B(wt)) tumors. RESULTS Downregulation of S100B in gliomas had no impact on cell division in vitro but abrogated tumor growth in vivo. Interestingly, compared to S100B(low) tumors, S100B(wt) and S100B(high) intracranial gliomas exhibited higher infiltration of TAMs, stronger inflammatory cytokine expression, and increased vascularity. To identify the potential mechanisms involved, the expression of the S100B receptor, receptor for advanced glycation end products (RAGE), was evaluated in gliomas. Although S100B expression induced RAGE in vivo, RAGE ablation in mice did not significantly inhibit TAM infiltration into gliomas, suggesting that other pathways were involved in this process. To evaluate other mechanisms responsible for TAM chemoattraction, we then examined chemokine pathways and found that C-C motif ligand 2 (CCL2) was upregulated in S100B(high) tumors. Furthermore, analysis of The Cancer Genome Atlas's glioma data bank showed a positive correlation between S100B and CCL2 expression in human proneural and neural glioma subtypes, supporting our finding. CONCLUSIONS These observations suggest that S100B promotes glioma growth by TAM chemoattraction through upregulation of CCL2 and introduces the potential utility of S100B inhibitors for glioma therapy.
Collapse
Affiliation(s)
- Huaqing Wang
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong Province, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
La Porta CAM. CXCR6: the role of environment in tumor progression. Challenges for therapy. Stem Cell Rev Rep 2013; 8:1282-5. [PMID: 22678828 DOI: 10.1007/s12015-012-9383-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The role of chemokines in tumor progression is an essential event that leads to homing and metastasis of tumor cells in a receptor-dependent, organ specific manner. In recent years, the involvement of CXCR6 and its ligand CXCL16 in tumor progression is becoming more evident. Here I review the recent literature on CXCR6/CXCL16. Since CXCR6 was shown recently to be involved in stem cell self renewal and the same cytokine is expressed by a subpopulation of melanoma cells, I discuss new evidences on cancer stem cell theory and the involvement of CXCR6. In particular, in the effort to develop more specific strategies to stop the tumor growth, the present review proposes and discusses the possibility to modulate tumor self renewal affecting asymmetric/symmetric cell division targeting specific factors such as CXCR6.
Collapse
Affiliation(s)
- Caterina A M La Porta
- Laboratory of Molecular Oncology, Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
299
|
Lugassy C, Wadehra M, Li X, Corselli M, Akhavan D, Binder SW, Péault B, Cochran AJ, Mischel PS, Kleinman HK, Barnhill RL. Pilot study on "pericytic mimicry" and potential embryonic/stem cell properties of angiotropic melanoma cells interacting with the abluminal vascular surface. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2013; 6:19-29. [PMID: 23275074 PMCID: PMC3601217 DOI: 10.1007/s12307-012-0128-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 12/17/2012] [Indexed: 12/19/2022]
Abstract
The interaction of tumor cells with the tumor vasculature is mainly studied for its role in tumor angiogenesis and intravascular metastasis of circulating tumor cells. In addition, a specific interaction of tumor cells with the abluminal surfaces of vessels, or angiotropism, may promote the migration of angiotropic tumor cells along the abluminal vascular surfaces in a pericytic location. This process has been termed extravascular migratory metastasis. The abluminal vascular surface may also provide a vascular niche inducing or sustaining stemness to angiotropic tumor cells. This pilot study investigated if angiotropic melanoma cells might represent a subset population with pericytic and embryonic or stem cell properties. Through microarray analysis, we showed that the interaction between melanoma cells and the abluminal surface of endothelial cells triggers significant differential expression of several genes. The most significantly differentially expressed genes have demonstrated properties linked to cancer cell migration (CCL2, ICAM1 and IL6), cancer progression (CCL2, ICAM1, SELE, TRAF1, IL6, SERPINB2 and CXCL6), epithelial to mesenchymal transition (CCL2 and IL6), embryonic/stem cell properties (CCL2, PDGFB, EVX1 and CFDP1) and pericytic recruitment (PDGFB). In addition, bioinformatics-based analysis of the differentially expressed genes has shown that the most significantly enriched functional groups included development, cell movement, cancer, and embryonic development. Finally, the investigation of pericyte/mesenchymal stem cells markers via immunostaining of human melanoma samples revealed expression of PDGFRB, NG2 and CD146 by angiotropic melanoma cells. Taken together, these preliminary data are supportive of the "pericytic mimicry" by angiotropic melanoma cells, and suggest that the interaction between melanoma cells and the abluminal vascular surface induce differential expression of genes linked to cancer migration and embryonic/stem cell properties.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA) Medical Center, Los Angeles, CA, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Zhang J, Chen L, Liu X, Kammertoens T, Blankenstein T, Qin Z. Fibroblast-specific protein 1/S100A4-positive cells prevent carcinoma through collagen production and encapsulation of carcinogens. Cancer Res 2013; 73:2770-81. [PMID: 23539447 DOI: 10.1158/0008-5472.can-12-3022] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stromal restraints to cancer are critical determinants of disease but they remain incompletely understood. Here, we report a novel mechanism for host surveillance against cancer contributed by fibroblast-specific protein 1 (FSP1)+ /S100A4+ fibroblasts. Mechanistic studies of fibrosarcoma formation caused by subcutaneous injection of the carcinogen methylcholanthrene (MCA) had suggested that IFN-γ receptor signaling may restrict MCA diffusion by inducing expression of collagen (foreign body reaction). We tested the hypothesis that this reaction encapsulated MCA and limited carcinogenesis by determining whether its ability to induce fibrosarcomas was impaired in the absence of proliferating fibroblasts. We found that FSP1+ /S100A4+ fibroblasts accumulated around the carcinogen where they produced collagens, encapsulating MCA and protecting epithelial cells from DNA damage. Ablation of these cells at the site of MCA injection by local administration of ganciclovir in FSP-TK transgenic mice altered tumor morphology to an epithelial phenotype, indicating that, in the absence of encapsulating fibroblasts, MCA targeted epithelial cells. Notably, we showed that destruction of the fibrous capsule around the MCA by local injection of collagenase induced rapid tumor development in mice that were otherwise durably tumor free. Our findings demonstrate that the FSP1+ /S100A4+ fibroblasts prevent epithelial malignancy and that collagen encapsulation of carcinogens protects against tumor development. Together, this study provides a novel mechanism for host surveillance against cancer.
Collapse
Affiliation(s)
- Jinhua Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Beijing, China
| | | | | | | | | | | |
Collapse
|