251
|
Woller N, Engelskircher SA, Wirth T, Wedemeyer H. Prospects and Challenges for T Cell-Based Therapies of HCC. Cells 2021; 10:cells10071651. [PMID: 34209393 PMCID: PMC8304292 DOI: 10.3390/cells10071651] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
The scope of therapeutic options for the treatment of hepatocellular carcinoma (HCC) has recently been expanded by immunotherapeutic regimens. T cell-based therapies, especially in combination with other treatments have achieved far better outcomes compared to conventional treatments alone. However, there is an emerging body of evidence that eliciting T cell responses in immunotherapeutic approaches is insufficient for favorable outcomes. Immune responses in HCC are frequently attenuated in the tumor microenvironment (TME) or may even support tumor progress. Hence, therapies with immune checkpoint inhibitors or adoptive cell therapies appear to necessitate additional modification of the TME to unlock their full potential. In this review, we focus on immunotherapeutic strategies, underlying molecular mechanisms of CD8 T cell immunity, and causes of treatment failure in HCC of viral and non-viral origin. Furthermore, we provide an overview of TME features in underlying etiologies of HCC patients that mediate therapy resistance to checkpoint inhibition and discuss strategies from the literature concerning current approaches to these challenges.
Collapse
Affiliation(s)
- Norman Woller
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Sophie Anna Engelskircher
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Wirth
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Heiner Wedemeyer
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
252
|
Chen Q, Liu S, Cao L, Yu M, Wang H. Effects of macrophage regulation on fat grafting survival: Improvement, mechanisms, and potential application-A review. J Cosmet Dermatol 2021; 21:54-61. [PMID: 34129721 DOI: 10.1111/jocd.14295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Autologous fat grafting has become a popular tool in plastic surgery to solve soft tissue defects and achieve skin rejuvenation, but the volume loss after transplantation remains a disturbing problem. In recent years, some new strategies have improved the outcome to some extent, but the fat graft retention is still far from ideal, so there remains a wide development prospect in this field. Macrophages are closely related to the local microenvironment and tissue regeneration, and their role in fat grafting has been increasingly highlighted. AIMS This article was aimed to review the efficacy, possible mechanisms, and potential application of macrophage regulation on fat grafting, as well as concerns and future perspectives of this filed. METHODS A retrospective review of the published data was conducted. RESULTS Most studies indicated that up-regulating M2 macrophages during fat grafting would improve fat retention via promoting neovascularization. M2 macrophages could secrete several pro-angiogenic factors, accelerate extracellular matrix (ECM) remodeling, and directly function on endothelial cells to encourage vascular expansion. In addition, macrophages could influence the proliferation, apoptosis, and adipogenic differentiation of preadipocytes. CONCLUSIONS During autologous fat grafting, appropriately regulating macrophages may become a promising method to increase fat retention. Nevertheless, the M2 macrophage polarizing agents, treatment opportunity, and contraindications require further discussion. We hope our work could promote more in-depth studies in this field, and we are looking forward to a standard procedure for the macrophage therapy in clinical practice.
Collapse
Affiliation(s)
- Qiuyu Chen
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuo Liu
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lideng Cao
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
253
|
Yu MW, Quail DF. Immunotherapy for Glioblastoma: Current Progress and Challenge. Front Immunol 2021; 12:676301. [PMID: 34054867 PMCID: PMC8158294 DOI: 10.3389/fimmu.2021.676301] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is a highly lethal brain cancer with a median survival rate of less than 15 months when treated with the current standard of care, which consists of surgery, radiotherapy and chemotherapy. With the recent success of immunotherapy in other aggressive cancers such as advanced melanoma and advanced non-small cell lung cancer, glioblastoma has been brought to the forefront of immunotherapy research. Resistance to therapy has been a major challenge across a multitude of experimental candidates and no immunotherapies have been approved for glioblastoma to-date. Intra- and inter-tumoral heterogeneity, an inherently immunosuppressive environment and tumor plasticity remain barriers to be overcome. Moreover, the unique tissue-specific interactions between the central nervous system and the peripheral immune system present an additional challenge for immune-based therapies. Nevertheless, there is sufficient evidence that these challenges may be overcome, and immunotherapy continues to be actively pursued in glioblastoma. Herein, we review the primary ongoing immunotherapy candidates for glioblastoma with a focus on immune checkpoint inhibitors, myeloid-targeted therapies, vaccines and chimeric antigen receptor (CAR) immunotherapies. We further provide insight on mechanisms of resistance and how our understanding of these mechanisms may pave the way for more effective immunotherapeutics against glioblastoma.
Collapse
Affiliation(s)
- Miranda W Yu
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
254
|
El-Khoueiry AB, Hanna DL, Llovet J, Kelley RK. Cabozantinib: An evolving therapy for hepatocellular carcinoma. Cancer Treat Rev 2021; 98:102221. [PMID: 34029957 DOI: 10.1016/j.ctrv.2021.102221] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is rising in incidence and remains a leading cause of cancer-related death. After a decade of disappointing trials following the approval of sorafenib for patients with advanced HCC, a number of tyrosine kinase inhibitors (TKIs) and monoclonal antibodies targeting angiogenesis and immune checkpoints have recently been approved. The phase 3 CELESTIAL trial demonstrated improved progression-free and overall survival with the TKI cabozantinib compared to placebo, supporting it as a treatment option for patients with advanced HCC previously treated with sorafenib. Cabozantinib blocks multiple key pathways of HCC pathogenesis, including VEGFR, MET, and the TAM (TYRO3, AXL, MER) family of receptor kinases, and promotes an immune-permissive tumor microenvironment. Here, we review the mechanisms of action of cabozantinib, including effects on tumor growth and its immunomodulatory properties, providing pre-clinical rationale for combination strategies with checkpoint inhibitors. We discuss the design and outcomes of CELESTIAL including improved survival across subgroups defined by age, disease etiology, baseline AFP level, prior therapies (including duration of prior sorafenib), and tumor burden. Cabozantinib had a manageable safety profile with dose modification. Studies combining cabozantinib with atezolizumab (COSMIC-312) and durvalumab (CAMILLA) in the first and second-line settings are ongoing, as well as a neoadjuvant study of cabozantinib with nivolumab. Future investigations are warranted to define the use of cabozantinib in patients with Child-Pugh B liver function and identify markers predictive of clinical benefit. The role of cabozantinib in HCC continues to evolve with an anticipated role in immunotherapy combinations.
Collapse
Affiliation(s)
| | - Diana L Hanna
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA; Hoag Cancer Center, Newport Beach, CA, USA
| | - Josep Llovet
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Translational Research in Hepatic Oncology Group, Liver Unit, IDIBAPS, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Robin Kate Kelley
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| |
Collapse
|
255
|
Bannoud N, Dalotto-Moreno T, Kindgard L, García PA, Blidner AG, Mariño KV, Rabinovich GA, Croci DO. Hypoxia Supports Differentiation of Terminally Exhausted CD8 T Cells. Front Immunol 2021; 12:660944. [PMID: 34025660 PMCID: PMC8137905 DOI: 10.3389/fimmu.2021.660944] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Hypoxia, angiogenesis, and immunosuppression have been proposed to be interrelated events that fuel tumor progression and impair the clinical effectiveness of anti-tumor therapies. Here we present new mechanistic data highlighting the role of hypoxia in fine-tuning CD8 T cell exhaustion in vitro, in an attempt to reconcile seemingly opposite evidence regarding the impact of hypoxia on functional features of exhausted CD8 T cells. Focusing on the recently characterized terminally-differentiated and progenitor exhausted CD8 T cells, we found that both hypoxia and its regulated mediator, vascular endothelial growth factor (VEGF)-A, promote the differentiation of PD-1+ TIM-3+ CXCR5+ terminally exhausted-like CD8 T cells at the expense of PD-1+ TIM-3- progenitor-like subsets without affecting tumor necrosis factor (TNF)-α and interferon (IFN)-γ production or granzyme B (GZMB) expression by these subpopulations. Interestingly, hypoxia accentuated the proangiogenic secretory profile in exhausted CD8 T cells. VEGF-A was the main factor differentially secreted by exhausted CD8 T cells under hypoxic conditions. In this sense, we found that VEGF-A contributes to generation of terminally exhausted CD8 T cells during in vitro differentiation. Altogether, our findings highlight the reciprocal regulation between hypoxia, angiogenesis, and immunosuppression, providing a rational basis to optimize synergistic combinations of antiangiogenic and immunotherapeutic strategies, with the overarching goal of improving the efficacy of these treatments.
Collapse
Affiliation(s)
- Nadia Bannoud
- Laboratorio de Inmunopatología, Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Tomás Dalotto-Moreno
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucía Kindgard
- Laboratorio de Inmunopatología, Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Pablo A. García
- Laboratorio de Inmunopatología, Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Ada G. Blidner
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Karina V. Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel A. Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego O. Croci
- Laboratorio de Inmunopatología, Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
256
|
Llovet JM, De Baere T, Kulik L, Haber PK, Greten TF, Meyer T, Lencioni R. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2021; 18:293-313. [PMID: 33510460 DOI: 10.1038/s41575-020-00395-0] [Citation(s) in RCA: 457] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality and has an increasing incidence worldwide. Locoregional therapies, defined as imaging-guided liver tumour-directed procedures, play a leading part in the management of 50-60% of HCCs. Radiofrequency is the mainstay for local ablation at early stages and transarterial chemoembolization (TACE) remains the standard treatment for intermediate-stage HCC. Other local ablative techniques (microwave ablation, cryoablation and irreversible electroporation) or locoregional therapies (for example, radioembolization and sterotactic body radiation therapy) have been explored, but have not yet modified the standard therapies established decades ago. This understanding is currently changing, and several drugs have been approved for the management of advanced HCC. Molecular therapies dominate the adjuvant trials after curative therapies and combination strategies with TACE for intermediate stages. The rationale for these combinations is sound. Local therapies induce antigen and proinflammatory cytokine release, whereas VEGF inhibitors and tyrosine kinase inhibitors boost immunity and prime tumours for checkpoint inhibition. In this Review, we analyse data from randomized and uncontrolled studies reported with ablative and locoregional techniques and examine the expected effects of combinations with systemic treatments. We also discuss trial design and benchmarks to be used as a reference for future investigations in the dawn of a promising new era for HCC treatment.
Collapse
Affiliation(s)
- Josep M Llovet
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clinic, University of Barcelona, Catalonia, Spain. .,Institució Catalana d'Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| | - Thierry De Baere
- Radiology Department Gustave Roussy Cancer Center, Vilejuif, France.,University Paris-Saclay, Saint-Aubin, France
| | - Laura Kulik
- Division of Gastroenterology and Hepatology, Surgery and Interventional Radiology in Northwestern University, Chicago, IL, USA
| | - Philipp K Haber
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim Meyer
- Deptartment of Oncology, University College London Cancer Institute, London, UK.,Deptartment of Oncology, Royal Free Hospital, London, UK
| | - Riccardo Lencioni
- Department of Radiology, University of Pisa School of Medicine, Pisa, Italy.,Miami Cancer Institute, Miami, FL, USA
| |
Collapse
|
257
|
Zheng H, Bai Y, Wang J, Chen S, Zhang J, Zhu J, Liu Y, Wang X. Weighted Gene Co-expression Network Analysis Identifies CALD1 as a Biomarker Related to M2 Macrophages Infiltration in Stage III and IV Mismatch Repair-Proficient Colorectal Carcinoma. Front Mol Biosci 2021; 8:649363. [PMID: 33996905 PMCID: PMC8116739 DOI: 10.3389/fmolb.2021.649363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has achieved efficacy for advanced colorectal cancer (CRC) patients with a mismatch-repair-deficient (dMMR) subtype. However, little immunotherapy efficacy was observed in patients with the mismatch repair-proficient (pMMR) subtype, and hence, identifying new immune therapeutic targets is imperative for those patients. In this study, transcriptome data of stage III/IV CRC patients were retrieved from the Gene Expression Omnibus database. The CIBERSORT algorithm was used to quantify immune cellular compositions, and the results revealed that M2 macrophage fractions were higher in pMMR patients as compared with those with the dMMR subtype; moreover, pMMR patients with higher M2 macrophage fractions experienced shorter overall survival (OS). Subsequently, weighted gene co-expression network analysis and protein–protein interaction network analysis identified six hub genes related to M2 macrophage infiltrations in pMMR CRC patients: CALD1, COL6A1, COL1A2, TIMP3, DCN, and SPARC. Univariate and multivariate Cox regression analyses then determined CALD1 as the independent prognostic biomarker for OS. CALD1 was upregulated specifically the in CMS4 CRC subtype, and single-sample Gene Set Enrichment Analysis (ssGSEA) revealed that CALD1 was significantly correlated with angiogenesis and TGF-β signaling gene sets enrichment scores in stage III/IV pMMR CRC samples. The Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm and correlation analysis revealed that CALD1 was significantly associated with multiple immune and stromal components in a tumor microenvironment. In addition, GSEA demonstrated that high expression of CALD1 was significantly correlated with antigen processing and presentation, chemokine signaling, leukocyte transendothelial migration, vascular smooth muscle contraction, cytokine–cytokine receptor interaction, cell adhesion molecules, focal adhesion, MAPK, and TGF-beta signaling pathways. Furthermore, the proliferation, invasion, and migration abilities of cancer cells were suppressed after reducing CALD1 expression in CRC cell lines. Taken together, multiple bioinformatics analyses and cell-level assays demonstrated that CALD1 could serve as a prognostic biomarker and a prospective therapeutic target for stage III/IV pMMR CRCs.
Collapse
Affiliation(s)
- Hang Zheng
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yuge Bai
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Jingui Wang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Shanwen Chen
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Junling Zhang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Jing Zhu
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yucun Liu
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
258
|
Rihawi K, Ricci AD, Rizzo A, Brocchi S, Marasco G, Pastore LV, Llimpe FLR, Golfieri R, Renzulli M. Tumor-Associated Macrophages and Inflammatory Microenvironment in Gastric Cancer: Novel Translational Implications. Int J Mol Sci 2021; 22:ijms22083805. [PMID: 33916915 PMCID: PMC8067563 DOI: 10.3390/ijms22083805] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) represents the fifth most frequently diagnosed cancer worldwide, with a poor prognosis in patients with advanced disease despite many improvements in systemic treatments in the last decade. In fact, GC has shown resistance to several treatment options, and thus, notable efforts have been focused on the research and identification of novel therapeutic targets in this setting. The tumor microenvironment (TME) has emerged as a potential therapeutic target in several malignancies including GC, due to its pivotal role in cancer progression and drug resistance. Therefore, several agents and therapeutic strategies targeting the TME are currently under assessment in both preclinical and clinical studies. The present study provides an overview of available evidence of the inflammatory TME in GC, highlighting different types of tumor-associated cells and implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Karim Rihawi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Angela Dalia Ricci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Stefano Brocchi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
| | - Giovanni Marasco
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Luigi Vincenzo Pastore
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
| | - Fabiola Lorena Rojas Llimpe
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
| | - Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
- Correspondence: ; Tel.: +39-0512142958; Fax: +39-0512142805
| |
Collapse
|
259
|
An angiogenesis-related long noncoding RNA signature correlates with prognosis in patients with hepatocellular carcinoma. Biosci Rep 2021; 41:228144. [PMID: 33764367 PMCID: PMC8026853 DOI: 10.1042/bsr20204442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide. Neovascularization is closely related to the malignancy of tumors. We constructed a signature of angiogenesis-related long noncoding RNA (lncRNA) to predict the prognosis of patients with HCC. The lncRNA expression matrix of 424 HCC patients was downloaded from The Cancer Genome Atlas (TCGA). First, gene set enrichment analysis (GSEA) was used to distinguish the differentially expressed genes of the angiogenesis genes in liver cancer and adjacent tissues. Next, a signature of angiogenesis-related lncRNAs was constructed using univariate and multivariate analyses, and receiver operating characteristic (ROC) curves were used to assess the accuracy. The signature and relevant clinical information were used to construct the nomogram. A 5-lncRNA signature was highly correlated with overall survival (OS) in HCC patients and performed well in evaluations using the C-index, areas under the curve, and calibration curves. In summary, the 5-lncRNA model can serve as an accurate signature to predict the prognosis of patients with liver cancer, but its mechanism of action must be further elucidated by experiments.
Collapse
|
260
|
Lou X, Wang JJ, Wei YQ, He YJ, Jiang ZJ, Sun JJ. Identification of molecular heterogeneity of hepatocellular carcinoma based on immune gene expression signatures. Med Oncol 2021; 38:50. [PMID: 33786682 DOI: 10.1007/s12032-021-01499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/14/2021] [Indexed: 11/29/2022]
Abstract
Although various molecular subtypes of hepatocellular carcinoma (HCC) have been investigated, most of these studies identify HCC subtype based on genomic profiling. Few studies have investigated the classification based on immune signatures, and none have classified HCC based on Immune activation and immunosuppressive. We performed immune gene expression of tumor tissue in 374 HCC patients from The Cancer Genome Atlas (TCGA) database and used unsupervised consensus clustering to stratify tumors. We then used HCC patients from the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) as replication datasets. Based on the expression of 782 immune-related genes, HCC was stratified into four distinct immune subtypes. Tumors in one cluster (high immune activation; high-IA) indicate a higher level of Immune activation, which was characterized by higher anti-tumor immunity, higher pro-tumor immune-suppressive cell types, higher fractions of CD8+ T cells and M0 Macrophages compared with other subtypes. The high-IA also presents higher cancer-related hallmark signatures, such as epithelial-mesenchymal transition (EMT), angiogenesis, and apoptosis. We also found subpopulations of regulatory and exhaustion T lymphocyte were characterized by an opposite trend in high-IA, though samples in high-IA response to immunotherapy with better survival. The comparison of the immune profile in tumor and normal tissue indicates the activation of immune responses which only occurred in high-IA patients, while we conducted comparison of cirrhosis and non-cirrhosis tumor immune signatures, immune response activation was almost occurred in high-IA, but some of immune responses occurred in low-IA (low immune activation).
Collapse
Affiliation(s)
- Xin Lou
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Juan-Juan Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Qing Wei
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ying-Jie He
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhi-Jia Jiang
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jin-Jin Sun
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
261
|
Liu X, Lu Y, Qin S. Atezolizumab and bevacizumab for hepatocellular carcinoma: mechanism, pharmacokinetics and future treatment strategies. Future Oncol 2021; 17:2243-2256. [PMID: 33663220 DOI: 10.2217/fon-2020-1290] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer globally and a leading cause of cancer-related deaths. Although early-stage disease may be curable by resection, liver transplantation or ablation, many patients present with unresectable disease and have a poor prognosis. Combination treatment with atezolizumab (targeting PD-L1) and bevacizumab (targeting VEGF) in the recent IMbrave150 study was shown to be effective with an acceptable safety profile in patients with unresectable HCC. Herein, we discuss this novel combination in the context of the liver immune environment, summarize the mechanism and pharmacokinetics of atezolizumab and bevacizumab, and examine recent data on other immune checkpoint inhibitor combination strategies as well as future directions in the treatment of patients with advanced HCC.
Collapse
Affiliation(s)
- Xiufeng Liu
- Department of Medical Oncology, Bayi Hospital Affiliated to Nanjing Chinese Medical University, Nanjing, 210002, China
| | - Yi Lu
- Shanghai Roche Pharmaceuticals Ltd, Shanghai, 201203, China
| | - Shukui Qin
- Department of Medical Oncology, Bayi Hospital Affiliated to Nanjing Chinese Medical University, Nanjing, 210002, China
| |
Collapse
|
262
|
Liu G, Chen T, Ding Z, Wang Y, Wei Y, Wei X. Inhibition of FGF-FGFR and VEGF-VEGFR signalling in cancer treatment. Cell Prolif 2021; 54:e13009. [PMID: 33655556 PMCID: PMC8016646 DOI: 10.1111/cpr.13009] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
The sites of targeted therapy are limited and need to be expanded. The FGF‐FGFR signalling plays pivotal roles in the oncogenic process, and FGF/FGFR inhibitors are a promising method to treat FGFR‐altered tumours. The VEGF‐VEGFR signalling is the most crucial pathway to induce angiogenesis, and inhibiting this cascade has already got success in treating tumours. While both their efficacy and antitumour spectrum are limited, combining FGF/FGFR inhibitors with VEGF/VEGFR inhibitors are an excellent way to optimize the curative effect and expand the antitumour range because their combination can target both tumour cells and the tumour microenvironment. In addition, biomarkers need to be developed to predict the efficacy, and combination with immune checkpoint inhibitors is a promising direction in the future. The article will discuss the FGF‐FGFR signalling pathway, the VEGF‐VEGFR signalling pathway, the rationale of combining these two signalling pathways and recent small‐molecule FGFR/VEGFR inhibitors based on clinical trials.
Collapse
Affiliation(s)
- Guihong Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Chen
- Cardiology Department, Chengdu NO.7 People's Hospital, Chengdu Tumor Hospital, Chengdu, China
| | - Zhenyu Ding
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
263
|
Nieblas‐Bedolla E, Nayyar N, Singh M, Sullivan RJ, Brastianos PK. Emerging Immunotherapies in the Treatment of Brain Metastases. Oncologist 2021; 26:231-241. [PMID: 33103803 PMCID: PMC7930434 DOI: 10.1002/onco.13575] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
Brain metastases account for considerable morbidity and mortality in patients with cancer. Despite increasing prevalence, limited therapeutic options exist. Recent advances in our understanding of the molecular and cellular underpinnings of the tumor immune microenvironment and the immune evasive mechanisms employed by tumor cells have shed light on how immunotherapies may provide therapeutic benefit to patients. The development and evolution of immunotherapy continue to show promise for the treatment of brain metastases. Positive outcomes have been observed in several studies evaluating the efficacy and safety of these treatments. However, many challenges persist in the application of immunotherapies to brain metastases. This review discusses the potential benefits and challenges in the development and use of checkpoint inhibitors, chimeric antigen receptor T-cell therapy, and oncolytic viruses for the treatment of brain metastases. Future studies are necessary to further evaluate and assess the potential use of each of these therapies in this setting. As we gain more knowledge regarding the role immunotherapies may play in the treatment of brain metastases, it is important to consider how these treatments may guide clinical decision making for clinicians and the impact they may have on patients. IMPLICATIONS FOR PRACTICE: Immunotherapies have produced clinically significant outcomes in early clinical trials evaluating patients with brain metastases or demonstrated promising results in preclinical models. Checkpoint inhibitors have been the most common immunotherapy studied to date in the setting of brain metastases, but novel approaches that can harness the immune system to contain and eliminate cancer cells are currently under investigation and may soon become more common in the clinical setting. An understanding of these evolving therapies may be useful in determining how the future management and treatment of brain metastases among patients with cancer will continue to advance.
Collapse
Affiliation(s)
| | - Naema Nayyar
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
- Broad Institute of Massachusetts Institute of Technology and HarvardBostonMassachusettsUSA
- Cancer Center, Massachusetts General HospitalBostonMassachusettsUSA
| | - Mohini Singh
- Cancer Center, Massachusetts General HospitalBostonMassachusettsUSA
| | - Ryan J. Sullivan
- Cancer Center, Massachusetts General HospitalBostonMassachusettsUSA
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonMassachustetsUSA
| | - Priscilla K. Brastianos
- Broad Institute of Massachusetts Institute of Technology and HarvardBostonMassachusettsUSA
- Cancer Center, Massachusetts General HospitalBostonMassachusettsUSA
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonMassachustetsUSA
- Division of Neuro‐Oncology, Department of Neurology, Massachusetts General Hospital and Harvard Medical SchoolBostonMassachustetsUSA
| |
Collapse
|
264
|
Zhai C, Zhang X, Ren L, You L, Pan Q, Pan H, Han W. The Efficacy and Safety of Anlotinib Combined With PD-1 Antibody for Third-Line or Further-Line Treatment of Patients With Advanced Non-Small-Cell Lung Cancer. Front Oncol 2021; 10:619010. [PMID: 33680942 PMCID: PMC7927598 DOI: 10.3389/fonc.2020.619010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background Both anlotinib and programmed death 1 (PD-1) monoclonal antibody (mAb) have been approved for the third line treatment of metastatic non-small cell lung cancer (NSCLC). However, the combination of these two standard therapies has not been investigated in third-line or further-line treatment of patients with advanced NSCLC. Methods We reviewed 22 patients with NSCLC who received anlotinib combined with PD-1 mAb therapy from July 2018 to October 2019 at Sir Run Run Shaw Hospital. Based on the baseline characteristics, PD-L1 expression and EGFR mutation status, we retrospectively analyzed the efficacy and safety of this combination therapy by RESIST 1.1 and CTCAE 5.0. Results The combination treatment of anlotinib and PD-1 mAb in 22 NSCLC patients gained a median PFS of 6.8 months and a median OS of 17.3 months. The disease control rate (DCR) was 90.9%, and the objective response rate (ORR) was 36.4%, where 1 (4.6%) patient achieved complete response (CR) and 7 (31.8%) patients achieved partial response (PR). The median time to response was 3.9 months, and the median duration of the response was 6.8 months. The common grades 1–2 adverse events were fatigue 10/22 (45.5%), decreased appetite 9/22 (40.9%), hypertension 10/22 (45.5%); the common grades 3–4 adverse events were hypertension 2/22 (9.1%) and mouth ulceration 2/22 (9.1%). Conclusion Anlotinib combined with PD-1 mAb showed promising efficacy in third-line or further-line treatment of NSCLC, and its adverse effects is tolerable.
Collapse
Affiliation(s)
- Chongya Zhai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoling Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lulu Ren
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qin Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
265
|
Xu D, Wang Y, Wu J, Zhang Z, Chen J, Xie M, Tang R, Chen C, Chen L, Lin S, Luo X, Zheng J. ECT2 overexpression promotes the polarization of tumor-associated macrophages in hepatocellular carcinoma via the ECT2/PLK1/PTEN pathway. Cell Death Dis 2021; 12:162. [PMID: 33558466 PMCID: PMC7870664 DOI: 10.1038/s41419-021-03450-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common high-mortality cancer, mainly due to diagnostic difficulties during its early clinical stages. In this study, we aimed to identify genes that are important for HCC diagnosis and treatment, and we investigated the underlying mechanism of prognostic differences. Differentially expressed genes (DEGs) were identified by using the limma package, and receiver operating characteristic curve analysis was performed to identify diagnostic markers for HCC. Bioinformatics and clinical specimens were used to assess epithelial cell transforming 2 (ECT2) in terms of expression, prognostic value, pathways, and immune correlations. In vitro experiments were used to investigate the underlying mechanism and function of ECT2, and the results were confirmed through in vivo experiments. The integrated analysis revealed 53 upregulated DEGs, and one candidate biomarker for diagnosis (ECT2) was detected. High expression of ECT2 was found to be an independent prognostic risk factor for HCC. ECT2 expression showed a strong correlation with tumor-associated macrophages. We found that ECT2 overexpression increased the migration and proliferation of HCC cells. It also promoted the expression of PLK1, which subsequently interacted with PTEN and interfered with its nuclear translocation, ultimately enhancing aerobic glycolysis and promoting M2 macrophage polarization. M2 macrophages suppress the functions of NK cells and T cells, and this was confirmed in the in vivo experiments. Overall, ECT2 may promote the polarization of M2 macrophages by enhancing aerobic glycolysis and suppressing the functions of immune cells. ECT2 could serve as a candidate diagnostic and prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Dafeng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yu Wang
- Geriatric Medicine Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Zhensheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jiacheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Mingwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Rong Tang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Cheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Liang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shixun Lin
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiangxiang Luo
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jinfang Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
266
|
HLA-G/LILRBs: A Cancer Immunotherapy Challenge. Trends Cancer 2021; 7:389-392. [PMID: 33563576 DOI: 10.1016/j.trecan.2021.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/24/2022]
Abstract
Despite some success, many patients do not benefit from immunotherapy. New strategies to improve clinical efficacy include identification of novel immune-checkpoint (IC) targets or a combination of immunotherapy with antiangiogenic treatments. Here, we propose the therapeutic use of IC, HLA-G/LILRB, and explore its enhanced synergistic antitumor activity when combined with antiangiogenic therapies.
Collapse
|
267
|
Zhang C, Lu X, Huang J, He H, Chen L, Liu Y, Wang H, Xu Y, Xing S, Ruan X, Yang X, Chen L, Xu D. Epigenome screening highlights that JMJD6 confers an epigenetic vulnerability and mediates sunitinib sensitivity in renal cell carcinoma. Clin Transl Med 2021; 11:e328. [PMID: 33634984 PMCID: PMC7882098 DOI: 10.1002/ctm2.328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant epigenetic reprogramming represents a hallmark of renal cell carcinoma (RCC) tumorigenesis and progression. Whether there existed other epigenetic vulnerabilities that could serve as therapeutic targets remained unclear and promising. Here, we combined the clustered regularly interspaced short palindromic repeats functional screening results and multiple RCC datasets to identify JMJD6 as the potent target in RCC. JMJD6 expression correlated with poor survival outcomes of RCC patients and promoted RCC progression in vitro and in vivo. Mechanistically, aberrant p300 led to high JMJD6 expression, which activated a series of oncogenic crosstalk. Particularly, high-throughput sequencing data revealed that JMJD6 could assemble super-enhancers to drive a list of identity genes in kidney cancer, including VEGFA, β-catenin, and SRC. Moreover, this JMJD6-mediated oncogenic effect could be suppressed by a novel JMJD6 inhibitor (SKLB325), which was further demonstrated in RCC cells, patient-derived organoid models, and in vivo. Given the probable overlapped crosstalk between JMJD6 signature and tyrosine kinase inhibitors downstream targets, targeting JMJD6 sensitized RCC to sunitinib and was synergistic when they were combined together. Collectively, this study indicated that targeting JMJD6 was an effective approach to treat RCC patients.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xuan Lu
- Department of PharmacologyBasic Medical CollegeAnhui Medical UniversityHefeiChina
| | - Jingyi Huang
- Department of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hongchao He
- Department of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Li Chen
- Department of PharmacyShanghai Xuhui District Central HospitalXuhui Hospital of Zhongshan Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Yihan Liu
- Department of Epidemiology and BiostatisticsSchool of Public HealthNanjing Medical UniversityNanjingChina
- Department of PathologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haofei Wang
- Department of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yang Xu
- Department of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Siwei Xing
- Department of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaohao Ruan
- Department of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoqun Yang
- Department of Epidemiology and BiostatisticsSchool of Public HealthNanjing Medical UniversityNanjingChina
- Department of PathologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lu Chen
- Department of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Danfeng Xu
- Department of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
268
|
Cousin S, Cantarel C, Guegan JP, Gomez-Roca C, Metges JP, Adenis A, Pernot S, Bellera C, Kind M, Auzanneau C, Le Loarer F, Soubeyran I, Bessede A, Italiano A. Regorafenib-Avelumab Combination in Patients with Microsatellite Stable Colorectal Cancer (REGOMUNE): A Single-arm, Open-label, Phase II Trial. Clin Cancer Res 2021; 27:2139-2147. [PMID: 33495314 DOI: 10.1158/1078-0432.ccr-20-3416] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/20/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Regorafenib is synergistic with immune checkpoint inhibition in colorectal cancer preclinical models. PATIENTS AND METHODS This was a single-arm, multicentric phase II trial. Regorafenib was given 3 weeks on/1 week off, 160 mg every day; avelumab 10 mg/kg i.v. was given every 2 weeks, beginning at cycle 1, day 15 until progression or unacceptable toxicity. The primary endpoint was the confirmed objective response rate under treatment, as per RECIST 1.1. The secondary endpoints included a 1-year nonprogression rate, progression-free survival (PFS), and overall survival (OS), safety and biomarkers studies performed on sequential tumor samples obtained at baseline and at cycle 2 day 1. RESULTS Forty-eight patients were enrolled in four centers. Forty-three were assessable for efficacy after central radiological review. Best response was stable disease for 23 patients (53.5%) and progressive disease for 17 patients (39.5%). The median PFS and OS were 3.6 months [95% confidence interval (CI), 1.8-5.4] and 10.8 months (95% CI, 5.9-NA), respectively. The most common grade 3 or 4 adverse events were palmar-plantar erythrodysesthesia syndrome (n = 14, 30%), hypertension (n = 11, 23%), and diarrhea (n = 6, 13%). High baseline infiltration by tumor-associated macrophages was significantly associated with adverse PFS (1.8 vs. 3.7 months; P = 0.002) and OS (3.7 months vs. not reached; P = 0.002). Increased tumor infiltration by CD8+ T cells at cycle 2, day 1 as compared with baseline was significantly associated with better outcome. CONCLUSIONS The combination of regorafenib + avelumab mobilizes antitumor immunity in a subset of patients with microsatellite stable colorectal cancer. Computational pathology through quantification of immune cell infiltration may improve patient selection for further studies investigating this approach.
Collapse
Affiliation(s)
- Sophie Cousin
- Early Phase Trials Unit, Institut Bergonié, Bordeaux, France
| | - Coralie Cantarel
- Clinical and Epidemiological Research Unit, INSERM CIC1401, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | | | | | | | - Antoine Adenis
- Department of Medical Oncology, Institut Regional du Cancer de Montpellier, Montpellier, France
| | - Simon Pernot
- Early Phase Trials Unit, Institut Bergonié, Bordeaux, France
| | - Carine Bellera
- Clinical and Epidemiological Research Unit, INSERM CIC1401, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France.,Bordeaux Population Health Research Center, Epicene Team, Bordeaux, France
| | - Michèle Kind
- Department of Radiology, Institut Bergonié, Bordeaux, France
| | | | - François Le Loarer
- Department of Biopathology, Institut Bergonié, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | | | - Alban Bessede
- Department of Medical Oncology, IUCT, Toulouse, France
| | - Antoine Italiano
- Early Phase Trials Unit, Institut Bergonié, Bordeaux, France. .,University of Bordeaux, Bordeaux, France.,Gustave Roussy, Villejuif, France
| |
Collapse
|
269
|
Hepatocellular carcinoma. Nat Rev Dis Primers 2021. [DOI: 10.1038/s41572-020-00240-3 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
270
|
Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J, Finn RS. Hepatocellular carcinoma. Nat Rev Dis Primers 2021; 7:6. [PMID: 33479224 DOI: 10.1038/s41572-020-00240-3] [Citation(s) in RCA: 3170] [Impact Index Per Article: 792.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Liver cancer remains a global health challenge, with an estimated incidence of >1 million cases by 2025. Hepatocellular carcinoma (HCC) is the most common form of liver cancer and accounts for ~90% of cases. Infection by hepatitis B virus and hepatitis C virus are the main risk factors for HCC development, although non-alcoholic steatohepatitis associated with metabolic syndrome or diabetes mellitus is becoming a more frequent risk factor in the West. Moreover, non-alcoholic steatohepatitis-associated HCC has a unique molecular pathogenesis. Approximately 25% of all HCCs present with potentially actionable mutations, which are yet to be translated into the clinical practice. Diagnosis based upon non-invasive criteria is currently challenged by the need for molecular information that requires tissue or liquid biopsies. The current major advancements have impacted the management of patients with advanced HCC. Six systemic therapies have been approved based on phase III trials (atezolizumab plus bevacizumab, sorafenib, lenvatinib, regorafenib, cabozantinib and ramucirumab) and three additional therapies have obtained accelerated FDA approval owing to evidence of efficacy. New trials are exploring combination therapies, including checkpoint inhibitors and tyrosine kinase inhibitors or anti-VEGF therapies, or even combinations of two immunotherapy regimens. The outcomes of these trials are expected to change the landscape of HCC management at all evolutionary stages.
Collapse
Affiliation(s)
- Josep M Llovet
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clinic, University of Barcelona, Catalonia, Spain. .,Institució Catalana d'Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| | - Robin Kate Kelley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Augusto Villanueva
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amit G Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sasan Roayaie
- White Plains Hospital Center for Cancer Care, Montefiore Health, White Plains, NY, USA
| | - Riccardo Lencioni
- Department of Radiology, Pisa University School of Medicine, Pisa, Italy.,Department of Radiology, Miami Cancer Insitute, Miami, FL, USA
| | - Kazuhiko Koike
- The University of Tokyo, Department of Gastroenterology, Tokyo, Japan
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Richard S Finn
- Department of Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
271
|
Hepatocellular carcinoma. Nat Rev Dis Primers 2021. [DOI: 10.1038/s41572-020-00240-3 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
272
|
Hepatocellular carcinoma. Nat Rev Dis Primers 2021. [DOI: 10.1038/s41572-020-00240-3 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
273
|
Hepatocellular carcinoma. Nat Rev Dis Primers 2021. [DOI: 10.1038/s41572-020-00240-3 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
274
|
O'Melia MJ, Manspeaker MP, Thomas SN. Tumor-draining lymph nodes are survival niches that support T cell priming against lymphatic transported tumor antigen and effects of immune checkpoint blockade in TNBC. Cancer Immunol Immunother 2021; 70:2179-2195. [PMID: 33459842 DOI: 10.1007/s00262-020-02792-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022]
Abstract
Triple negative breast cancer (TNBC) is a significant clinical problem to which immunotherapeutic strategies have been applied with limited success. Using the syngeneic E0771 TNBC mouse model, this work explores the potential for antitumor CD8+ T cell immunity to be primed extratumorally in lymphoid tissues and therapeutically leveraged. CD8+ T cell viability and responses within the tumor microenvironment (TME) were found to be severely impaired, effects coincident with local immunosuppression that is recapitulated in lymphoid tissues in late stage disease. Prior to onset of a locally suppressed immune microenvironment, however, CD8+ T cell priming within lymph nodes (LN) that depended on tumor lymphatic drainage remained intact. These results demonstrate tumor-draining LNs (TdLN) to be lymphoid tissue niches that support the survival and antigenic priming of CD8+ T lymphocytes against lymph-draining antigen. The therapeutic effects of and CD8+ T cells response to immune checkpoint blockade were furthermore improved when directed to LNs within the tumor-draining lymphatic basin. Therefore, TdLNs represent a unique potential tumor immunity reservoir in TNBC for which strategies may be developed to improve the effects of ICB immunotherapy.
Collapse
Affiliation(s)
- Meghan J O'Melia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, IBB 2310, 315 Ferst Drive NW, Atlanta, GA, 30332, USA
| | - Margaret P Manspeaker
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Susan N Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, IBB 2310, 315 Ferst Drive NW, Atlanta, GA, 30332, USA. .,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,Winship Cancer Institute, Emory University, Atlanta, GA, 30332, USA.
| |
Collapse
|
275
|
Dai X, Guo Y, Hu Y, Bao X, Zhu X, Fu Q, Zhang H, Tong Z, Liu L, Zheng Y, Zhao P, Fang W. Immunotherapy for targeting cancer stem cells in hepatocellular carcinoma. Theranostics 2021; 11:3489-3501. [PMID: 33537099 PMCID: PMC7847682 DOI: 10.7150/thno.54648] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
The rapid development and remarkable success of checkpoint inhibitors have provided significant breakthroughs in cancer treatment, including hepatocellular carcinoma (HCC). However, only 15-20% of HCC patients can benefit from checkpoint inhibitors. Cancer stem cells (CSCs) are responsible for recurrence, metastasis, and local and systemic therapy resistance in HCC. Accumulating evidence has suggested that HCC CSCs can create an immunosuppressive microenvironment through certain intrinsic and extrinsic mechanisms, resulting in immune evasion. Intrinsic evasion mechanisms mainly include activation of immune-related CSC signaling pathways, low-level expression of antigen presenting molecules, and high-level expression of immunosuppressive molecules. External evasion mechanisms are mainly related to HBV/HCV infection, alcoholic/nonalcoholic steatohepatitis, hypoxia stimulation, abnormal angiogenesis, and crosstalk between CSCs and immune cells. A better understanding of the complex mechanisms of CSCs involved in immune evasion will contribute to therapies for HCC. Here we will outline the detailed mechanisms of immune evasion for CSCs, and provide an overview of the current immunotherapies targeting CSCs in HCC.
Collapse
|
276
|
Zhao J, Zhang X, Du Y, Zhou L, Dong Z, Zhao J, Lu J. Allogenic mouse cell vaccine inhibits lung cancer progression by inhibiting angiogenesis. Hum Vaccin Immunother 2021; 17:35-50. [PMID: 32460680 DOI: 10.1080/21645515.2020.1759996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: This research investigated the therapeutic effect of an allogeneic mouse brain microvascular endothelial cell vaccine on lung cancer and further elucidated its potential anti-angiogenic mechanism. Materials & methods: The immune effect of the allogeneic bEnd.3 vaccine and DC vaccine loaded with bEnd.3 antigen on the subcutaneous transplantation of Lewis lung cancer (LLC) was assessed by ELISA, the CCK test and the CTL killing test. The mechanism was preliminarily revealed by immunohistochemistry and immunoblot analysis. Results: This study revealed that tumor volume was decreased (p < .01) and the survival was prolonged significantly (p < .05) by the bEnd.3 vaccine in subcutaneous LLC transplantation in the vaccine prevention group. In contrast, both tumor volume in the serum therapeutic group and survival of bEnd.3 vaccine were not significantly different from those of the control group (p > .05). Importantly, tumor volume and survival of the T lymphocyte therapeutic group were decreased and prolonged (p < .05). In addition, both tumor volume and survival of DC vaccine loaded with bEnd.3 in the vaccine prevention group were decreased and prolonged significantly (p < .01). Furthermore, bEnd.3 vaccine and DC vaccine loaded with bEnd.3 both produced the activity of killing bEnd.3 target cells in vitro.The reason may induce the immune mice to produce anti-VEGFR-II, anti-endoglin and anti-integrin αν antibodies to have an anti-angiogenesis function. Conclusion: The allogeneic mouse bEnd.3 cell vaccine can block angiogenesis and prevent the development of lung cancer transplantation tumors.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Oncology, Changzhi People's Hospital , Changzhi, China.,Department of Pathophysiology, College of Basic Medical Sciences, Zhengzhou University , Zhengzhou, China
| | - Xiaoling Zhang
- Department of Oncology, Changzhi People's Hospital , Changzhi, China
| | - Yunyi Du
- Department of Oncology, Changzhi People's Hospital , Changzhi, China
| | - Lurong Zhou
- Quality Control Department, Changzhi People's Hospital , Changzhi, China
| | - Ziming Dong
- Department of Pathophysiology, College of Basic Medical Sciences, Zhengzhou University , Zhengzhou, China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention , Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University , Zhengzhou, China
| | - Jimin Zhao
- Department of Pathophysiology, College of Basic Medical Sciences, Zhengzhou University , Zhengzhou, China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention , Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University , Zhengzhou, China
| | - Jing Lu
- Department of Pathophysiology, College of Basic Medical Sciences, Zhengzhou University , Zhengzhou, China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention , Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University , Zhengzhou, China
| |
Collapse
|
277
|
Sangro B, Sarobe P, Hervás-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2021; 18:525-543. [PMID: 33850328 PMCID: PMC8042636 DOI: 10.1038/s41575-021-00438-0] [Citation(s) in RCA: 706] [Impact Index Per Article: 176.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent disease with a progression that is modulated by the immune system. Systemic therapy is used in the advanced stage and until 2017 consisted only of antiangiogenic tyrosine kinase inhibitors (TKIs). Immunotherapy with checkpoint inhibitors has shown strong anti-tumour activity in a subset of patients and the combination of the anti-PDL1 antibody atezolizumab and the VEGF-neutralizing antibody bevacizumab has or will soon become the standard of care as a first-line therapy for HCC, whereas the anti-PD1 agents nivolumab and pembrolizumab are used after TKIs in several regions. Other immune strategies such as adoptive T-cell transfer, vaccination or virotherapy have not yet demonstrated consistent clinical activity. Major unmet challenges in HCC checkpoint immunotherapy are the discovery and validation of predictive biomarkers, advancing treatment to earlier stages of the disease, applying the treatment to patients with liver dysfunction and the discovery of more effective combinatorial or sequential approaches. Combinations with other systemic or local treatments are perceived as the most promising opportunities in HCC and some are already under evaluation in large-scale clinical trials. This Review provides up-to-date information on the best use of currently available immunotherapies in HCC and the therapeutic strategies under development.
Collapse
Affiliation(s)
- Bruno Sangro
- grid.411730.00000 0001 2191 685XLiver Unit and HPB Oncology Area, Clinica Universidad de Navarra-IDISNA and CIBEREHD, Pamplona, Spain
| | - Pablo Sarobe
- grid.5924.a0000000419370271Program of Immunology and Immunotherapy, CIMA de la Universidad de Navarra, IDISNA and CIBEREHD, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- grid.5924.a0000000419370271Program of Immunology and Immunotherapy, CIMA de la Universidad de Navarra, IDISNA and CIBEREHD, Pamplona, Spain
| | - Ignacio Melero
- grid.5924.a0000000419370271Program of Immunology and Immunotherapy, CIMA de la Universidad de Navarra, IDISNA and CIBEREHD, Pamplona, Spain ,grid.411730.00000 0001 2191 685XDepartment of Immunology and Immunotherapy, Clinica Universidad de Navarra-IDISNA and CIBERONC, Pamplona, Spain
| |
Collapse
|
278
|
Hu R, Tao T, Yu L, Ding Q, Zhu G, Peng G, Zheng S, Yang L, Wu S. Multi-Omics Characterization of Tumor Microenvironment Heterogeneity and Immunotherapy Resistance Through Cell States-Based Subtyping in Bladder Cancer. Front Cell Dev Biol 2021; 9:809588. [PMID: 35223867 PMCID: PMC8864284 DOI: 10.3389/fcell.2021.809588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Due to the strong heterogeneity of bladder cancer (BC), there is often substantial variation in the prognosis and efficiency of immunotherapy among BC patients. For the precision treatment and assessment of prognosis, the subtyping of BC plays a critical role. Despite various subtyping methods proposed previously, most of them are based on a limited number of molecules, and none of them is developed on the basis of cell states. In this study, we construct a single-cell atlas by integrating single cell RNA-seq, RNA microarray, and bulk RNA-seq data to identify the absolute proportion of 22 different cell states in BC, including immune and nonimmune cell states derived from tumor tissues. To explore the heterogeneity of BC, BC was identified into four different subtypes in multiple cohorts using an improved consensus clustering algorithm based on cell states. Among the four subtypes, C1 had median prognosis and best overall response rate (ORR), which characterized an immunosuppressive tumor microenvironment. C2 was enriched in epithelial-mesenchymal transition/invasion, angiogenesis, immunosuppression, and immune exhaustion. Surely, C2 performed the worst in prognosis and ORR. C3 with worse ORR than C2 was enriched in angiogenesis and almost nonimmune exhaustion. Displaying an immune effective environment, C4 performed the best in prognosis and ORR. We found that patients with just an immunosuppressive environment are suitable for immunotherapy, but patients with an immunosuppressive environment accompanied by immune exhaustion or angiogenesis may resist immunotherapy. Furthermore, we conducted exploration into the heterogeneity of the transcriptome, mutational profiles, and somatic copy-number alterations in four subtypes, which could explain the significant differences related to cell states in prognosis and ORR. We also found that PD-1 in immune and tumor cells could both influence ORR in BC. The level of TGFβ in a cell state can be opposite to the overall level in the tissues, and the level in a specific cell state could predict ORR more accurately. Thus, our work furthers the understanding of heterogeneity and immunotherapy resistance in BC, which is expected to assist clinical practice and serve as a supplement to the current subtyping method from a novel perspective of cell states.
Collapse
Affiliation(s)
- Rixin Hu
- Health Science Center, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
- Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Tao Tao
- Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, China
| | - Lu Yu
- Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, China
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou, China
| | - Qiuxia Ding
- Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, China
| | - Guanghui Zhu
- Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, China
| | - Guoyu Peng
- Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, China
| | - Shiwen Zheng
- Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, China
| | - Leyun Yang
- Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, China
| | - Song Wu
- Health Science Center, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
- Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, China
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou, China
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
- *Correspondence: Song Wu,
| |
Collapse
|
279
|
Girardi DM, Pacífico JPM, Guedes de Amorim FPL, dos Santos Fernandes G, Teixeira MC, Pereira AAL. Immunotherapy and Targeted Therapy for Hepatocellular Carcinoma: A Literature Review and Treatment Perspectives. Pharmaceuticals (Basel) 2020; 14:28. [PMID: 33396181 PMCID: PMC7824026 DOI: 10.3390/ph14010028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Advanced hepatocellular carcinoma is a prevalent and potentially aggressive disease. For more than a decade, treatment with sorafenib has been the only approved therapeutic approach. Moreover, no agent has been proven to prolong survival following the progression of disease after sorafenib treatment. However, in recent years, this scenario has changed substantially with several trials being conducted to examine the effects of immunotherapy and novel targeting agents. Several immune checkpoint inhibitors have shown promising results in early-stage clinical trials. Moreover, phase III trials with large cohorts have demonstrated remarkable improvement in survival with the use of new targeted therapies in second-line treatment. Treatment regimens involving the combination of two immune checkpoint inhibitors as well as immune checkpoint inhibitors and anti-angiogenic targeted therapies have shown potential to act synergistically in clinical trials. Recently, the combination of atezolizumab and bevacizumab evaluated in a phase III clinical trial has demonstrated survival superiority in the first-line treatment; it is the new considered standard of care. In this manuscript, we aimed to review the latest advances in the systemic treatment of advanced hepatocellular carcinoma focusing on immunotherapy and targeted therapies.
Collapse
Affiliation(s)
- Daniel M. Girardi
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil; (G.d.S.F.); (A.A.L.P.)
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil;
| | - Jana Priscila M. Pacífico
- Escola Superior de Ciências em Saúde, SMHN Conjunto A Bloco 01 Edifício Fepecs-Asa Norte, Brasília 70710-907, Brazil; (J.P.M.P.); (F.P.L.G.d.A.)
| | - Fernanda P. L. Guedes de Amorim
- Escola Superior de Ciências em Saúde, SMHN Conjunto A Bloco 01 Edifício Fepecs-Asa Norte, Brasília 70710-907, Brazil; (J.P.M.P.); (F.P.L.G.d.A.)
| | - Gustavo dos Santos Fernandes
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil; (G.d.S.F.); (A.A.L.P.)
| | - Marcela C. Teixeira
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil;
- Hospital DF Star, SGAS I SGAS 914-Asa Sul, Brasília 70390-140, Brazil
| | - Allan A. L. Pereira
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil; (G.d.S.F.); (A.A.L.P.)
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil;
| |
Collapse
|
280
|
Probing the Effects of the FGFR-Inhibitor Derazantinib on Vascular Development in Zebrafish Embryos. Pharmaceuticals (Basel) 2020; 14:ph14010025. [PMID: 33396726 PMCID: PMC7824571 DOI: 10.3390/ph14010025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
Angiogenesis is a fundamental developmental process and a hallmark of cancer progression. Receptor tyrosine kinases (RTK) are targets for cancer therapy which may include their action as anti-angiogenic agents. Derazantinib (DZB) is an inhibitor of the fibroblast growth factor receptors (FGFRs) 1–3 as well as other kinase targets including vascular endothelial growth factor receptor 2 (VEGFR2), colony stimulating factor-1 receptor (CSF1R) and platelet-derived growth factor beta receptor (PDGFRbeta). This study aimed to investigate the effect of DZB on blood vessel morphogenesis and to compare its activity to known specific FGFR and VEGFR inhibitors. For this purpose, we used the developing vasculature in the zebrafish embryo as a model system for angiogenesis in vivo. We show that DZB interferes with multiple angiogenic processes that are linked to FGF and VEGF signalling, revealing a potential dual role for DZB as a potent anti-angiogenic treatment.
Collapse
|
281
|
Leong A, Kim M. The Angiopoietin-2 and TIE Pathway as a Therapeutic Target for Enhancing Antiangiogenic Therapy and Immunotherapy in Patients with Advanced Cancer. Int J Mol Sci 2020; 21:ijms21228689. [PMID: 33217955 PMCID: PMC7698611 DOI: 10.3390/ijms21228689] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite significant advances made in cancer treatment, the development of therapeutic resistance to anticancer drugs represents a major clinical problem that limits treatment efficacy for cancer patients. Herein, we focus on the response and resistance to current antiangiogenic drugs and immunotherapies and describe potential strategies for improved treatment outcomes. Antiangiogenic treatments that mainly target vascular endothelial growth factor (VEGF) signaling have shown efficacy in many types of cancer. However, drug resistance, characterized by disease recurrence, has limited therapeutic success and thus increased our urgency to better understand the mechanism of resistance to inhibitors of VEGF signaling. Moreover, cancer immunotherapies including immune checkpoint inhibitors (ICIs), which stimulate antitumor immunity, have also demonstrated a remarkable clinical benefit in the treatment of many aggressive malignancies. Nevertheless, the emergence of resistance to immunotherapies associated with an immunosuppressive tumor microenvironment has restricted therapeutic response, necessitating the development of better therapeutic strategies to increase treatment efficacy in patients. Angiopoietin-2 (ANG2), which binds to the receptor tyrosine kinase TIE2 in endothelial cells, is a cooperative driver of angiogenesis and vascular destabilization along with VEGF. It has been suggested in multiple preclinical studies that ANG2-mediated vascular changes contribute to the development and persistence of resistance to anti-VEGF therapy. Further, emerging evidence suggests a fundamental link between vascular abnormalities and tumor immune evasion, supporting the rationale for combination strategies of immunotherapy with antiangiogenic drugs. In this review, we discuss the recent mechanistic and clinical advances in targeting angiopoietin signaling, focusing on ANG2 inhibition, to enhance therapeutic efficacy of antiangiogenic and ICI therapies. In short, we propose that a better mechanistic understanding of ANG2-mediated vascular changes will provide insight into the significance of ANG2 in treatment response and resistance to current antiangiogenic and ICI therapies. These advances will ultimately improve therapeutic modalities for cancer treatment.
Collapse
|
282
|
Hack SP, Zhu AX, Wang Y. Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities. Front Immunol 2020; 11:598877. [PMID: 33250900 PMCID: PMC7674951 DOI: 10.3389/fimmu.2020.598877] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy (CIT) with antibodies targeting the programmed cell death 1 protein (PD-1)/programmed cell death 1 ligand 1 (PD-L1) axis have changed the standard of care in multiple cancers. However, durable antitumor responses have been observed in only a minority of patients, indicating the presence of other inhibitory mechanisms that act to restrain anticancer immunity. Therefore, new therapeutic strategies targeted against other immune suppressive mechanisms are needed to enhance anticancer immunity and maximize the clinical benefit of CIT in patients who are resistant to immune checkpoint inhibition. Preclinical and clinical studies have identified abnormalities in the tumor microenvironment (TME) that can negatively impact the efficacy of PD-1/PD-L1 blockade. Angiogenic factors such as vascular endothelial growth factor (VEGF) drive immunosuppression in the TME by inducing vascular abnormalities, suppressing antigen presentation and immune effector cells, or augmenting the immune suppressive activity of regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. In turn, immunosuppressive cells can drive angiogenesis, thereby creating a vicious cycle of suppressed antitumor immunity. VEGF-mediated immune suppression in the TME and its negative impact on the efficacy of CIT provide a therapeutic rationale to combine PD-1/PD-L1 antibodies with anti-VEGF drugs in order to normalize the TME. A multitude of clinical trials have been initiated to evaluate combinations of a PD-1/PD-L1 antibody with an anti-VEGF in a variety of cancers. Recently, the positive results from five Phase III studies in non-small cell lung cancer (adenocarcinoma), renal cell carcinoma, and hepatocellular carcinoma have shown that combinations of PD-1/PD-L1 antibodies and anti-VEGF agents significantly improved clinical outcomes compared with respective standards of care. Such combinations have been approved by health authorities and are now standard treatment options for renal cell carcinoma, non-small cell lung cancer, and hepatocellular carcinoma. A plethora of other randomized studies of similar combinations are currently ongoing. Here, we discuss the principle mechanisms of VEGF-mediated immunosuppression studied in preclinical models or as part of translational clinical studies. We also discuss data from recently reported randomized clinical trials. Finally, we discuss how these concepts and approaches can be further incorporated into clinical practice to improve immunotherapy outcomes for patients with cancer.
Collapse
Affiliation(s)
- Stephen P. Hack
- Product Development (Oncology), Genentech, Inc., South San Francisco, CA, United States
| | - Andrew X. Zhu
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | - Yulei Wang
- Product Development (Oncology), Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
283
|
Quaresmini D, Guida M. Neoangiogenesis in Melanoma: An Issue in Biology and Systemic Treatment. Front Immunol 2020; 11:584903. [PMID: 33193402 PMCID: PMC7658002 DOI: 10.3389/fimmu.2020.584903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Neoangiogenesis is a recognized hallmark of cancer, granting tumor cells to dispose of metabolic substrates through a newly created vascular supply. Neoangiogenesis was also confirmed in melanoma, where vascular proliferation is associated with increased aggressiveness and poorer prognosis. Furthermore, melanoma cells show the so-called vascular mimicry, consisting in the assumption of endothelial-like features inducing the expression of pro-angiogenic receptors and ligands, which take part in the interplay with extracellular matrix (ECM) components and are potentiated by the ECM remodeling and the barrier molecule junction alterations that characterize the metastatic phase. Although neoangiogenesis was biologically proven and clinically associated with worse outcomes in melanoma patients, in the past anti-angiogenic therapies were employed with poor improvement of the already unsatisfactory results associated with chemotherapic agents. Among the novel therapies of melanoma, immunotherapy has led to previously unexpected outcomes of treatment, yet there is a still strong need for potentiating the results, possibly by new regimens of combination therapies. Molecular models in many cancer types showed mutual influences between immune responses and vascular normalization. Recently, clinical trials are investigating the efficacy of the association between anti-angiogenetic agents and immune-checkpoint inhibitors to treat advanced stage melanoma. This paper reviews the biological bases of angiogenesis in melanoma and summarizes the currently available clinical data on the use of anti-angiogenetic compounds in melanoma.
Collapse
Affiliation(s)
- Davide Quaresmini
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Michele Guida
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
284
|
Ilie MD, Raverot G. Treatment Options for Gonadotroph Tumors: Current State and Perspectives. J Clin Endocrinol Metab 2020; 105:5879370. [PMID: 32735647 DOI: 10.1210/clinem/dgaa497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
CONTEXT Gonadotroph tumors represent approximatively one-third of anterior pituitary tumors, but despite their frequency, no medical treatment is currently recommended for them. This would be greatly needed because following surgery, which is the first-line treatment, a significant percentage of gonadotroph tumors regrow. EVIDENCE ACQUISITION We performed PubMed searches in March 2020 using the term "gonadotroph" in combination with 36 different keywords related to dopamine type 2 receptor agonists, somatostatin receptor (SST) ligands, temozolomide, peptide receptor radionuclide therapy (PRRT), immunotherapy, vascular endothelial growth factor receptor (VEGFR)-targeted therapy, mammalian target of rapamycin (mTOR) inhibitors, and tyrosine kinase inhibitors. Articles resulting from these searches, as well as relevant references cited by these articles were reviewed. EVIDENCE SYNTHESIS SST2 analogs have demonstrated only very limited antitumor effect, while high-dose cabergoline has been more effective in preventing tumor regrowth, but still in only a minority of cases. In the setting of an aggressive gonadotroph tumor, temozolomide is the recommended medical treatment, but has demonstrated also only limited efficacy. Still, its efficacy has been so far better than that of PRRT. No case of a gonadotroph tumor treated with pasireotide, VEGFR-targeted therapy, mTOR inhibitors, tyrosine kinase inhibitors, or immune checkpoint inhibitors is reported in literature. CONCLUSIONS Gonadotroph tumors need better phenotyping in terms of both tumor cells and associated tumor microenvironment to improve their treatment. Until formal recommendations will be available, we provide the readers with our suggested approach for the management of gonadotroph tumors, management that should be discussed within multidisciplinary teams.
Collapse
Affiliation(s)
- Mirela Diana Ilie
- Endocrinology Department, "C. I. Parhon" National Institute of Endocrinology, Bucharest, Bucharest-Ilfov, Romania
| | - Gérald Raverot
- Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, Auvergne-Rhône-Alpes, France
| |
Collapse
|
285
|
Chen W, Pan X, Cui X. RCC Immune Microenvironment Subsequent to Targeted Therapy: A Friend or a Foe? Front Oncol 2020; 10:573690. [PMID: 33117708 PMCID: PMC7561377 DOI: 10.3389/fonc.2020.573690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
Renal cell carcinoma (RCC) is composed of different subtypes with distinct molecular and histological tumor heterogeneity. Although the advent of various targeted therapies has improved the survival of patients with advanced RCC over the past 15 years (since 2006), few cases experienced complete response due to drug resistance. Recent studies have demonstrated that the outcomes following targeted therapies are potentially associated with intricate cross-links between immune responses and suppressors in the tumor microenvironment (TME). In addition, progress on drug research and development enhances our awareness and understanding about immunotherapy and combined treatment. In this review article, we intend to make a comprehensive summary about TME and its alterations following targeted therapies, provide valid evidence in this aspect, and discuss optimal matches between targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Wenjin Chen
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Xiuwu Pan
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Xingang Cui
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| |
Collapse
|
286
|
Lee WS, Yang H, Chon HJ, Kim C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med 2020; 52:1475-1485. [PMID: 32913278 PMCID: PMC8080646 DOI: 10.1038/s12276-020-00500-y] [Citation(s) in RCA: 343] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8+ T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8+ T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as TH2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8+ T and CD4+ TH1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment.
Collapse
Affiliation(s)
- Won Suk Lee
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Hannah Yang
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Hong Jae Chon
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea.
| | - Chan Kim
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea.
| |
Collapse
|
287
|
Soleimani M, Nappi L, Kollmannsberger C. Avelumab and axitinib combination therapy for the treatment of advanced renal cell carcinoma. Future Oncol 2020; 16:3021-3034. [PMID: 32856478 DOI: 10.2217/fon-2020-0586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Owing to an improved understanding of the immunobiological profile of renal cell carcinoma (RCC), the past few years have ushered in significant changes in systemic therapies for advanced stage RCC. First-line treatment with single-agent tyrosine kinase inhibitors (TKI) has been virtually replaced for most patients by immunotherapy combinations. The first of such treatments was the dual immune checkpoint inhibitor combination of ipilimumab and nivolumab. More recently, the combination of an immune checkpoint inhibitor and a TKI has also moved into the first-line setting. This review summarizes the pharmacologic properties, evidence for use and safety of avelumab, a PD-L1 inhibitor and axitinib a small-molecule TKI, each as monotherapy, and in combination for the management of metastatic RCC.
Collapse
Affiliation(s)
- Maryam Soleimani
- Department of Medical Oncology, BC Cancer Vancouver Centre, Vancouver, BC, V5Z 4E6, Canada
| | - Lucia Nappi
- Department of Medical Oncology, BC Cancer Vancouver Centre, Vancouver, BC, V5Z 4E6, Canada.,Department of Urological Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | | |
Collapse
|
288
|
Duhamel C, Ilie MD, Salle H, Nassouri AS, Gaillard S, Deluche E, Assaker R, Mortier L, Cortet C, Raverot G. Immunotherapy in Corticotroph and Lactotroph Aggressive Tumors and Carcinomas: Two Case Reports and a Review of the Literature. J Pers Med 2020; 10:jpm10030088. [PMID: 32823651 PMCID: PMC7563495 DOI: 10.3390/jpm10030088] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Once temozolomide has failed, no other treatment is recommended for pituitary carcinomas and aggressive pituitary tumors. Recently, the use of immune checkpoint inhibitors (ICIs) has raised hope, but so far, only one corticotroph carcinoma and one aggressive corticotroph tumor treated with immunotherapies have been reported in the literature. Here, we present two cases, one corticotroph carcinoma and one aggressive prolactinoma (the first one reported in the literature) treated with ipilimumab (1 mg/kg) and nivolumab (3 mg/kg) every three weeks, followed by maintenance treatment with nivolumab (3 mg/kg every 2 weeks) in the case of the corticotroph carcinoma, and we compare them with the two previously reported cases. Patient #1 presented a biochemical partial response (plasma ACTH decreased from 13,813 to 841 pg/mL) and dissociated radiological response to the combined ipilimumab and nivolumab—the pituitary mass decreased from 37 × 32 × 41 to 29 × 23 × 42 mm, and the pre-existing liver metastases decreased in size (the largest one from 45 to 14 mm) or disappeared, while a new 11-mm liver metastasis appeared. The maintenance nivolumab (21 cycles) resulted in a stable disease for the initial liver metastases, and in progressive disease for the newly appeared metastasis (effectively treated with radiofrequency ablation) and the pituitary mass. Patient #2 presented radiological and biochemical progressive disease after two cycles of ICIs—the pituitary mass increased from 38 × 42 × 26 to 53 × 57 × 44 mm, and the prolactin levels increased from 4410 to 9840 ng/mL. In conclusion, ICIs represent a promising therapeutic option for aggressive pituitary tumors and carcinomas. The identification of subgroups of responders will be key.
Collapse
Affiliation(s)
- Camille Duhamel
- Endocrinology Department, Lille University Hospital, 59037 Lille, France; (C.D.); (C.C.)
| | - Mirela Diana Ilie
- Endocrinology Department, “C.I.Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania;
| | - Henri Salle
- Neurosurgery Department, Limoges University Hospital, 87042 Limoges, France;
| | - Adjoa Sika Nassouri
- Endocrinology Department, Limoges University Hospital, 87042 Limoges, France;
| | | | - Elise Deluche
- Oncology Department, Limoges University Hospital, 87042 Limoges, France;
| | - Richard Assaker
- Neurosurgery Department, Lille University Hospital, 59037 Lille, France;
| | - Laurent Mortier
- Dermatology Department, Lille University Hospital, 59037 Lille, France;
| | - Christine Cortet
- Endocrinology Department, Lille University Hospital, 59037 Lille, France; (C.D.); (C.C.)
| | - Gérald Raverot
- Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, “Groupement Hospitalier Est” Hospices Civils de Lyon, 69677 Bron, France
- Correspondence: ; Tel.: +33-4-72-11-93-25
| |
Collapse
|
289
|
Cai X, Wei B, Li L, Chen X, Liu W, Cui J, Lin Y, Sun Y, Xu Q, Guo W, Gu Y. Apatinib enhanced anti-PD-1 therapy for colon cancer in mice via promoting PD-L1 expression. Int Immunopharmacol 2020; 88:106858. [PMID: 32795895 DOI: 10.1016/j.intimp.2020.106858] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
Abstract
Increasing studies confirm that anti-angiogenesis can increase the effectiveness of immunotherapy. In this study, we found that an angiogenesis inhibitor apatinib enhanced anti-PD-1 therapy for colon cancer in mice via promoting PD-L1 expression. Apatinib treatment upregulated PD-L1 expression in various colon cancer cells both at the mRNA and protein levels. Further, apatinib-treated cancer cells hampered activation and IFN-γ secretion of T cells in the co-culture system, which was reversed by the anti-PD-1 antibody. Based on this, the combination of apatinib with anti-PD-1 on colon cancer growth in mice was examined. The combination treatment showed more significant inhibition on the growth of transplanted tumors in mice than single-drug treatment. Overall, our study here showed the enhancement of anti-PD-1 antitumor efficacy in a syngeneic mouse model (CT-26 cells in Balb/c) by the angiogenesis inhibitor apatinib via upregulating PD-L1 expression as well as angiogenesis inhibition, which may provide a rationale for the combination of apatinib and anti-PD-1 antibody for colorectal cancer treatment in the clinic.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Wei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lele Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaofeng Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian Cui
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yumeng Lin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
290
|
Guo F, Cui J. Anti-angiogenesis: Opening a new window for immunotherapy. Life Sci 2020; 258:118163. [PMID: 32738363 DOI: 10.1016/j.lfs.2020.118163] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 12/31/2022]
Abstract
The tumor microenvironment (TME) provides a guarantee for the survival and development of solid tumors. In recent years, treatment strategies for TME have set off a great upsurge in the field of cancer research. Tumor angiogenesis and tumor immune microenvironment are two important research branches of TME, and antiangiogenic therapy and immunotherapy have gradually become one important focus of cancer treatment research. More interestingly, increasing number of studies have indicated that there are complex regulatory interactions between the two treatment strategies, with multiple regulatory mechanisms involved. Based on these findings, clinical studies on the combination of immunotherapy and antiangiogenic therapy have also been carried out gradually. This combination strategy has shown good results in many types of tumors, but it also faces many challenges. The paper analysed the potential mechanism of the immunotherapy and antiangiogenic therapy combination, discussed the latest significant clinical trial progress and the existing challenges and problems, aiming to offer some available insights on the effective clinical application of this combination pattern.
Collapse
Affiliation(s)
- Feifei Guo
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
291
|
Peranzoni E, Ingangi V, Masetto E, Pinton L, Marigo I. Myeloid Cells as Clinical Biomarkers for Immune Checkpoint Blockade. Front Immunol 2020; 11:1590. [PMID: 32793228 PMCID: PMC7393010 DOI: 10.3389/fimmu.2020.01590] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
Immune checkpoint inhibitors are becoming standard treatments in several cancer types, profoundly changing the prognosis of a fraction of patients. Currently, many efforts are being made to predict responders and to understand how to overcome resistance in non-responders. Given the crucial role of myeloid cells as modulators of T effector cell function in tumors, it is essential to understand their impact on the clinical outcome of immune checkpoint blockade and on the mechanisms of immune evasion. In this review we focus on the existing clinical evidence of the relation between the presence of myeloid cell subsets and the response to anti-PD(L)1 and anti-CTLA-4 treatment. We highlight how circulating and tumor-infiltrating myeloid populations can be used as predictive biomarkers for immune checkpoint inhibitors in different human cancers, both at baseline and on treatment. Moreover, we propose to follow the dynamics of myeloid cells during immunotherapy as pharmacodynamic biomarkers. Finally, we provide an overview of the current strategies tested in the clinic that use myeloid cell targeting together with immune checkpoint blockade with the aim of uncovering the most promising approaches for effective combinations.
Collapse
Affiliation(s)
- Elisa Peranzoni
- Center for Therapeutic Innovation in Oncology, Institut de Recherche International Servier, Suresnes, France
| | | | - Elena Masetto
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Laura Pinton
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Ilaria Marigo
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| |
Collapse
|
292
|
Che Y, Yang Y, Suo J, An Y, Wang X. Induction of systemic immune responses and reversion of immunosuppression in the tumor microenvironment by a therapeutic vaccine for cervical cancer. Cancer Immunol Immunother 2020; 69:2651-2664. [PMID: 32607768 DOI: 10.1007/s00262-020-02651-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/19/2020] [Indexed: 01/10/2023]
Abstract
Cervical cancer is the most common malignant tumor of the genital tract in females worldwide. Persistent human papillomavirus (HPV) infection is closely associated with the occurrence of cervical cancer. No licensed therapeutic HPV vaccines for cervical cancer are currently available. In our previous study, we demonstrated that the vaccine containing the HPV16 E7 43-77 peptide and the adjuvant unmethylated cytosine-phosphate-guanosine oligodeoxynucleotide elicited significant prophylactic and therapeutic effects on cervical cancer. In the current study, we comprehensively evaluated the effect of the vaccine on systemic immune responses and the tumor microenvironment (TME) in a mouse model of cervical cancer. The results showed that the administration of the vaccine induced a significant increase in splenic IFN-γ-producing CD4 and CD8 T cells as well as tumor infiltrating CD4 and CD8 T cells. Moreover, marked decreases in splenic MDSCs and Tregs as well as intratumoral MDSCs, Tregs and type 2-polarized tumor-associated macrophages were observed in the vaccine group. The profile of cytokines, chemokines and matrix metalloproteinases (MMPs) in the TME revealed significantly increased expression of IL-2, IL-12, TNF-α, IFN-γ, CCL-20, CXCL-9, CXCL-10 and CXCL-14 and decreased expression of IL-6, IL-10, TGF-β, CCL-2, CCL-3, CCL-5, CXCL-8, MMP-2, MMP-9 and VEGF in the vaccine group. The expression of the cell proliferation indicator Ki67, apoptosis regulatory protein p53 and angiogenesis marker CD31 was significantly decreased in the vaccine group. In conclusion, the vaccine reversed tolerogenic systemic and local TME immunosuppression and induced robust antitumor immune responses, which resulted in the inhibition of established implanted tumors.
Collapse
Affiliation(s)
- Yuxin Che
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Yang Yang
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Jinguo Suo
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Yujing An
- School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Xuelian Wang
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
293
|
Affiliation(s)
- Robin K Kelley
- From the Division of Hematology-Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco
| |
Collapse
|
294
|
Arai H, Nakajima TE. Recent Developments of Systemic Chemotherapy for Gastric Cancer. Cancers (Basel) 2020; 12:E1100. [PMID: 32354119 PMCID: PMC7281322 DOI: 10.3390/cancers12051100] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is a molecularly heterogeneous disease. Its molecular background, epidemiology, and standard of care are quite different between Eastern and Western countries. Many efforts have been made in developing more effective surgeries and adjuvant chemotherapies for resectable GC in each region. Recently, an intensive combination of cytotoxic agents has been established as a new standard of adjuvant treatment. Meanwhile, palliative chemotherapy is a uniform standard treatment for unresectable GC worldwide. Recently, one of the most remarkable advances in therapy for unresectable GC has been the approval of immune checkpoint inhibitors (ICIs). The use of ICIs as frontline treatment is currently being investigated. In addition, novel combinations of ICIs and targeted drugs are being evaluated in clinical trials. Despite these advances, the complex biology of GC has resulted in the failure of targeted therapies, with the exceptions of HER2-targeted trastuzumab and VEGFR2-targeted ramucirumab. GC harbors many redundant oncogenic pathways, and small subsets of tumors are driven by different specific pathways. Therefore, a combination strategy simultaneously inhibiting several pathways and/or stricter patient selection for better response to targeted drugs are needed to improve clinical outcomes in this field.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan;
| | - Takako Eguchi Nakajima
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan;
- Kyoto University Hospital, Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
295
|
Garcia J, Hurwitz HI, Sandler AB, Miles D, Coleman RL, Deurloo R, Chinot OL. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat Rev 2020; 86:102017. [PMID: 32335505 DOI: 10.1016/j.ctrv.2020.102017] [Citation(s) in RCA: 611] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 01/01/2023]
Abstract
When the VEGF-A-targeting monoclonal antibody bevacizumab (Avastin®) entered clinical practice more than 15 years ago, it was one of the first targeted therapies and the first approved angiogenesis inhibitor. Marking the beginning for a new line of anti-cancer treatments, bevacizumab remains the most extensively characterized anti-angiogenetic treatment. Initially approved for treatment of metastatic colorectal cancer in combination with chemotherapy, its indications now include metastatic breast cancer, non-small-cell lung cancer, glioblastoma, renal cell carcinoma, ovarian cancer and cervical cancer. This review provides an overview of the clinical experience and lessons learned since bevacizumab's initial approval, and highlights how this knowledge has led to the investigation of novel combination therapies. In the past 15 years, our understanding of VEGF's role in the tumor microenvironment has evolved. We now know that VEGF not only plays a major role in controlling blood vessel formation, but also modulates tumor-induced immunosuppression. These immunomodulatory properties of bevacizumab have opened up new perspectives for combination therapy approaches, which are being investigated in clinical trials. Specifically, the combination of bevacizumab with cancer immunotherapy has recently been approved in non-small-cell lung cancer and clinical benefit was also demonstrated for treatment of hepatocellular carcinoma. However, despite intense investigation, reliable and validated biomarkers that would enable a more personalized use of bevacizumab remain elusive. Overall, bevacizumab is expected to remain a key agent in cancer therapy, both due to its established efficacy in approved indications and its promise as a partner in novel targeted combination treatments.
Collapse
Affiliation(s)
- Josep Garcia
- Global Clinical Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | | | | | | | - Robert L Coleman
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas, MD Anderson Cancer Center, TX, USA
| | - Regula Deurloo
- Oncology Biomarker Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Olivier L Chinot
- Aix-Marseille University, Assistance Publique-Hopitaux de Marseille, Centre Hospitalo-Universitaire Timone, Service de Neuro-Oncologie, Marseille, France
| |
Collapse
|
296
|
Evaluating the benefits of renin-angiotensin system inhibitors as cancer treatments. Pharmacol Ther 2020; 211:107527. [PMID: 32173557 DOI: 10.1016/j.pharmthera.2020.107527] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the largest and most diverse group of cellular membrane receptors identified and characterized. It is estimated that 30 to 50% of marketed drugs target these receptors. The angiotensin II receptor type 1 (AT1R) is a GPCR which signals in response to systemic alterations of the peptide hormone angiotensin II (AngII) in circulation. The enzyme responsible for converting AngI to AngII is the angiotensin-converting enzyme (ACE). Specific inhibitors for the AT1R (more commonly known as AT1R blockers or antagonists) and ACE are well characterized for their effects on the cardiovascular system. Combined with the extensive clinical data available on patient tolerance of AT1R blockers (ARBs) and ACE inhibitors (ACEIs), as well as their non-classical roles in cancer, the notion of repurposing this class of medications as cancer treatment(s) is explored in the current review. Given that AngII-dependent AT1R activity directly regulates angiogenesis, remodeling of vasculature, pro-inflammatory responses, stem cell programming and hematopoiesis, and electrolyte balance; the modulation of these processes with pharmacologically well characterized medications could present a valuable complementary treatment option for cancer patients.
Collapse
|
297
|
Lymphocytic infiltration and Chemotherapy Response Score as prognostic markers in ovarian cancer patients treated with Neoadjuvant chemotherapy. Gynecol Oncol 2020; 157:599-605. [PMID: 32173048 DOI: 10.1016/j.ygyno.2020.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/02/2020] [Indexed: 11/22/2022]
Abstract
Neoadjuvant Chemotherapy (NACT) followed by Interval Debulking Surgery (IDS) is an accepted frontline treatment in patients with advanced Epithelial Ovarian Cancer (EOC). Histopathologic assessment of tumor post NACT may provide a surrogate for response to treatment. The present study aims to characterize the pathological response and to examine its prognostic significance in these patients. Medical records of women with EOC treated in our institution from 2011 to 2016 were retrospectively identified. IDS specimens were reviewed by study pathologist and Chemotherapy Response Score (CRS), lymphocytic infiltration, necrosis and mitosis were assessed. 55 patients with EOC treated with NACT were identified and 48 had complete clinical and pathological data. Median age was 63 years. CRS assessed at omentum predicted PFS when adjusted for age, stage, debulking status (complete, optimal, suboptimal) and post IDS bevacizumab administration (mPFS CRS 1 vs 2 vs 3: 10.3-14-18.7 months 95% CI [7.4-15.7], [12.2-22.9], [13.5-31.3]). Presence of lymphocytic infiltration was associated with improved OS (log-rank test P = 0.015). Post IDS bevacizumab was associated with shorter PFS in patients with lymphocytic infiltration. BRCA status was known for 25 patients and presence of BRCA1/2 mutations was strongly correlated with lymphocytic infiltration (P = 0.011) but not CRS omentum (P = 0.926). Our study confirms the predictive value of CRS in EOC patients treated with NACT and IDS, but also demonstrates the prognostic significance of lymphocytic infiltration as well as its possible interaction with bevacizumab treatment.
Collapse
|
298
|
Kunimasa K, Goto T. Immunosurveillance and Immunoediting of Lung Cancer: Current Perspectives and Challenges. Int J Mol Sci 2020; 21:E597. [PMID: 31963413 PMCID: PMC7014343 DOI: 10.3390/ijms21020597] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/08/2023] Open
Abstract
The immune system plays a dual role in tumor evolution-it can identify and control nascent tumor cells in a process called immunosurveillance and can promote tumor progression through immunosuppression via various mechanisms. Thus, bilateral host-protective and tumor-promoting actions of immunity are integrated as cancer immunoediting. In this decade, immune checkpoint inhibitors, specifically programmed cell death 1 (PD-1) pathway inhibitors, have changed the treatment paradigm of advanced non-small cell lung cancer (NSCLC). These agents are approved for the treatment of patients with NSCLC and demonstrate impressive clinical activity and durable responses in some patients. However, for many NSCLC patients, the efficacy of immune checkpoint inhibitors is limited. To optimize the full utility of the immune system for eradicating cancer, a broader understanding of cancer immunosurveillance and immunoediting is essential. In this review, we discuss the fundamental knowledge of the phenomena and provide an overview of the next-generation immunotherapies in the pipeline.
Collapse
Affiliation(s)
- Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan;
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan
| |
Collapse
|
299
|
Shen R, Li P, Li B, Zhang B, Feng L, Cheng S. Identification of Distinct Immune Subtypes in Colorectal Cancer Based on the Stromal Compartment. Front Oncol 2020; 9:1497. [PMID: 31998649 PMCID: PMC6965328 DOI: 10.3389/fonc.2019.01497] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022] Open
Abstract
The tumor environment is of vital importance for the incidence and development of colorectal cancer. Increasing evidence in recent years has elaborated the vital role of the tumor environment in cancer subtype classification and patient prognosis, but a comprehensive understanding of the colorectal tumor environment that is purely dependent on the stromal compartment is lacking. To decipher the tumor environment in colorectal cancer and explore the role of its immune context in cancer classification, we performed a gene expression microarray on the stromal compartment of colorectal cancer and adjacent normal tissues. Through the integrated analysis of our data with public gene expression microarray data of stromal and epithelial colorectal cancer tissues processed through laser capture microdissection, we identified four highly connected gene modules representing the biological features of four tissue compartments by applying a weighted gene coexpression network analysis algorithm and classified colorectal cancers into three immune subtypes by adopting a nearest template prediction algorithm. A systematic analysis of the four identified modules mainly reflected the close interplay between the biological changes of intrinsic and extrinsic characteristics at the initiation of colorectal cancer. Colorectal cancers were stratified into three immune subtypes based on gene templates identified from representative gene modules of the stromal compartment: active immune, active stroma, and mixed type. These immune subtypes differed by the immune cell infiltration pattern, expression of immune checkpoint inhibitors, mutation landscape, extent of mutation burden, extent of copy number burden, prognosis and chemotherapeutic sensitivity. Further analysis indicated that activation of the NF-kB signaling pathway was the major mechanism causing the no immune infiltration milieu in the active stroma subtype and that inhibitors of the NF-kB signaling pathway could be candidate drugs for treating patients with an active stroma. Overall, these results suggest that characterizing colorectal cancer by the tumor environment is of vital importance in predicting patients' clinical outcomes and helping guide precision and personalized treatment.
Collapse
Affiliation(s)
- Rongfang Shen
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Bing Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Botao Zhang
- Department of Neuro-oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
300
|
Kok VC. Current Understanding of the Mechanisms Underlying Immune Evasion From PD-1/PD-L1 Immune Checkpoint Blockade in Head and Neck Cancer. Front Oncol 2020; 10:268. [PMID: 32185135 PMCID: PMC7058818 DOI: 10.3389/fonc.2020.00268] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/17/2020] [Indexed: 02/05/2023] Open
Abstract
Starting in 2014, large phase III clinical trials began to disclose the study results of using programmed death (PD)-1 immune checkpoint inhibitors (ICIs) (pembrolizumab, nivolumab) and PD-ligand (L)1 (atezolizumab, durvalumab, avelumab) ICIs immunotherapy in patients with advanced head and neck squamous cell carcinoma (HNSCC). In the recurrent and metastatic (R/M), cisplatin-refractory setting, nivolumab achieved a 2.2-fold increase of the median 1-year overall survival as compared with investigators' choice of salvage chemotherapy (36.0 vs. 16.6%). A paradigm shift to the winning regimen, pembrolizumab combined with platinum and infusional fluorouracil, has outperformed the past gold standard of cetuximab-based platinum and fluorouracil combination in terms of overall survival (median, 13.6 vs. 10.1 mo) when administered as the first-line treatment for R/M HNSCC. Nevertheless, many patients still did not respond to the PD-1/PD-L1 checkpoint inhibitor treatment, indicating innate, adapted, or quickly acquired resistance to the immunotherapy. The mechanisms of resistance to ICIs targeting the PD-1/PD-L1 signaling pathway in the context of HNSCC are the focus of this review. The past 5 years have seen improved understanding of the mechanisms underlying checkpoint inhibition resistance in tumor cells, such as: tumor cell adaption with malfunction of the antigen-presenting machinery via class I human leukocyte antigen (HLA), reintroduction of cyclin D-cyclin-dependent kinase (CDK) 4 complex to cell cycles, enrichment of CD44+ cancer stem-like cells, or development of inactivating mutation in IKZF1 gene; impairment of T-cell functions and proliferation through mutations in the interferon-γ-regulating genes, suppression of the stimulator of interferon genes (STING) pathway, or resulted from constitutional nutritional iron deficiency state; metabolic reprogramming by cancer cells with changes in metabolites such as GTP cyclohydrolase 1, tetrahydrobiopterin, kynurenine, indoleamine 2,3-dioxygenase, and arginase 1; defective dendritic cells, CD-69 sufficient state; and the upregulation or activation of the alternative immune checkpoints, including lymphocyte activation gene-3 (LAG3), T-cell immunoglobulin and ITIM domain (TIGIT)/CD155 pathway, T-cell immunoglobulin mucin-3 (TIM-3), and V domain-containing Ig suppressor of T-cell activation (VISTA). Several potential biomarkers or biosignatures, which could predict the response or resistance to the PD-1/PD-L1 checkpoint immunotherapy, are also discussed.
Collapse
Affiliation(s)
- Victor C. Kok
- Department of Medical Oncology, Kuang Tien General Hospital Cancer Center, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taiwan, Taichung, Taiwan
- *Correspondence: Victor C. Kok
| |
Collapse
|