251
|
Yoshida T, Nakahashi S, Nakamura MAM, Koyama Y, Roldan R, Torsani V, De Santis RR, Gomes S, Uchiyama A, Amato MBP, Kavanagh BP, Fujino Y. Volume-controlled Ventilation Does Not Prevent Injurious Inflation during Spontaneous Effort. Am J Respir Crit Care Med 2017; 196:590-601. [PMID: 28212050 DOI: 10.1164/rccm.201610-1972oc] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RATIONALE Spontaneous breathing during mechanical ventilation increases transpulmonary pressure and Vt, and worsens lung injury. Intuitively, controlling Vt and transpulmonary pressure might limit injury caused by added spontaneous effort. OBJECTIVES To test the hypothesis that, during spontaneous effort in injured lungs, limitation of Vt and transpulmonary pressure by volume-controlled ventilation results in less injurious patterns of inflation. METHODS Dynamic computed tomography was used to determine patterns of regional inflation in rabbits with injured lungs during volume-controlled or pressure-controlled ventilation. Transpulmonary pressure was estimated by using esophageal balloon manometry [Pl(es)] with and without spontaneous effort. Local dependent lung stress was estimated as the swing (inspiratory change) in transpulmonary pressure measured by intrapleural manometry in dependent lung and was compared with the swing in Pl(es). Electrical impedance tomography was performed to evaluate the inflation pattern in a larger animal (pig) and in a patient with acute respiratory distress syndrome. MEASUREMENTS AND MAIN RESULTS Spontaneous breathing in injured lungs increased Pl(es) during pressure-controlled (but not volume-controlled) ventilation, but the pattern of dependent lung inflation was the same in both modes. In volume-controlled ventilation, spontaneous effort caused greater inflation and tidal recruitment of dorsal regions (greater than twofold) compared with during muscle paralysis, despite the same Vt and Pl(es). This was caused by higher local dependent lung stress (measured by intrapleural manometry). In injured lungs, esophageal manometry underestimated local dependent pleural pressure changes during spontaneous effort. CONCLUSIONS Limitation of Vt and Pl(es) by volume-controlled ventilation could not eliminate harm caused by spontaneous breathing unless the level of spontaneous effort was lowered and local dependent lung stress was reduced.
Collapse
Affiliation(s)
- Takeshi Yoshida
- 1 Intensive Care Unit, Osaka University Hospital, Suita, Japan.,2 Translational Medicine, Department of Critical Care Medicine and Department of Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Susumu Nakahashi
- 1 Intensive Care Unit, Osaka University Hospital, Suita, Japan.,3 Emergency and Critical Care Center, Mie University Hospital, Tsu, Japan
| | - Maria Aparecida Miyuki Nakamura
- 4 Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto do Coração (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; and
| | - Yukiko Koyama
- 1 Intensive Care Unit, Osaka University Hospital, Suita, Japan
| | - Rollin Roldan
- 4 Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto do Coração (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; and.,5 Unidad de Cuidados Intensivos, Hospital Rebagliati, Lima, Peru
| | - Vinicius Torsani
- 4 Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto do Coração (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; and
| | - Roberta R De Santis
- 4 Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto do Coração (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; and
| | - Susimeire Gomes
- 4 Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto do Coração (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; and
| | | | - Marcelo B P Amato
- 4 Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto do Coração (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; and
| | - Brian P Kavanagh
- 2 Translational Medicine, Department of Critical Care Medicine and Department of Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Yuji Fujino
- 1 Intensive Care Unit, Osaka University Hospital, Suita, Japan
| |
Collapse
|
252
|
Rochwerg B, Brochard L, Elliott MW, Hess D, Hill NS, Nava S, Navalesi P, Antonelli M, Brozek J, Conti G, Ferrer M, Guntupalli K, Jaber S, Keenan S, Mancebo J, Mehta S, Raoof S. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 2017. [PMID: 28860265 DOI: 10.1183/13993003.02426–2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Noninvasive mechanical ventilation (NIV) is widely used in the acute care setting for acute respiratory failure (ARF) across a variety of aetiologies. This document provides European Respiratory Society/American Thoracic Society recommendations for the clinical application of NIV based on the most current literature.The guideline committee was composed of clinicians, methodologists and experts in the field of NIV. The committee developed recommendations based on the GRADE (Grading, Recommendation, Assessment, Development and Evaluation) methodology for each actionable question. The GRADE Evidence to Decision framework in the guideline development tool was used to generate recommendations. A number of topics were addressed using technical summaries without recommendations and these are discussed in the supplementary material.This guideline committee developed recommendations for 11 actionable questions in a PICO (population-intervention-comparison-outcome) format, all addressing the use of NIV for various aetiologies of ARF. The specific conditions where recommendations were made include exacerbation of chronic obstructive pulmonary disease, cardiogenic pulmonary oedema, de novo hypoxaemic respiratory failure, immunocompromised patients, chest trauma, palliation, post-operative care, weaning and post-extubation.This document summarises the current state of knowledge regarding the role of NIV in ARF. Evidence-based recommendations provide guidance to relevant stakeholders.
Collapse
Affiliation(s)
- Bram Rochwerg
- Dept of Medicine, Dept of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre and Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
| | - Mark W Elliott
- Dept of Respiratory Medicine, St James's University Hospital, Leeds, UK
| | - Dean Hess
- Respiratory Care Dept, Massachusetts General Hospital and Dept of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Nicholas S Hill
- Division of Pulmonary, Critical Care and Sleep Medicine, Tufts Medical Center, Boston, MA, USA
| | - Stefano Nava
- Dept of Specialistic, Diagnostic and Experimental Medicine, Respiratory and Critical Care, Sant'Orsola Malpighi Hospital, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Paolo Navalesi
- Anesthesia and Intensive Care, Dept of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Massimo Antonelli
- Dept of Anesthesiology and Intensive Care Medicine, Catholic University of Rome, A. Gemelli University Hospital, Rome, Italy
| | - Jan Brozek
- Dept of Medicine, Dept of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
| | - Giorgio Conti
- Dept of Anesthesiology and Intensive Care Medicine, Catholic University of Rome, A. Gemelli University Hospital, Rome, Italy
| | - Miquel Ferrer
- Dept of Pneumology, Respiratory Institute, Hospital Clinic, IDIBAPS, University of Barcelona and CIBERES, Barcelona, Spain
| | - Kalpalatha Guntupalli
- Depts of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Samir Jaber
- Dept of Critical Care Medicine and Anesthesiology (DAR B), Research Unit INSERM U1046, Saint Eloi University Hospital and Montpellier School of Medicine, Montpellier, France
| | - Sean Keenan
- Division of Critical Care Medicine, University of British Columbia, Vancouver, BC, Canada.,Dept of Critical Care Medicine, Royal Columbian Hospital, New Westminster, BC, Canada
| | - Jordi Mancebo
- Servei de Medicina Intensiva, Hospital de Sant Pau, Barcelona, Spain
| | - Sangeeta Mehta
- Mount Sinai Hospital and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Suhail Raoof
- Pulmonary and Critical Care Medicine, Lenox Hill Hospital, New York, NY, USA.,Hofstra Northwell School of Medicine, Hempstead, NY, USA
| |
Collapse
|
253
|
Grasso S. Partially Assisted Ventilation–induced Lung Injury in Early Acute Respiratory Distress Syndrome. When Real Life Is Different from Classical Physiology. Am J Respir Crit Care Med 2017; 196:538-539. [DOI: 10.1164/rccm.201702-0290ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Salvatore Grasso
- Dipartimento dell’Emergenza e Trapianti d’OrganoUniversità degli Studi di Bari “Aldo Moro”Bari, Italy
| |
Collapse
|
254
|
Li HL, Chen L, Brochard L. Protecting lungs during spontaneous breathing: what can we do? J Thorac Dis 2017; 9:2777-2781. [PMID: 29221238 DOI: 10.21037/jtd.2017.08.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hong-Liang Li
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Lu Chen
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Keenan Research Centre and Li Ka Shing Knowledge Institute, Department of Critical Care, St Michael's Hospital, Toronto, Canada
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Keenan Research Centre and Li Ka Shing Knowledge Institute, Department of Critical Care, St Michael's Hospital, Toronto, Canada
| |
Collapse
|
255
|
Pham T, Brochard LJ, Slutsky AS. Mechanical Ventilation: State of the Art. Mayo Clin Proc 2017; 92:1382-1400. [PMID: 28870355 DOI: 10.1016/j.mayocp.2017.05.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/03/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023]
Abstract
Mechanical ventilation is the most used short-term life support technique worldwide and is applied daily for a diverse spectrum of indications, from scheduled surgical procedures to acute organ failure. This state-of-the-art review provides an update on the basic physiology of respiratory mechanics, the working principles, and the main ventilatory settings, as well as the potential complications of mechanical ventilation. Specific ventilatory approaches in particular situations such as acute respiratory distress syndrome and chronic obstructive pulmonary disease are detailed along with protective ventilation in patients with normal lungs. We also highlight recent data on patient-ventilator dyssynchrony, humidified high-flow oxygen through nasal cannula, extracorporeal life support, and the weaning phase. Finally, we discuss the future of mechanical ventilation, addressing avenues for improvement.
Collapse
Affiliation(s)
- Tài Pham
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Laurent J Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Arthur S Slutsky
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.
| |
Collapse
|
256
|
Rochwerg B, Brochard L, Elliott MW, Hess D, Hill NS, Nava S, Navalesi P, Antonelli M, Brozek J, Conti G, Ferrer M, Guntupalli K, Jaber S, Keenan S, Mancebo J, Mehta S, Raoof S. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 2017; 50:50/2/1602426. [PMID: 28860265 DOI: 10.1183/13993003.02426-2016] [Citation(s) in RCA: 740] [Impact Index Per Article: 105.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
Noninvasive mechanical ventilation (NIV) is widely used in the acute care setting for acute respiratory failure (ARF) across a variety of aetiologies. This document provides European Respiratory Society/American Thoracic Society recommendations for the clinical application of NIV based on the most current literature.The guideline committee was composed of clinicians, methodologists and experts in the field of NIV. The committee developed recommendations based on the GRADE (Grading, Recommendation, Assessment, Development and Evaluation) methodology for each actionable question. The GRADE Evidence to Decision framework in the guideline development tool was used to generate recommendations. A number of topics were addressed using technical summaries without recommendations and these are discussed in the supplementary material.This guideline committee developed recommendations for 11 actionable questions in a PICO (population-intervention-comparison-outcome) format, all addressing the use of NIV for various aetiologies of ARF. The specific conditions where recommendations were made include exacerbation of chronic obstructive pulmonary disease, cardiogenic pulmonary oedema, de novo hypoxaemic respiratory failure, immunocompromised patients, chest trauma, palliation, post-operative care, weaning and post-extubation.This document summarises the current state of knowledge regarding the role of NIV in ARF. Evidence-based recommendations provide guidance to relevant stakeholders.
Collapse
Affiliation(s)
- Bram Rochwerg
- Dept of Medicine, Dept of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre and Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
| | - Mark W Elliott
- Dept of Respiratory Medicine, St James's University Hospital, Leeds, UK
| | - Dean Hess
- Respiratory Care Dept, Massachusetts General Hospital and Dept of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Nicholas S Hill
- Division of Pulmonary, Critical Care and Sleep Medicine, Tufts Medical Center, Boston, MA, USA
| | - Stefano Nava
- Dept of Specialistic, Diagnostic and Experimental Medicine, Respiratory and Critical Care, Sant'Orsola Malpighi Hospital, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Paolo Navalesi
- Anesthesia and Intensive Care, Dept of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Massimo Antonelli
- Dept of Anesthesiology and Intensive Care Medicine, Catholic University of Rome, A. Gemelli University Hospital, Rome, Italy
| | - Jan Brozek
- Dept of Medicine, Dept of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
| | - Giorgio Conti
- Dept of Anesthesiology and Intensive Care Medicine, Catholic University of Rome, A. Gemelli University Hospital, Rome, Italy
| | - Miquel Ferrer
- Dept of Pneumology, Respiratory Institute, Hospital Clinic, IDIBAPS, University of Barcelona and CIBERES, Barcelona, Spain
| | - Kalpalatha Guntupalli
- Depts of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Samir Jaber
- Dept of Critical Care Medicine and Anesthesiology (DAR B), Research Unit INSERM U1046, Saint Eloi University Hospital and Montpellier School of Medicine, Montpellier, France
| | - Sean Keenan
- Division of Critical Care Medicine, University of British Columbia, Vancouver, BC, Canada.,Dept of Critical Care Medicine, Royal Columbian Hospital, New Westminster, BC, Canada
| | - Jordi Mancebo
- Servei de Medicina Intensiva, Hospital de Sant Pau, Barcelona, Spain
| | - Sangeeta Mehta
- Mount Sinai Hospital and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Suhail Raoof
- Pulmonary and Critical Care Medicine, Lenox Hill Hospital, New York, NY, USA.,Hofstra Northwell School of Medicine, Hempstead, NY, USA
| |
Collapse
|
257
|
Guérin C. Individualization of Positive End-Expiratory Pressure Setting in Patients with Acute Respiratory Distress Syndrome under Extracorporeal Membrane Oxygenation. Inputs from Electrical Impedance Tomography. Am J Respir Crit Care Med 2017; 196:404-406. [PMID: 28809514 DOI: 10.1164/rccm.201701-0167ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Claude Guérin
- 1 Réanimation Médicale Hôpital de la Croix Rousse Lyon Lyon, France and.,2 INSERM 955 Créteil, France
| |
Collapse
|
258
|
Brochard L, Slutsky A, Pesenti A. Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure. Am J Respir Crit Care Med 2017; 195:438-442. [PMID: 27626833 DOI: 10.1164/rccm.201605-1081cp] [Citation(s) in RCA: 716] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mechanical ventilation is used to sustain life in patients with acute respiratory failure. A major concern in mechanically ventilated patients is the risk of ventilator-induced lung injury, which is partially prevented by lung-protective ventilation. Spontaneously breathing, nonintubated patients with acute respiratory failure may have a high respiratory drive and breathe with large tidal volumes and potentially injurious transpulmonary pressure swings. In patients with existing lung injury, regional forces generated by the respiratory muscles may lead to injurious effects on a regional level. In addition, the increase in transmural pulmonary vascular pressure swings caused by inspiratory effort may worsen vascular leakage. Recent data suggest that these patients may develop lung injury that is similar to the ventilator-induced lung injury observed in mechanically ventilated patients. As such, we argue that application of a lung-protective ventilation, today best applied with sedation and endotracheal intubation, might be considered a prophylactic therapy, rather than just a supportive therapy, to minimize the progression of lung injury from a form of patient self-inflicted lung injury. This has important implications for the management of these patients.
Collapse
Affiliation(s)
- Laurent Brochard
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada.,2 Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arthur Slutsky
- 1 Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada.,2 Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Antonio Pesenti
- 3 Department of Anesthesia, Critical Care, and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; and.,4 Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milan, Milan, Italy
| |
Collapse
|
259
|
Narendra DK, Hess DR, Sessler CN, Belete HM, Guntupalli KK, Khusid F, Carpati CM, Astiz ME, Raoof S. Update in Management of Severe Hypoxemic Respiratory Failure. Chest 2017; 152:867-879. [PMID: 28716645 DOI: 10.1016/j.chest.2017.06.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/17/2017] [Accepted: 06/25/2017] [Indexed: 02/07/2023] Open
Abstract
Mortality related to severe-moderate and severe ARDS remains high. We searched the literature to update this topic. We defined severe hypoxemic respiratory failure as Pao2/Fio2 < 150 mm Hg (ie, severe-moderate and severe ARDS). For these patients, we support setting the ventilator to a tidal volume of 4 to 8 mL/kg predicted body weight (PBW), with plateau pressure (Pplat) ≤ 30 cm H2O, and initial positive end-expiratory pressure (PEEP) of 10 to 12 cm H2O. To promote alveolar recruitment, we propose increasing PEEP in increments of 2 to 3 cm provided that Pplat remains ≤ 30 cm H2O and driving pressure does not increase. A fluid-restricted strategy is recommended, and nonrespiratory causes of hypoxemia should be considered. For patients who remain hypoxemic after PEEP optimization, neuromuscular blockade and prone positioning should be considered. Profound refractory hypoxemia (Pao2/Fio2 < 80 mm Hg) after PEEP titration is an indication to consider extracorporeal life support. This may necessitate early transfer to a center with expertise in these techniques. Inhaled vasodilators and nontraditional ventilator modes may improve oxygenation, but evidence for improved outcomes is weak.
Collapse
Affiliation(s)
- Dharani Kumari Narendra
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Dean R Hess
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Curtis N Sessler
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University Health System, Richmond, VA
| | - Habtamu M Belete
- Department of Medicine, Lenox Hill and Northwell Hofstra School of Medicine, New York, NY
| | - Kalpalatha K Guntupalli
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Felix Khusid
- Respiratory Therapy and Pulmonary Physiology Center, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | | | - Mark Elton Astiz
- Departments of Internal Medicine and Critical Care Medicine, Lenox Hill Hospital, New York, NY
| | - Suhail Raoof
- Division of Pulmonary Medicine, Lenox Hill Hospital, and Hofstra Northwell School of Medicine, New York, NY.
| |
Collapse
|
260
|
Gattinoni L, Marini JJ, Collino F, Maiolo G, Rapetti F, Tonetti T, Vasques F, Quintel M. The future of mechanical ventilation: lessons from the present and the past. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:183. [PMID: 28701178 PMCID: PMC5508674 DOI: 10.1186/s13054-017-1750-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/31/2017] [Indexed: 02/07/2023]
Abstract
The adverse effects of mechanical ventilation in acute respiratory distress syndrome (ARDS) arise from two main causes: unphysiological increases of transpulmonary pressure and unphysiological increases/decreases of pleural pressure during positive or negative pressure ventilation. The transpulmonary pressure-related side effects primarily account for ventilator-induced lung injury (VILI) while the pleural pressure-related side effects primarily account for hemodynamic alterations. The changes of transpulmonary pressure and pleural pressure resulting from a given applied driving pressure depend on the relative elastances of the lung and chest wall. The term ‘volutrauma’ should refer to excessive strain, while ‘barotrauma’ should refer to excessive stress. Strains exceeding 1.5, corresponding to a stress above ~20 cmH2O in humans, are severely damaging in experimental animals. Apart from high tidal volumes and high transpulmonary pressures, the respiratory rate and inspiratory flow may also play roles in the genesis of VILI. We do not know which fraction of mortality is attributable to VILI with ventilation comparable to that reported in recent clinical practice surveys (tidal volume ~7.5 ml/kg, positive end-expiratory pressure (PEEP) ~8 cmH2O, rate ~20 bpm, associated mortality ~35%). Therefore, a more complete and individually personalized understanding of ARDS lung mechanics and its interaction with the ventilator is needed to improve future care. Knowledge of functional lung size would allow the quantitative estimation of strain. The determination of lung inhomogeneity/stress raisers would help assess local stresses; the measurement of lung recruitability would guide PEEP selection to optimize lung size and homogeneity. Finding a safety threshold for mechanical power, normalized to functional lung volume and tissue heterogeneity, may help precisely define the safety limits of ventilating the individual in question. When a mechanical ventilation set cannot be found to avoid an excessive risk of VILI, alternative methods (such as the artificial lung) should be considered.
Collapse
Affiliation(s)
- Luciano Gattinoni
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - John J Marini
- University of Minnesota, Minneapolis/Saint Paul, MN, USA
| | - Francesca Collino
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Giorgia Maiolo
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Francesca Rapetti
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Tommaso Tonetti
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Francesco Vasques
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Michael Quintel
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
261
|
Mauri T, Cambiaghi B, Spinelli E, Langer T, Grasselli G. Spontaneous breathing: a double-edged sword to handle with care. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:292. [PMID: 28828367 DOI: 10.21037/atm.2017.06.55] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS) patients, spontaneous breathing is associated with multiple physiologic benefits: it prevents muscles atrophy, avoids paralysis, decreases sedation needs and is associated with improved hemodynamics. On the other hand, in the presence of uncontrolled inspiratory effort, severe lung injury and asynchronies, spontaneous ventilation might also worsen lung edema, induce diaphragm dysfunction and lead to muscles exhaustion and prolonged weaning. In the present review article, we present physiologic mechanisms driving spontaneous breathing, with emphasis on how to implement basic and advanced respiratory monitoring to assess lung protection during spontaneous assisted ventilation. Then, key benefits and risks associated with spontaneous ventilation are described. Finally, we propose some clinical means to promote protective spontaneous breathing at the bedside. In summary, early switch to spontaneous assisted breathing of acutely hypoxemic patients is more respectful of physiology and might yield several advantages. Nonetheless, risk of additional lung injury is not completely avoided during spontaneous breathing and careful monitoring of target physiologic variables such as tidal volume (Vt) and driving transpulmonary pressure should be applied routinely. In clinical practice, multiple interventions such as extracorporeal CO2 removal exist to maintain inspiratory effort, Vt and driving transpulmonary pressure within safe limits but more studies are needed to assess their long-term efficacy.
Collapse
Affiliation(s)
- Tommaso Mauri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Cambiaghi
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Thomas Langer
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo Grasselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
262
|
Parekh M, Abrams D, Brodie D. Extracorporeal techniques in acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:296. [PMID: 28828371 DOI: 10.21037/atm.2017.06.58] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) was first introduced for patients with acute respiratory distress syndrome (ARDS) in the 1970s. However, enthusiasm was tempered due to the high mortality seen at that time. The use of ECMO has grown considerably in recent years due to technological advances and the evidence suggesting potential benefit. While the efficacy of ECMO has yet to be rigorously demonstrated with high-quality evidence, it has the potential not only to have a substantial impact on outcomes, including mortality, but also to change the paradigm of ARDS management.
Collapse
Affiliation(s)
- Madhavi Parekh
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, New York, USA
| | - Darryl Abrams
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, New York, USA
| | - Daniel Brodie
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, New York, USA
| |
Collapse
|
263
|
Laffey JG, Kavanagh BP. FiftyYears ofResearch inARDS.Insight into Acute Respiratory Distress Syndrome. From Models to Patients. Am J Respir Crit Care Med 2017; 196:18-28. [DOI: 10.1164/rccm.201612-2415ci] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- John G. Laffey
- Department of Anesthesia
- Department of Critical Care Medicine, and
- Keenan Centre for Biomedical Research, St. Michael’s Hospital, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine
- Department of Anesthesia, and
| | - Brian P. Kavanagh
- Interdepartmental Division of Critical Care Medicine
- Department of Anesthesia, and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and
- Department of Critical Care Medicine
- Department of Anesthesia, and
| |
Collapse
|
264
|
Schwaiberger D, Pickerodt PA, Pomprapa A, Tjarks O, Kork F, Boemke W, Francis RCE, Leonhardt S, Lachmann B. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept. J Clin Monit Comput 2017; 32:493-502. [PMID: 28653135 PMCID: PMC5943391 DOI: 10.1007/s10877-017-0040-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/22/2017] [Indexed: 12/21/2022]
Abstract
Adherence to low tidal volume (VT) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the “open lung” concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the “open lung approach” (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low VT-ventilation for 6 h in severely lung injured pigs. Using the “open lung” approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the “open lung approach”-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.
Collapse
Affiliation(s)
- David Schwaiberger
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité -Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Philipp A Pickerodt
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité -Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin, 13353, Germany.
| | - Anake Pomprapa
- Philips Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, 52074, Germany
| | - Onno Tjarks
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité -Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Felix Kork
- Department of Anesthesiology and Institute for Molecular Cardiovascular Research, University Hospital RTWH Aachen, Pauwelsstrasse 30, Aachen, 52074, Germany
| | - Willehad Boemke
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité -Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Roland C E Francis
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité -Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Steffen Leonhardt
- Philips Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, 52074, Germany
| | - Burkhard Lachmann
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité -Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin, 13353, Germany
| |
Collapse
|
265
|
Spontaneous Effort During Mechanical Ventilation: Maximal Injury With Less Positive End-Expiratory Pressure. Crit Care Med 2017; 44:e678-88. [PMID: 27002273 DOI: 10.1097/ccm.0000000000001649] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVES We recently described how spontaneous effort during mechanical ventilation can cause "pendelluft," that is, displacement of gas from nondependent (more recruited) lung to dependent (less recruited) lung during early inspiration. Such transfer depends on the coexistence of more recruited (source) liquid-like lung regions together with less recruited (target) solid-like lung regions. Pendelluft may improve gas exchange, but because of tidal recruitment, it may also contribute to injury. We hypothesize that higher positive end-expiratory pressure levels decrease the propensity to pendelluft and that with lower positive end-expiratory pressure levels, pendelluft is associated with improved gas exchange but increased tidal recruitment. DESIGN Crossover design. SETTING University animal research laboratory. SUBJECTS Anesthetized landrace pigs. INTERVENTIONS Surfactant depletion was achieved by saline lavage in anesthetized pigs, and ventilator-induced lung injury was produced by ventilation with high tidal volume and low positive end-expiratory pressure. Ventilation was continued in each of four conditions: positive end-expiratory pressure (low or optimized positive end-expiratory pressure after recruitment) and spontaneous breathing (present or absent). Tidal recruitment was assessed using dynamic CT and regional ventilation/perfusion using electric impedance tomography. Esophageal pressure was measured using an esophageal balloon manometer. MEASUREMENTS AND RESULTS Among the four conditions, spontaneous breathing at low positive end-expiratory pressure not only caused the largest degree of pendelluft, which was associated with improved ventilation/perfusion matching and oxygenation, but also generated the greatest tidal recruitment. At low positive end-expiratory pressure, paralysis worsened oxygenation but reduced tidal recruitment. Optimized positive end-expiratory pressure decreased the magnitude of spontaneous efforts (measured by esophageal pressure) despite using less sedation, from -5.6 ± 1.3 to -2.0 ± 0.7 cm H2O, while concomitantly reducing pendelluft and tidal recruitment. No pendelluft was observed in the absence of spontaneous effort. CONCLUSIONS Spontaneous effort at low positive end-expiratory pressure improved oxygenation but promoted tidal recruitment associated with pendelluft. Optimized positive end-expiratory pressure (set after lung recruitment) may reverse the harmful effects of spontaneous breathing by reducing inspiratory effort, pendelluft, and tidal recruitment.
Collapse
|
266
|
Santos CL, Santos RS, Moraes L, Samary CS, Felix NS, Silva JD, Morales MM, Huhle R, Abreu MG, Schanaider A, Silva PL, Pelosi P, Rocco PRM. Effects of pressure support and pressure-controlled ventilation on lung damage in a model of mild extrapulmonary acute lung injury with intra-abdominal hypertension. PLoS One 2017; 12:e0178207. [PMID: 28542443 PMCID: PMC5444773 DOI: 10.1371/journal.pone.0178207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Intra-abdominal hypertension (IAH) may co-occur with the acute respiratory distress syndrome (ARDS), with significant impact on morbidity and mortality. Lung-protective controlled mechanical ventilation with low tidal volume and positive end-expiratory pressure (PEEP) has been recommended in ARDS. However, mechanical ventilation with spontaneous breathing activity may be beneficial to lung function and reduce lung damage in mild ARDS. We hypothesized that preserving spontaneous breathing activity during pressure support ventilation (PSV) would improve respiratory function and minimize ventilator-induced lung injury (VILI) compared to pressure-controlled ventilation (PCV) in mild extrapulmonary acute lung injury (ALI) with IAH. Thirty Wistar rats (334±55g) received Escherichia coli lipopolysaccharide intraperitoneally (1000μg) to induce mild extrapulmonary ALI. After 24h, animals were anesthetized and randomized to receive PCV or PSV. They were then further randomized into subgroups without or with IAH (15 mmHg) and ventilated with PCV or PSV (PEEP = 5cmH2O, driving pressure adjusted to achieve tidal volume = 6mL/kg) for 1h. Six of the 30 rats were used for molecular biology analysis and were not mechanically ventilated. The main outcome was the effect of PCV versus PSV on mRNA expression of interleukin (IL)-6 in lung tissue. Regardless of whether IAH was present, PSV resulted in lower mean airway pressure (with no differences in peak airway or peak and mean transpulmonary pressures) and less mRNA expression of biomarkers associated with lung inflammation (IL-6) and fibrogenesis (type III procollagen) than PCV. In the presence of IAH, PSV improved oxygenation; decreased alveolar collapse, interstitial edema, and diffuse alveolar damage; and increased expression of surfactant protein B as compared to PCV. In this experimental model of mild extrapulmonary ALI associated with IAH, PSV compared to PCV improved lung function and morphology and reduced type 2 epithelial cell damage.
Collapse
Affiliation(s)
- Cintia L. Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
- Laboratory of Experimental Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Av. Professor Rodolpho Paulo Rocco, 225, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Raquel S. Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Lillian Moraes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Cynthia S. Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Nathane S. Felix
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Johnatas D. Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Marcelo M. Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G2-048, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Robert Huhle
- Department of Anesthesiology and Intensive Care Therapy, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetschertsrasse 74, Dresden, Germany
| | - Marcelo G. Abreu
- Department of Anesthesiology and Intensive Care Therapy, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetschertsrasse 74, Dresden, Germany
| | - Alberto Schanaider
- Laboratory of Experimental Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Av. Professor Rodolpho Paulo Rocco, 225, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Pedro L. Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Paolo Pelosi
- IRCCS AOU San Martino-IST, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Largo Rosanna Benzi 8, Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
267
|
Abstract
The management of the acute respiratory distress syndrome (ARDS) patient is fundamental to the field of intensive care medicine, and it presents unique challenges owing to the specialized mechanical ventilation techniques that such patients require. ARDS is a highly lethal disease, and there is compelling evidence that mechanical ventilation itself, if applied in an injurious fashion, can be a contributor to ARDS mortality. Therefore, it is imperative for any clinician central to the care of ARDS patients to understand the fundamental framework that underpins the approach to mechanical ventilation in this special scenario. The current review summarizes the major components of the mechanical ventilation strategy as it applies to ARDS.
Collapse
Affiliation(s)
- Oleg Epelbaum
- a Division of Pulmonary, Critical Care, and Sleep Medicine , Westchester Medical Center, New York Medical College , Valhalla , NY , USA
| | - Wilbert S Aronow
- b Division of Cardiology , Westchester Medical Center, New York Medical College , Valhalla , NY , USA
| |
Collapse
|
268
|
Lopes FA, de Souza LAM, Bernardi JTN, Rocha CE, de Figueiredo LC, Agostini APRDA, Dragosavac D, Faez DCDS. Pendelluft diagnosed from ventilator weaning indexes obtained through bioelectrical impedance tomography: a case report. SAO PAULO MED J 2017; 135:302-308. [PMID: 28380204 PMCID: PMC10019837 DOI: 10.1590/1516-3180.2016.025514102016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 11/22/2022] Open
Abstract
CONTEXT: Today, through major technological advances in diagnostic resources within medicine, evaluation and monitoring of clinical parameters at the patient's bedside in intensive care units (ICUs) has become possible. CASE REPORT: This case report presents results and interpretations from predictive mechanical ventilation weaning indexes obtained through monitoring using chest electrical bioimpedance tomography. These indexes included maximum inspiratory pressure, maximum expiratory pressure, shallow breathing index and spontaneous breathing test. These were correlated with variations in tidal volume variables, respiratory rate, mean arterial pressure and peripheral oxygen saturation. Regarding the air distribution behavior in the pulmonary parenchyma, the patient showed the pendelluft phenomenon. Pendelluft occurs due to the time constant (product of the airways resistance and compliance) asymmetry between adjacent lung. CONCLUSION: Bioelectrical impedance tomography can help in weaning from mechanical ventilation, as in the case presented here. Pendelluft was defined as a limitation during the weaning tests.
Collapse
Affiliation(s)
- Fabiana Aparecida Lopes
- BSc. Physiotherapist at the Adult Intensive Care Unit, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | | | - Juliana Tavares Neves Bernardi
- BSc. Physiotherapist at the Adult Intensive Care Unit, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - Carlos Eduardo Rocha
- BSc. Physiotherapist at the Adult Intensive Care Unit, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - Luciana Castilho de Figueiredo
- MSc, PhD. Physiotherapist at Adult Intensive Care Unit, Hospital das Clínicas, and Supervisor of Chest Physiotherapy Training Course, Adult Intensive Care Unit, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | | | - Desanka Dragosavac
- MD, PhD. Coordinator, Adult Intensive Care Unit, Hospital das Clínicas, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | | |
Collapse
|
269
|
Yoshida T, Fujino Y, Amato MBP, Kavanagh BP. FiftyYears ofResearch inARDS. Spontaneous Breathing during Mechanical Ventilation. Risks, Mechanisms, and Management. Am J Respir Crit Care Med 2017; 195:985-992. [DOI: 10.1164/rccm.201604-0748cp] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Takeshi Yoshida
- Translational Medicine
- Department of Critical Care Medicine, and
- Department of Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Intensive Care Unit, Osaka University Hospital, Suita, Japan; and
| | - Yuji Fujino
- Intensive Care Unit, Osaka University Hospital, Suita, Japan; and
| | - Marcelo B. P. Amato
- Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Heart Institute (InCor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Brian P. Kavanagh
- Translational Medicine
- Department of Critical Care Medicine, and
- Department of Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
270
|
Doorduin J, Nollet JL, Roesthuis LH, van Hees HWH, Brochard LJ, Sinderby CA, van der Hoeven JG, Heunks LMA. Partial Neuromuscular Blockade during Partial Ventilatory Support in Sedated Patients with High Tidal Volumes. Am J Respir Crit Care Med 2017; 195:1033-1042. [DOI: 10.1164/rccm.201605-1016oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | | | | | | | - Laurent J. Brochard
- Department of Critical Care Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada; and
- Keenan Research Centre for Biomedical Science, Toronto, Ontario, Canada
| | - Christer A. Sinderby
- Department of Critical Care Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada; and
- Keenan Research Centre for Biomedical Science, Toronto, Ontario, Canada
| | | | | |
Collapse
|
271
|
Becher T, Rostalski P, Kott M, Adler A, Schädler D, Weiler N, Frerichs I. Global and regional assessment of sustained inflation pressure-volume curves in patients with acute respiratory distress syndrome. Physiol Meas 2017; 38:1132-1144. [PMID: 28339394 DOI: 10.1088/1361-6579/aa6923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Static or quasi-static pressure-volume (P-V ) curves can be used to determine the lung mechanical properties of patients suffering from acute respiratory distress syndrome (ARDS). According to the traditional interpretation, lung recruitment occurs mainly below the lower point of maximum curvature (LPMC) of the inflation P-V curve. Although some studies have questioned this assumption, setting of positive end-expiratory pressure 2 cmH2O above the LPMC was part of a 'lung-protective' ventilation strategy successfully applied in several clinical trials. The aim of our study was to quantify the amount of unrecruited lung at different clinically relevant points of the P-V curve. APPROACH P-V curves and electrical impedance tomography (EIT) data from 30 ARDS patients were analysed. We determined the regional opening pressures for every EIT image pixel and fitted the global P-V curves to five sigmoid model equations to determine the LPMC, inflection point (IP) and upper point of maximal curvature (UPMC). Points of maximal curvature and IP were compared between the models by one-way analysis of variance (ANOVA). The percentages of lung pixels remaining closed ('unrecruited lung') at LPMC, IP and UPMC were calculated from the number of lung pixels exhibiting regional opening pressures higher than LPMC, IP and UPMC and were also compared by one-way ANOVA. MAIN RESULTS As results, we found a high variability of LPMC values among the models, a smaller variability of IP and UPMC values. We found a high percentage of unrecruited lung at LPMC, a small percentage of unrecruited lung at IP and no unrecruited lung at UPMC. SIGNIFICANCE Our results confirm the notion of ongoing lung recruitment at pressure levels above LPMC for all investigated model equations and highlight the importance of a regional assessment of lung recruitment in patients with ARDS.
Collapse
Affiliation(s)
- T Becher
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
272
|
Holubar SD, Hedrick T, Gupta R, Kellum J, Hamilton M, Gan TJ, Mythen MG, Shaw AD, Miller TE. American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) joint consensus statement on prevention of postoperative infection within an enhanced recovery pathway for elective colorectal surgery. Perioper Med (Lond) 2017; 6:4. [PMID: 28270910 PMCID: PMC5335800 DOI: 10.1186/s13741-017-0059-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Colorectal surgery (CRS) patients are an at-risk population who are particularly vulnerable to postoperative infectious complications. Infectious complications range from minor infections including simple cystitis and superficial wound infections to life-threatening situations such as lobar pneumonia or anastomotic leak with fecal peritonitis. Within an enhanced recovery pathway (ERP), there are multiple approaches that can be used to reduce the risk of postoperative infections. METHODS With input from a multidisciplinary, international group of experts and through a focused (non-systematic) review of the literature, and use of a modified Delphi method, we achieved consensus surrounding the topic of prevention of postoperative infection in the perioperative period for CRS patients. DISCUSSION As a part of the first Perioperative Quality Initiative (POQI-1) workgroup meeting, we sought to develop a consensus statement describing a comprehensive, yet practical, approach for reducing postoperative infections, specifically for CRS within an ERP. Surgical site infection (SSI) is the most common postoperative infection. To reduce SSI, we recommend routine use of a combined isosmotic mechanical bowel preparation with oral antibiotics before elective CRS and that infection prevention strategies (also called bundles) be routinely implemented as part of colorectal ERPs. We recommend against routine use of abdominal drains. We also give consensus guidelines for reducing pneumonia, urinary tract infection, and central line-associated bloodstream infection (CLABSI).
Collapse
Affiliation(s)
- Stefan D. Holubar
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH USA
| | - Traci Hedrick
- Department of Surgery, University of Virginia Health System, Charlottesville, VA USA
| | - Ruchir Gupta
- Department of Anesthesiology, Stony Brook School of Medicine, Stony Brook, NY USA
| | - John Kellum
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Mark Hamilton
- Department of Intensive Care Medicine and Anaesthesia, St. George’s Hospital and Medical School, London, UK
| | - Tong J. Gan
- Department of Anesthesiology, Stony Brook School of Medicine, Stony Brook, NY USA
| | - Monty G. Mythen
- Department of Anesthesia, UCL/UCLH National Institute of Health Research Biomedical Research Centre, London, UK
| | - Andrew D. Shaw
- Department of Anesthesiology, Vanderbilt University, Nashville, TN USA
| | - Timothy E. Miller
- Department of Anesthesiology, Duke University Medical Center, Durham, NC USA
| |
Collapse
|
273
|
|
274
|
|
275
|
Electrical impedance tomography and trans-pulmonary pressure measurements in a patient with extreme respiratory drive. Respir Med Case Rep 2017; 20:141-144. [PMID: 28224077 PMCID: PMC5304242 DOI: 10.1016/j.rmcr.2017.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 11/13/2022] Open
Abstract
Preserving spontaneous breathing during mechanical ventilation prevents muscle atrophy of the diaphragm, but may lead to ventilator induced lung injury (VILI). We present a case in which monitoring of trans-pulmonary pressure and ventilation distribution using Electrical Impedance Tomography (EIT) provided essential information for preventing VILI.
Collapse
|
276
|
Brochard L. Ventilation-induced lung injury exists in spontaneously breathing patients with acute respiratory failure: Yes. Intensive Care Med 2017; 43:250-252. [DOI: 10.1007/s00134-016-4645-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 11/28/2022]
|
277
|
Alzahrany M, Banerjee A. Effect of inhaled gas density on the pendelluft-induced lung injury. J Biomech 2016; 49:4039-4047. [PMID: 27839697 DOI: 10.1016/j.jbiomech.2016.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/14/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
Abstract
Helium, sulfur hexafluoride-oxygen, and air were modeled to examine the role of the gas density on the pendelluft-induced lung injury (PILI) under high frequency oscillatory ventilation (HFOV). Large eddy simulation coupled with physiological resistance-compliance boundary conditions was applied to capture pendelluft-induced gas entrapment and mechanical stresses in an image-based human lung model. The flow characteristics were strongly dependent on the inspired gas density. The flow partitioning, globally between the left and right lung and locally between adjacent units branches, was significantly affected by the density of inhaled gas and was more balanced when inspiring lighter gas. The incomplete loops of flow-volume and volume-pressure curves were significantly influenced by the variations of the flow redistribution, resistance, and turbulence associated with the pendelluft mechanism. Inhaling light gas reduced the entrapped gas volume and mechanical stress surrounding carina ridges signifying the important role of inhaled gas properties on PILI. In general, lung ventilation by HFOV with a gas mixture of large amounts of Helium is thought to mitigate ventilator complications.
Collapse
Affiliation(s)
- Mohammed Alzahrany
- Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA 18015, USA
| | - Arindam Banerjee
- Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
278
|
|
279
|
deBacker J, Hart N, Fan E. Neuromuscular Blockade in the 21st Century Management of the Critically Ill Patient. Chest 2016; 151:697-706. [PMID: 27818334 DOI: 10.1016/j.chest.2016.10.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuromuscular blockings agents (NMBAs) have a controversial role in the ventilatory and medical management of critical illness. The clinical concern surrounding NMBA-induced complications stems from evidence presented in the 2002 clinical practice guidelines, but new evidence from subsequent randomized trials and studies provides a more optimistic outlook about the application of NMBAs in the ICU. Furthermore, changes in the delivery of critical care, such as protocolized care pathways, minimizing or interrupting sedation, increased monitoring techniques, and overall improvements in reducing immobility, have created a modern, 21st century ICU environment whereby NMBAs may be administered safely. In this article we start with a review of the mechanism of action, side effects, and pharmacology of commonly used NMBAs. We then address the rationale for NMBA use for an expanding number of indications (endotracheal intubation, acute respiratory distress syndrome, status asthmaticus, increased intracranial and intra-abdominal pressure, and therapeutic hypothermia after cardiac arrest), with an emphasis on NMBA use in facilitating lung-protective ventilation for respiratory failure. We end with an appraisal over the importance of monitoring depth of paralysis and the concerns of complications, such as prolonged skeletal muscle weakness. In the context of adequate sedation and analgesia, monitored NMBA use (continuous or bolus administration) can be considered for the small number of clinical indications in critically ill patients for which evidence currently exists.
Collapse
Affiliation(s)
- Julian deBacker
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH; Interdepartmental Division of Critical Care Medicine, Toronto, ON, Canada
| | - Nicholas Hart
- Lane Fox Respiratory Service, St. Thomas' Hospital, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, Toronto, ON, Canada.
| |
Collapse
|
280
|
Wilsterman MEF, de Jager P, Blokpoel R, Frerichs I, Dijkstra SK, Albers MJIJ, Burgerhof JGM, Markhorst DG, Kneyber MCJ. Short-term effects of neuromuscular blockade on global and regional lung mechanics, oxygenation and ventilation in pediatric acute hypoxemic respiratory failure. Ann Intensive Care 2016; 6:103. [PMID: 27783382 PMCID: PMC5081313 DOI: 10.1186/s13613-016-0206-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/17/2016] [Indexed: 01/10/2023] Open
Abstract
Background Neuromuscular blockade (NMB) has been shown to improve outcome in acute respiratory distress syndrome (ARDS) in adults, challenging maintaining spontaneous breathing when there is severe lung injury. We tested in a prospective physiological study the hypothesis that continuous administration of NMB agents in mechanically ventilated children with severe acute hypoxemic respiratory failure (AHRF) improves the oxygenation index without a redistribution of tidal volume VT toward non-dependent lung zones. Methods Oxygenation index, PaO2/FiO2 ratio, lung mechanics (plateau pressure, mean airway pressure, respiratory system compliance and resistance), hemodynamics (heart rate, central venous and arterial blood pressures), oxygenation [oxygenation index (OI), PaO2/FiO2 and SpO2/FiO2], ventilation (physiological dead space-to-VT ratio) and electrical impedance tomography measured changes in end-expiratory lung volume (EELV), and VT distribution was measured before and 15 min after the start of continuous infusion of rocuronium 1 mg/kg. Patients were ventilated in a time-cycled, pressure-limited mode with pre-set VT. All ventilator settings were not changed during the study. Results Twenty-two patients were studied (N = 18 met the criteria for pediatric ARDS). Median age (25–75 interquartile range) was 15 (7.8–77.5) weeks. Pulmonary pathology was present in 77.3%. The median lung injury score was 9 (8–10). The overall median CoV and regional lung filling characteristics were not affected by NMB, indicating no ventilation shift toward the non-dependent lung zones. Regional analysis showed a homogeneous time course of lung inflation during inspiration, indicating no tendency to atelectasis after the introduction of NMB. NMB decreased the mean airway pressure (p = 0.039) and OI (p = 0.039) in all patients. There were no significant changes in lung mechanics, hemodynamics and EELV. Subgroup analysis showed that OI decreased (p = 0.01) and PaO2/FiO2 increased (p = 0.02) in patients with moderate or severe PARDS. Conclusions NMB resulted in an improved oxygenation index in pediatric patients with AHRF. Distribution of VT and regional lung filling characteristics were not affected.
Collapse
Affiliation(s)
- Marlon E F Wilsterman
- Division of Paediatric Intensive Care, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.,Department of Paediatrics, Nij Smellinghe Hospital, Drachten, The Netherlands
| | - Pauline de Jager
- Division of Paediatric Intensive Care, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Robert Blokpoel
- Division of Paediatric Intensive Care, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Inez Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sandra K Dijkstra
- Division of Paediatric Intensive Care, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Marcel J I J Albers
- Division of Paediatric Intensive Care, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Johannes G M Burgerhof
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dick G Markhorst
- Division of Paediatric Intensive Care, Department of Paediatrics, VU University Medical Center, Amsterdam, The Netherlands
| | - Martin C J Kneyber
- Division of Paediatric Intensive Care, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands. .,Critical Care, Anaesthesia, Peri-operative Medicine and Emergency Medicine (CAPE), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
281
|
Frerichs I, Amato MBP, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, Bodenstein M, Gagnon H, Böhm SH, Teschner E, Stenqvist O, Mauri T, Torsani V, Camporota L, Schibler A, Wolf GK, Gommers D, Leonhardt S, Adler A. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax 2016; 72:83-93. [PMID: 27596161 PMCID: PMC5329047 DOI: 10.1136/thoraxjnl-2016-208357] [Citation(s) in RCA: 503] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 11/04/2022]
Abstract
Electrical impedance tomography (EIT) has undergone 30 years of development. Functional chest examinations with this technology are considered clinically relevant, especially for monitoring regional lung ventilation in mechanically ventilated patients and for regional pulmonary function testing in patients with chronic lung diseases. As EIT becomes an established medical technology, it requires consensus examination, nomenclature, data analysis and interpretation schemes. Such consensus is needed to compare, understand and reproduce study findings from and among different research groups, to enable large clinical trials and, ultimately, routine clinical use. Recommendations of how EIT findings can be applied to generate diagnoses and impact clinical decision-making and therapy planning are required. This consensus paper was prepared by an international working group, collaborating on the clinical promotion of EIT called TRanslational EIT developmeNt stuDy group. It addresses the stated needs by providing (1) a new classification of core processes involved in chest EIT examinations and data analysis, (2) focus on clinical applications with structured reviews and outlooks (separately for adult and neonatal/paediatric patients), (3) a structured framework to categorise and understand the relationships among analysis approaches and their clinical roles, (4) consensus, unified terminology with clinical user-friendly definitions and explanations, (5) a review of all major work in thoracic EIT and (6) recommendations for future development (193 pages of online supplements systematically linked with the chief sections of the main document). We expect this information to be useful for clinicians and researchers working with EIT, as well as for industry producers of this technology.
Collapse
Affiliation(s)
- Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marcelo B P Amato
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Anton H van Kaam
- Department of Neonatology, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - David G Tingay
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Zhanqi Zhao
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Bartłomiej Grychtol
- Fraunhofer Project Group for Automation in Medicine and Biotechnology PAMB, Mannheim, Germany
| | - Marc Bodenstein
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Hervé Gagnon
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Ola Stenqvist
- Department of Anesthesiology and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vinicius Torsani
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luigi Camporota
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Andreas Schibler
- Paediatric Critical Care Research Group, Mater Research University of Queensland, South Brisbane, Australia
| | - Gerhard K Wolf
- Children's Hospital Traunstein, Ludwig Maximilian's University, Munich, Germany
| | - Diederik Gommers
- Department of Adult Intensive Care, Erasmus MC, Rotterdam, The Netherlands
| | - Steffen Leonhardt
- Philips Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Andy Adler
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
282
|
Will all ARDS patients be receiving mechanical ventilation in 2035? Yes. Intensive Care Med 2016; 43:568-569. [PMID: 27515160 DOI: 10.1007/s00134-016-4461-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
|
283
|
El-Dash SA, Borges JB, Costa ELV, Tucci MR, Ranzani OT, Caramez MP, Carvalho CRR, Amato MBP. There is no cephalocaudal gradient of computed tomography densities or lung behavior in supine patients with acute respiratory distress syndrome. Acta Anaesthesiol Scand 2016; 60:767-79. [PMID: 26806959 DOI: 10.1111/aas.12690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/15/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND There is debate whether pressure transmission within the lungs and alveolar collapse follow a hydrostatic pattern or the compression exerted by the weight of the heart and the diaphragm causes collapse localized in the areas adjacent to these structures. The second hypothesis proposes the existence of a cephalocaudal gradient in alveolar collapse. We aimed to define whether or not lung density and collapse follow a 'liquid-like' pattern with homogeneous isogravitational layers along the cephalocaudal axis in acute respiratory distress syndrome lungs. METHODS Acute respiratory distress syndrome patients were submitted to full lung computed tomography scans at positive end-expiratory pressure (PEEP) zero (before) and 25 cmH2 O after a maximum-recruitment maneuver. PEEP was then decreased by 2 cmH2 O every 4 min, and a semi-complete scan performed at the end of each PEEP step. RESULTS Lung densities were homogeneous within each lung layer. Lung density increased along the ventrodorsal axis toward the dorsal region (β = 0.49, P < 0.001), while there was no increase, but rather a slight decrease, toward the diaphragm along the cephalocaudal axis and toward the heart. Higher PEEP attenuated density gradients. At PEEP 18 cmH2 O, dependent lung regions started to collapse massively, while best compliance was only reached at a lower PEEP. CONCLUSIONS We could not detect cephalocaudal gradients in lung densities or in alveolar collapse. Likely, external pressures applied on the lung by the chest wall, organs, and effusions are transmitted throughout the lung in a hydrostatic pattern with homogeneous consequences at each isogravitational layer. A single cross-sectional image of the lung could fully represent the heterogeneous mechanical properties of dependent and non-dependent lung regions.
Collapse
Affiliation(s)
- S. A. El-Dash
- Pulmonary Division; Heart Institute (InCor); Hospital das Clínicas; University of São Paulo; São Paulo Brazil
| | - J. B. Borges
- Pulmonary Division; Heart Institute (InCor); Hospital das Clínicas; University of São Paulo; São Paulo Brazil
- Section of Anaesthesiology & Critical Care; Department of Surgical Sciences; Hedenstierna Laboratory; Uppsala University; Uppsala Sweden
| | - E. L. V. Costa
- Pulmonary Division; Heart Institute (InCor); Hospital das Clínicas; University of São Paulo; São Paulo Brazil
- Research and Education Institute of Hospital Sírio Libanês; São Paulo Brazil
| | - M. R. Tucci
- Pulmonary Division; Heart Institute (InCor); Hospital das Clínicas; University of São Paulo; São Paulo Brazil
| | - O. T. Ranzani
- Pulmonary Division; Heart Institute (InCor); Hospital das Clínicas; University of São Paulo; São Paulo Brazil
| | - M. P. Caramez
- Pulmonary Division; Heart Institute (InCor); Hospital das Clínicas; University of São Paulo; São Paulo Brazil
| | - C. R. R. Carvalho
- Pulmonary Division; Heart Institute (InCor); Hospital das Clínicas; University of São Paulo; São Paulo Brazil
| | - M. B. P. Amato
- Pulmonary Division; Heart Institute (InCor); Hospital das Clínicas; University of São Paulo; São Paulo Brazil
| |
Collapse
|
284
|
Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med 2016; 42:1427-36. [PMID: 27342819 DOI: 10.1007/s00134-016-4423-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Breath stacking dyssynchrony generates higher tidal volumes than intended, potentially increasing lung injury risk in acute respiratory distress syndrome (ARDS). Lack of validated criteria to quantify breath stacking dyssynchrony contributes to its under-recognition. This study evaluates performance of novel, objective criteria for quantifying breath stacking dyssynchrony (BREATHE criteria) compared to existing definitions and tests if neuromuscular blockade eliminates high-volume breath stacking dyssynchrony in ARDS. METHODS Airway flow and pressure were recorded continuously for up to 72 h in 33 patients with ARDS receiving volume-preset assist-control ventilation. The flow-time waveform was integrated to calculate tidal volume breath-by-breath. The BREATHE criteria considered five domains in evaluating for breath stacking dyssynchrony: ventilator cycling, interval expiratory volume, cumulative inspiratory volume, expiratory time, and inspiratory time. RESULTS The observed tidal volume of BREATHE stacked breaths was 11.3 (9.7-13.3) mL/kg predicted body weight, significantly higher than the preset volume [6.3 (6.0-6.8) mL/kg; p < 0.001]. BREATHE identified more high-volume breaths (≥2 mL/kg above intended volume) than the other existing objective criteria for breath stacking [27 (7-59) vs 19 (5-46) breaths/h; p < 0.001]. Agreement between BREATHE and visual waveform inspection was high (raw agreement 96.4-98.1 %; phi 0.80-0.92). Breath stacking dyssynchrony was near-completely eliminated during neuromuscular blockade [0 (0-1) breaths/h; p < 0.001]. CONCLUSIONS The BREATHE criteria provide an objective definition of breath stacking dyssynchrony emphasizing occult exposure to high tidal volumes. BREATHE identified high-volume breaths missed by other methods for quantifying this dyssynchrony. Neuromuscular blockade prevented breath stacking dyssynchrony, assuring provision of the intended lung-protective strategy.
Collapse
|
285
|
Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med 2016; 42:1360-73. [PMID: 27334266 DOI: 10.1007/s00134-016-4400-x] [Citation(s) in RCA: 297] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/17/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Esophageal pressure (Pes) is a minimally invasive advanced respiratory monitoring method with the potential to guide management of ventilation support and enhance specific diagnoses in acute respiratory failure patients. To date, the use of Pes in the clinical setting is limited, and it is often seen as a research tool only. METHODS This is a review of the relevant technical, physiological and clinical details that support the clinical utility of Pes. RESULTS After appropriately positioning of the esophageal balloon, Pes monitoring allows titration of controlled and assisted mechanical ventilation to achieve personalized protective settings and the desired level of patient effort from the acute phase through to weaning. Moreover, Pes monitoring permits accurate measurement of transmural vascular pressure and intrinsic positive end-expiratory pressure and facilitates detection of patient-ventilator asynchrony, thereby supporting specific diagnoses and interventions. Finally, some Pes-derived measures may also be obtained by monitoring electrical activity of the diaphragm. CONCLUSIONS Pes monitoring provides unique bedside measures for a better understanding of the pathophysiology of acute respiratory failure patients. Including Pes monitoring in the intensivist's clinical armamentarium may enhance treatment to improve clinical outcomes.
Collapse
|
286
|
Failure of Noninvasive Ventilation for De Novo Acute Hypoxemic Respiratory Failure: Role of Tidal Volume. Crit Care Med 2016; 44:282-90. [PMID: 26584191 DOI: 10.1097/ccm.0000000000001379] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES A low or moderate expired tidal volume can be difficult to achieve during noninvasive ventilation for de novo acute hypoxemic respiratory failure (i.e., not due to exacerbation of chronic lung disease or cardiac failure). We assessed expired tidal volume and its association with noninvasive ventilation outcome. DESIGN Prospective observational study. SETTING Twenty-four bed university medical ICU. PATIENTS Consecutive patients receiving noninvasive ventilation for acute hypoxemic respiratory failure between August 2010 and February 2013. INTERVENTIONS Noninvasive ventilation was uniformly delivered using a simple algorithm targeting the expired tidal volume between 6 and 8 mL/kg of predicted body weight. MEASUREMENTS Expired tidal volume was averaged and respiratory and hemodynamic variables were systematically recorded at each noninvasive ventilation session. MAIN RESULTS Sixty-two patients were enrolled, including 47 meeting criteria for acute respiratory distress syndrome, and 32 failed noninvasive ventilation (51%). Pneumonia (n = 51, 82%) was the main etiology of acute hypoxemic respiratory failure. The median (interquartile range) expired tidal volume averaged over all noninvasive ventilation sessions (mean expired tidal volume) was 9.8 mL/kg predicted body weight (8.1-11.1 mL/kg predicted body weight). The mean expired tidal volume was significantly higher in patients who failed noninvasive ventilation as compared with those who succeeded (10.6 mL/kg predicted body weight [9.6-12.0] vs 8.5 mL/kg predicted body weight [7.6-10.2]; p = 0.001), and expired tidal volume was independently associated with noninvasive ventilation failure in multivariate analysis. This effect was mainly driven by patients with PaO2/FIO2 up to 200 mm Hg. In these patients, the expired tidal volume above 9.5 mL/kg predicted body weight predicted noninvasive ventilation failure with a sensitivity of 82% and a specificity of 87%. CONCLUSIONS A low expired tidal volume is almost impossible to achieve in the majority of patients receiving noninvasive ventilation for de novo acute hypoxemic respiratory failure, and a high expired tidal volume is independently associated with noninvasive ventilation failure. In patients with moderate-to-severe hypoxemia, the expired tidal volume above 9.5 mL/kg predicted body weight accurately predicts noninvasive ventilation failure.
Collapse
|
287
|
Kobylianskii J, Murray A, Brace D, Goligher E, Fan E. Electrical impedance tomography in adult patients undergoing mechanical ventilation: A systematic review. J Crit Care 2016; 35:33-50. [PMID: 27481734 DOI: 10.1016/j.jcrc.2016.04.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 01/20/2023]
Abstract
PURPOSE The purpose of the study is to systematically review and summarize current literature concerning the validation and application of electrical impedance tomography (EIT) in mechanically ventilated adult patients. MATERIALS AND METHODS An electronic search of MEDLINE, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials, and the Web of Science was performed up to June 2014. Studies investigating the use of EIT in an adult human patient population treated with mechanical ventilation (MV) were included. Data extracted included study objectives, EIT details, interventions, MV protocol, validation and comparators, population characteristics, and key findings. RESULTS Of the 67 included studies, 35 had the primary objective of validating EIT measures including regional ventilation distribution, lung volume, regional respiratory mechanics, and nonventilatory parameters. Thirty-two studies had the primary objective of applying EIT to monitor the response to therapeutic MV interventions including change in ventilation mode, patient repositioning, endotracheal suctioning, recruitment maneuvers, and change in positive end-expiratory pressure. CONCLUSIONS In adult patients, EIT has been successfully validated for assessing ventilation distribution, measuring changes in lung volume, studying regional respiratory mechanics, and investigating nonventilatory parameters. Electrical impedance tomography has also been demonstrated to be useful in monitoring regional respiratory system changes during MV interventions, although existing literature lacks clinical outcome evidence.
Collapse
Affiliation(s)
- Jane Kobylianskii
- School of Medicine, Queen's University, Kingston, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Alistair Murray
- Schulich School of Medicine & Dentistry, Western University, London, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Debbie Brace
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Ewan Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
288
|
Abstract
Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes.
Collapse
Affiliation(s)
- Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, Division of Respirology, University Health Network and Mount Sinai Hospital, Toronto, ON, Canada
| | - Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada; Department of Medicine, Division of Respirology, University Health Network and Mount Sinai Hospital, Toronto, ON, Canada
| | - Laurent J Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
289
|
Bellani G, Grasselli G, Teggia-Droghi M, Mauri T, Coppadoro A, Brochard L, Pesenti A. Do spontaneous and mechanical breathing have similar effects on average transpulmonary and alveolar pressure? A clinical crossover study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:142. [PMID: 27160458 PMCID: PMC4862136 DOI: 10.1186/s13054-016-1290-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/08/2016] [Indexed: 01/27/2023]
Abstract
Background Preservation of spontaneous breathing (SB) is sometimes debated because it has potentially both negative and positive effects on lung injury in comparison with fully controlled mechanical ventilation (CMV). We wanted (1) to verify in mechanically ventilated patients if the change in transpulmonary pressure was similar between pressure support ventilation (PSV) and CMV for a similar tidal volume, (2) to estimate the influence of SB on alveolar pressure (Palv), and (3) to determine whether a reliable plateau pressure could be measured during pressure support ventilation (PSV). Methods We studied ten patients equipped with esophageal catheters undergoing three levels of PSV followed by a phase of CMV. For each condition, we calculated the maximal and mean transpulmonary (ΔPL) swings and Palv. Results Overall, ΔPL was similar between CMV and PSV, but only loosely correlated. The differences in ΔPL between CMV and PSV were explained largely by different inspiratory flows, indicating that the resistive pressure drop caused this difference. By contrast, the Palv profile was very different between CMV and SB; SB led to progressively more negative Palv during inspiration, and Palv became lower than the set positive end-expiratory pressure in nine of ten patients at low PSV. Finally, inspiratory occlusion holds performed during PSV led to plateau and Δ PL pressures comparable with those measured during CMV. Conclusions Under similar conditions of flow and volume, transpulmonary pressure change is similar between CMV and PSV. SB during mechanical ventilation can cause remarkably negative swings in Palv, a mechanism by which SB might potentially induce lung injury. Electronic supplementary material The online version of this article (doi:10.1186/s13054-016-1290-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giacomo Bellani
- Department of Health Science, University of Milan-Bicocca, Via Cadore, 48 20900, Monza, Italy. .,Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy.
| | - Giacomo Grasselli
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Maddalena Teggia-Droghi
- Department of Health Science, University of Milan-Bicocca, Via Cadore, 48 20900, Monza, Italy.,Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Coppadoro
- Department of Emergency and Intensive Care, A. Manzoni Hospital, Lecco, Italy
| | - Laurent Brochard
- Keenan Research Centre, St. Michael's Hospital, Toronto, ON, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Antonio Pesenti
- Department of Health Science, University of Milan-Bicocca, Via Cadore, 48 20900, Monza, Italy.,Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
290
|
Personalized medicine for ARDS: the 2035 research agenda. Intensive Care Med 2016; 42:756-767. [PMID: 27040103 DOI: 10.1007/s00134-016-4331-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/14/2016] [Indexed: 12/13/2022]
Abstract
In the last 20 years, survival among patients with acute respiratory distress syndrome (ARDS) has increased substantially with advances in lung-protective ventilation and resuscitation. Building on this success, personalizing mechanical ventilation to patient-specific physiology for enhanced lung protection will be a top research priority for the years ahead. However, the ARDS research agenda must be broader in scope. Further understanding of the heterogeneous biology, from molecular to mechanical, underlying early ARDS pathogenesis is essential to inform therapeutic discovery and tailor treatment and prevention strategies to the individual patient. The ARDSne(x)t research agenda for the next 20 years calls for bringing personalized medicine to ARDS, asking simultaneously both whether a treatment affords clinically meaningful benefit and for whom. This expanded scope necessitates standard acquisition of highly granular biological, physiological, and clinical data across studies to identify biologically distinct subgroups that may respond differently to a given intervention. Clinical trials will need to consider enrichment strategies and incorporate long-term functional outcomes. Tremendous investment in research infrastructure and global collaboration will be vital to fulfilling this agenda.
Collapse
|
291
|
Gattinoni L, Marini JJ, Pesenti A, Quintel M, Mancebo J, Brochard L. The "baby lung" became an adult. Intensive Care Med 2016; 42:663-673. [DOI: 10.1007/s00134-015-4200-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
|
292
|
Abstract
PURPOSE OF REVIEW Measurements of lung volumes allow evaluating the pathophysiogical severity of acute respiratory distress syndrome (ARDS) in terms of the degree of reduction in aerated lung volume, calculating strain, quantifying recruitment and/or hyperinflation, and gas volume distribution. We summarize the current techniques for lung volume assessment selected according to their possible usage in the ICU and discuss the recent findings obtained with implementation of these techniques in patients with ARDS. RECENT FINDINGS Computed tomography technique remains irreplaceable in terms of quantitative aeration of different lung regions, but the commonly used cut-offs for classification may be questioned with recent findings on nonpathological lungs. Monitoring end expiratory lung volume using nitrogen washout technique enhanced our understanding on lung volume change during positioning, pleural effusion drainage, intra-abdominal hypertension, and recruitment maneuver. Recent studies supported that tidal volume could not surrogate tidal strain, which needs measurement of functional residual capacity and which is correlated with pro-inflammatory lung response. SUMMARY Although lung volume measurements are still limited to research area of ARDS, recent progress in technology provides clinicians more opportunities to evaluate lung volumes noninvasively at the bedside and may facilitate individualization of ventilator settings based on the specific physiological understandings of a given patient.
Collapse
|
293
|
Santos RS, Silva PL, Pelosi P, Rocco PRM. Recruitment maneuvers in acute respiratory distress syndrome: The safe way is the best way. World J Crit Care Med 2015; 4:278-286. [PMID: 26557478 PMCID: PMC4631873 DOI: 10.5492/wjccm.v4.i4.278] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 09/08/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) represents a serious problem in critically ill patients and is associated with in-hospital mortality rates of 33%-52%. Recruitment maneuvers (RMs) are a simple, low-cost, feasible intervention that can be performed at the bedside in patients with ARDS. RMs are characterized by the application of airway pressure to increase transpulmonary pressure transiently. Once non-aerated lung units are reopened, improvements are observed in respiratory system mechanics, alveolar reaeration on computed tomography, and improvements in gas exchange (functional recruitment). However, the reopening process could lead to vascular compression, which can be associated with overinflation, and gas exchange may not improve as expected (anatomical recruitment). The purpose of this review was to discuss the effects of different RM strategies - sustained inflation, intermittent sighs, and stepwise increases of positive end-expiratory pressure (PEEP) and/or airway inspiratory pressure - on the following parameters: hemodynamics, oxygenation, barotrauma episodes, and lung recruitability through physiological variables and imaging techniques. RMs and PEEP titration are interdependent events for the success of ventilatory management. PEEP should be adjusted on the basis of respiratory system mechanics and oxygenation. Recent systematic reviews and meta-analyses suggest that RMs are associated with lower mortality in patients with ARDS. However, the optimal RM method (i.e., that providing the best balance of benefit and harm) and the effects of RMs on clinical outcome are still under discussion, and further evidence is needed.
Collapse
|
294
|
Rittayamai N, Katsios CM, Beloncle F, Friedrich JO, Mancebo J, Brochard L. Pressure-Controlled vs Volume-Controlled Ventilation in Acute Respiratory Failure: A Physiology-Based Narrative and Systematic Review. Chest 2015; 148:340-355. [PMID: 25927671 DOI: 10.1378/chest.14-3169] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Mechanical ventilation is a cornerstone in the management of acute respiratory failure. Both volume-targeted and pressure-targeted ventilations are used, the latter modes being increasingly used. We provide a narrative review of the physiologic principles of these two types of breath delivery, performed a literature search, and analyzed published comparisons between modes. METHODS We performed a systematic review and meta-analysis to determine whether pressure control-continuous mandatory ventilation (PC-CMV) or pressure control-inverse ratio ventilation (PC-IRV) has demonstrated advantages over volume control-continuous mandatory ventilation (VC-CMV). The Cochrane tool for risk of bias was used for methodologic quality. We also introduced physiologic criteria as quality indicators for selecting the studies. Outcomes included compliance, gas exchange, hemodynamics, work of breathing, and clinical outcomes. Analyses were completed with RevMan5 using random effects models. RESULTS Thirty-four studies met inclusion criteria, many being at high risk of bias. Comparisons of PC-CMV/PC-IRV and VC-CMV did not show any difference for compliance or gas exchange, even when looking at PC-IRV. Calculating the oxygenation index suggested a poorer effect for PC-IRV. There was no difference between modes in terms of hemodynamics, work of breathing, or clinical outcomes. CONCLUSIONS The two modes have different working principles but clinical available data do not suggest any difference in the outcomes. We included all identified trials, enhancing generalizability, and attempted to include only sufficient quality physiologic studies. However, included trials were small and varied considerably in quality. These data should help to open the choice of ventilation of patients with acute respiratory failure.
Collapse
Affiliation(s)
- Nuttapol Rittayamai
- Li Ka Shing Knowledge Institute and Critical Care Department, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Division of Respiratory Diseases and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Christina M Katsios
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - François Beloncle
- Li Ka Shing Knowledge Institute and Critical Care Department, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Medical Intensive Care Unit, Hospital of Angers, Université d'Angers, Angers, France
| | - Jan O Friedrich
- Li Ka Shing Knowledge Institute and Critical Care Department, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Jordi Mancebo
- Servei de Medicina Intensiva, Hospital Sant Pau, Barcelona, Spain
| | - Laurent Brochard
- Li Ka Shing Knowledge Institute and Critical Care Department, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Keenan Research Centre, St. Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
295
|
Hubmayr RD, Pannu S. Understanding lung protection. Intensive Care Med 2015; 41:2184-6. [DOI: 10.1007/s00134-015-4100-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 11/28/2022]
|
296
|
Guérin C, Mancebo J. Prone positioning and neuromuscular blocking agents are part of standard care in severe ARDS patients: yes. Intensive Care Med 2015; 41:2195-7. [PMID: 26399890 DOI: 10.1007/s00134-015-3918-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023]
Affiliation(s)
- Claude Guérin
- Réanimation Médicale, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Université de Lyon, Lyon, France.,INSERM 955 Eq13, Créteil, France
| | - Jordi Mancebo
- Servei de Medicina Intensiva, Hospital de Sant Pau, C. St Quintí 89, 08041, Barcelona, Spain.
| |
Collapse
|
297
|
Yoshida T, Uchiyama A, Fujino Y. The role of spontaneous effort during mechanical ventilation: normal lung versus injured lung. J Intensive Care 2015; 3:18. [PMID: 27408729 PMCID: PMC4940771 DOI: 10.1186/s40560-015-0083-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/12/2015] [Indexed: 11/10/2022] Open
Abstract
The role of preserving spontaneous effort during mechanical ventilation and its interaction with mechanical ventilation have been actively investigated for several decades. Inspiratory muscle activities can lower the pleural components surrounding the lung, leading to an increase in transpulmonary pressure when spontaneous breathing effort is preserved during mechanical ventilation. Thus, increased transpulmonary pressure provides various benefits for gas exchange, ventilation pattern, and lung aeration. However, it is important to note that these beneficial effects of preserved spontaneous effort have been demonstrated only when spontaneous effort is modest and lung injury is less severe. Recent studies have revealed the ‘dark side’ of spontaneous effort during mechanical ventilation, especially in severe lung injury. The ‘dark side’ refers to uncontrollable transpulmonary pressure due to combined high inspiratory pressure with excessive spontaneous effort and the injurious lung inflation pattern of Pendelluft (i.e., the translocation of air from nondependent lung regions to dependent lung regions). Thus, during the early stages of severe ARDS, the strict control of transpulmonary pressure and prevention of Pendelluft should be achieved with the short-term use of muscle paralysis. When there is preserved spontaneous effort in ARDS, spontaneous effort should be maintained at a modest level, as the transpulmonary pressure and the effect size of Pendelluft depend on the intensity of the spontaneous effort.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Intensive Care Unit, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Akinori Uchiyama
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuji Fujino
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
298
|
Goligher EC, Douflé G, Fan E. Update in Mechanical Ventilation, Sedation, and Outcomes 2014. Am J Respir Crit Care Med 2015; 191:1367-73. [DOI: 10.1164/rccm.201502-0346up] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
299
|
Roth CJ, Ehrl A, Becher T, Frerichs I, Schittny JC, Weiler N, Wall WA. Correlation between alveolar ventilation and electrical properties of lung parenchyma. Physiol Meas 2015; 36:1211-26. [DOI: 10.1088/0967-3334/36/6/1211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
300
|
Simonis FD, Binnekade JM, Braber A, Gelissen HP, Heidt J, Horn J, Innemee G, de Jonge E, Juffermans NP, Spronk PE, Steuten LM, Tuinman PR, Vriends M, de Vreede G, de Wilde RB, Serpa Neto A, Gama de Abreu M, Pelosi P, Schultz MJ. PReVENT--protective ventilation in patients without ARDS at start of ventilation: study protocol for a randomized controlled trial. Trials 2015; 16:226. [PMID: 26003545 PMCID: PMC4453265 DOI: 10.1186/s13063-015-0759-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 05/14/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND It is uncertain whether lung-protective mechanical ventilation using low tidal volumes should be used in all critically ill patients, irrespective of the presence of the acute respiratory distress syndrome (ARDS). A low tidal volume strategy includes use of higher respiratory rates, which could be associated with increased sedation needs, a higher incidence of delirium, and an increased risk of patient-ventilator asynchrony and ICU-acquired weakness. Another alleged side-effect of low tidal volume ventilation is the risk of atelectasis. All of these could offset the beneficial effects of low tidal volume ventilation as found in patients with ARDS. METHODS/DESIGN PReVENT is a national multicenter randomized controlled trial in invasively ventilated ICU patients without ARDS with an anticipated duration of ventilation of longer than 24 hours in 5 ICUs in The Netherlands. Consecutive patients are randomly assigned to a low tidal volume strategy using tidal volumes from 4 to 6 ml/kg predicted body weight (PBW) or a high tidal volume ventilation strategy using tidal volumes from 8 to 10 ml/kg PBW. The primary endpoint is the number of ventilator-free days and alive at day 28. Secondary endpoints include ICU and hospital length of stay (LOS), ICU and hospital mortality, the incidence of pulmonary complications, including ARDS, pneumonia, atelectasis, and pneumothorax, the cumulative use and duration of sedatives and neuromuscular blocking agents, incidence of ICU delirium, and the need for decreasing of instrumental dead space. DISCUSSION PReVENT is the first randomized controlled trial comparing a low tidal volume strategy with a high tidal volume strategy, in patients without ARDS at onset of ventilation, that recruits a sufficient number of patients to test the hypothesis that a low tidal volume strategy benefits patients without ARDS with regard to a clinically relevant endpoint. TRIAL REGISTRATION The trial is registered at www.clinicaltrials.gov under reference number NCT02153294 on 23 May 2014.
Collapse
Affiliation(s)
- Fabienne D Simonis
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Jan M Binnekade
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Annemarije Braber
- Department of Intensive Care, Gelre Hospitals, Apeldoorn, The Netherlands.
| | - Harry P Gelissen
- Department of Intensive Care & REVIVE Research VUmc Intensive Care, VU Medical Center, Amsterdam, The Netherlands.
| | - Jeroen Heidt
- Department of Intensive Care, Tergooi, Hilversum, The Netherlands.
| | - Janneke Horn
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Gerard Innemee
- Department of Intensive Care, Tergooi, Hilversum, The Netherlands.
| | - Evert de Jonge
- Department of Intensive Care, Leiden University Medical Center, Leiden, The Netherlands.
| | - Nicole P Juffermans
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Peter E Spronk
- Department of Intensive Care, Gelre Hospitals, Apeldoorn, The Netherlands.
| | - Lotte M Steuten
- Department of Health Technology and Services Research, Twente University, Enschede, The Netherlands.
| | - Pieter Roel Tuinman
- Department of Intensive Care & REVIVE Research VUmc Intensive Care, VU Medical Center, Amsterdam, The Netherlands.
| | - Marijn Vriends
- Department of Intensive Care, Tergooi, Hilversum, The Netherlands.
| | | | - Rob B de Wilde
- Department of Intensive Care, Leiden University Medical Center, Leiden, The Netherlands.
| | - Ary Serpa Neto
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care, University Hospital Carl Gustav Carus, Dresden, Germany.
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, IRCCS San Martino IST, University of Genoa, Genoa, Italy.
| | - Marcus J Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| |
Collapse
|