251
|
Guo J, Chung UI, Kondo H, Bringhurst FR, Kronenberg HM. The PTH/PTHrP receptor can delay chondrocyte hypertrophy in vivo without activating phospholipase C. Dev Cell 2002; 3:183-94. [PMID: 12194850 DOI: 10.1016/s1534-5807(02)00218-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
One G protein-coupled receptor (GPCR) can activate more than one G protein, but the physiologic importance of such activation has not been demonstrated in vivo. We have generated mice expressing exclusively a mutant form of the PTH/PTHrP receptor (DSEL) that activates adenylyl cyclase normally but not phospholipase C (PLC). DSEL mutant mice exhibit abnormalities in embryonic endochondral bone development, including delayed ossification and increased chondrocyte proliferation. Analysis of the differentiation of embryonic metatarsals in vitro shows that PTH(1-34) and forskolin inhibit, whereas active phorbol ester stimulates, hypertrophic differentiation. Thus, PLC signaling via the PTH/PTHrP receptor normally slows the proliferation and hastens the differentiation of chondrocytes, actions that oppose the dominant effects of PTH/PTHrP receptors and that involve cAMP-dependent signaling pathways.
Collapse
Affiliation(s)
- Jun Guo
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| | | | | | | | | |
Collapse
|
252
|
Marie PJ. The molecular genetics of bone formation: implications for therapeutic interventions in bone disorders. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 1:175-87. [PMID: 12083966 DOI: 10.2165/00129785-200101030-00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Skeletal biology is a complex process involving the developmental commitment and differentiation of chondrocytes and osteoblasts which produce and mineralize cartilage and bone matrix during growth and postnatal life. Several genes are involved in controlling osteogenesis by acting on target cells in a very complex manner. Manipulation of genes in mice and studies of genetic mutations affecting the skeleton in humans have enabled the assessment of the role of transcription factors, bone matrix proteins and regulatory factors involved in the control of chondrocyte and osteoblast differentiation, and have considerably improved our understanding of the bone formation process. Clinical studies and gene polymorphism analyses suggest that the variable expression of particular genes may be linked to clinical osteoporosis. A major challenge in the future will be to develop molecularly targeted approaches to stimulating bone formation and increasing bone mass. The use of mouse strain models and transgenic animals with variable bone density may be useful to identify genetic determinants of bone mass which may serve as a basis for drug discovery and development. On the other hand, the availability of gene microarrays and other emerging genomic techniques are promising tools to identify genes that are distinctly expressed in health and disease. These technologies may also serve to test the mechanisms of action of drugs aimed at increasing bone formation. Genetic studies of the molecular signaling pathways involved in normal and pathological osteogenesis may also help to identify genes that could be targeted for therapeutic intervention. Candidate approaches include selective gene transfection in target cells and the use of drugs acting on gene promoters to selectively enhance gene expression in osteoblasts. The development of these strategies is expected not only to bring new insight into the molecular mechanisms that govern bone formation in normal and pathological situations but, in the long term, may also result in the identification of novel molecular targets for therapeutic interventions for bone formation disorders.
Collapse
Affiliation(s)
- P J Marie
- Laboratory on Osteoblast Biology and Pathology, INSERM U349, Affiliated CNRS, Hôpital Lariboisière, Paris, France.
| |
Collapse
|
253
|
Fujita T, Meguro T, Fukuyama R, Nakamuta H, Koida M. New signaling pathway for parathyroid hormone and cyclic AMP action on extracellular-regulated kinase and cell proliferation in bone cells. Checkpoint of modulation by cyclic AMP. J Biol Chem 2002; 277:22191-200. [PMID: 11956184 DOI: 10.1074/jbc.m110364200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
cAMP signaling, activated by extracellular stimuli such as parathyroid hormone, has cell type-specific effects important for cellular proliferation and differentiation in bone cells. Recent evidence of a second enzyme target for cAMP suggests divergent effects on extracellular-regulated kinase (ERK) activity depending on Epac/Rap1/B-Raf signaling. We investigated the molecular mechanism of the dual functionality of cAMP on cell proliferation in clonal bone cell types. MC3T3-E1 and ATDC5, but not MG63, express a 95-kDa isoform of B-Raf. cAMP stimulated Ras-independent and Rap1-dependent ERK phosphorylation and cell proliferation in B-Raf-expressing cells, but inhibited growth in B-Raf-lacking cells. The mitogenic action of cAMP was blocked by the ERK pathway inhibitor PD98059. In B-Raf-transduced MG63 cells, cAMP stimulated ERK activation and cell proliferation. Thus, B-Raf is the dominant molecular switch that permits differential cAMP-dependent regulation of ERK with important implications for cell proliferation in bone cells. These findings might explain the dual functionality of parathyroid hormone on osteoblastic cell proliferation.
Collapse
Affiliation(s)
- Takashi Fujita
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan 573-0101. t-fujita@pharm,setsunan
| | | | | | | | | |
Collapse
|
254
|
Kobayashi T, Chung UI, Schipani E, Starbuck M, Karsenty G, Katagiri T, Goad DL, Lanske B, Kronenberg HM. PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development 2002; 129:2977-86. [PMID: 12050144 DOI: 10.1242/dev.129.12.2977] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In developing murine growth plates, chondrocytes near the articular surface (periarticular chondrocytes) proliferate, differentiate into flat column-forming proliferating cells (columnar chondrocytes), stop dividing and finally differentiate into hypertrophic cells. Indian hedgehog (Ihh), which is predominantly expressed in prehypertrophic cells, stimulates expression of parathyroid hormone (PTH)-related peptide (PTHrP) which negatively regulates terminal chondrocyte differentiation through the PTH/PTHrP receptor (PPR). However, the roles of PTHrP and Ihh in regulating earlier steps in chondrocyte differentiation are unclear. We present novel mouse models with PPR abnormalities that help clarify these roles. In mice with chondrocyte-specific PPR ablation and mice with reduced PPR expression, chondrocyte differentiation was accelerated not only at the terminal step but also at an earlier step: periarticular to columnar differentiation. In these models, upregulation of Ihh action in the periarticular region was also observed. In the third model in which the PPR was disrupted in about 30% of columnar chondrocytes, Ihh action in the periarticular chondrocytes was upregulated because of ectopically differentiated hypertrophic chondrocytes that had lost PPR. Acceleration of periarticular to columnar differentiation was also noted in this mouse, while most of periarticular chondrocytes retained PPR signaling. These data suggest that Ihh positively controls differentiation of periarticular chondrocytes independently of PTHrP. Thus, chondrocyte differentiation is controlled at multiple steps by PTHrP and Ihh through the mutual regulation of their activities.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Abstract
Here we review and extend a new unitary model for the pathophysiology of involutional osteoporosis that identifies estrogen (E) as the key hormone for maintaining bone mass and E deficiency as the major cause of age-related bone loss in both sexes. Also, both E and testosterone (T) are key regulators of skeletal growth and maturation, and E, together with GH and IGF-I, initiate a 3- to 4-yr pubertal growth spurt that doubles skeletal mass. Although E is required for the attainment of maximal peak bone mass in both sexes, the additional action of T on stimulating periosteal apposition accounts for the larger size and thicker cortices of the adult male skeleton. Aging women undergo two phases of bone loss, whereas aging men undergo only one. In women, the menopause initiates an accelerated phase of predominantly cancellous bone loss that declines rapidly over 4-8 yr to become asymptotic with a subsequent slow phase that continues indefinitely. The accelerated phase results from the loss of the direct restraining effects of E on bone turnover, an action mediated by E receptors in both osteoblasts and osteoclasts. In the ensuing slow phase, the rate of cancellous bone loss is reduced, but the rate of cortical bone loss is unchanged or increased. This phase is mediated largely by secondary hyperparathyroidism that results from the loss of E actions on extraskeletal calcium metabolism. The resultant external calcium losses increase the level of dietary calcium intake that is required to maintain bone balance. Impaired osteoblast function due to E deficiency, aging, or both also contributes to the slow phase of bone loss. Although both serum bioavailable (Bio) E and Bio T decline in aging men, Bio E is the major predictor of their bone loss. Thus, both sex steroids are important for developing peak bone mass, but E deficiency is the major determinant of age-related bone loss in both sexes.
Collapse
Affiliation(s)
- B Lawrence Riggs
- Division of Endocrinology and Metabolism, Department of Health Sciences Research, Mayo Clinic and Mayo Foundation, 200 First Street SW, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
256
|
Chen HL, Demiralp B, Schneider A, Koh AJ, Silve C, Wang CY, McCauley LK. Parathyroid hormone and parathyroid hormone-related protein exert both pro- and anti-apoptotic effects in mesenchymal cells. J Biol Chem 2002; 277:19374-81. [PMID: 11897779 DOI: 10.1074/jbc.m108913200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During bone formation, multipotential mesenchymal cells proliferate and differentiate into osteoblasts, and subsequently many die because of apoptosis. Evidence suggests that the receptor for parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP), the PTH-1 receptor (PTH-1R), plays an important role in this process. Multipotential mesenchymal cells (C3H10T1/2) transfected with normal or mutant PTH-1Rs and MC3T3-E1 osteoblastic cells were used to explore the roles of PTH, PTHrP, and the PTH-1R in cell viability relative to osteoblastic differentiation. Overexpression of wild-type PTH-1R increased cell numbers and promoted osteocalcin gene expression versus inactivated mutant receptors. Furthermore, the effects of PTH and PTHrP on apoptosis were dramatically dependent on cell status. In preconfluent C3H10T1/2 and MC3T3-E1 cells, PTH and PTHrP protected against dexamethasone-induced reduction in cell viability, which was dependent on cAMP activation. Conversely, PTH and PTHrP resulted in reduced cell viability in postconfluent cells, which was also dependent on cAMP activation. Further, the proapoptotic-like effects were associated with an inhibition of Akt phosphorylation. These data suggest that parathyroid hormones accelerate turnover of osteoblasts by promoting cell viability early and promoting cell departure from the differentiation program later in their developmental scheme. Both of these actions occur at least in part via the protein kinase A pathway.
Collapse
Affiliation(s)
- Hen-Li Chen
- Department of Periodontics, Prevention, and Geriatrics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
257
|
Abstract
There is no one cause of bone fragility; genetic and environmental factors play a part in development of smaller bones, fewer or thinner trabeculae, and thin cortices, all of which result in low peak bone density. Material and structural strength is maintained in early adulthood by remodelling; the focal replacement of old with new bone. However, as age advances less new bone is formed than resorbed in each site remodelled, producing bone loss and structural damage. In women, menopause-related oestrogen deficiency increases remodelling, and at each remodelled site more bone is resorbed and less is formed, accelerating bone loss and causing trabecular thinning and disconnection, cortical thinning and porosity. There is no equivalent midlife event in men, though reduced bone formation and subsequent trabecular and cortical thinning do result in bone loss. Hypogonadism contributes to bone loss in 20-30% of elderly men, and in both sexes hyperparathyroidism secondary to calcium malabsorption increases remodelling, worsening the cortical thinning and porosity and predisposing to hip fractures. Concurrent bone formation on the outer (periosteal) cortical bone surface during ageing partly compensates for bone loss and is greater in men than in women, so internal bone loss is better offset in men. More women than men sustain fractures because their smaller skeleton incurs greater architectural damage and adapts less effectively by periosteal bone formation. The structural basis of bone fragility is determined before birth, takes root during growth, and gains full expression during ageing in both sexes.
Collapse
Affiliation(s)
- Ego Seeman
- Department of Endocrinology, Austin and Repatriation Medical Centre, Heidelberg 3084, Victoria, Australia.
| |
Collapse
|
258
|
Miao D, He B, Karaplis AC, Goltzman D. Parathyroid hormone is essential for normal fetal bone formation. J Clin Invest 2002. [DOI: 10.1172/jci0214817] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
259
|
Iida-Klein A, Zhou H, Lu SS, Levine LR, Ducayen-Knowles M, Dempster DW, Nieves J, Lindsay R. Anabolic action of parathyroid hormone is skeletal site specific at the tissue and cellular levels in mice. J Bone Miner Res 2002; 17:808-16. [PMID: 12009011 DOI: 10.1359/jbmr.2002.17.5.808] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cellular and molecular events triggering the anabolic response of the skeleton to exogenous parathyroid hormone (PTH) are not well understood. Despite the numerous bone mass studies in rats, few data are available for mice. Therefore, we treated 10-week-old female intact C57BL/6J mice with human PTH(1-34) delivered subcutaneously at a dose of 40 microg/kg per day 5 days a week for 3 weeks and 7 weeks. Bone mineral density (BMD) of total bone, femur, tibia, and lumbar vertebrae was measured weekly by PIXImus. Bone turnover was examined by histomorphometry, and gene expression of bone formation and resorption markers and osteoclastogenesis regulators in the excised femur and tibia was assessed by reverse-transcription polymerase chain reaction (RT-PCR) at 3 weeks and 7 weeks. The PTH-stimulated increase in BMD was more prominent in the tibia and femur than in the lumbar vertebrae, with an anabolic effect detected within 1-2 weeks and BMD continuing to increase. The appearance of a detectable PTH-stimulated increase in BMD was slower in the lumbar vertebrae where the increase was only significant after 7 weeks of treatment. Histomorphometric analysis of the proximal tibia at both 3 weeks and 7 weeks indicated significant time-dependent increases in trabecular area, trabecular number, trabecular and cortical widths, and osteoblast and osteoid perimeters. In the lumbar vertebrae, these stimulatory effects of PTH on trabecular area, trabecular number, and cortical width were smaller and not detected until 7 weeks. PTH-stimulated increases in bone turnover were evident by increased gene expression of osteocalcin (OC), tartrate-resistant acid phosphatase (TRAP), and receptor of activator nuclear factor kappaB (NF-kappaB) ligand (RANKL) in the tibia and femur. No significant difference in gene expression was observed between the two long bone sites. In conclusion, PTH exerts an anabolic action at the tissue and cellular levels in intact mice and the magnitude and temporal pattern of this anabolic action, as assessed by densitometry and histomorphometry, are skeletal site specific.
Collapse
Affiliation(s)
- Akiko Iida-Klein
- Regional Bone Center, Helen Hayes Hospital, New York State Department of Health, West Haverstraw 10993-1195, USA
| | | | | | | | | | | | | | | |
Collapse
|
260
|
Miao D, He B, Karaplis AC, Goltzman D. Parathyroid hormone is essential for normal fetal bone formation. J Clin Invest 2002; 109:1173-82. [PMID: 11994406 PMCID: PMC150965 DOI: 10.1172/jci14817] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Parathyroid hormone (PTH) is a potent pharmacologic inducer of new bone formation, but no physiologic anabolic effect of PTH on adult bone has been described. We investigated the role of PTH in fetal skeletal development by comparing newborn mice lacking either PTH, PTH-related peptide (PTHrP), or both peptides. PTH-deficient mice were dysmorphic but viable, whereas mice lacking PTHrP died at birth with dyschondroplasia. PTH-deficient mice uniquely demonstrated diminished cartilage matrix mineralization, decreased neovascularization with reduced expression of angiopoietin-1, and reduced metaphyseal osteoblasts and trabecular bone. Compound mutants displayed the combined cartilaginous and osseous defects of both single mutants. These results indicate that coordinated action of both PTH and PTHrP are required to achieve normal fetal skeletal morphogenesis, and they demonstrate an essential function for PTH at the cartilage-bone interface. The effect of PTH on fetal osteoblasts may be relevant to its postnatal anabolic effects on trabecular bone.
Collapse
Affiliation(s)
- Dengshun Miao
- Calcium Research Laboratory, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
261
|
González EA, Lund RJ, Martin KJ, McCartney JE, Tondravi MM, Sampath TK, Hruska KA. Treatment of a murine model of high-turnover renal osteodystrophy by exogenous BMP-7. Kidney Int 2002; 61:1322-31. [PMID: 11918739 DOI: 10.1046/j.1523-1755.2002.00258.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The secondary hyperparathyroidism of chronic kidney disease (CKD) produces a high turnover osteodystrophy that is associated with peritrabecular fibrosis. The nature of the cells involved in the development of peritrabecular fibrosis may represent osteoprogenitors expressing a fibroblastic phenotype that are retarded from progressing through osteoblast differentiation. METHODS To test the hypothesis that osteoblast differentiation is retarded in secondary hyperparathyroidism due to CKD producing bone marrow fibrosis, we administered bone morphogenetic protein 7 (BMP-7), a physiologic regulator of osteoblast regulation, to C57BL6 mice that had CKD produced by electrocautery of one kidney followed by contralateral nephrectomy two weeks later. Following the second surgical procedure, a subgroup of mice received daily intraperitoneal injections of BMP-7 (10 microg/kg). Three to six weeks later, the animals were sacrificed, blood was obtained for measurements of blood urea nitrogen (BUN) and parathyroid hormone (PTH) levels, and the femora and tibiae were processed for histomorphometric analysis. RESULTS The animals had significant renal insufficiency with BUN values of 77.79 +/- 22.68 mg/dL, and the level of renal impairment between the CKD untreated mice and the CKD mice treated with BMP-7 was the same in the two groups. PTH levels averaged 81.13 +/- 51.36 and 75.4 +/- 43.61 pg/mL in the CKD and BMP-7 treated groups, respectively. The animals with CKD developed significant peritrabecular fibrosis. In addition, there was an increase in osteoblast surface and osteoid accumulation as well as increased activation frequency and increased osteoclast surface consistent with high turnover renal osteodystrophy. Treatment with BMP-7 eliminated peritrabecular fibrosis, increased osteoblast number, osteoblast surface, mineralizing surface and single labeled surface. There was also a significant decrease in the eroded surface induced by treatment with BMP-7. CONCLUSIONS These findings indicate that BMP-7 treatment in the setting of high turnover renal osteodystrophy prevents the development of peritrabecular fibrosis, affects the osteoblast phenotype and mineralizing surfaces, and decreases bone resorption. This is compatible with a role of osteoblast differentiation in the pathophysiology of osteitis fibrosa.
Collapse
Affiliation(s)
- Esther A González
- Division of Nephrology, Saint Louis University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
262
|
Zhang X, Sobue T, Hurley MM. FGF-2 increases colony formation, PTH receptor, and IGF-1 mRNA in mouse marrow stromal cells. Biochem Biophys Res Commun 2002; 290:526-31. [PMID: 11779203 DOI: 10.1006/bbrc.2001.6217] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
FGF-2 stimulates bone formation in vitro and in vivo in rats. However, there are limited studies in mice and no data on the mechanism(s) by which FGF-2 induces bone formation. We assessed whether short-term FGF-2 treatment of marrow stromal cells from young mice would increase alkaline phosphatase-positive (ALP), mineralized colony formation and expression of genes important in osteoblast maturation. Short-term treatment with FGF-2 (0.01-1.0 nM) for the first 3 days of a 14- or 21-day culture period increased the number of ALP mineralized colonies in bone marrow stromal cells. FGF-2 (0.1 nM) increased the mRNAs for type 1 collagen: osteocalcin, runt domain/core binding factor, PTH/PTHR receptor, and insulin-like growth factor 1 (IGF-1) at 14 and 21 days. We conclude that short-term FGF-2 treatment enhances osteoblast maturation in vitro. Furthermore, the anabolic effect of FGF-2 may be attributed in part to regulation of IGF-1 in osteoblasts.
Collapse
Affiliation(s)
- X Zhang
- University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | | | | |
Collapse
|
263
|
Whitfield JF, Morley P, Willick GE. Parathyroid Hormone, Its Fragments and Their Analogs for the Treatment of Osteoporosis. ACTA ACUST UNITED AC 2002; 1:175-90. [PMID: 15799210 DOI: 10.2165/00024677-200201030-00005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The susceptibility to traumatic fracturing of osteopenic bones, and the spontaneous fracturing of osteoporotic bones by normal body movements caused by the microstructural deterioration and loss of bone, are currently treated with antiresorptive drugs, such as the bisphosphonates, calcitonin, estrogens, and selective estrogen receptor modulators. These antiresorptive agents target osteoclasts and, as their name indicates, reduce or stop bone resorption. They cannot directly stimulate bone formation, increase bone mass above normal values in ovariectomized rat models, or improve microstructure. However, there is a family of agents - the parathyroid hormone (PTH) and some of its fragments and their analogs - which directly stimulate bone growth and improve microstructure independently from impairing osteoclasts. These drugs are about to make their clinical debut in treating patients with osteoporosis and, probably not too far in the future, for accelerating fracture healing. They stimulate osteoblast accumulation and bone formation in three ways via signals from the type 1 PTH/PTH-related protein (PTHR1) receptors on proliferatively inactive preosteoblasts, osteoblasts, osteocytes and bone-lining cells. The receptor signals shut down the proliferative machinery in preosteoblasts and push their maturation to osteoblasts, cause the osteoblastic cells to make and secrete several factors that stimulate the extensive proliferation of osteoprogenitors without PTHRI receptors, stimulate the reversion of bone-lining cells to osteoblasts, and extend osteoblast lifespan and productivity by preventing them from suicidally initiating apoptosis. The first of the PTHs to reach the clinic will be teriparatide [recombinant human (h)PTH-(1-34)], which was recommended for approval in 2001 by the US Food and Drug Administration Endocrinology and Metabolic Drugs Advisory Committee for the treatment of postmenopausal osteoporosis. Teriparatide has been shown to considerably increase cancellous and cortical bone mass, improve bone microstructure, prevent fractures and thus provide benefits that cannot be provided by current antiresorptive drugs, when administered subcutaneously at a daily dose of 20 microg for no longer than 2 years to patients with osteoporosis.
Collapse
Affiliation(s)
- James F Whitfield
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
264
|
|
265
|
Gensure RC, Carter PH, Petroni BD, Jüppner H, Gardella TJ. Identification of determinants of inverse agonism in a constitutively active parathyroid hormone/parathyroid hormone-related peptide receptor by photoaffinity cross-linking and mutational analysis. J Biol Chem 2001; 276:42692-9. [PMID: 11553625 DOI: 10.1074/jbc.m106215200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated receptor structural components responsible for ligand-dependent inverse agonism in a constitutively active mutant of the human parathyroid hormone (PTH)/parathyroid hormone-related peptide (PTHrP) receptor type 1 (hP1R). This mutant receptor, hP1R-H223R (hP1R(CAM-HR)), was originally identified in Jansen's chondrodysplasia and is altered in transmembrane domain (TM) 2. We utilized the PTHrP analog, [Bpa(2),Ile(5),Trp(23),Tyr(36)]PTHrP-(1-36)-amide (Bpa(2)-PTHrP-(1-36)), which has valine 2 replaced by p-benzoyl-l-phenylalanine (Bpa); this substitution renders the peptide a photoreactive inverse agonist at hP1R(CAM-HR). This analog cross-linked to hP1R(CAM-HR) at two contiguous receptor regions as follows: the principal cross-link site (site A) was between receptor residues Pro(415)-Met(441), spanning the TM6/extracellular loop three boundary; the second cross-link site (site B) was within the TM4/TM5 region. Within the site A interval, substitution of Met(425) to Leu converted Bpa(2)-PTHrP-(1-36) from an inverse agonist to a weak partial agonist; this conversion was accompanied by a relative shift of cross-linking from site A to site B. The functional effect of the M425L mutation was specific for Bpa(2)-containing analogs, as inverse agonism of Bpa(2)-PTH-(1-34) was similarly eliminated, whereas inverse agonism of [Leu(11),d-Trp(12)]PTHrP-(5-36) was not affected. Overall, our data indicate that interactions between residue 2 of the ligand and the extracellular end of TM6 of the hP1R play an important role in modulating the conversion between active and inactive receptor states.
Collapse
Affiliation(s)
- R C Gensure
- Endocrine Unit and Pediatric Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | | | | | | | | |
Collapse
|
266
|
Abstract
The approach of gene-targeted animal models is likely the most important experimental tool contributing to recent advances in skeletal biology. Modifying the expression of a gene in vivo, and the analysis of the consequences of the mutation, are central to the understanding of gene function during development and physiology, and therefore to our understanding of the gene's role in disease states. Researchers had been limited to animal models primarily involving pharmaceutical manipulations and spontaneous mutations. With the advent of gene targeting, however, animal models that impact our understanding of metabolic bone disease have evolved dramatically. Interestingly, some genes that were expected to yield dramatic phenotypes in bone, such as estrogen receptor-alpha or osteopontin, proved to have subtle phenotypes, whereas other genes, such as interleukin-5 or osteoprotegerin, were initially identified as having a role in bone metabolism via the analysis of their phenotype after gene ablation or overexpression. Particularly important has been the advance in knowledge of osteoblast and osteoclast independent and dependent roles via the selective targeting of genes and the consequent disruption of bone formation, bone resorption, or both. Our understanding of interactions of the skeletal system with other systems, ie, the vascular system and homeostatic controls of adipogenesis, has evolved via animal models such as the matrix gla protein, knock-out, and the targeted overexpression of Delta FosB. Challenging transgenic models such as the osteopontin-deficient mice with mediators of bone remodeling like parathyroid hormone and mechanical stimuli and extending phenotype characterization to mechanistic in vitro studies of primary bone cells is providing additional insight into the mechanisms involved in pathologic states and their potentials for therapeutic strategies. This review segregates characterization of transgenic models based on the category of gene altered, eg, reproductive hormones, calcitropic hormones, growth factors and cytokines, signaling molecules, extracellular matrix molecules and "other" genes. Models are also segregated based on phenotypes that are primarily osteoclastic, osteoblastic or mixed. As the technical ability to alter gene expression negatively or positively and in a tissue-specific and temporal manner continues to evolve, there are endless possibilities for generating genetically altered animal models with which to gain insight into metabolic bone diseases.
Collapse
Affiliation(s)
- L K McCauley
- Department of Periodontics/Prevention/Geriatrics, University of Michigan, Ann Arbor, Michigan 48109-1078, USA.
| |
Collapse
|
267
|
Affiliation(s)
- G J Strewler
- Veterans Affairs Boston Healthcare System, 1400 VFW Parkway, West Roxbury, Massachusetts 02132, USA.
| |
Collapse
|