251
|
Ehata S, Yokoyama Y, Takahashi K, Miyazono K. Bi-directional roles of bone morphogenetic proteins in cancer: Another molecular Jekyll and Hyde? Pathol Int 2013; 63:287-96. [DOI: 10.1111/pin.12067] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/08/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Shogo Ehata
- Department of Molecular Pathology; Graduate School of Medicine; The University of Tokyo; Tokyo; Japan
| | - Yuichiro Yokoyama
- Department of Molecular Pathology; Graduate School of Medicine; The University of Tokyo; Tokyo; Japan
| | - Kei Takahashi
- Department of Molecular Pathology; Graduate School of Medicine; The University of Tokyo; Tokyo; Japan
| | - Kohei Miyazono
- Department of Molecular Pathology; Graduate School of Medicine; The University of Tokyo; Tokyo; Japan
| |
Collapse
|
252
|
Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. Blood 2013; 122:598-607. [PMID: 23741013 DOI: 10.1182/blood-2012-12-472142] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lymphatic vessels are critical for the maintenance of tissue fluid homeostasis and their dysfunction contributes to several human diseases. The activin receptor-like kinase 1 (ALK1) is a transforming growth factor-β family type 1 receptor that is expressed on both blood and lymphatic endothelial cells (LECs). Its high-affinity ligand, bone morphogenetic protein 9 (BMP9), has been shown to be critical for retinal angiogenesis. The aim of this work was to investigate whether BMP9 could play a role in lymphatic development. We found that Bmp9 deficiency in mice causes abnormal lymphatic development. Bmp9-knockout (KO) pups presented hyperplastic mesenteric collecting vessels that maintained LYVE-1 expression. In accordance with this result, we found that BMP9 inhibited LYVE-1 expression in LECs in an ALK1-dependent manner. Bmp9-KO pups also presented a significant reduction in the number and in the maturation of mesenteric lymphatic valves at embryonic day 18.5 and at postnatal days 0 and 4. Interestingly, the expression of several genes known to be involved in valve formation (Foxc2, Connexin37, EphrinB2, and Neuropilin1) was upregulated by BMP9 in LECS. Finally, we demonstrated that Bmp9-KO neonates and adult mice had decreased lymphatic draining efficiency. These data identify BMP9 as an important extracellular regulator in the maturation of the lymphatic vascular network affecting valve development and lymphatic vessel function.
Collapse
|
253
|
The ALK-1/Smad1 pathway in cardiovascular physiopathology. A new target for therapy? Biochim Biophys Acta Mol Basis Dis 2013; 1832:1492-510. [PMID: 23707512 DOI: 10.1016/j.bbadis.2013.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/04/2013] [Accepted: 05/13/2013] [Indexed: 01/04/2023]
Abstract
Activin receptor-like kinase-1 or ALK-1 is a type I cell surface receptor for the transforming growth factor-β (TGF-β) family of proteins. The role of ALK-1 in endothelial cells biology and in angiogenesis has been thoroughly studied by many authors. However, it has been recently suggested a possible role of ALK-1 in cardiovascular homeostasis. ALK-1 is not only expressed in endothelial cells but also in smooth muscle cells, myofibroblast, hepatic stellate cells, chondrocytes, monocytes, myoblasts, macrophages or fibroblasts, but its role in these cells have not been deeply analyzed. Due to the function of ALK-1 in these cells, this receptor plays a role in several cardiovascular diseases. Animals with ALK-1 haploinsufficiency and patients with mutations in Acvrl1 (the gene that codifies for ALK-1) develop type-2 Hereditary Hemorrhagic Telangiectasia. Moreover, ALK-1 heterozygous mice develop pulmonary hypertension. Higher levels of ALK-1 have been observed in atherosclerotic plaques, suggesting a possible protector role of this receptor. ALK-1 deficiency is also related to the development of arteriovenous malformations (AVMs). Besides, due to the ability of ALK-1 to regulate cell proliferation and migration, and to modulate extracellular matrix (ECM) protein expression in several cell types, ALK-1 has been now demonstrated to play an important role in cardiovascular remodeling. In this review, we would like to offer a complete vision of the role of ALK-1 in many process related to cardiovascular homeostasis, and the involvement of this protein in the development of cardiovascular diseases, suggesting the possibility of using the ALK-1/smad-1 pathway as a powerful therapeutic target.
Collapse
|
254
|
Dunmore BJ, Drake KM, Upton PD, Toshner MR, Aldred MA, Morrell NW. The lysosomal inhibitor, chloroquine, increases cell surface BMPR-II levels and restores BMP9 signalling in endothelial cells harbouring BMPR-II mutations. Hum Mol Genet 2013; 22:3667-79. [PMID: 23669347 PMCID: PMC3749859 DOI: 10.1093/hmg/ddt216] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by dysregulated pulmonary artery endothelial cell (PAEC) proliferation, apoptosis and permeability. Loss-of-function mutations in the bone morphogenetic protein receptor type-II (BMPR-II) are the most common cause of heritable PAH, usually resulting in haploinsufficiency. We previously showed that BMPR-II expression is regulated via a lysosomal degradative pathway. Here, we show that the antimalarial drug, chloroquine, markedly increased cell surface expression of BMPR-II protein independent of transcription in PAECs. Inhibition of protein synthesis experiments revealed a rapid turnover of cell surface BMPR-II, which was inhibited by chloroquine treatment. Chloroquine enhanced PAEC expression of BMPR-II following siRNA knockdown of the BMPR-II transcript. Using blood outgrowth endothelial cells (BOECs), we confirmed that signalling in response to the endothelial BMPR-II ligand, BMP9, is compromised in BOECs from patients harbouring BMPR-II mutations, and in BMPR-II mutant PAECs. Chloroquine significantly increased gene expression of BMP9-BMPR-II signalling targets Id1, miR21 and miR27a in both mutant BMPR-II PAECs and BOECs. These findings provide support for the restoration of cell surface BMPR-II with agents such as chloroquine as a potential therapeutic approach for heritable PAH.
Collapse
Affiliation(s)
- Benjamin J Dunmore
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
255
|
Choi EJ, Kim YH, Choe SW, Tak YG, Garrido-Martin EM, Chang M, Lee YJ, Oh SP. Enhanced responses to angiogenic cues underlie the pathogenesis of hereditary hemorrhagic telangiectasia 2. PLoS One 2013; 8:e63138. [PMID: 23675457 PMCID: PMC3651154 DOI: 10.1371/journal.pone.0063138] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/28/2013] [Indexed: 12/11/2022] Open
Abstract
Hereditary Hemorrhagic Telangiectasia (HHT) is a genetic vascular disease in which arteriovenous malformations (AVMs) manifest in skin and multiple visceral organs. HHT is caused by heterozygous mutations in endoglin (ENG), activin receptor-like kinase 1 (ALK1), or SMAD4. ALK1 regulates angiogenesis, but the precise function of ALK1 in endothelial cells (ECs) remains elusive. Since most blood vessels of HHT patients do not produce pathological vascular lesions, ALK1 heterozygous ECs may be normal unless additional genetic or environmental stresses are imposed. To investigate the cellular and biochemical phenotypes of Alk1-null versus Alk1-heterozygous ECs, we have generated pulmonary EC lines in which a genotype switch from the Alk1-conditional allele (Alk1 (2f)) to the Alk1-null allele (Alk1 (1f)) can be induced by tamoxifen treatment. Alk1-null (1 f/1 f) ECs displayed increased migratory properties in vitro in response to bFGF compared with Alk1-het (2 f/1 f) ECs. The 1 f/1 f-ECs formed a denser and more persistent tubular network as compared with their parental 2 f/1 f-ECs. Interestingly, the response to BMP-9 on SMAD1/5 phosphorylation was impaired in both 2 f/1 f- and 1 f/1 f-ECs at a comparable manner, suggesting that other factors in addition to SMADs may play a crucial role for enhanced angiogenic activity in 1 f/1 f-ECs. We also demonstrated in vivo that Alk1-deficient ECs exhibited high migratory and invasive properties. Taken together, these data suggest that enhanced responses to angiogenic cues in ALK1-deficient ECs underlie the pathogenesis of HHT2.
Collapse
Affiliation(s)
- Eun-Jung Choi
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Yong Hwan Kim
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Se-woon Choe
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Yu Gyoung Tak
- World Class University Program, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Eva M. Garrido-Martin
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Myron Chang
- Department of Biostatistics, University of Florida, Gainesville, Florida, United States of America
| | - Young Jae Lee
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- World Class University Program, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - S. Paul Oh
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- World Class University Program, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- * E-mail:
| |
Collapse
|
256
|
Kéramidas M, de Fraipont F, Karageorgis A, Moisan A, Persoons V, Richard MJ, Coll JL, Rome C. The dual effect of mesenchymal stem cells on tumour growth and tumour angiogenesis. Stem Cell Res Ther 2013; 4:41. [PMID: 23628074 PMCID: PMC3706993 DOI: 10.1186/scrt195] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/11/2013] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Understanding the multiple biological functions played by human mesenchymal stem cells (hMSCs) as well as their development as therapeutics in regenerative medicine or in cancer treatment are major fields of research. Indeed, it has been established that hMSCs play a central role in the pathogenesis and progression of tumours, but their impact on tumour growth remains controversial. METHODS In this study, we investigated the influence of hMSCs on the growth of pre-established tumours. We engrafted nude mice with luciferase-positive mouse adenocarcinoma cells (TSA-Luc+) to obtain subcutaneous or lung tumours. When tumour presence was confirmed by non-invasive bioluminescence imaging, hMSCs were injected into the periphery of the SC tumours or delivered by systemic intravenous injection in mice bearing either SC tumours or lung metastasis. RESULTS Regardless of the tumour model and mode of hMSC injection, hMSC administration was always associated with decreased tumour growth due to an inhibition of tumour cell proliferation, likely resulting from deep modifications of the tumour angiogenesis. Indeed, we established that although hMSCs can induce the formation of new blood vessels in a non-tumoural cellulose sponge model in mice, they do not modify the overall amount of haemoglobin delivered into the SC tumours or lung metastasis. We observed that these tumour vessels were reduced in number but were longer. CONCLUSIONS Our results suggest that hMSCs injection decreased solid tumour growth in mice and modified tumour vasculature, which confirms hMSCs could be interesting to use for the treatment of pre-established tumours.
Collapse
|
257
|
Kim CW, Song H, Kumar S, Nam D, Kwon HS, Chang KH, Son DJ, Kang DW, Brodie SA, Weiss D, Vega JD, Alberts-Grill N, Griendling K, Taylor WR, Jo H. Anti-inflammatory and antiatherogenic role of BMP receptor II in endothelial cells. Arterioscler Thromb Vasc Biol 2013; 33:1350-9. [PMID: 23559633 DOI: 10.1161/atvbaha.112.300287] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Atherosclerosis is an inflammatory disease with multiple underlying metabolic and physical risk factors. Bone morphogenic protein 4 (BMP4) expression is increased in endothelium in atherosclerosis-prone regions and is known to induce endothelial inflammation, endothelial dysfunction, and hypertension. BMP actions are mediated by 2 different types of BMP receptors (BMPRI and BMPRII). Here, we show a surprising finding that loss of BMPRII expression causes endothelial inflammation and atherosclerosis. APPROACH AND RESULTS Using BMPRII siRNA and BMPRII(+/-) mice, we found that specific knockdown of BMPRII, but not other BMP receptors (Alk1, Alk2, Alk3, Alk6, ActRIIa, and ActRIIb), induced endothelial inflammation in a ligand-independent manner by mechanisms mediated by reactive oxygen species, nuclear factor-KappaB, and reduced nicotinamide adenine dinucleotide phosphate oxidases. Further, BMPRII(+/-)ApoE(-/-) mice developed accelerated atherosclerosis compared with BMPRII(+/+)ApoE(-/-) mice. Interestingly, we found that multiple proatherogenic stimuli, such as hypercholesterolemia, disturbed flow, prohypertensive angiotensin II, and the proinflammatory cytokine (tumor necrosis factor-α), downregulated BMPRII expression in endothelium, whereas antiatherogenic stimuli, such as stable flow and statin treatment, upregulated its expression in vivo and in vitro. Moreover, BMPRII expression was significantly diminished in human coronary advanced atherosclerotic lesions. Also, we were able to rescue the endothelial inflammation induced by BMPRII knockdown by overexpressing the BMPRII wild type, but not by the BMPRII short form lacking the carboxyl-terminal tail region. CONCLUSIONS These results suggest that BMPRII is a critical, anti-inflammatory, and antiatherogenic protein that is commonly targeted by multiple pro- and antiatherogenic factors. BMPRII may be used as a novel diagnostic and therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Chan Woo Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Seghers L, de Vries MR, Pardali E, Hoefer IE, Hierck BP, ten Dijke P, Goumans MJ, Quax PHA. Shear induced collateral artery growth modulated by endoglin but not by ALK1. J Cell Mol Med 2013; 16:2440-50. [PMID: 22436015 PMCID: PMC3823438 DOI: 10.1111/j.1582-4934.2012.01561.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) stimulates both ischaemia induced angiogenesis and shear stress induced arteriogenesis by signalling through different receptors. How these receptors are involved in both these processes of blood flow recovery is not entirely clear. In this study the role of TGF-β receptors 1 and endoglin is assessed in neovascularization in mice. Unilateral femoral artery ligation was performed in mice heterozygous for either endoglin or ALK1 and in littermate controls. Compared with littermate controls, blood flow recovery, monitored by laser Doppler perfusion imaging, was significantly hampered by maximal 40% in endoglin heterozygous mice and by maximal 49% in ALK1 heterozygous mice. Collateral artery size was significantly reduced in endoglin heterozygous mice compared with controls but not in ALK1 heterozygous mice. Capillary density in ischaemic calf muscles was unaffected, but capillaries from endoglin and ALK1 heterozygous mice were significantly larger when compared with controls. To provide mechanistic evidence for the differential role of endoglin and ALK1 in shear induced or ischaemia induced neovascularization, murine endothelial cells were exposed to shear stress in vitro. This induced increased levels of endoglin mRNA but not ALK1. In this study it is demonstrated that both endoglin and ALK1 facilitate blood flow recovery. Importantly, endoglin contributes to both shear induced collateral artery growth and to ischaemia induced angiogenesis, whereas ALK1 is only involved in ischaemia induced angiogenesis.
Collapse
Affiliation(s)
- Leonard Seghers
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
259
|
Lamplot JD, Qin J, Nan G, Wang J, Liu X, Yin L, Tomal J, Li R, Shui W, Zhang H, Kim SH, Zhang W, Zhang J, Kong Y, Denduluri S, Rogers MR, Pratt A, Haydon RC, Luu HH, Angeles J, Shi LL, He TC. BMP9 signaling in stem cell differentiation and osteogenesis. AMERICAN JOURNAL OF STEM CELLS 2013; 2:1-21. [PMID: 23671813 PMCID: PMC3636726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/23/2013] [Indexed: 06/02/2023]
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily and play a critical role in skeletal development, bone formation and stem cell differentiation. Disruptions in BMP signaling result in a variety of skeletal and extraskeletal anomalies. BMP9 is a poorly characterized member of the BMP family and is among the most osteogenic BMPs, promoting osteoblastic differentiation of mesenchymal stem cells (MSCs) both in vitro and in vivo. Recent findings from various in vivo and molecular studies strongly suggest that the mechanisms governing BMP9-mediated osteoinduction differ from other osteogenic BMPs. Many signaling pathways with diverse functions have been found to play a role in BMP9-mediated osteogenesis. Several of these pathways are also critical in the differentiation of other cell lineages, including adipocytes and chondrocytes. While BMP9 is known to be a potent osteogenic factor, it also influences several other pathways including cancer development, angiogenesis and myogenesis. Although BMP9 has been demonstrated as one of the most osteogenic BMPs, relatively little is known about the specific mechanisms responsible for these effects. BMP9 has demonstrated efficacy in promoting spinal fusion and bony non-union repair in animal models, demonstrating great translational promise. This review aims to summarize our current knowledge of BMP9-mediated osteogenesis by presenting recently completed work which may help us to further elucidate these pathways.
Collapse
Affiliation(s)
- Joseph D Lamplot
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Jiaqiang Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics codesignated by Chinese Ministry of Education, The Children’s Hospital of Chongqing Medical UniversityChongqing 400014, China
| | - Guoxin Nan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics codesignated by Chinese Ministry of Education, The Children’s Hospital of Chongqing Medical UniversityChongqing 400014, China
| | - Jinhua Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences and the Affiliated Hospital of Stomatology, Chongqing Medical UniversityChongqing 401147, China
| | - Xing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics codesignated by Chinese Ministry of Education, The Children’s Hospital of Chongqing Medical UniversityChongqing 400014, China
| | - Liangjun Yin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400016, China
| | - Justin Tomal
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Ruidong Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400016, China
| | - Wei Shui
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400016, China
| | - Hongyu Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400016, China
| | - Stephanie H Kim
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400016, China
| | - Jiye Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400016, China
| | - Yuhan Kong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400016, China
| | - Sahitya Denduluri
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Mary Rose Rogers
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Abdullah Pratt
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Jovito Angeles
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Lewis L Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics codesignated by Chinese Ministry of Education, The Children’s Hospital of Chongqing Medical UniversityChongqing 400014, China
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400016, China
| |
Collapse
|
260
|
Blancas AA, Wong LE, Glaser DE, McCloskey KE. Specialized tip/stalk-like and phalanx-like endothelial cells from embryonic stem cells. Stem Cells Dev 2013; 22:1398-407. [PMID: 23249281 DOI: 10.1089/scd.2012.0376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endothelial cells (EC) generated in vitro from stem cells are desirable for their potential in a variety of in vitro models and cell-based therapeutic approaches; however, EC can take on a number of functionally and phenotypically distinct specializations. Here, we show the generation of functionally distinct EC subpopulations, including (1) the pro-angiogenic migrating tip-like and proliferative stalk-like EC, and (2) the less migratory cobblestone-shaped phalanx-like EC. Both embryonic stem cell (ESC)-derived EC subpopulations are generated from outgrowths of Flk-1+ vascular progenitor cells with high levels of vascular endothelial growth factor treatment, while the phalanx-like ESC-derived EC (ESC-EC) are subsequently isolated by selecting for cobblestone shape. Compared with the ESC-derived angiogenic endothelial cells (named ESC-AEC) that contain only 14% Flt-1+ and 25% Tie-1+ cells, the selected phalanx-like ESC-EC express higher numbers of cells expressing the phalanx markers Flt-1+ and Tie-1+, 89% and 90%, respectively. The ESC-AEC also contain 35% CXCR4+ tip cells, higher expression levels of stalk marker Notch-1, and lower expression levels of Tie-2 compared with the phalanx-type ESC-EC that do not contain discernible numbers of CXCR4+ tip cells. Perhaps most notably, the ESC-AEC display increased cell migration, proliferation, and 3 times more vessel-like structures after 48 h on Matrigel compared with the phalanx-like ESC-EC. This work analyzes, for the first time, the presence of distinct EC subtypes (tip/stalk, and phalanx) generated in vitro from ESC, and shows that phalanx-like EC can be purified and maintained in culture separate from the tip/stalk-like containing EC.
Collapse
Affiliation(s)
- Alicia A Blancas
- Graduate Program in Quantitative and Systems Biology, University of California , Merced, California, USA
| | | | | | | |
Collapse
|
261
|
Leblanc E, Drouin G, Grenier G, Faucheux N, Hamdy R. From skeletal to non skeletal: The intriguing roles of BMP-9: A literature review. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.410a4004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
262
|
Nolan-Stevaux O, Zhong W, Culp S, Shaffer K, Hoover J, Wickramasinghe D, Ruefli-Brasse A. Endoglin requirement for BMP9 signaling in endothelial cells reveals new mechanism of action for selective anti-endoglin antibodies. PLoS One 2012; 7:e50920. [PMID: 23300529 PMCID: PMC3531442 DOI: 10.1371/journal.pone.0050920] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/25/2012] [Indexed: 11/18/2022] Open
Abstract
Endoglin (ENG), a co-receptor for several TGFβ-family cytokines, is expressed in dividing endothelial cells alongside ALK1, the ACVRL1 gene product. ENG and ACVRL1 are both required for angiogenesis and mutations in either gene are associated with Hereditary Hemorrhagic Telangectasia, a rare genetic vascular disorder. ENG and ALK1 function in the same genetic pathway but the relative contribution of TGFβ and BMP9 to SMAD1/5/8 activation and the requirement of ENG as a co-mediator of SMAD phosphorylation in endothelial cells remain debated. Here, we show that BMP9 and TGFβ1 induce distinct SMAD phosphorylation responses in primary human endothelial cells and that, unlike BMP9, TGFβ only induces SMAD1/5/8 phosphorylation in a subset of immortalized mouse endothelial cell lines, but not in primary human endothelial cells. We also demonstrate, using siRNA depletion of ENG and novel anti-ENG antibodies, that ENG is required for BMP9/pSMAD1 signaling in all human and mouse endothelial cells tested. Finally, anti-ENG antibodies that interfere with BMP9/pSMAD1 signaling, but not with TGFβ1/pSMAD3 signaling, also decrease in vitro HUVEC endothelial tube formation and inhibit BMP9 binding to recombinant ENG in vitro. Our data demonstrate that BMP9 signaling inhibition is a key and previously unreported mechanism of action of TRC105, an anti-angiogenic anti-Endoglin antibody currently evaluated in clinical trials.
Collapse
MESH Headings
- Animals
- Antibodies, Anti-Idiotypic/pharmacology
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis
- Blotting, Western
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Endoglin
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Flow Cytometry
- Growth Differentiation Factor 2
- Growth Differentiation Factors/genetics
- Growth Differentiation Factors/metabolism
- Humans
- Mice
- Phosphorylation
- Protein Binding
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Rats
- Real-Time Polymerase Chain Reaction
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Smad Proteins/genetics
- Smad Proteins/metabolism
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
|
263
|
Chen J, Liu H, Liu J, Qi J, Wei B, Yang J, Liang H, Chen Y, Chen J, Wu Y, Guo L, Zhu J, Zhao X, Peng T, Zhang Y, Chen S, Li X, Li D, Wang T, Pei D. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet 2012. [PMID: 23202127 DOI: 10.1038/ng.2491] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The induction of pluripotent stem cells (iPSCs) by defined factors is poorly understood stepwise. Here, we show that histone H3 lysine 9 (H3K9) methylation is the primary epigenetic determinant for the intermediate pre-iPSC state, and its removal leads to fully reprogrammed iPSCs. We generated a panel of stable pre-iPSCs that exhibit pluripotent properties but do not activate the core pluripotency network, although they remain sensitive to vitamin C for conversion into iPSCs. Bone morphogenetic proteins (BMPs) were subsequently identified in serum as critical signaling molecules in arresting reprogramming at the pre-iPSC state. Mechanistically, we identified H3K9 methyltransferases as downstream targets of BMPs and showed that they function with their corresponding demethylases as the on/off switch for the pre-iPSC fate by regulating H3K9 methylation status at the core pluripotency loci. Our results not only establish pre-iPSCs as an epigenetically stable signpost along the reprogramming road map, but they also provide mechanistic insights into the epigenetic reprogramming of cell fate.
Collapse
Affiliation(s)
- Jiekai Chen
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Poirier O, Ciumas M, Eyries M, Montagne K, Nadaud S, Soubrier F. Inhibition of apelin expression by BMP signaling in endothelial cells. Am J Physiol Cell Physiol 2012; 303:C1139-45. [DOI: 10.1152/ajpcell.00168.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transforming growth factor-β/bone morphogenic protein (BMP) system is a major pathway for angiogenesis and is involved in hereditary vascular diseases. Here we report that the gene encoding the vasoactive and vascular cell growth-regulating peptide apelin is a target of the BMP pathway. We demonstrate that apelin expression is strongly downregulated by BMP in an endothelial cell line as well as in lung endothelial microvascular cells. We show that BMP signals through the BMPR2-SMAD pathway to downregulate apelin expression and that a transcriptional direct and indirect mechanism is required. The BMP-induced downregulation of apelin expression was found to be critical for hypoxia-induced growth of endothelial cells, because the growth inhibitory effect of BMP in this condition is suppressed by enforced expression of apelin. Thus, we describe an important link between a signaling pathway involved in angiogenesis and vascular diseases and a peptide regulating vascular homeostasis.
Collapse
Affiliation(s)
- Odette Poirier
- UMR_S 956 INSERM, Université Pierre et Marie Curie, Paris, France
| | - Mariana Ciumas
- UMR_S 956 INSERM, Université Pierre et Marie Curie, Paris, France
| | - Mélanie Eyries
- UMR_S 956 INSERM, Université Pierre et Marie Curie, Paris, France
| | - Kevin Montagne
- UMR_S 956 INSERM, Université Pierre et Marie Curie, Paris, France
| | - Sophie Nadaud
- UMR_S 956 INSERM, Université Pierre et Marie Curie, Paris, France
| | - Florent Soubrier
- UMR_S 956 INSERM, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
265
|
Hu N, Jiang D, Huang E, Liu X, Li R, Liang X, Kim SH, Chen X, Gao JL, Zhang H, Zhang W, Kong YH, Zhang J, Wang J, Shui W, Luo X, Liu B, Cui J, Rogers MR, Shen J, Zhao C, Wang N, Wu N, Luu HH, Haydon RC, He TC, Huang W. BMP9-regulated angiogenic signaling plays an important role in the osteogenic differentiation of mesenchymal progenitor cells. J Cell Sci 2012. [PMID: 23203800 DOI: 10.1242/jcs.114231] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mesenchymal stromal progenitor cells (MSCs) are multipotent progenitors that can be isolated from numerous tissues. MSCs can undergo osteogenic differentiation under proper stimuli. We have recently demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most osteogenic BMPs. As one of the least studied BMPs, BMP9 has been shown to regulate angiogenesis in endothelial cells. However, it is unclear whether BMP9-regulated angiogenic signaling plays any important role in the BMP9-initiated osteogenic pathway in MSCs. Here, we investigate the functional role of hypoxia-inducible factor 1α (HIF1α)-mediated angiogenic signaling in BMP9-regulated osteogenic differentiation of MSCs. We find that BMP9 induces HIF1α expression in MSCs through Smad1/5/8 signaling. Exogenous expression of HIF1α potentiates BMP9-induced osteogenic differentiation of MSCs both in vitro and in vivo. siRNA-mediated silencing of HIF1α or HIF1α inhibitor CAY10585 profoundly blunts BMP9-induced osteogenic signaling in MSCs. HIF1α expression regulated by cobalt-induced hypoxia also recapitulates the synergistic effect between HIF1α and BMP9 in osteogenic differentiation. Mechanistically, HIF1α is shown to exert its synergistic effect with BMP9 by inducing both angiogenic signaling and osteogenic signaling in MSCs. Thus, our findings should not only expand our understanding of the molecular basis behind BMP9-regulated osteoblastic lineage-specific differentiation, but also provide an opportunity to harness the BMP9-induced synergy between osteogenic and angiogenic signaling pathways in regenerative medicine.
Collapse
Affiliation(s)
- Ning Hu
- The First Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Garrido-Martín EM, Blanco FJ, Roquè M, Novensà L, Tarocchi M, Lang UE, Suzuki T, Friedman SL, Botella LM, Bernabéu C. Vascular injury triggers Krüppel-like factor 6 mobilization and cooperation with specificity protein 1 to promote endothelial activation through upregulation of the activin receptor-like kinase 1 gene. Circ Res 2012; 112:113-27. [PMID: 23048070 DOI: 10.1161/circresaha.112.275586] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Activin receptor-like kinase-1 (ALK1) is an endothelial transforming growth factor β receptor involved in angiogenesis. ALK1 expression is high in the embryo vasculature, becoming less detectable in the quiescent endothelium of adult stages. However, ALK1 expression becomes rapidly increased after angiogenic stimuli such as vascular injury. OBJECTIVE To characterize the molecular mechanisms underlying the regulation of ALK1 on vascular injury. METHODS AND RESULTS Alk1 becomes strongly upregulated in endothelial (EC) and vascular smooth muscle cells of mouse femoral arteries after wire-induced endothelial denudation. In vitro denudation of monolayers of human umbilical vein ECs also leads to an increase in ALK1. Interestingly, a key factor in tissue remodeling, Krüppel-like factor 6 (KLF6) translocates to the cell nucleus during wound healing, concomitantly with an increase in the ALK1 gene transcriptional rate. KLF6 knock down in human umbilical vein ECs promotes ALK1 mRNA downregulation. Moreover, Klf6(+/-) mice have lower levels of Alk1 in their vasculature compared with their wild-type siblings. Chromatin immunoprecipitation assays show that KLF6 interacts with ALK1 promoter in ECs, and this interaction is enhanced during wound healing. We demonstrate that KLF6 is transactivating ALK1 gene, and this transactivation occurs by a synergistic cooperative mechanism with specificity protein 1. Finally, Alk1 levels in vascular smooth muscle cells are not directly upregulated in response to damage, but in response to soluble factors, such as interleukin 6, released from ECs after injury. CONCLUSIONS ALK1 is upregulated in ECs during vascular injury by a synergistic cooperative mechanism between KLF6 and specificity protein 1, and in vascular smooth muscle cells by an EC-vascular smooth muscle cell paracrine communication during vascular remodeling.
Collapse
|
267
|
Abstract
BMP9 signaling has been implicated in hereditary hemorrhagic telangiectasia (HHT) and vascular remodeling, acting via the HHT target genes, endoglin and ALK1. This study sought to identify endothelial BMP9-regulated proteins that could affect the HHT phenotype. Gene ontology analysis of cDNA microarray data obtained after BMP9 treatment of primary human endothelial cells indicated regulation of chemokine, adhesion, and inflammation pathways. These responses included the up-regulation of the chemokine CXCL12/SDF1 and down-regulation of its receptor CXCR4. Quantitative mass spectrometry identified additional secreted proteins, including the chemokine CXCL10/IP10. RNA knockdown of endoglin and ALK1 impaired SDF1/CXCR4 regulation by BMP9. Because of the association of SDF1 with ischemia, we analyzed its expression under hypoxia in response to BMP9 in vitro, and during the response to hindlimb ischemia, in endoglin-deficient mice. BMP9 and hypoxia were additive inducers of SDF1 expression. Moreover, the data suggest that endoglin deficiency impaired SDF1 expression in endothelial cells in vivo. Our data implicate BMP9 in regulation of the SDF1/CXCR4 chemokine axis in endothelial cells and point to a role for BMP9 signaling via endoglin in a switch from an SDF1-responsive autocrine phenotype to an SDF1 nonresponsive paracrine state that represses endothelial cell migration and may promote vessel maturation.
Collapse
|
268
|
Miljkovic-Licina M, Hammel P, Garrido-Urbani S, Lee BPL, Meguenani M, Chaabane C, Bochaton-Piallat ML, Imhof BA. Targeting Olfactomedin-like 3 Inhibits Tumor Growth by Impairing Angiogenesis and Pericyte Coverage. Mol Cancer Ther 2012; 11:2588-99. [DOI: 10.1158/1535-7163.mct-12-0245] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
269
|
Guzman A, Zelman-Femiak M, Boergermann JH, Paschkowsky S, Kreuzaler PA, Fratzl P, Harms GS, Knaus P. SMAD versus non-SMAD signaling is determined by lateral mobility of bone morphogenetic protein (BMP) receptors. J Biol Chem 2012; 287:39492-504. [PMID: 22961979 DOI: 10.1074/jbc.m112.387639] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone (or body) morphogenetic proteins (BMPs) belong to the TGFβ superfamily and are crucial for embryonic patterning and organogenesis as well as for adult tissue homeostasis and repair. Activation of BMP receptors by their ligands leads to induction of several signaling cascades. Using fluorescence recovery after photobleaching, FRET, and single particle tracking microscopy, we demonstrate that BMP receptor type I and II (BMPRI and BMPRII) have distinct lateral mobility properties within the plasma membrane, which is mandatory for their involvement in different signaling pathways. Before ligand binding, BMPRI and a subpopulation of BMPRII exhibit confined motion, reflecting preassembled heteromeric receptor complexes. A second free diffusing BMPRII population only becomes restricted after ligand addition. This paper visualizes time-resolved BMP receptor complex formation and demonstrates that the lateral mobility of BMPRI has a major impact in stabilizing heteromeric BMPRI-BMPRII receptor complexes to differentially stimulate SMAD versus non-SMAD signaling.
Collapse
Affiliation(s)
- Asja Guzman
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
270
|
Lauzon MA, Bergeron É, Marcos B, Faucheux N. Bone repair: New developments in growth factor delivery systems and their mathematical modeling. J Control Release 2012; 162:502-20. [DOI: 10.1016/j.jconrel.2012.07.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/29/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
|
271
|
Endoglin mediates fibronectin/α5β1 integrin and TGF-β pathway crosstalk in endothelial cells. EMBO J 2012; 31:3885-900. [PMID: 22940691 DOI: 10.1038/emboj.2012.246] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 08/07/2012] [Indexed: 11/08/2022] Open
Abstract
Both the transforming growth factor β (TGF-β) and integrin signalling pathways have well-established roles in angiogenesis. However, how these pathways integrate to regulate angiogenesis is unknown. Here, we show that the extracellular matrix component, fibronectin, and its cellular receptor, α5β1 integrin, specifically increase TGF-β1- and BMP-9-induced Smad1/5/8 phosphorylation via the TGF-β superfamily receptors endoglin and activin-like kinase-1 (ALK1). Fibronectin and α5β1 integrin increase Smad1/5/8 signalling by promoting endoglin/ALK1 cell surface complex formation. In a reciprocal manner, TGF-β1 activates α5β1 integrin and downstream signalling to focal adhesion kinase (FAK) in an endoglin-dependent manner. α5β1 integrin and endoglin form a complex on the cell surface and co-internalize, with their internalization regulating α5β1 integrin activation and signalling. Functionally, endoglin-mediated fibronectin/α5β1 integrin and TGF-β pathway crosstalk alter the responses of endothelial cells to TGF-β1, switching TGF-β1 from a promoter to a suppressor of migration, inhibiting TGF-β1-mediated apoptosis to promote capillary stability, and partially mediating developmental angiogenesis in vivo. These studies provide a novel mechanism for the regulation of TGF-β superfamily signalling and endothelial function through crosstalk with integrin signalling pathways.
Collapse
|
272
|
Ciais D, Bailly S. BMPs go for apelin to regulate angiogenesis. Focus on "inhibition of apelin expression by BMP signaling in endothelial cells". Am J Physiol Cell Physiol 2012; 303:C1127-8. [PMID: 22932681 DOI: 10.1152/ajpcell.00283.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
273
|
Overactive bone morphogenetic protein signaling in heterotopic ossification and Duchenne muscular dystrophy. Cell Mol Life Sci 2012; 70:407-23. [PMID: 22752156 PMCID: PMC3541930 DOI: 10.1007/s00018-012-1054-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) are important extracellular cytokines that play critical roles in embryogenesis and tissue homeostasis. BMPs signal via transmembrane type I and type II serine/threonine kinase receptors and intracellular Smad effector proteins. BMP signaling is precisely regulated and perturbation of BMP signaling is connected to multiple diseases, including musculoskeletal diseases. In this review, we will summarize the recent progress in elucidation of BMP signal transduction, how overactive BMP signaling is involved in the pathogenesis of heterotopic ossification and Duchenne muscular dystrophy, and discuss possible therapeutic strategies for treatment of these diseases.
Collapse
|
274
|
Yao Y, Jumabay M, Ly A, Radparvar M, Wang AH, Abdmaulen R, Boström KI. Crossveinless 2 regulates bone morphogenetic protein 9 in human and mouse vascular endothelium. Blood 2012; 119:5037-47. [PMID: 22474252 PMCID: PMC3367902 DOI: 10.1182/blood-2011-10-385906] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/18/2012] [Indexed: 12/12/2022] Open
Abstract
The importance of morphogenetic proteins (BMPs) and their antagonists in vascular development is increasingly being recognized. BMP-4 is essential for angiogenesis and is antagonized by matrix Gla protein (MGP) and crossveinless 2 (CV2), both induced by the activin receptor like-kinase 1 (ALK1) when stimulated by BMP-9. In this study, however, we show that CV2 preferentially binds and inhibits BMP-9 thereby providing strong feedback inhibition for BMP-9/ALK1 signaling rather than for BMP-4/ALK2 signaling. CV2 disrupts complex formation involving ALK2, ALK1, BMP-4, and BMP-9 required for the induction of both BMP antagonists. It also limits VEGF expression, proliferation, and tube formation in ALK1-expressing endothelial cells. In vivo, CV2 deficiency translates into a dysregulation of vascular BMP signaling, resulting in an abnormal endothelium with increased endothelial cellularity and expression of lineage markers for mature endothelial cells. Thus, mutual regulation by BMP-9 and CV2 is essential in regulating the development of the vascular endothelium.
Collapse
MESH Headings
- Activin Receptors, Type I/antagonists & inhibitors
- Activin Receptors, Type I/metabolism
- Activin Receptors, Type II/antagonists & inhibitors
- Activin Receptors, Type II/metabolism
- Animals
- Bone Morphogenetic Protein 4/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Carrier Proteins/physiology
- Cattle
- Cells, Cultured
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Gene Expression Regulation/drug effects
- Growth Differentiation Factor 2/antagonists & inhibitors
- Growth Differentiation Factor 2/metabolism
- Growth Differentiation Factor 2/pharmacology
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Protein Binding/drug effects
- Substrate Specificity
Collapse
Affiliation(s)
- Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1679, USA
| | | | | | | | | | | | | |
Collapse
|
275
|
Kim JH, Peacock MR, George SC, Hughes CCW. BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: implications for hereditary hemorrhagic telangiectasia type II. Angiogenesis 2012; 15:497-509. [PMID: 22622516 DOI: 10.1007/s10456-012-9277-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 04/30/2012] [Indexed: 02/07/2023]
Abstract
ALK1 (ACVRL1) is a member of the TGFβ receptor family and is expressed predominantly by arterial endothelial cells (EC). Mutations in ACVRL1 are responsible for hereditary hemorrhagic telangiectasia type 2 (HHT2), a disease manifesting as fragile vessels, capillary overgrowth, and numerous arterio-venous malformations. Arterial EC also express EphrinB2, which has multiple roles in vascular development and angiogenesis and is known to be reduced in ACVRL1 knockout mice. Using an in vitro angiogenesis model we find that the Alk1 ligand BMP9 induces EphrinB2 in EC, and this is entirely dependent on expression of Alk1 and at least one of the co-receptors BMPRII or ActRII. BMP9 induces both ID1 and ID3, and both are necessary for full induction of EphrinB2. Loss of Alk1 or EphrinB2 results in increased arterial-venous anastomosis, while loss of Alk1 but not EphrinB2 results in increased VEGFR2 expression and enhanced capillary sprouting. Conversely, BMP9 blocks EC sprouting and this is dependent on Alk1, BMPRII/ActRII and ID1/ID3. Finally, notch signaling overcomes the loss of Alk1-restoring EphrinB2 expression in EC, and curbing excess sprouting. Thus, in an in vitro model of HHT2, loss of Alk1 blocks BMP9 signaling, resulting in reduced EphrinB2 expression, enhanced VEGFR2 expression, and misregulated EC sprouting and anastomosis.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Activin Receptors, Type II/metabolism
- Animals
- Base Sequence
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- DNA Primers
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Ephrin-B2/genetics
- Ephrin-B2/metabolism
- Growth Differentiation Factor 2/physiology
- Inhibitor of Differentiation Proteins/metabolism
- Mice
- Mice, Knockout
- Microscopy, Confocal
- Promoter Regions, Genetic
- Real-Time Polymerase Chain Reaction
- Receptors, Notch/metabolism
- Signal Transduction
- Telangiectasia, Hereditary Hemorrhagic/genetics
- Telangiectasia, Hereditary Hemorrhagic/metabolism
Collapse
Affiliation(s)
- Jai-Hyun Kim
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
276
|
ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell 2012; 22:489-500. [PMID: 22421041 DOI: 10.1016/j.devcel.2012.02.005] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 12/19/2022]
Abstract
Activin receptor-like kinase 1 (ALK1) is an endothelial-specific member of the TGF-β/BMP receptor family that is inactivated in patients with hereditary hemorrhagic telangiectasia (HHT). How ALK1 signaling regulates angiogenesis remains incompletely understood. Here we show that ALK1 inhibits angiogenesis by cooperating with the Notch pathway. Blocking Alk1 signaling during postnatal development in mice leads to retinal hypervascularization and the appearance of arteriovenous malformations (AVMs). Combined blockade of Alk1 and Notch signaling further exacerbates hypervascularization, whereas activation of Alk1 by its high-affinity ligand BMP9 rescues hypersprouting induced by Notch inhibition. Mechanistically, ALK1-dependent SMAD signaling synergizes with activated Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2, thereby repressing VEGF signaling, tip cell formation, and endothelial sprouting. Taken together, these results uncover a direct link between ALK1 and Notch signaling during vascular morphogenesis that may be relevant to the pathogenesis of HHT vascular lesions.
Collapse
|
277
|
Abstract
ALK1 is a type I receptor of the TGF-β family that is involved in angiogenesis. Circulating BMP9 was identified as a specific ligand for ALK1 inducing vascular quiescence. In this work, we found that blocking BMP9 with a neutralizing antibody in newborn mice significantly increased retinal vascular density. Surprisingly, Bmp9-KO mice did not show any defect in retinal vascularization. However, injection of the extracellular domain of ALK1 impaired retinal vascularization in Bmp9-KO mice, implicating another ligand for ALK1. Interestingly, we detected a high level of circulating BMP10 in WT and Bmp9-KO pups. Further, we found that injection of a neutralizing anti-BMP10 antibody to Bmp9-KO pups reduced retinal vascular expansion and increased vascular density, whereas injection of this antibody to WT pups did not affect the retinal vasculature. These data suggested that BMP9 and BMP10 are important in postnatal vascular remodeling of the retina and that BMP10 can substitute for BMP9. In vitro stimulation of endothelial cells by BMP9 and BMP10 increased the expression of genes involved in the Notch signaling pathway (Jagged1, Dll4, Hey1, Hey2, Hes1) and decreased apelin expression, suggesting a possible cross-talk between these pathways and the BMP pathway.
Collapse
|
278
|
van Meeteren LA, Thorikay M, Bergqvist S, Pardali E, Stampino CG, Hu-Lowe D, Goumans MJ, ten Dijke P. Anti-human activin receptor-like kinase 1 (ALK1) antibody attenuates bone morphogenetic protein 9 (BMP9)-induced ALK1 signaling and interferes with endothelial cell sprouting. J Biol Chem 2012; 287:18551-61. [PMID: 22493445 DOI: 10.1074/jbc.m111.338103] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1), a transforming growth factor β (TGF-β) type I receptor, and endoglin, a TGF-β co-receptor, play an essential role in vascular development and pathological angiogenesis. Several agents that interfere with ALK1 and endoglin function are currently in clinical trials for antiangiogenic activity in cancer therapy. One of these agents, PF-03446962 (anti-hALK1 antibody), shows promising results in the clinic. However, its effects on endothelial cell function and mechanism of action are unclear. Here we demonstrate that anti-hALK1 antibody selectively recognizes human ALK1. The anti-hALK1 antibody interfered with bone morphogenetic protein 9 (BMP9)-induced signaling in endothelial cells. Consistent with this notion, anti-hALK1 antibody was found to compete highly efficiently with the binding of the ALK1 ligand BMP9 and TGF-β to ALK1. Moreover, it prevented BMP9-dependent recruitment of co-receptor endoglin into this angiogenesis-mediating signaling complex. In addition, we demonstrated that anti-hALK1 antibody inhibited endothelial cell sprouting but did not directly interfere with vascular endothelial growth factor (VEGF) signaling, VEGF-induced proliferation, and migration of endothelial cells. Finally, we demonstrated that BMP9 in serum is essential for endothelial sprouting and that anti-hALK1 antibody inhibits this potently. Our data suggest that both the VEGF/VEGF receptor and the BMP9/ALK1 pathways are essential for stimulating angiogenesis, and targeting both pathways simultaneously may be an attractive strategy to overcome resistance to antiangiogenesis therapy.
Collapse
Affiliation(s)
- Laurens A van Meeteren
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
279
|
Abstract
Bone morphogenetic protein (BMP) signaling in diseases is the subject of an overwhelming array of studies. BMPs are excellent targets for treatment of various clinical disorders. Several BMPs have already been shown to be clinically beneficial in the treatment of a variety of conditions, including BMP-2 and BMP-7 that have been approved for clinical application in nonunion bone fractures and spinal fusions. With the use of BMPs increasingly accepted in spinal fusion surgeries, other therapeutic approaches targeting BMP signaling are emerging beyond applications to skeletal disorders. These approaches can further utilize next-generation therapeutic tools such as engineered BMPs and ex vivo- conditioned cell therapies. In this review, we focused to provide insights into such clinical potentials of BMPs in metabolic and vascular diseases, and in cancer. [BMB reports 2011; 44(10): 619-634].
Collapse
Affiliation(s)
- Meejung Kim
- Joint Center for Biosciences at Lee Gil Ya Cancer and Diabetes Research Institute, Gachon University of Medicine and Science, IncheonKorea
| | | |
Collapse
|
280
|
Kurooka H, Nakahiro T, Mori K, Sano K, Yokota Y. BMP signaling is responsible for serum-induced Id2 expression. Biochem Biophys Res Commun 2012; 420:281-7. [PMID: 22421219 DOI: 10.1016/j.bbrc.2012.02.150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 02/01/2023]
Abstract
Ids function as negative regulators of basic helix-loop-helix transcription factors and their expression is rapidly induced by serum stimulation in various cell types. In this study, we investigated the molecular basis of serum-induced expression of the mouse Id2 gene in NIH3T3 cells. A small-molecule inhibitor of bone morphogenetic protein (BMP) type I receptor kinases blocked the serum induction of Id2 mRNA. The chemical compound and several inhibitory proteins specific for BMP signaling suppressed the serum-induced activation of the luciferase construct with the mouse Id2 4.6-kb promoter region. Importantly, serum stimulation evoked rapid phosphorylation of Smad1/5/8 and significant activation of the reporter plasmid containing the recently identified BMP-responsive element (BRE) of the mouse Id2. Mutation analysis demonstrated that the binding sites for Smad proteins in the Id2 BRE were critical for serum response of the 4.6-kb whole construct. Gel shift and chromatin immunoprecipitation (ChIP) assays confirmed the serum-inducible binding of Smad1/5/8 and Smad4 to the Id2 BRE in vitro and in vivo. Finally, a knockdown experiment revealed the functional importance of Smad1 in the serum induction of Id2 expression. Thus, we concluded that BMP signaling is primarily responsible for the serum-induced Id2 expression. Our results also suggest that some of the cellular effects caused by serum are mediated through BMP signaling.
Collapse
Affiliation(s)
- Hisanori Kurooka
- Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | | | | | | | | |
Collapse
|
281
|
Park JES, Shao D, Upton PD, deSouza P, Adcock IM, Davies RJ, Morrell NW, Griffiths MJD, Wort SJ. BMP-9 induced endothelial cell tubule formation and inhibition of migration involves Smad1 driven endothelin-1 production. PLoS One 2012; 7:e30075. [PMID: 22299030 PMCID: PMC3267722 DOI: 10.1371/journal.pone.0030075] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 12/12/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) and their receptors, such as bone morphogenetic protein receptor (BMPR) II, have been implicated in a wide variety of disorders including pulmonary arterial hypertension (PAH). Similarly, endothelin-1 (ET-1), a mitogen and vasoconstrictor, is upregulated in PAH and endothelin receptor antagonists are used in its treatment. We sought to determine whether there is crosstalk between BMP signalling and the ET-1 axis in human pulmonary artery endothelial cells (HPAECs), possible mechanisms involved in such crosstalk and functional consequences thereof. METHODOLOGY/PRINCIPAL FINDING Using western blot, real time RT-PCR, ELISA and small RNA interference methods we provide evidence that in HPAECs BMP-9, but not BMP-2, -4 and -6 significantly stimulated ET-1 release under physiological concentrations. This release is mediated by both Smad1 and p38 MAPK and is independent of the canonical Smad4 pathway. Moreover, knocking down the ALK1 receptor or BMPR II attenuates BMP-9 stimulated ET-1 release, whilst causing a significant increase in prepro ET-1 mRNA transcription and mature peptide release. Finally, BMP-9 induced ET-1 release is involved in both inhibition of endothelial cell migration and promotion of tubule formation. CONCLUSIONS/SIGNIFICANCE Although our data does not support an important role for BMP-9 as a source of increased endothelial ET-1 production seen in human PAH, BMP-9 stimulated ET-1 production is likely to be important in angiogenesis and vascular stability. However, increased ET-1 production by endothelial cells as a consequence of BMPR II dysfunction may be clinically relevant in the pathogenesis of PAH.
Collapse
Affiliation(s)
- John E. S. Park
- Unit of Critical Care, Royal Brompton Hospital, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dongmin Shao
- Unit of Critical Care, Royal Brompton Hospital, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paul D. Upton
- Department of Medicine, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Patricia deSouza
- Unit of Critical Care, Royal Brompton Hospital, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ian M. Adcock
- Airways Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Rachel J. Davies
- Department of Medicine, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas W. Morrell
- Department of Medicine, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Mark J. D. Griffiths
- Unit of Critical Care, Royal Brompton Hospital, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Stephen J. Wort
- Unit of Critical Care, Royal Brompton Hospital, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
282
|
Benzinou M, Clermont FF, Letteboer TGW, Kim JH, Espejel S, Harradine KA, Arbelaez J, Luu MT, Roy R, Quigley D, Higgins MN, Zaid M, Aouizerat BE, van Amstel JKP, Giraud S, Dupuis-Girod S, Lesca G, Plauchu H, Hughes CCW, Westermann CJJ, Akhurst RJ. Mouse and human strategies identify PTPN14 as a modifier of angiogenesis and hereditary haemorrhagic telangiectasia. Nat Commun 2012; 3:616. [PMID: 22233626 PMCID: PMC3509798 DOI: 10.1038/ncomms1633] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/05/2011] [Indexed: 01/21/2023] Open
Abstract
Hereditary haemorrhagic telangiectasia (HHT) [corrected] is a vascular dysplasia syndrome caused by mutations in transforming growth factor-β/bone morphogenetic protein pathway genes, ENG and ACVRL1. HHT [corrected] shows considerable variation in clinical manifestations, suggesting environmental and/or genetic modifier effects. Strain-specific penetrance of the vascular phenotypes of Eng(+/-) and Tgfb1(-/-) mice provides further support for genetic modification of transforming growth factor-β pathway deficits. We previously identified variant genomic loci, including Tgfbm2, which suppress prenatal vascular lethality of Tgfb1(-/-) mice. Here we show that human polymorphic variants of PTPN14 within the orthologous TGFBM2 locus influence clinical severity of HHT, [corrected] as assessed by development of pulmonary arteriovenous malformation. We also show that PTPN14, ACVRL1 and EFNB2, encoding EphrinB2, show interdependent expression in primary arterial endothelial cells in vitro. This suggests an involvement of PTPN14 in angiogenesis and/or arteriovenous fate, acting via EphrinB2 and ACVRL1/activin receptor-like kinase 1. These findings contribute to a deeper understanding of the molecular pathology of HHT [corrected] in particular and to angiogenesis in general.
Collapse
Affiliation(s)
- Michael Benzinou
- UCSF Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, CA 94158-9001, USA
| | - Frederic F. Clermont
- UCSF Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, CA 94158-9001, USA
| | - Tom G. W. Letteboer
- UCSF Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, CA 94158-9001, USA
- Department of Medical Genetics, University Medical Centre, KC04.084.2, Utrecht, The Netherlands
| | - Jai-hyun Kim
- Department of Molecular Biology and Biochemistry, UC Irvine, CA, 92697, USA
| | - Silvia Espejel
- UCSF Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, CA 94158-9001, USA
| | - Kelly A. Harradine
- UCSF Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, CA 94158-9001, USA
| | - Juan Arbelaez
- UCSF Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, CA 94158-9001, USA
| | - Minh Thu Luu
- UCSF Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, CA 94158-9001, USA
| | - Ritu Roy
- UCSF HDFCCC Biostatistical Core Facility, San Francisco, CA, 94143, USA
| | - David Quigley
- UCSF Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, CA 94158-9001, USA
| | - Mamie Nakayama Higgins
- UCSF Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, CA 94158-9001, USA
| | - Musa Zaid
- UCSF Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, CA 94158-9001, USA
| | - Bradley E. Aouizerat
- UCSF Department of Physiological Nursing, San Francisco, CA, 94143, USA
- UCSF Institute of Human Genetics, San Francisco, CA, 94143, USA
| | | | - Sophie Giraud
- HHT French Reference Center, Hopital Cardiologique Louis Pradel, 69500, Bron, France
| | - Sophie Dupuis-Girod
- HHT French Reference Center, Hopital Cardiologique Louis Pradel, 69500, Bron, France
| | - Gaetan Lesca
- HHT French Reference Center, Hopital Cardiologique Louis Pradel, 69500, Bron, France
| | - Henri Plauchu
- HHT French Reference Center, Hopital Cardiologique Louis Pradel, 69500, Bron, France
| | - Christopher C. W. Hughes
- Department of Molecular Biology and Biochemistry, UC Irvine, CA, 92697, USA
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, CA, 92697-2730, USA
| | | | - Rosemary J. Akhurst
- UCSF Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, CA 94158-9001, USA
- UCSF Institute of Human Genetics, San Francisco, CA, 94143, USA
- UCSF Department of Anatomy, San Francisco, CA, 94143, USA
| |
Collapse
|
283
|
Sosa I, Culina K, Bosnar A. Review on Hypothetical Implementing TGF-β Family Members in Glaucoma Therapy. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2012; 1:57-62. [PMID: 24600624 PMCID: PMC3939734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
For quite some time, glaucoma has been regarded as more than just intraocular pressure [IOP] elevation. Significant contribution to this conceptual improvement has risen from a better understanding of ocular blood flow, vessel wall integrity and certain advanced ideas in neuroophthalmology, for example neuroprotection. Transforming growth factor-β (TGF-β) molecule, its inhibitors and antagonists have been increasingly researched as possible new anti-glaucoma drugs for its many, pleiotropic, effects. Among those effects, enhancing fibrosis is one of the most apparent, but certain members of this cytokine's superfamily act as anti-fibrotics. Recent scientific efforts strongly support pushing back the frontier of conventional medical treatment. Current medical approaches already use effects on blood flow and neuronal quiescence, with significant systemic side-effects. Endeavours on the ophthalmologic exploitation of selected, favourable effects of pleiotropic TGF-βs could promote TGF-β, its inhibitors or specific antibodies as new, ideal drugs in glaucoma therapy.
Collapse
Affiliation(s)
- Ivan Sosa
- Department of Forensic Medicine and Criminalistics; Rijeka University School of Medicine; Rijeka; Croatia
| | - Kata Culina
- Ophthalmologist at “Okulisticki Centar”; Zagreb; Croatia
| | - Alan Bosnar
- Department of Forensic Medicine and Criminalistics; Rijeka University School of Medicine; Rijeka; Croatia
| |
Collapse
|
284
|
Bidart M, Ricard N, Levet S, Samson M, Mallet C, David L, Subileau M, Tillet E, Feige JJ, Bailly S. BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. Cell Mol Life Sci 2012; 69:313-24. [PMID: 21710321 PMCID: PMC11114909 DOI: 10.1007/s00018-011-0751-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/31/2011] [Accepted: 06/07/2011] [Indexed: 01/29/2023]
Abstract
Bone Morphogenetic Protein 9 (BMP9) has been recently found to be the physiological ligand for the activin receptor-like kinase 1 (ALK1), and to be a major circulating vascular quiescence factor. Moreover, a soluble chimeric ALK1 protein (ALK1-Fc) has recently been developed and showed powerful anti-tumor growth and anti-angiogenic effects. However, not much is known concerning BMP9. This prompted us to investigate the human endogenous sources of this cytokine and to further characterize its circulating form(s) and its function. Analysis of BMP9 expression reveals that BMP9 is produced by hepatocytes and intrahepatic biliary epithelial cells. Gel filtration analysis combined with ELISA and biological assays demonstrate that BMP9 circulates in plasma (1) as an unprocessed inactive form that can be further activated by furin a serine endoprotease, and (2) as a mature and fully active form (composed of the mature form associated with its prodomain). Analysis of BMP9 circulating levels during mouse development demonstrates that BMP9 peaks during the first 3 weeks after birth and then decreases to 2 ng/mL in adulthood. We also show that circulating BMP9 physiologically induces a constitutive Smad1/5/8 phosphorylation in endothelial cells. Taken together, our results argue for the role of BMP9 as a hepatocyte-derived factor, circulating in inactive (40%) and active (60%) forms, the latter constantly activating endothelial cells to maintain them in a resting state.
Collapse
Affiliation(s)
- Marie Bidart
- Unit 1036, Biology of Cancer and Infection, INSERM, 17 rue des Martyrs, 38054 Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, 38041 Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, 38054 Grenoble, France
- Pôle Recherche, Centre Hospitalier Universitaire de Grenoble, 38043 Grenoble, France
| | - Nicolas Ricard
- Unit 1036, Biology of Cancer and Infection, INSERM, 17 rue des Martyrs, 38054 Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, 38041 Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, 38054 Grenoble, France
| | - Sandrine Levet
- Unit 1036, Biology of Cancer and Infection, INSERM, 17 rue des Martyrs, 38054 Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, 38041 Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, 38054 Grenoble, France
| | - Michel Samson
- U620/EA 4427 SeRAIC, INSERM, Université Rennes 1, 35043 Rennes, France
| | - Christine Mallet
- Unit 1036, Biology of Cancer and Infection, INSERM, 17 rue des Martyrs, 38054 Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, 38041 Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, 38054 Grenoble, France
| | - Laurent David
- Unit 1036, Biology of Cancer and Infection, INSERM, 17 rue des Martyrs, 38054 Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, 38041 Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, 38054 Grenoble, France
- Center for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5 Canada
| | - Mariela Subileau
- Unit 1036, Biology of Cancer and Infection, INSERM, 17 rue des Martyrs, 38054 Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, 38041 Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, 38054 Grenoble, France
| | - Emmanuelle Tillet
- Unit 1036, Biology of Cancer and Infection, INSERM, 17 rue des Martyrs, 38054 Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, 38041 Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, 38054 Grenoble, France
| | - Jean-Jacques Feige
- Unit 1036, Biology of Cancer and Infection, INSERM, 17 rue des Martyrs, 38054 Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, 38041 Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, 38054 Grenoble, France
| | - Sabine Bailly
- Unit 1036, Biology of Cancer and Infection, INSERM, 17 rue des Martyrs, 38054 Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, 38041 Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, 38054 Grenoble, France
| |
Collapse
|
285
|
Conidi A, Cazzola S, Beets K, Coddens K, Collart C, Cornelis F, Cox L, Joke D, Dobreva MP, Dries R, Esguerra C, Francis A, Ibrahimi A, Kroes R, Lesage F, Maas E, Moya I, Pereira PNG, Stappers E, Stryjewska A, van den Berghe V, Vermeire L, Verstappen G, Seuntjens E, Umans L, Zwijsen A, Huylebroeck D. Few Smad proteins and many Smad-interacting proteins yield multiple functions and action modes in TGFβ/BMP signaling in vivo. Cytokine Growth Factor Rev 2011; 22:287-300. [PMID: 22119658 DOI: 10.1016/j.cytogfr.2011.11.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signaling by the many ligands of the TGFβ family strongly converges towards only five receptor-activated, intracellular Smad proteins, which fall into two classes i.e. Smad2/3 and Smad1/5/8, respectively. These Smads bind to a surprisingly high number of Smad-interacting proteins (SIPs), many of which are transcription factors (TFs) that co-operate in Smad-controlled target gene transcription in a cell type and context specific manner. A combination of functional analyses in vivo as well as in cell cultures and biochemical studies has revealed the enormous versatility of the Smad proteins. Smads and their SIPs regulate diverse molecular and cellular processes and are also directly relevant to development and disease. In this survey, we selected appropriate examples on the BMP-Smads, with emphasis on Smad1 and Smad5, and on a number of SIPs, i.e. the CPSF subunit Smicl, Ttrap (Tdp2) and Sip1 (Zeb2, Zfhx1b) from our own research carried out in three different vertebrate models.
Collapse
Affiliation(s)
- Andrea Conidi
- Laboratory of Molecular Biology (Celgen) of Center for Human Genetics, University of Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Bone Morphogenetic Protein functions as a context-dependent angiogenic cue in vertebrates. Semin Cell Dev Biol 2011; 22:1012-8. [PMID: 22008724 DOI: 10.1016/j.semcdb.2011.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 12/22/2022]
Abstract
Bone Morphogenetic Protein (BMP) signaling has been implicated in diverse biological processes. Although how BMP signaling regulates behaviors of endothelial cells during angiogenesis are not fully understood, increasing evidence indicate functions of BMP signaling components are essential in developmental and pathological angiogenesis. Here we review recent advances in delineating the functions of BMP signaling during angiogenesis. In addition, we discuss downstream pathways that transduce BMP signaling in endothelial cells, and factors that modulate BMP signaling response in endothelial cells. Finally, we provide recent insight on how BMP signaling functions as a context dependent angiogenic cue.
Collapse
|
287
|
Kim MJ, Kim ST, Lee HD, Lee KY, Seo J, Lee JB, Lee YJ, Oh SP. Clinical and genetic analyses of three Korean families with hereditary hemorrhagic telangiectasia. BMC MEDICAL GENETICS 2011; 12:130. [PMID: 21967607 PMCID: PMC3202234 DOI: 10.1186/1471-2350-12-130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 10/03/2011] [Indexed: 11/23/2022]
Abstract
Background Hereditary hemorrhagic telangiectasia (HHT) is an autosomal-dominant vascular disorder, characterized by recurrent epistaxis, mucocutaneous telangiectases, and arteriovenous malformations (AVMs) in various visceral organs. Endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1; ALK1), receptors for transforming growth factor-β (TGF-β) superfamily, have been identified as the principal HHT-causing genes. Methods Three unrelated Korean HHT patients and their asymptomatic as well as symptomatic family members were genetically diagnosed by sequencing whole exons and their flanking regions of ENG and ACVRL1. Functionality of an aberrant translation start codon, which is created by a substitution mutation at the 5'-untranslated region (UTR) of ENG found in a HHT family, was tested by transient in vitro transfection assay. Decay of the mutant transcripts was also assessed by allele-specific expression analysis. Results Two ENG and one ACVRL1 mutations were identified: a known ENG mutation (c.360+1G > A; p.Gly74_Tyr120del); a novel ENG mutation (c.1-127C > T); and a novel ACVRL1 mutation (c.252_253insC; p.Val85fsX168). We further validated that the 5'-UTR ENG mutation prevents translation of ENG from the biological translation initiation site of the mutant allele, and leads to degradation of the mutant transcripts. Conclusions This is the first experimental demonstration that a 5'-UTR mutation can prevent translation of ENG among HHT patients, and further supports the previous notion that haploinsufficiency is the primary mechanism of HHT1. Our data also underscore the importance of including exons encoding 5' UTR for HHT mutation screening.
Collapse
Affiliation(s)
- Mi-Jung Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
288
|
Yao Y, Jumabay M, Wang A, Boström KI. Matrix Gla protein deficiency causes arteriovenous malformations in mice. J Clin Invest 2011; 121:2993-3004. [PMID: 21765215 PMCID: PMC3148746 DOI: 10.1172/jci57567] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/25/2011] [Indexed: 12/15/2022] Open
Abstract
Arteriovenous malformations (AVMs) in organs, such as the lungs, intestine, and brain, are characteristic of hereditary hemorrhagic telangiectasia (HHT), a disease caused by mutations in activin-like kinase receptor 1 (ALK1), which is an essential receptor in angiogenesis, or endoglin. Matrix Gla protein (MGP) is an antagonist of BMPs that is highly expressed in lungs and kidneys and is regulated by ALK1. The objective of this study was to determine the role of MGP in the vasculature of the lungs and kidneys. We found that Mgp gene deletion in mice caused striking AVMs in lungs and kidneys, where overall small organ size contrasted with greatly increased vascularization. Mechanistically, MGP deficiency increased BMP activity in lungs. In cultured lung epithelial cells, BMP-4 induced VEGF expression through induction of ALK1, ALK2, and ALK5. The VEGF secretion induced by BMP-4 in Mgp-/- epithelial cells stimulated proliferation of ECs. However, BMP-4 inhibited proliferation of lung epithelial cells, consistent with the increase in pulmonary vasculature at the expense of lung tissue in the Mgp-null mice. Similarly, BMP signaling and VEGF expression were increased in Mgp-/- mouse kidneys. We therefore conclude that Mgp gene deletion is what we believe to be a previously unidentified cause of AVMs. Because lack of MGP also causes arterial calcification, our findings demonstrate that the same gene defect has drastically different effects on distinct vascular beds.
Collapse
Affiliation(s)
- Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine, and
The Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine, and
The Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Anthony Wang
- Division of Cardiology, David Geffen School of Medicine, and
The Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine, and
The Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
289
|
Morikawa M, Koinuma D, Tsutsumi S, Vasilaki E, Kanki Y, Heldin CH, Aburatani H, Miyazono K. ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif. Nucleic Acids Res 2011; 39:8712-27. [PMID: 21764776 PMCID: PMC3203580 DOI: 10.1093/nar/gkr572] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dysregulated bone morphogenetic protein (BMP) signaling in endothelial cells (ECs) and pulmonary arterial smooth muscle cells (PASMCs) are implicated in human genetic disorders. Here, we generated genome-wide maps of Smad1/5 binding sites in ECs and PASMCs. Smad1/5 preferentially bound to the region outside the promoter of known genes, and the binding was associated with target gene upregulation. Cell-selective Smad1/5 binding patterns appear to be determined mostly by cell-specific differences in baseline chromatin accessibility patterns. We identified, for the first time, a Smad1/5 binding motif in mammals, and termed GC-rich Smad binding element (GC-SBE). Several sequences in the identified GC-SBE motif had relatively weak affinity for Smad binding, and were enriched in cell type-specific Smad1/5 binding regions. We also found that both GC-SBE and the canonical SBE affect binding affinity for the Smad complex. Furthermore, we characterized EC-specific Smad1/5 target genes and found that several Notch signaling pathway-related genes were induced by BMP in ECs. Among them, a Notch ligand, JAG1 was regulated directly by Smad1/5, transactivating Notch signaling in the neighboring cells. These results provide insights into the molecular mechanism of BMP signaling and the pathogenesis of vascular lesions of certain genetic disorders, including hereditary hemorrhagic telangiectasia.
Collapse
MESH Headings
- Binding Sites
- Bone Morphogenetic Proteins/pharmacology
- Calcium-Binding Proteins/genetics
- Cell Line
- Chromatin Immunoprecipitation
- Enhancer Elements, Genetic
- Genome, Human
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Jagged-1 Protein
- Membrane Proteins/genetics
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nucleotide Motifs
- Pulmonary Artery/cytology
- Receptors, Notch/metabolism
- Regulatory Elements, Transcriptional
- Sequence Analysis, DNA
- Serrate-Jagged Proteins
- Smad1 Protein/metabolism
- Smad5 Protein/metabolism
Collapse
Affiliation(s)
- Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan, Ludwig Institute for Cancer Research, Box 595 Biomedical Center, SE-751 24 Uppsala, Sweden and Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan, Ludwig Institute for Cancer Research, Box 595 Biomedical Center, SE-751 24 Uppsala, Sweden and Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Shuichi Tsutsumi
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan, Ludwig Institute for Cancer Research, Box 595 Biomedical Center, SE-751 24 Uppsala, Sweden and Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Eleftheria Vasilaki
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan, Ludwig Institute for Cancer Research, Box 595 Biomedical Center, SE-751 24 Uppsala, Sweden and Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Yasuharu Kanki
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan, Ludwig Institute for Cancer Research, Box 595 Biomedical Center, SE-751 24 Uppsala, Sweden and Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Carl-Henrik Heldin
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan, Ludwig Institute for Cancer Research, Box 595 Biomedical Center, SE-751 24 Uppsala, Sweden and Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroyuki Aburatani
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan, Ludwig Institute for Cancer Research, Box 595 Biomedical Center, SE-751 24 Uppsala, Sweden and Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan, Ludwig Institute for Cancer Research, Box 595 Biomedical Center, SE-751 24 Uppsala, Sweden and Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
- *To whom correspondence should be addressed. Tel: +81 3 5841 3356; Fax: +81 3 5841 3354;
| |
Collapse
|
290
|
Parasramka MA, Ho E, Williams DE, Dashwood RH. MicroRNAs, diet, and cancer: new mechanistic insights on the epigenetic actions of phytochemicals. Mol Carcinog 2011; 51:213-30. [PMID: 21739482 DOI: 10.1002/mc.20822] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/26/2011] [Accepted: 06/06/2011] [Indexed: 12/21/2022]
Abstract
There is growing interest in the epigenetic mechanisms that impact human health and disease, including the role of microRNAs (miRNAs). These small (18-25 nucleotide), evolutionarily conserved, non-coding RNA molecules regulate gene expression in a post-transcriptional manner. Several well-orchestered regulatory mechanisms involving miRNAs have been identified, with the potential to target multiple signaling pathways dysregulated in cancer. Since the initial discovery of miRNAs, there has been progress towards therapeutic applications, and several natural and synthetic chemopreventive agents also have been evaluated as modulators of miRNA expression in different cancer types. This review summarizes the most up-to-date information related to miRNA biogenesis, and critically evaluates proposed miRNA regulatory mechanisms in relation to cancer signaling pathways, as well as other epigenetic modifications (DNA methylation patterns, histone marks) and their involvement in drug resistance. We also discuss the mechanisms by which dietary factors regulate miRNA expression, in the context of chemoprevention versus therapy.
Collapse
Affiliation(s)
- Mansi A Parasramka
- Department of Environmental and Molecular Toxicology, and Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | | | | | | |
Collapse
|
291
|
Castonguay R, Werner ED, Matthews RG, Presman E, Mulivor AW, Solban N, Sako D, Pearsall RS, Underwood KW, Seehra J, Kumar R, Grinberg AV. Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J Biol Chem 2011; 286:30034-46. [PMID: 21737454 DOI: 10.1074/jbc.m111.260133] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoglin (CD105), a transmembrane protein of the transforming growth factor β superfamily, plays a crucial role in angiogenesis. Mutations in endoglin result in the vascular defect known as hereditary hemorrhagic telangiectasia (HHT1). The soluble form of endoglin was suggested to contribute to the pathogenesis of preeclampsia. To obtain further insight into its function, we cloned, expressed, purified, and characterized the extracellular domain (ECD) of mouse and human endoglin fused to an immunoglobulin Fc domain. We found that mouse and human endoglin ECD-Fc bound directly, specifically, and with high affinity to bone morphogenetic proteins 9 and 10 (BMP9 and BMP10) in surface plasmon resonance (Biacore) and cell-based assays. We performed a function mapping analysis of the different domains of endoglin by examining their contributions to the selectivity and biological activity of the protein. The BMP9/BMP10 binding site was localized to the orphan domain of human endoglin composed of the amino acid sequence 26-359. We established that endoglin and type II receptors bind to overlapping sites on BMP9. In the in vivo chick chorioallantoic membrane assay, the mouse and the truncated human endoglin ECD-Fc both significantly reduced VEGF-induced vessel formation. Finally, murine endoglin ECD-Fc acted as an anti-angiogenic factor that decreased blood vessel sprouting in VEGF/FGF-induced angiogenesis in in vivo angioreactors and reduced the tumor burden in the colon-26 mouse tumor model. Together our findings indicate an important role of soluble endoglin ECD in the regulation of angiogenesis and highlight efficacy of endoglin-Fc as a potential anti-angiogenesis therapeutic agent.
Collapse
|
292
|
Kuczynski EA, Viloria-Petit AM, Coomber BL. Colorectal carcinoma cell production of transforming growth factor beta decreases expression of endothelial cell vascular endothelial growth factor receptor 2. Cancer 2011; 117:5601-11. [PMID: 21692070 DOI: 10.1002/cncr.26247] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/01/2011] [Accepted: 04/13/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) signaling is a target for antiangiogenic cancer therapy. The authors have previously observed that up to 40% of vessels in colorectal carcinoma (CRC) tumors are negative for VEGF receptor 2 (VEGFR2) expression. Differential activity of transforming growth factor beta (TGF-β) is a potential contributor to this receptor heterogeneity because TGF-β contributes to both angiogenesis and CRC tumor progression. METHODS The authors analyzed VEGFR2 expression by Western blotting, and TGF-β expression in endothelial and CRC cell lines, respectively. In addition, they immunostained endothelial cells in CRC xenografts to find an association between VEGFR2 and TGF-β levels or activity. RESULTS In bovine aortic endothelial cells (BAECs), TGF-β1 significantly repressed VEGFR2 protein in a time-dependent and dose-dependent fashion (P < .05). Serum-free conditioned media from various malignant human CRC cell lines (HCT116, 379.2, Dks8, and DLD1) induced down-regulation of VEGFR2 in BAECs. This effect was proportional to the total levels of TGF-β1 and TGF-β2 and was blocked by SB-431542 and SD-208, TGF-β receptor I inhibitors. Immunofluorescence staining of subcutaneous mouse xenografts of HCT116, 379.2, Dks8, and SW480 cells revealed vessels with an inverse relationship between TGF-β activity and VEGFR2 expression. Oxygen and bone morphogenetic protein 9 levels were shown to modulate TGF-β-induced VEGFR2 down-regulation. CONCLUSIONS In combination with other factors, TGF-β may contribute to the vascular heterogeneity in human colorectal tumors.
Collapse
|
293
|
Corti P, Young S, Chen CY, Patrick MJ, Rochon ER, Pekkan K, Roman BL. Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 2011; 138:1573-82. [PMID: 21389051 DOI: 10.1242/dev.060467] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Arteriovenous malformations (AVMs) are fragile direct connections between arteries and veins that arise during times of active angiogenesis. To understand the etiology of AVMs and the role of blood flow in their development, we analyzed AVM development in zebrafish embryos harboring a mutation in activin receptor-like kinase I (alk1), which encodes a TGFβ family type I receptor implicated in the human vascular disorder hereditary hemorrhagic telangiectasia type 2 (HHT2). Our analyses demonstrate that increases in arterial caliber, which stem in part from increased cell number and in part from decreased cell density, precede AVM development, and that AVMs represent enlargement and stabilization of normally transient arteriovenous connections. Whereas initial increases in endothelial cell number are independent of blood flow, later increases, as well as AVMs, are dependent on flow. Furthermore, we demonstrate that alk1 expression requires blood flow, and despite normal levels of shear stress, some flow-responsive genes are dysregulated in alk1 mutant arterial endothelial cells. Taken together, our results suggest that Alk1 plays a role in transducing hemodynamic forces into a biochemical signal required to limit nascent vessel caliber, and support a novel two-step model for HHT-associated AVM development in which pathological arterial enlargement and consequent altered blood flow precipitate a flow-dependent adaptive response involving retention of normally transient arteriovenous connections, thereby generating AVMs.
Collapse
Affiliation(s)
- Paola Corti
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | |
Collapse
|
294
|
Boström KI, Jumabay M, Matveyenko A, Nicholas SB, Yao Y. Activation of vascular bone morphogenetic protein signaling in diabetes mellitus. Circ Res 2011; 108:446-57. [PMID: 21193740 PMCID: PMC3042480 DOI: 10.1161/circresaha.110.236596] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Diabetes mellitus is frequently complicated by cardiovascular disease, such as vascular calcification and endothelial dysfunction, which have been associated with bone morphogenetic proteins (BMPs). OBJECTIVE To determine whether hyperglycemia in vitro and diabetes in vivo promote vascular BMP activity and correlate with vascular calcification. METHODS AND RESULTS Increased glucose augmented expression of BMP-2 and BMP-4; the BMP inhibitors matrix Gla protein (MGP) and Noggin; activin-like kinase receptor (ALK)1, -2, -3 and -6; the BMP type 2 receptor; and the vascular endothelial growth factor in human aortic endothelial cells (HAECs). Diabetes induced expression of the same factors in the aortic wall of 3 animal models of diabetes, Ins2(Akita/+) mice, db/db mice, and HIP rats (rats transgenic for human islet amyloid polypeptide), representative of types 1 and 2 diabetes. Conditioned media from glucose-treated HAECs increased angiogenesis in bovine aortic endothelial cells, as mediated by BMP-4, and osteogenesis in calcifying vascular cells, as mediated by BMP-2. BMP-4, MGP, ALK1, and ALK2 were predominantly expressed on the endothelial side of the aorta, and small interfering RNA experiments showed that these genes were regulated as a group. Diabetic mice and rats showed a dramatic increase in aortic BMP activity, as demonstrated by SMAD1/5/8 phosphorylation. This was associated with increased osteogenesis and calcium accumulation. These changes were prevented in the Ins2(Akita/+) mice by breeding them with MGP transgenic mice, which increased aortic BMP inhibition. CONCLUSIONS Hyperglycemia and diabetes activate vascular BMP activity, which is instrumental in promoting vascular calcification and may be limited by increasing BMP inhibition.
Collapse
MESH Headings
- Activin Receptors/metabolism
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Bone Morphogenetic Protein 4/metabolism
- Bone Morphogenetic Proteins/metabolism
- Calcinosis/metabolism
- Calcinosis/physiopathology
- Calcium-Binding Proteins/metabolism
- Carrier Proteins/metabolism
- Cells, Cultured
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Extracellular Matrix Proteins/metabolism
- Glucose/pharmacology
- Humans
- Hyperglycemia/metabolism
- Hyperglycemia/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Osteogenesis/physiology
- Rats
- Rats, Transgenic
- Signal Transduction/physiology
- Vascular Endothelial Growth Factor A/metabolism
- Matrix Gla Protein
Collapse
Affiliation(s)
- Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1679, USA
| | | | | | | | | |
Collapse
|
295
|
Bailly S, Dupuis-Girod S, Plauchu H. [Rendu-Osler disease: clinical and molecular update]. Med Sci (Paris) 2010; 26:855-60. [PMID: 20929677 DOI: 10.1051/medsci/20102610855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Rendu-Osler disease, also called Hereditary Hemorrhagic Telangiectasia (HHT) affects 1 in -5-8000 people. A french epidemiological study pointed out that it was particularly high in the Haut-Jura mountains in France. This pathology is characterized by frequent nosebleeds, mucocutaneous and visceral telangiectasia and hereditary autosomal-dominant trait. The mucocutaneous telangiectasia are hemorrhagic while the visceral telangiectasia, less frequent, lead to arteriovenous fistula in the lungs, the liver and the brain. HHT disease-causing genes (ENG, ACVRL1 and MADH4) encode proteins that modulate TGFβ superfamilly signaling in vascular endothelial cells. The recent discovery that BMP9 acts as the specific ligand of the receptor ALK1 and endoglin as its co-receptor shows that this signaling pathway is involved in the maturation phase of angiogenesis. Mice heterozygous for endoglin or ALK1 defects reproduce the HHT phenotype and further support the involvement of endothelial hyper proliferation in the pathogenesis of the disease. The medical management of patients remains mainly symptomatic, however the angiogenic trait of this disease should allow us to consider in the future new -therapeutic approaches using anti-angiogenic drugs.
Collapse
Affiliation(s)
- Sabine Bailly
- Inserm, U878, 17, rue des Martyrs, 38054 Grenoble, Commissariat à l'énergie atomique et aux énergies alternatives (CEAEA), Institut de recherches en technologies et sciences pour le vivant (iRTSV)/laboratoire angiogenèse et physiopathologie vasculaire (LAPV), Université Joseph Fourier, Grenoble, France
| | | | | |
Collapse
|
296
|
Abstract
Anti-angiogenic therapies of solid cancers aim at specifically destroying the tumor vasculature in order to "asphyxiate" the tumors. Since few years, they represent a novel therapeutic tool, which allowed to significantly improve the survival of patients suffering from colon, breast, kidney and lung cancers. However, these therapies are limited in their efficacy by the appearance of tumor resistance phenomena. In this review, I describe the molecular and cellular mechanisms of tumor angiogenesis with a special focus on the important roles played by hypoxia, the endothelial growth factor VEGF and the endothelial tip-cells located at the extremity of sprouting neo-vessels. I present the factors that respectively control the activation phase and the maturation phase of angiogenesis, as well as their mechanisms of action. In a second part, the efficacy and the limits of anti-angiogenic therapies presently available on the market are described, and the recent elucidation of some molecular mechanisms of tumor resistance to anti-angiogenic therapies is reviewed.
Collapse
|
297
|
Popov D. Endothelial cell dysfunction in hyperglycemia: Phenotypic change, intracellular signaling modification, ultrastructural alteration, and potential clinical outcomes. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.ijdm.2010.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
298
|
Bone morphogenetic proteins: a critical review. Cell Signal 2010; 23:609-20. [PMID: 20959140 DOI: 10.1016/j.cellsig.2010.10.003] [Citation(s) in RCA: 493] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/14/2010] [Accepted: 10/01/2010] [Indexed: 12/14/2022]
Abstract
Bone Morphogenetic Proteins (BMPs) are potent growth factors belonging to the Transforming Growth Factor Beta superfamily. To date over 20 members have been identified in humans with varying functions during processes such as embryogenesis, skeletal formation, hematopoiesis and neurogenesis. Though their functions have been identified, less is known regarding levels of regulation at the extracellular matrix, membrane surface, and receptor activation. Further, current models of activation lack the integration of these regulatory mechanisms. This review focuses on the different levels of regulation, ranging from the release of BMPs into the extracellular components to receptor activation for different BMPs. It also highlights areas in research that is lacking or contradictory.
Collapse
|
299
|
Chin AJ, Whitehead KK, Watrous RL. Insights After 40 Years of the Fontan Operation. World J Pediatr Congenit Heart Surg 2010; 1:328-43. [DOI: 10.1177/2150135110379623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fontan’s visionary operation and its modifications over the ensuing decades have re-established nonturbulent flow and substantially reduced cyanosis for patients with severe hypoplasia of one ventricle. However, a long list of largely unexpected sequelae has emerged over the last 40 years. Although it is not difficult to understand how care providers could become discouraged, a number of myths have arisen, which we will attempt to dispel with real-world counterexamples as well as with lessons learned from other disciplines: evolutionary, developmental, and computational biology. We argue that distinctive biochemical abnormalities pointing to dysfunction in multiple organs, including the largest organ system in the body, the endothelium, occur long before grossly observable changes in cardiac imaging can be recognized. With a rational redesign of both our surveillance scheme and our wellness strategies, we hope that Fontan survivors and their families, as well as physicians, nurses, and therapists, will see why Fontan’s principle remains just as vibrant today as it was in 1971.
Collapse
Affiliation(s)
- Alvin J. Chin
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kevin K. Whitehead
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Raymond L. Watrous
- Department of Electrical and Systems Engineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, Pennsylvania
| |
Collapse
|
300
|
Yao Y, Bennett BJ, Wang X, Rosenfeld ME, Giachelli C, Lusis AJ, Boström KI. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res 2010; 107:485-94. [PMID: 20576934 PMCID: PMC2994650 DOI: 10.1161/circresaha.110.219071] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE The bone morphogenetic proteins (BMPs), a family of morphogens, have been implicated as mediators of calcification and inflammation in the vascular wall. OBJECTIVE To investigate the effect of altered expression of matrix Gla protein (MGP), an inhibitor of BMP, on vascular disease. METHODS AND RESULTS We used MGP transgenic or MGP-deficient mice bred to apolipoprotein E mice, a model of atherosclerosis. MGP overexpression reduced vascular BMP activity, atherosclerotic lesion size, intimal and medial calcification, and inflammation. It also reduced expression of the activin-like kinase receptor 1 and the vascular endothelial growth factor, part of a BMP-activated pathway that regulates angiogenesis and may enhance lesion formation and calcification. Conversely, MGP deficiency increased BMP activity, which may explain the diffuse calcification of vascular medial cells in MGP deficient aortas and the increase in expression of activin-like kinase receptor 1 and vascular endothelial growth factor. Unexpectedly, atherosclerotic lesion formation was decreased in MGP-deficient mice, which may be explained by a dramatic reduction in expression of endothelial adhesion molecules limiting monocyte infiltration of the artery wall. CONCLUSIONS Our results indicate that BMP signaling is a key regulator of vascular disease, requiring careful control to maintain normal vascular homeostasis.
Collapse
Affiliation(s)
- Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Brian J. Bennett
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Xuping Wang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Michael E. Rosenfeld
- Departments of Pathology and Environmental and Occupational Health Sciences, University of Washington
| | | | - Aldons J. Lusis
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
- Molecular Biology Institute, University of California Los Angeles
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
- Molecular Biology Institute, University of California Los Angeles
| |
Collapse
|