251
|
Miyazaki N, Murata I, Takemura G, Okada H, Kanamori H, Matsumoto-Miyazaki J, Yoshida G, Izumi K, Kashi H, Niimi K, Nishiwaki A, Miyazaki T, Ohno M, Ohashi H, Suzuki F, Minatoguchi S. Expression of prorenin receptor in renal biopsies from patients with IgA nephropathy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7485-7496. [PMID: 25550784 PMCID: PMC4270520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/01/2014] [Indexed: 06/04/2023]
Abstract
Prorenin receptor (PRR) has been implicated in the onset and progression of various renal diseases, though its possible association with immunoglobulin A (IgA) nephropathy remains unclear. In the present study, we tried to clarify expression and pathophysiological significance of PRR in IgA nephropathy. We immunohistochemically assessed PRR levels in renal biopsy specimens from 48 patients with IgA nephropathy and evaluated its relevance to the clinical and pathological features of the disease. PRR was detected mainly in renal tubular cells, which was confirmed at the subcellular level using immunoelectron microscopy. The PRR-positive area (%PRR area) correlated with daily urinary protein, which is known to reflect disease severity (r=0.286, P=0.049). PRR levels were weaker in tubular cells bordering areas of severe interstitial fibrosis, where α-smooth muscle actin-positive myofibroblasts were present. We also used immunohistochemical detection of microtubule-associated protein-1 light chain 3 (LC3) and electron microscopy to assess autophagy, a cytoprotective mechanism downstream of PRR. We noted an apparent coincidence between autophagy activation in tubular cells and PRR expression in the same cells. Taken together, our findings suggest that renal expression of PRR in IgA nephropathy may be a compensatory response slowing disease progression by preventing tubular cell death and subsequent fibrosis through activation of cytoprotective autophagic machinery. Further studies using different type of kidney diseases could draw conclusion if the present finding is a generalized observation beyond IgA nephropathy.
Collapse
Affiliation(s)
- Nagisa Miyazaki
- Second Department of Internal Medicine, Gifu University Graduate School of MedicineGifu, Japan
| | - Ichijiro Murata
- Second Department of Internal Medicine, Gifu University Graduate School of MedicineGifu, Japan
| | - Genzou Takemura
- Second Department of Internal Medicine, Gifu University Graduate School of MedicineGifu, Japan
- Department of Internal Medicine, Asahi UniversityMizuho, Gifu, Japan
| | - Hideshi Okada
- Second Department of Internal Medicine, Gifu University Graduate School of MedicineGifu, Japan
| | - Hiromitsu Kanamori
- Second Department of Internal Medicine, Gifu University Graduate School of MedicineGifu, Japan
| | - Jun Matsumoto-Miyazaki
- Second Department of Internal Medicine, Gifu University Graduate School of MedicineGifu, Japan
| | - Gakuro Yoshida
- Second Department of Internal Medicine, Gifu University Graduate School of MedicineGifu, Japan
| | - Kumiko Izumi
- Second Department of Internal Medicine, Gifu University Graduate School of MedicineGifu, Japan
- Division of Nephrology, Murakami Memorial Hospital Asahi UniversityGifu, Japan
| | - Hitomi Kashi
- Second Department of Internal Medicine, Gifu University Graduate School of MedicineGifu, Japan
| | - Kaori Niimi
- Second Department of Internal Medicine, Gifu University Graduate School of MedicineGifu, Japan
| | - Ayuko Nishiwaki
- Second Department of Internal Medicine, Gifu University Graduate School of MedicineGifu, Japan
| | | | - Michiya Ohno
- Division of Nephrology, Murakami Memorial Hospital Asahi UniversityGifu, Japan
| | - Hiroshige Ohashi
- Division of Nephrology, Murakami Memorial Hospital Asahi UniversityGifu, Japan
| | - Fumiaki Suzuki
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu UniversityGifu, Japan
| | - Shinya Minatoguchi
- Second Department of Internal Medicine, Gifu University Graduate School of MedicineGifu, Japan
| |
Collapse
|
252
|
Increased expression of (pro)renin receptor does not cause hypertension or cardiac and renal fibrosis in mice. J Transl Med 2014; 94:863-72. [PMID: 25046440 DOI: 10.1038/labinvest.2014.83] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 03/28/2014] [Accepted: 05/06/2014] [Indexed: 01/25/2023] Open
Abstract
Binding of renin and prorenin to the (pro)renin receptor (PRR) increases their enzymatic activity and upregulates the expression of pro-fibrotic genes in vitro. Expression of PRR is increased in the heart and kidney of hypertensive and diabetic animals, but its causative role in organ damage is still unclear. To determine whether increased expression of PRR is sufficient to induce cardiac or renal injury, we generated a mouse that constitutively overexpresses PRR by knocking-in the Atp6ap2/PRR gene in the hprt locus under the control of a CMV immediate early enhancer/chicken beta-actin promoter. Mice were backcrossed in the C57Bl/6 and FVB/N strain and studied at the age of 12 months. In spite of a 25- to 80-fold renal and up to 400-fold cardiac increase in Atp6ap2/PRR expression, we found no differences in systolic blood pressure or albuminuria between wild-type and PRR overexpressing littermates. Histological examination did not show any renal or cardiac fibrosis in mutant mice. This was supported by real-time PCR analysis of inflammatory markers as well as of pro-fibrotic genes in the kidney and collagen in cardiac tissue. To determine whether the concomitant increase of renin would trigger fibrosis, we treated PRR overexpressing mice with the angiotensin receptor-1 blocker losartan over a period of 6 weeks. Renin expression increased eightfold in the kidney but no renal injury could be detected. In conclusion, our results suggest no major role for PRR in organ damage per se or related to its function as a receptor of renin.
Collapse
|
253
|
Quadri S, Siragy HM. Regulation of (pro)renin receptor expression in mIMCD via the GSK-3β-NFAT5-SIRT-1 signaling pathway. Am J Physiol Renal Physiol 2014; 307:F593-600. [PMID: 24990896 DOI: 10.1152/ajprenal.00245.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The localization and regulation of (pro)renin receptor (PRR) expression in kidney collecting duct cells are not well established. We hypothesized that low salt (LS) contributes to the regulation of PRR expression in these cells via the GSK-3β-NFAT5-sirtuin1 (SIRT-1) signaling pathway. Mouse inner medullary collecting duct (mIMCD) cells were treated with NaCl at 130 (normal salt; NS), 63 (LS), or 209 mM (high salt; HS) alone or in combination with NFAT5 scrambled small interfering (si) RNA, NFAT5 siRNA, or the SIRT-1 inhibitor EX-527. Compared with NS, LS increased the mRNA and protein expression of PRR by 71% and 69% (P < 0.05), and reduced phosphorylation of GSK-3β by 62% (P < 0.01), mRNA and protein expressions of NFAT5 by 65% and 45% (P < 0.05), and SIRT-1 by 44% and 50% (P < 0.01), respectively. LS also enhanced p65 NF-κB by 102% (P < 0.01). Treatment with HS significantly reduced the mRNA and protein expression of PRR by 32% and 23% (P < 0.05), and increased the mRNA and protein expression of NFAT5 by 39% and 45% (P < 0.05) and SIRT-1 by 51% and 56% (P < 0.05), respectively. HS+NFAT5 siRNA reduced the mRNA and protein expression of NFAT5 by 51% and 35% (P < 0.01) and increased the mRNA and protein expression of PRR by 148% and 70% (P < 0.01), respectively. HS+EX-527 significantly increased the mRNA and protein expression of PRR by 96% and 58% (P < 0.05), respectively. We conclude that expression of PRR in mIMCD cells is regulated by the GSK-3β-NFAT5- SIRT-1 signaling pathway.
Collapse
Affiliation(s)
- Syed Quadri
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia
| | - Helmy M Siragy
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
254
|
Chandel N, Ayasolla K, Lan X, Rai P, Mikulak J, Husain M, Malhotra A, McGowan J, Singhal PC. Renin modulates HIV replication in T cells. J Leukoc Biol 2014; 96:601-9. [PMID: 24970860 DOI: 10.1189/jlb.2a0414-192r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HIV is known to subvert cellular machinery to enhance its replication. Recently, HIV has been reported to enhance TC renin expression. We hypothesized that HIV induces and maintains high renin expression to promote its own replication in TCs. Renin enhanced HIV replication in TCs in a dose-dependent manner. (P)RR-deficient TCs, as well as those lacking renin, displayed attenuated NF-κB activity and HIV replication. TCs treated with renin and Hpr displayed activation of the (P)RR-PLZF protein signaling cascade. Renin, HIV, and Hpr activated the PI3K pathway. Both renin and Hpr cleaved Agt (a renin substrate) to Ang I and also cleaved Gag polyproteins (protease substrate) to p24. Furthermore, aliskiren, a renin inhibitor, reduced renin- and Hpr-induced cleavage of Agt and Gag polyproteins. These findings indicate that renin contributes to HIV replication in TCs via the (P)RR-PLZF signaling cascade and through cleavage of the Gag polyproteins.
Collapse
Affiliation(s)
- Nirupama Chandel
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Kamesh Ayasolla
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Xiqian Lan
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Partab Rai
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Mohammad Husain
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Ashwani Malhotra
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Joseph McGowan
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Pravin C Singhal
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| |
Collapse
|
255
|
Batenburg WW, Verma A, Wang Y, Zhu P, van den Heuvel M, van Veghel R, Danser AHJ, Li Q. Combined renin inhibition/(pro)renin receptor blockade in diabetic retinopathy--a study in transgenic (mREN2)27 rats. PLoS One 2014; 9:e100954. [PMID: 24968134 PMCID: PMC4072720 DOI: 10.1371/journal.pone.0100954] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/31/2014] [Indexed: 12/20/2022] Open
Abstract
Dysfunction of renin-angiotensin system (RAS) contributes to the pathogenesis of diabetic retinopathy (DR). Prorenin, the precursor of renin is highly elevated in ocular fluid of diabetic patients with proliferative retinopathy. Prorenin may exert local effects in the eye by binding to the so-called (pro)renin receptor ((P)RR). Here we investigated the combined effects of the renin inhibitor aliskiren and the putative (P)RR blocker handle-region peptide (HRP) on diabetic retinopathy in streptozotocin (STZ)-induced diabetic transgenic (mRen2)27 rats (a model with high plasma prorenin levels) as well as prorenin stimulated cytokine expression in cultured Müller cells. Adult (mRen2)27 rats were randomly divided into the following groups: (1) non-diabetic; (2) diabetic treated with vehicle; (3) diabetic treated with aliskiren (10 mg/kg per day); and (4) diabetic treated with aliskiren+HRP (1 mg/kg per day). Age-matched non-diabetic wildtype Sprague-Dawley rats were used as control. Drugs were administered by osmotic minipumps for three weeks. Transgenic (mRen2)27 rat retinas showed increased apoptotic cell death of both inner retinal neurons and photoreceptors, increased loss of capillaries, as well as increased expression of inflammatory cytokines. These pathological changes were further exacerbated by diabetes. Aliskiren treatment of diabetic (mRen2)27 rats prevented retinal gliosis, and reduced retinal apoptotic cell death, acellular capillaries and the expression of inflammatory cytokines. HRP on top of aliskiren did not provide additional protection. In cultured Müller cells, prorenin significantly increased the expression levels of IL-1α and TNF-α, and this was completely blocked by aliskiren or HRP, their combination, (P)RR siRNA and the AT1R blocker losartan, suggesting that these effects entirely depended on Ang II generation by (P)RR-bound prorenin. In conclusion, the lack of effect of HRP on top of aliskiren, and the Ang II-dependency of the ocular effects of prorenin in vitro, argue against the combined application of (P)RR blockade and renin inhibition in diabetic retinopathy.
Collapse
Affiliation(s)
- Wendy W. Batenburg
- Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, rasmus MC, GE Rotterdam, The Netherlands
| | - Amrisha Verma
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Yunyang Wang
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Ping Zhu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mieke van den Heuvel
- Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, rasmus MC, GE Rotterdam, The Netherlands
| | - Richard van Veghel
- Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, rasmus MC, GE Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, rasmus MC, GE Rotterdam, The Netherlands
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
256
|
Alzayadneh EM, Chappell MC. Nuclear expression of renin-angiotensin system components in NRK-52E renal epithelial cells. J Renin Angiotensin Aldosterone Syst 2014; 16:1135-48. [PMID: 24961503 DOI: 10.1177/1470320313515039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Isolated nuclei of sheep proximal tubules express angiotensin (Ang) receptors as well as angiotensinogen (AGT) and renin. The present study characterized the NRK-52E tubular epithelial cell line for the intracellular expression of renin-angiotensin system (RAS) components. METHODS RAS components were visualized by immunofluorescent staining in intact cells and protein expression in isolated nuclei. RESULTS An antibody to the angiotensin I (Ang I) sequence of AGT (AI-AGT) revealed only cytosolic staining, while an antibody to an internal sequence of AGT (Int-AGT) revealed primarily nuclear staining. Immunoblots of nuclear and cytosolic fractions confirmed the differential cell staining of AGT. Immunostaining for renin was present on nuclei of intact cells. Nuclear renin activity averaged 0.77±0.05 nmol/mg protein/h that was reduced by aliskiren (0.13±0.01 nmol/mg/h, n=3, p<0.01); trypsin activation increased activity three-fold. Peptide staining localized angiotensin II (Ang II) and Ang-(1-7) to the nucleus and peptide content averaged 59±2 and 57±22 fmol/mg (n=4), respectively. Peptide metabolism in isolated nuclei revealed the processing of Ang I to Ang-(1-7) by thimet oligopeptidase. CONCLUSION We conclude that the NRK-52E cells express an intracellular RAS localized to the nucleus and may be an appropriate cell model to elucidate the functional relevance of this system.
Collapse
Affiliation(s)
- Ebaa M Alzayadneh
- The Hypertension & Vascular Research Center, Wake Forest University Health Sciences, USA
| | - Mark C Chappell
- The Hypertension & Vascular Research Center, Wake Forest University Health Sciences, USA
| |
Collapse
|
257
|
Valdés G, Schneider D, Corthorn J, Ortíz R, Acuña S, Padilla O. Administration of angiotensin II and a bradykinin B2 receptor blocker in midpregnancy impairs gestational outcome in guinea pigs. Reprod Biol Endocrinol 2014; 12:49. [PMID: 24893657 PMCID: PMC4062647 DOI: 10.1186/1477-7827-12-49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/25/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The opposing renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) are upregulated in pregnancy and localize in the utero-placental unit. To test their participation as counter-regulators, circulating angiotensin II (AII) was exogenously elevated and the bradykinin B2 receptor (B2R) was antagonized in pregnant guinea-pigs. We hypothesized that disrupting the RAS/KKS balance during the period of maximal trophoblast invasion and placental development would provoke increased blood pressure, defective trophoblast invasion and a preeclampsia-like syndrome. METHODS Pregnant guinea-pigs received subcutaneous infusions of AII (200 μg/kg/day), the B2R antagonist Bradyzide (BDZ; 62.5 microg/kg/day), or both (AII + BDZ) from gestational day 20 to 34. Non-pregnant cycling animals were included in a control group (C NP) or received AII + BDZ (AII + BDZ NP) during 14 days. Systolic blood pressure was determined during cycle in C NP, and on the last day of infusion, and 6 and 26 days thereafter in the remaining groups. Twenty six days after the infusions blood and urine were extracted, fetuses, placentas and kidneys were weighed, and trophoblast invasion of spiral arteries was defined in the utero-placental units by immunocytochemistry. RESULTS Systolic blood pressure transiently rose in a subgroup of the pregnant females while receiving AII + BDZ infusion, but not in AII + BDZ NP. Plasma creatinine was higher in AII- and BDZ-treated dams, but no proteinuria or hyperuricemia were observed. Kidney weight increased in AII + BDZ-treated pregnant and non-pregnant females. Aborted and dead fetuses were increased in dams that received AII and AII + BDZ. The fetal/placental weight ratio was reduced in litters of AII + BDZ-treated mothers. All groups that received interventions during pregnancy showed reduced replacement of endothelial cells by extravillous trophoblasts in lateral and myometrial spiral arteries. CONCLUSIONS The acute effects on fetal viability, and the persistently impaired renal/placental sufficiency and incomplete arterial remodeling implicate the RAS and KKS in the adaptations in pregnancy. The results partially confirm our hypothesis, as a preeclampsia-like syndrome was not induced. We demonstrate the feasibility of characterizing systemic and local modifications in pregnant guinea-pig, supporting its use to study normal placentation and related disorders.
Collapse
Affiliation(s)
- Gloria Valdés
- Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
- Departamento de Nefrología, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Daniela Schneider
- Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Jenny Corthorn
- Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
- Departamento de Nefrología, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Rita Ortíz
- Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Stephanie Acuña
- Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - Oslando Padilla
- Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica, Santiago, Chile
| |
Collapse
|
258
|
Wang F, Lu X, Peng K, Du Y, Zhou SF, Zhang A, Yang T. Prostaglandin E-prostanoid4 receptor mediates angiotensin II-induced (pro)renin receptor expression in the rat renal medulla. Hypertension 2014; 64:369-77. [PMID: 24866147 DOI: 10.1161/hypertensionaha.114.03654] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Angiotensin II (Ang II) stimulates (pro)renin receptor (PRR) expression in the renal collecting duct, triggering the local renin response in the distal nephron. Our recent study provided evidence for involvement of cyclooxygenase-2-prostaglandin E2 pathway in Ang II-dependent stimulation of PRR expression in the collecting duct. Here, we tested the role of E-prostanoid (EP) subtypes acting downstream of cyclooxygenase-2 in this phenomenon. In primary rat inner medullary collecting duct cells, Ang II treatment for 12 hours induced a 1.8-fold increase in the full-length PRR protein expression. To assess the contribution of EP receptor, the cell was pretreated with specific EP receptor antagonists: SC-51382 (for EP1), L-798106 (for EP3), L-161982 (for EP4), and ONO-AE3-208 (ONO, a structurally distinct EP4 antagonist). The upregulation of PRR expression by Ang II was consistently abolished by L-161982 and ONO and partially suppressed by SC-51382 but was unaffected by L-798106. The PRR expression was also significantly elevated by the EP4 agonist CAY10598 in the absence of Ang II. Sprague-Dawley rats were subsequently infused for 1 or 2 weeks with vehicle, Ang II alone, or in combination with ONO. Ang II infusion induced parallel increases in renal medullary PRR protein and renal medullary and urinary renin activity and total renin content, all of which were blunted by ONO. Both tail cuff plethysmography and telemetry demonstrated attenuation of Ang II hypertension by ONO. Overall, these results have established a crucial role of the EP4 receptor in mediating the upregulation of renal medullary PRR expression and renin activity during Ang II hypertension.
Collapse
Affiliation(s)
- Fei Wang
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Xiaohan Lu
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Kexin Peng
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Yaomin Du
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Shu-Feng Zhou
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Aihua Zhang
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Tianxin Yang
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.).
| |
Collapse
|
259
|
Wang F, Lu X, Peng K, Zhou L, Li C, Wang W, Yu X, Kohan DE, Zhu SF, Yang T. COX-2 mediates angiotensin II-induced (pro)renin receptor expression in the rat renal medulla. Am J Physiol Renal Physiol 2014; 307:F25-32. [PMID: 24740788 DOI: 10.1152/ajprenal.00548.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
(Pro)renin receptor (PRR) is predominantly expressed in the distal nephron where it is activated by angiotensin II (ANG II), resulting in increased renin activity in the renal medulla thereby amplifying the de novo generation and action of local ANG II. The goal of the present study was to test the role of cycloxygenase-2 (COX-2) in meditating ANG II-induced PRR expression in the renal medulla in vitro and in vivo. Exposure of primary rat inner medullary collecting duct cells to ANG II induced sequential increases in COX-2 and PRR protein expression. When the cells were pretreated with a COX-2 inhibitor NS-398, ANG II-induced upregulation of PRR protein expression was almost completely abolished, in parallel with the changes in medium active renin content. The inhibitory effect of NS-398 on the PRR expression was reversed by adding exogenous PGE2. A 14-day ANG II infusion elevated renal medullary PRR expression and active and total renin content in parallel with increased urinary renin, all of which were remarkably suppressed by the COX-2 inhibitor celecoxib. In contrast, plasma and renal cortical active and total renin content were suppressed by ANG II treatment, an effect that was unaffected by COX-2 inhibition. Systolic blood pressure was elevated with ANG II infusion, which was attenuated by the COX-2 inhibition. Overall, the results obtained from in vitro and in vivo studies established a crucial role of COX-2 in mediating upregulation of renal medullary PRR expression and renin content during ANG II hypertension.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China; Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Xiaohan Lu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China; Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Kexin Peng
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China; Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Li Zhou
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Donald E Kohan
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Shu-Feng Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China; Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| |
Collapse
|
260
|
The Renin-Angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflam 2014; 2014:689360. [PMID: 24804145 PMCID: PMC3997861 DOI: 10.1155/2014/689360] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 12/31/2022] Open
Abstract
The RAAS through its physiological effectors plays a key role in promoting and maintaining inflammation. Inflammation is an important mechanism in the development and progression of CVD such as hypertension and atherosclerosis. In addition to its main role in regulating blood pressure and its role in hypertension, RAAS has proinflammatory and profibrotic effects at cellular and molecular levels. Blocking RAAS provides beneficial effects for the treatment of cardiovascular and renal diseases. Evidence shows that inhibition of RAAS positively influences vascular remodeling thus improving CVD outcomes. The beneficial vascular effects of RAAS inhibition are likely due to decreasing vascular inflammation, oxidative stress, endothelial dysfunction, and positive effects on regeneration of endothelial progenitor cells. Inflammatory factors such as ICAM-1, VCAM-1, TNFα, IL-6, and CRP have key roles in mediating vascular inflammation and blocking RAAS negatively modulates the levels of these inflammatory molecules. Some of these inflammatory markers are clinically associated with CVD events. More studies are required to establish long-term effects of RAAS inhibition on vascular inflammation, vascular cells regeneration, and CVD clinical outcomes. This review presents important information on RAAS's role on vascular inflammation, vascular cells responses to RAAS, and inhibition of RAAS signaling in the context of vascular inflammation, vascular remodeling, and vascular inflammation-associated CVD. Nevertheless, the review also equates the need to rethink and rediscover new RAAS inhibitors.
Collapse
|
261
|
Yosypiv IV. Renin-angiotensin system in ureteric bud branching morphogenesis: implications for kidney disease. Pediatr Nephrol 2014; 29:609-20. [PMID: 24061643 DOI: 10.1007/s00467-013-2616-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 12/26/2022]
Abstract
Failure of normal branching morphogenesis of the ureteric bud (UB), a key ontogenic process that controls organogenesis of the metanephric kidney, leads to congenital anomalies of the kidney and urinary tract (CAKUT), the leading cause of end-stage kidney disease in children. Recent studies have revealed a central role of the renin-angiotensin system (RAS), the cardinal regulator of blood pressure and fluid/electrolyte homeostasis, in the control of normal kidney development. Mice or humans with mutations in the RAS genes exhibit a spectrum of CAKUT which includes renal medullary hypoplasia, hydronephrosis, renal hypodysplasia, duplicated renal collecting system and renal tubular dysgenesis. Emerging evidence indicates that severe hypoplasia of the inner medulla and papilla observed in angiotensinogen (Agt)- or angiotensin (Ang) II AT 1 receptor (AT 1 R)-deficient mice is due to aberrant UB branching morphogenesis resulting from disrupted RAS signaling. Lack of the prorenin receptor (PRR) in the UB in mice causes reduced UB branching, resulting in decreased nephron endowment, marked kidney hypoplasia, urinary concentrating and acidification defects. This review provides a mechanistic rational supporting the hypothesis that aberrant signaling of the intrarenal RAS during distinct stages of metanephric kidney development contributes to the pathogenesis of the broad phenotypic spectrum of CAKUT. As aberrant RAS signaling impairs normal renal development, these findings advocate caution for the use of RAS inhibitors in early infancy and further underscore a need to avoid their use during pregnancy and to identify the types of molecular processes that can be targeted for clinical intervention.
Collapse
Affiliation(s)
- Ihor V Yosypiv
- Section of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA, 70112, USA,
| |
Collapse
|
262
|
Serum soluble (pro)renin receptor levels in patients with essential hypertension. Hypertens Res 2014; 37:642-8. [PMID: 24646643 DOI: 10.1038/hr.2014.46] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/03/2014] [Accepted: 01/21/2014] [Indexed: 01/11/2023]
Abstract
The (pro)renin receptor ((P)RR) is expressed in several tissues including kidney, heart and brain, and is thought to regulate the tissue renin-angiotensin system (RAS) through the non-proteolytic activation of prorenin. (P)RR is cleaved by furin to generate soluble (P)RR (s(P)RR), which is secreted into the extracellular space. s(P)RR is a candidate biomarker reflecting the status of the tissue RAS. Here, we investigated the relationship between background factors and serum s(P)RR levels. We measured s(P)RR levels in 122 patients with essential hypertension (EH) and assessed the relationships between background factors and s(P)RR levels. Serum s(P)RR levels were 19.0±4.9 ng ml(-1). Single regression analyses showed that age (r=0.251, P<0.01), serum creatinine levels (r=0.229, P<0.05) and urinary angiotensinogen excretion (r=0.196, P<0.05) were positively correlated with s(P)RR levels, whereas estimated glomerular filtration rate (eGFR; r=-0.337, P<0.001) were negatively correlated. Multiple regression analyses of age, blood pressure (BP), hemoglobin A1c (HbA1c) and s(P)RR levels revealed that age and s(P)RR levels were negatively correlated with the eGFR (P<0.05). In patients with EH, serum s(P)RR levels correlated positively with renal function independent of age, BP and HbA1c. These findings support s(P)RR as a useful biomarker that reflects the status of the tissue RAS.
Collapse
|
263
|
Mahmud H, Candido WM, van Genne L, Vreeswijk-Baudoin I, Yu H, van de Sluis B, van Deursen J, van Gilst WH, Silljé HHW, de Boer RA. Cardiac function and architecture are maintained in a model of cardiorestricted overexpression of the prorenin-renin receptor. PLoS One 2014; 9:e89929. [PMID: 24587131 PMCID: PMC3934958 DOI: 10.1371/journal.pone.0089929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/24/2014] [Indexed: 01/25/2023] Open
Abstract
The (pro)renin-renin receptor, (P)RR has been claimed to be a novel element of the renin-angiotensin system (RAS). The function of (P)RR has been widely studied in renal and vascular pathology but the cardio-specific function of (P)RR has not been studied in detail. We therefore generated a transgenic mouse (Tg) with cardio-restricted (P)RR overexpression driven by the alpha-MHC promotor. The mRNA expression of (P)RR was ∼170-fold higher (P<0.001) and protein expression ∼5-fold higher (P<0.001) in hearts of Tg mice as compared to non-transgenic (wild type, Wt) littermates. This level of overexpression was not associated with spontaneous cardiac morphological or functional abnormalities in Tg mice. To assess whether (P)RR could play a role in cardiac hypertrophy, we infused ISO for 28 days, but this caused an equal degree of cardiac hypertrophy and fibrosis in Wt and Tg mice. In addition, ischemia-reperfusion injury was performed in Langendorff perfused isolated mouse hearts. We did not observe differences in parameters of cardiac function or damage between Wt and Tg mouse hearts under these conditions. Finally, we explored whether the hypoxia sensing response would be modulated by (P)RR using HeLa cells with and without (P)RR overexpression. We did not establish any effect of (P)RR on expression of genes associated with the hypoxic response. These results demonstrate that cardio-specific overexpression of (P)RR does not provoke phenotypical differences in the heart, and does not affect the hearts’ response to stress and injury. It is concluded that increased myocardial (P)RR expression is unlikely to have a major role in pathological cardiac remodeling.
Collapse
Affiliation(s)
- Hasan Mahmud
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Wellington Mardoqueu Candido
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Linda van Genne
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Inge Vreeswijk-Baudoin
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Hongjuan Yu
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Bart van de Sluis
- University of Groningen, University Medical Center Groningen, Department of Molecular Genetics, Groningen, The Netherlands
| | - Jan van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Wiek H. van Gilst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Herman H. W. Silljé
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Rudolf A. de Boer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
264
|
Li C, Siragy HM. High glucose induces podocyte injury via enhanced (pro)renin receptor-Wnt-β-catenin-snail signaling pathway. PLoS One 2014; 9:e89233. [PMID: 24533170 PMCID: PMC3923071 DOI: 10.1371/journal.pone.0089233] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/17/2014] [Indexed: 01/04/2023] Open
Abstract
(Pro)renin receptor (PRR) expression is upregulated in diabetes. We hypothesized that PRR contributes to podocyte injury via activation of Wnt-β-catenin-snail signaling pathway. Mouse podocytes were cultured in normal (5 mM) or high (25 mM) D-glucose for 3 days. Compared to normal glucose, high glucose significantly decreased mRNA and protein expressions of podocin and nephrin, and increased mRNA and protein expressions of PRR, Wnt3a, β-catenin, and snail, respectively. Confocal microscopy studies showed significant reduction in expression and reorganization of podocyte cytoskeleton protein, F-actin, in response to high glucose. Transwell functional permeability studies demonstrated significant increase in albumin flux through podocytes monolayer with high glucose. Cells treated with high glucose and PRR siRNA demonstrated significantly attenuated mRNA and protein expressions of PRR, Wnt3a, β-catenin, and snail; enhanced expressions of podocin mRNA and protein, improved expression and reorganization of F-actin, and reduced transwell albumin flux. We conclude that high glucose induces podocyte injury via PRR-Wnt-β-catenin-snail signaling pathway.
Collapse
Affiliation(s)
- Caixia Li
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Helmy M. Siragy
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia, United States of America
| |
Collapse
|
265
|
Tampe D, Zeisberg M. Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol 2014; 10:226-37. [DOI: 10.1038/nrneph.2014.14] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
266
|
Li W, Peng H, Mehaffey EP, Kimball CD, Grobe JL, van Gool JMG, Sullivan MN, Earley S, Danser AHJ, Ichihara A, Feng Y. Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension. Hypertension 2014; 63:316-323. [PMID: 24246383 PMCID: PMC3947277 DOI: 10.1161/hypertensionaha.113.02041] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/24/2013] [Indexed: 11/16/2022]
Abstract
The (pro)renin receptor (PRR), which binds both renin and prorenin, is a newly discovered component of the renin-angiotensin system that is highly expressed in the central nervous system. The significance of brain PRRs in mediating local angiotensin II formation and regulating blood pressure remains unclear. The current study was performed to test the hypothesis that PRR-mediated, nonproteolytic activation of prorenin is the main source of angiotensin II in the brain. Thus, PRR knockout in the brain is expected to prevent angiotensin II formation and development of deoxycorticosterone acetate-salt-induced hypertension. A neuron-specific PRR (ATP6AP2) knockout mouse model was generated using the Cre-LoxP system. Physiological parameters were recorded by telemetry. PRR expression, detected by immunostaining and reverse transcription-polymerase chain reaction, was significantly decreased in the brains of knockout mice compared with wild-type mice. Intracerebroventricular infusion of mouse prorenin increased blood pressure and angiotensin II formation in wild-type mice. This hypertensive response was abolished in PRR-knockout mice in association with a reduction in angiotensin II levels. Deoxycorticosterone acetate-salt increased PRR expression and angiotensin II formation in the brains of wild-type mice, an effect that was attenuated in PRR-knockout mice. PRR knockout in neurons prevented the development of deoxycorticosterone acetate-salt-induced hypertension as well as activation of cardiac and vasomotor sympathetic tone. In conclusion, nonproteolytic activation of prorenin through binding to the PRR mediates angiotensin II formation in the brain. Neuron-specific PRR knockout prevents the development of deoxycorticosterone acetate-salt-induced hypertension, possibly through diminished angiotensin II formation.
Collapse
Affiliation(s)
- Wencheng Li
- Department of Biomedical Science, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Atp6ap2/(pro)renin receptor interacts with Par3 as a cell polarity determinant required for laminar formation during retinal development in mice. J Neurosci 2014; 33:19341-51. [PMID: 24305829 DOI: 10.1523/jneurosci.1362-13.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
(Pro)renin receptor [(P)RR], also known as Atp6ap2, has attracted growing attention as a key molecule for tissue renin-angiotensin system (RAS). In addition to its role in tissue RAS activation, Atp6ap2/(P)RR was originally identified as an accessory subunit for vacuolar H(+)-ATPase (v-ATPase), which is a multisubunit proton pump involved in diverse and fundamental cellular physiology. In this study, to elucidate the physiological function of Atp6ap2/(P)RR during retinal development in mammals, we used Cre-LoxP system to generate photoreceptor-specific conditional knock-out (CKO) mice, and revealed a critical role of Atp6ap2/(P)RR in photoreceptor development. Deletion of photoreceptor Atp6ap2/(P)RR did not affect retinal cell differentiation, but led to laminar disorganization around the outer nuclear layer together with severe dysfunction of photoreceptor cells. In the CKO mice, cell adhesion and polarity molecules, some of which were colocalized with Atp6ap2/(P)RR at the apical edge of the wild-type developing retina, were substantially dispersed together with mislocalization of retinal progenitor cells apart from the apical surface. Among theses molecules, coimmunoprecipitation using retinal homogenates and ATP6AP2/(P)RR-transfected cells showed that Atp6ap2/(P)RR interacted with partitioning defective 3 homolog (PAR3) protein, which is known to function in the Par-atypical protein kinase C (aPKC) system. Furthermore, yeast two-hybrid assays demonstrated direct molecular interaction between ATP6AP2/(P)RR and PAR3. Our present data revealed the novel function of Atp6ap2/(P)RR required for laminar formation during retinal development. We propose that this cellular activity associated with the Par-aPKC system, in addition to the v-ATPase function and tissue RAS activation, is the third biological role of Atp6ap2/(P)RR.
Collapse
|
268
|
Kirsch S, Schrezenmeier E, Klare S, Zaade D, Seidel K, Schmitz J, Bernhard S, Lauer D, Slack M, Goldin-Lang P, Unger T, Zollmann FS, Funke-Kaiser H. The (pro)renin receptor mediates constitutive PLZF-independent pro-proliferative effects which are inhibited by bafilomycin but not genistein. Int J Mol Med 2014; 33:795-808. [PMID: 24424509 PMCID: PMC3976126 DOI: 10.3892/ijmm.2014.1624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/23/2013] [Indexed: 12/27/2022] Open
Abstract
The (pro)renin receptor [(P)RR] is crucial for cardio-renal pathophysiology. The distinct molecular mechanisms of this receptor are still incompletely understood. The (P)RR is able to interact with different signalling proteins such as promyelocytic leukemia zinc finger protein (PLZF) and Wnt receptors. Moreover, domains of the (P)RR are essential for V-ATPase activity. V-ATPase- and Wnt-mediated effects imply constitutive, i.e., (pro)renin-independent functions of the (P)RR. Regarding ligand-dependent (P)RR signalling, the role of prorenin glycosylation is currently unknown. Therefore, the aim of this study was to analyse the contribution of constitutive (P)RR activity to its cellular effects and the relevance of prorenin glycosylation on its ligand activity. We were able to demonstrate that high glucose induces (P)RR signal transduction whereas deglycosylation of prorenin abolishes its intrinsic activity in neuronal and epithelial cells. By using siRNA against (P)RR or PLZF as well as the PLZF translocation blocker genistein and the specific V-ATPase inhibitor bafilomycin, we were able to dissect three distinct sub-pathways downstream of the (P)RR. The V-ATPase function is ligand-independently associated with strong pro-proliferative effects whereas prorenin causes moderate proliferation in vitro. In contrast, PLZF per se [i.e., in the absence of (pro)renin] does not interfere with cell number.
Collapse
Affiliation(s)
- Sebastian Kirsch
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Schrezenmeier
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabrina Klare
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Zaade
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Seidel
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jennifer Schmitz
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Bernhard
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dilyara Lauer
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Petra Goldin-Lang
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Unger
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Frank S Zollmann
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Funke-Kaiser
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
269
|
De Mello WC. Intracellular Renin Disrupts Chemical Communication between Heart Cells. Pathophysiological Implications. Front Endocrinol (Lausanne) 2014; 5:238. [PMID: 25657639 PMCID: PMC4303002 DOI: 10.3389/fendo.2014.00238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/18/2014] [Indexed: 01/14/2023] Open
Abstract
HighlightsIntracellular renin disrupts chemical communication in the heartAngiotensinogen enhances the effect of reninIntracellular enalaprilat reduces significantly the effect of reninIntracellular renin increases the inward calcium currentHarmful versus beneficial effect during myocardial infarction The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; (1) under normal conditions, Lucifer Yellow flows from cell to cell through gap junctions; (2) the intracellular dialysis of renin (100 nM) disrupts chemical communication - an effect enhanced by simultaneous administration of angiotensinogen (100 nM); (3) enalaprilat (10(-9) M) administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; (4) aliskiren (10(-8) M) inhibited the effect of renin on chemical communication; (5) the possible role of intracellular renin independently of angiotensin II (Ang II) was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; (6) the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed; (7) the present results indicate that intracellular renin due to internalization or in situ synthesis causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function.
Collapse
Affiliation(s)
- Walmor C. De Mello
- School of Medicine, University of Puerto Rico, San Juan, PR, USA
- *Correspondence: Walmor C. De Mello, School of Medicine, UPR, Medical Sciences Campus, San Juan, PR 00936, USA e-mail:
| |
Collapse
|
270
|
Yin GS, Lin SD, Xu DC, Sun RQ, Lin K, Lin CJ. Handle Region Peptide Ameliorating Insulin Resistance but Not β Cell Functions in Male Rats Neonatally Treated with Sodium L-Glutamate. Int J Endocrinol 2013; 2013:493828. [PMID: 24385982 PMCID: PMC3872408 DOI: 10.1155/2013/493828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 02/05/2023] Open
Abstract
Handle region peptide (HRP), which was recognized as a blocker of (pro)renin receptor ((P)RR), may block the function of (P)RR. The aim of this study was to investigate the effect of HRP with a large dose of 1 mg/kg/d on glucose status in the rats treated neonatally with monosodium L-glutamate (MSG). At the age of 8 weeks, the MSG rats were randomly divided into MSG control group, HRP treated group with minipump (MSG-HRP group), losartan treated group (MSG-L group), and HRP and losartan cotreated group (MSG-HRP-L group) and fed with high-fat diet for 4 weeks. Losartan but not HRP increased the levels of insulin releasing and ameliorate glucose status although both losartan and HRP improved insulin sensitivity. On the one hand, both losartan and HRP decreased levels of pancreatic local Ang-II and NADPH oxidase activity as well as its subunits P(22phox). On the other hand, losartan but not HRP decreased α -cell mass and number of PCNA-positive cells located periphery of the islets and decreased picrosirius red stained area in islets. HRP ameliorating insulin resistance but not β -cell functions leads to hyperglycemia in the end in male MSG rats, and the dual characters of HRP may partly account for the phenomenon.
Collapse
Affiliation(s)
- Guo-shu Yin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, China
| | - Shao-da Lin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, China
| | - Dong-chuan Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, China
| | - Ru-qiong Sun
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, China
| | - Kun Lin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, China
| | - Chu-jia Lin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, China
| |
Collapse
|
271
|
Zhuo JL, Ferrao FM, Zheng Y, Li XC. New frontiers in the intrarenal Renin-Angiotensin system: a critical review of classical and new paradigms. Front Endocrinol (Lausanne) 2013; 4:166. [PMID: 24273531 PMCID: PMC3822323 DOI: 10.3389/fendo.2013.00166] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/22/2013] [Indexed: 12/23/2022] Open
Abstract
The renin-angiotensin system (RAS) is well-recognized as one of the oldest and most important regulators of arterial blood pressure, cardiovascular, and renal function. New frontiers have recently emerged in the RAS research well beyond its classic paradigm as a potent vasoconstrictor, an aldosterone release stimulator, or a sodium-retaining hormone. First, two new members of the RAS have been uncovered, which include the renin/(Pro)renin receptor (PRR) and angiotensin-converting enzyme 2 (ACE2). Recent studies suggest that prorenin may act on the PRR independent of the classical ACE/ANG II/AT1 receptor axis, whereas ACE2 may degrade ANG II to generate ANG (1-7), which activates the Mas receptor. Second, there is increasing evidence that ANG II may function as an intracellular peptide to activate intracellular and/or nuclear receptors. Third, currently there is a debate on the relative contribution of systemic versus intrarenal RAS to the physiological regulation of blood pressure and the development of hypertension. The objectives of this article are to review and discuss the new insights and perspectives derived from recent studies using novel transgenic mice that either overexpress or are deficient of one key enzyme, ANG peptide, or receptor of the RAS. This information may help us better understand how ANG II acts, both independently or through interactions with other members of the system, to regulate the kidney function and blood pressure in health and disease.
Collapse
Affiliation(s)
- Jia L. Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Medicine, Division of Nephrology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fernanda M. Ferrao
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yun Zheng
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiao C. Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
272
|
Kinouchi K, Ichihara A, Sano M, Sun-Wada GH, Wada Y, Ochi H, Fukuda T, Bokuda K, Kurosawa H, Yoshida N, Takeda S, Fukuda K, Itoh H. The role of individual domains and the significance of shedding of ATP6AP2/(pro)renin receptor in vacuolar H(+)-ATPase biogenesis. PLoS One 2013; 8:e78603. [PMID: 24223829 PMCID: PMC3817224 DOI: 10.1371/journal.pone.0078603] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 09/13/2013] [Indexed: 12/16/2022] Open
Abstract
The ATPase 6 accessory protein 2 (ATP6AP2)/(pro)renin receptor (PRR) is essential for the biogenesis of active vacuolar H+-ATPase (V-ATPase). Genetic deletion of ATP6AP2/PRR causes V-ATPase dysfunction and compromises vesicular acidification. Here, we characterized the domains of ATP6AP2/PRR involved in active V-ATPase biogenesis. Three forms of ATP6AP2/PRR were found intracellularly: full-length protein and the N- and C-terminal fragments of furin cleavage products, with the N-terminal fragment secreted extracellularly. Genetic deletion of ATP6AP2/PRR did not affect the protein stability of V-ATPase subunits. The extracellular domain (ECD) and transmembrane domain (TM) of ATP6AP2/PRR were indispensable for the biogenesis of active V-ATPase. A deletion mutant of ATP6AP2/PRR, which lacks exon 4-encoded amino acids inside the ECD (Δ4M) and causes X-linked mental retardation Hedera type (MRXSH) and X-linked parkinsonism with spasticity (XPDS) in humans, was defective as a V-ATPase-associated protein. Prorenin had no effect on the biogenesis of active V-ATPase. The cleavage of ATP6AP2/PRR by furin seemed also dispensable for the biogenesis of active V-ATPase. We conclude that the N-terminal ECD of ATP6AP2/PRR, which is also involved in binding to prorenin or renin, is required for the biogenesis of active V-ATPase. The V-ATPase assembly occurs prior to its delivery to the trans-Golgi network and hence shedding of ATP6AP2/PRR would not affect the biogenesis of active V-ATPase.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
- * E-mail:
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women’s College, Kyoto, Japan
| | - Yoh Wada
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Hiroki Ochi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toru Fukuda
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kanako Bokuda
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Kurosawa
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naohiro Yoshida
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
| | - Shu Takeda
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
273
|
Abstract
The (pro)renin receptor (PRR) is a newly reported member of the renin-angiotensin system (RAS); a hormonal cascade responsible for regulating blood pressure. Originally, identification of PRR was heralded as the next drug target of the RAS, of which such therapies would have increased benefits against target-organ damage and hypertension. However, in the years since its discovery, several conditional knockout mouse models of PRR have demonstrated an essential role for this receptor unrelated to the RAS and blood pressure. Specific deletion of PRR in podocytes or cardiomyocytes resulted in the rapid onset of organ failure and subsequently animal mortality after only a matter of weeks. In both cell types, loss of PRR resulted in the intracellular accumulation of autophagosomes and misfolded proteins, indicating a disturbance in autophagy. In light of the fact that the majority of PRR is located intracellularly, this molecular function appears to be more relevant than its ability to bind to high, non-physiological concentrations of (pro)renin. This review will focus on the role of PRR in autophagy and its importance in maintaining cellular homeostasis. Understanding the link between PRR, autophagy and how its loss results in cell death will be essential for deciphering its role in physiology and pathology.
Collapse
Affiliation(s)
- Katrina J. Binger
- Experimental and Clinical Research Centre, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- *Correspondence: Katrina J. Binger, Experimental and Clinical Research Centre, Max Delbrück Center for Molecular Medicine, Room 2634, Robert-Rössle-Street 10, Berlin 13092, Germany e-mail:
| | - Dominik N. Muller
- Experimental and Clinical Research Centre, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
274
|
Kazama I, Matsubara M, Kanai Y, Hatano R, Asano S, Endo Y, Toyama H, Ejima Y, Kurosawa S, Maruyama Y. Decreased expression of a novel prostaglandin transporter, OAT-PG, facilitates renocortical PGE2 accumulation during rat pregnancy. Gynecol Obstet Invest 2013; 76:163-70. [PMID: 24008262 DOI: 10.1159/000353977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 06/19/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prostaglandin (PG)-specific organic anion transporter (OAT-PG) is a recently identified renal transporter involved in the local clearance of prostaglandin E2 (PGE2). Since the renal biosynthesis of PGE2 is not increased during pregnancy, this transporter expression would affect the gestational changes in the renal PGE2 content. METHODS Kidneys from rats at different gestational stages were used to examine gestational changes in the renocortical PGE2 concentration. The renal expression of OAT-PG and the enzymes for PGE2 synthesis was also examined sequentially, together with the gestational changes in renal renin production. RESULTS The renocortical PGE2 concentration was significantly increased during midterm to late pregnancy, with a maximum increase of 47.6 ± 11.5% from the virgin value. Although the expression of the enzymes, such as cyclooxygenases and PG synthases, was not increased, that of OAT-PG was significantly decreased throughout pregnancy, inversely correlating with changes in the renocortical PGE2 concentration. Renal renin production was significantly increased during pregnancy. CONCLUSION This study demonstrated for the first time that the tissue PGE2 concentration was increased in pregnant rat kidneys, which may be associated with the gestational rise in glomerular filtration rate. The decreased expression of OAT-PG was thought to be responsible for the increased tissue PGE2 content.
Collapse
Affiliation(s)
- Itsuro Kazama
- Department of Physiology I, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Lizakowski S, Tylicki L, Rutkowski B. Direct renin inhibition--a promising strategy for renal protection? Med Sci Monit 2013; 19:451-7. [PMID: 23756824 PMCID: PMC3684114 DOI: 10.12659/msm.883949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Activation of the renin–angiotensin–aldosterone system (RAAS) plays a key role in the progression of chronic kidney disease (CKD). RAAS inhibitors, such as angiotensin converting enzyme inhibitors (ACEis) and angiotensin II receptor blockers (ARBs), decrease the rate of progression of diabetic and non-diabetic nephropathies and are first-line therapies for CKD. Although these agents are highly effective, current therapeutic strategies are unable to sufficiently suppress the RAAS and stop CKD progression. Aliskiren, the first in a new class of RAAS-inhibiting agents (direct renin inhibitors) has been approved to treat hypertension. Aliskiren exerts renoprotective, cardioprotective, and anti-atherosclerotic effects in animal models that appear to be independent of its blood pressure lowering activity. Early clinical studies using urinary protein excretion as a marker of renal involvement suggest a possibly novel role for aliskiren in treating CKD. This review discusses the antiproteinuric efficacy and safety of aliskiren and considers the evidence for its potential renoprotection.
Collapse
Affiliation(s)
- Sławomir Lizakowski
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | | | | |
Collapse
|
276
|
Huang J, Ledford KJ, Pitkin WB, Russo L, Najjar SM, Siragy HM. Targeted deletion of murine CEACAM 1 activates PI3K-Akt signaling and contributes to the expression of (Pro)renin receptor via CREB family and NF-κB transcription factors. Hypertension 2013; 62:317-23. [PMID: 23734002 DOI: 10.1161/hypertensionaha.113.01324] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The carcinoembryonic antigen-related cell adhesion molecule 1 regulates insulin sensitivity by promoting hepatic insulin clearance. Mice bearing a null mutation of Ceacam1 gene (Cc1(-/-)) develop impaired insulin clearance followed by hyperinsulinemia and insulin resistance, in addition to visceral obesity and increased plasma fatty acids. Because insulin resistance is associated with increased blood pressure, we investigated whether they develop higher blood pressure with activated renal renin-angiotensin system and whether this is mediated, in part, by the upregulation of renal (pro)renin receptor (PRR) expression. Compared with age-matched wild-type littermates, Cc1(-/-) mice exhibited increased blood pressure with increased activation of renal renin-angiotensin systems and renal PRR expression. Cytoplasmic and nuclear immunostaining of phospho-PI3K p85α and phospho-Akt was enhanced in the kidney of Cc1(-/-) mice. In murine renal inner medullary collecting duct epithelial cells with lentiviral-mediated small hairpin RNA knockdown of carcinoembryonic antigen-related cell adhesion molecule 1, PRR expression was upregulated and phosphorylation of PI3K (Tyr508), Akt (Ser473), NF-κB p65 (Ser276), cAMP response element-binding protein/activated transcription factor (ATF)-1 (Ser133), and ATF-2 (Thr71) was enhanced. Inhibiting PI3K with LY294002 or Akt with Akt inhibitor VIII attenuated PRR expression. In conclusion, global null deletion of Ceacam1 caused an increase in blood pressure with increased renin-angiotensin system activation together with upregulation of PRR via PI3K-Akt activation of cAMP response element-binding protein 1, ATF-1, ATF-2, and NF-κB p65 transcription factors.
Collapse
Affiliation(s)
- Jiqian Huang
- Division of Endocrinology and Metabolism, University of Virginia Health System, P.O. Box 801409, Charlottesville, VA 22908-1409, USA
| | | | | | | | | | | |
Collapse
|
277
|
Moriya H, Kobayashi S, Ohtake T, Tutumi D, Mochida Y, Ishioka K, Oka M, Maesato K, Hidaka S, Nomura S. Aliskiren, a direct renin inhibitor, improves vascular endothelial function in patients on hemodialysis independent of antihypertensive effect ∼ a pilot study∼. Kidney Blood Press Res 2013; 37:190-8. [PMID: 23736778 DOI: 10.1159/000350144] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2013] [Indexed: 11/19/2022] Open
Abstract
AIMS Aliskiren inhibits the first step in the renin-angiotensin system (RAS) and recently has been shown to modulate vascular diseases via RAS-dependent and independent pathways. This study aimed to determine the effect of aliskiren-associated direct renin inhibition on endothelial function in patients on hemodialysis via flow-mediated dilatation (FMD) and platelet-derived microparticles (PDMP), as biomarkers of atherosclerosis. METHODS A 12-week prospective study was performed with 24 patients on hemodialysis who were administered 150 mg orally aliskiren once daily for 12 weeks. RESULTS No significant difference were observed between pre-dialysis, home, and weekly averaged blood pressure at baseline and at 12 weeks (151.5 ± 8.5/80.9 ± 12.9 mmHg vs 150.3 ± 15.3/78.9 ± 21.2 mmHg, 151.4 ± 9.7/82.3 ± 14.7 mmHg vs 151.2 ± 17.7/81.4 ± 10.6 mmHg, and 156.0 ± 18.3/81.9 ± 9.4 mmHg vs 152.5 ± 18.9/81.7 ± 12.3 mmHg, respectively). FMD significantly increased from 2.54% ± 1.45% at baseline to 3.11% ± 1.37% at 12 weeks (P = 0.0267), and PDMP significantly decreased from 13.9 ± 5.8 U/mL at baseline to 10.9 ± 4.5 U/mL at 12 weeks (P = 0.0002). CONCLUSION Aliskiren improved vascular endothelial function and platelet-endothelium activation in patients on hemodialysis independent of antihypertensive effect.
Collapse
Affiliation(s)
- Hidekazu Moriya
- Department of Nephrology, Immunology, and Vascular Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Deletion of the prorenin receptor from the ureteric bud causes renal hypodysplasia. PLoS One 2013; 8:e63835. [PMID: 23704941 PMCID: PMC3660567 DOI: 10.1371/journal.pone.0063835] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/07/2013] [Indexed: 01/04/2023] Open
Abstract
The role of the prorenin receptor (PRR) in the regulation of ureteric bud (UB) branching morphogenesis is unknown. Here, we investigated whether PRR acts specifically in the UB to regulate UB branching, kidney development and function. We demonstrate that embryonic (E) day E13.5 mouse metanephroi, isolated intact E11.5 UBs and cultured UB cells express PRR mRNA. To study its role in UB development, we conditionally ablated PRR in the developing UB (PRRUB−/−) using Hoxb7Cre mice. On E12.5, PRRUB−/− mice had decreased UB branching and increased UB cell apoptosis. These defects were associated with decreased expression of Ret, Wnt11, Etv4/Etv5, and reduced phosphorylation of Erk1/2 in the UB. On E18.5, mutants had marked kidney hypoplasia, widespread apoptosis of medullary collecting duct cells and decreased expression of Foxi1, AE1 and H+-ATPase α4 mRNA. Ultimately, they developed occasional small cysts in medullary collecting ducts and had decreased nephron number. To test the functional consequences of these alterations, we determined the ability of PRRUB−/− mice to acidify and concentrate the urine on postnatal (P) day P30. PRRUB−/− mice were polyuric, had lower urine osmolality and a higher urine pH following 48 hours of acidic loading with NH4Cl. Taken together, these data show that PRR present in the UB epithelia performs essential functions during UB branching morphogenesis and collecting duct development via control of Ret/Wnt11 pathway gene expression, UB cell survival, activation of Erk1/2, terminal differentiation and function of collecting duct cells needed for maintaining adequate water and acid-base homeostasis. We propose that mutations in PRR could possibly cause renal hypodysplasia and renal tubular acidosis in humans.
Collapse
|
279
|
Abstract
The renin-angiotensin system (RAS) has long been established as one of the major mechanisms of hypertension through the increased levels of angiotensin (ANG) II and its resulting effect on the sympathetic nerve activity, arterial vasoconstriction, water reabsorption, and retention, etc. In the central nervous system, RAS activation affects body fluid homeostasis through increases in sympathetic nerve activity, water intake, food intake, and arginine vasopressin secretion. Previous studies, however, have shown that ANG II can be made in the brain, and it could possibly be through a new component called the (pro)renin receptor. This review intends to summarize the central and peripheral effects of the PRR on body fluid homeostasis.
Collapse
Affiliation(s)
- Theresa Cao
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | |
Collapse
|
280
|
Korvatska O, Strand NS, Berndt JD, Strovas T, Chen DH, Leverenz JB, Kiianitsa K, Mata IF, Karakoc E, Greenup JL, Bonkowski E, Chuang J, Moon RT, Eichler EE, Nickerson DA, Zabetian CP, Kraemer BC, Bird TD, Raskind WH. Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS). Hum Mol Genet 2013; 22:3259-68. [PMID: 23595882 DOI: 10.1093/hmg/ddt180] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We report a novel gene for a parkinsonian disorder. X-linked parkinsonism with spasticity (XPDS) presents either as typical adult onset Parkinson's disease or earlier onset spasticity followed by parkinsonism. We previously mapped the XPDS gene to a 28 Mb region on Xp11.2-X13.3. Exome sequencing of one affected individual identified five rare variants in this region, of which none was missense, nonsense or frame shift. Using patient-derived cells, we tested the effect of these variants on expression/splicing of the relevant genes. A synonymous variant in ATP6AP2, c.345C>T (p.S115S), markedly increased exon 4 skipping, resulting in the overexpression of a minor splice isoform that produces a protein with internal deletion of 32 amino acids in up to 50% of the total pool, with concomitant reduction of isoforms containing exon 4. ATP6AP2 is an essential accessory component of the vacuolar ATPase required for lysosomal degradative functions and autophagy, a pathway frequently affected in Parkinson's disease. Reduction of the full-size ATP6AP2 transcript in XPDS cells and decreased level of ATP6AP2 protein in XPDS brain may compromise V-ATPase function, as seen with siRNA knockdown in HEK293 cells, and may ultimately be responsible for the pathology. Another synonymous mutation in the same exon, c.321C>T (p.D107D), has a similar molecular defect of exon inclusion and causes X-linked mental retardation Hedera type (MRXSH). Mutations in XPDS and MRXSH alter binding sites for different splicing factors, which may explain the marked differences in age of onset and manifestations.
Collapse
Affiliation(s)
- Olena Korvatska
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Serum level of soluble (pro)renin receptor is modulated in chronic kidney disease. Clin Exp Nephrol 2013; 17:848-56. [PMID: 23564382 DOI: 10.1007/s10157-013-0803-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/06/2013] [Indexed: 01/29/2023]
Abstract
BACKGROUND Prorenin, the precursor of renin, binds to the (pro)renin receptor [(P)RR] and triggers intracellular signaling. The ligand binding sites of (P)RR are disconnected and are present in the soluble form of the receptor in serum. Given that the clinical significance of serum prorenin and soluble (P)RR in chronic kidney disease (CKD) is unclear, we investigated the relationship between serum prorenin, soluble (P)RR, and various clinical parameters in patients with CKD. METHODS A total of 374 patients with CKD were enrolled. Serum samples were collected, and the levels of soluble (P)RR and prorenin were measured using ELISA kits. Serum creatinine (Cr), blood urea nitrogen (BUN), uric acid (UA), hemoglobin (Hb), soluble secreted α-Klotho, and the urine protein/Cr ratio were also measured. Similarly, clinical parameters were also evaluated using serum and urine sample collected after 1 year (n = 204). RESULTS Soluble (P)RR levels were positively associated with serum Cr (P < 0.0001, r = 0.263), BUN (P < 0.0001, r = 0.267), UA (P < 0.005, r = 0.168) levels, CKD stage (P < 0.0001, r = 0.311) and urine protein/Cr ratio (P < 0.01, r = 0.157), and inversely with estimated glomerular infiltration rate (eGFR) (P < 0.0001, r = -0.275) and Hb (P < 0.005, r = -0.156). Soluble (P)RR levels were inversely associated with α-Klotho levels (P < 0.001, r = -0.174) but did not correlate with prorenin levels. With respect to antihypertensive drugs, soluble (P)RR levels were significantly lower in patients treated with an angiotensin II receptor blocker (ARB) than in those without ARB therapy (P < 0.005). Soluble (P)RR levels were significantly lower in CKD patients with diabetes mellitus or primary hypertension than in those without these conditions (P < 0.05). In contrast, serum levels of prorenin did not correlate with parameters related to renal function. Serum prorenin levels were significantly higher in CKD patients with diabetes mellitus than in nondiabetic patients (P < 0.05), but not in CKD patients with hypertension (P = 0.09). Finally, with respect to the relationship between basal soluble (P)RR levels and the progression rates of renal function, soluble (P)RR levels were positively associated with ΔCr (P < 0.05, r = 0.159) and inversely associated with ΔeGFR (P < 0.05, r = -0.148). CONCLUSION Serum levels of soluble (P)RR correlated with the stage of CKD. Our findings suggest that soluble (P)RR may be involved in renal injury and influence the progression of CKD.
Collapse
|
282
|
Abstract
The renin-angiotensin-aldosterone-system (RAAS) plays a central role in the pathophysiology of heart failure and cardiorenal interaction. Drugs interfering in the RAAS form the pillars in treatment of heart failure and cardiorenal syndrome. Although RAAS inhibitors improve prognosis, heart failure–associated morbidity and mortality remain high, especially in the presence of kidney disease. The effect of RAAS blockade may be limited due to the loss of an inhibitory feedback of angiotensin II on renin production. The subsequent increase in prorenin and renin may activate several alternative pathways. These include the recently discovered (pro-) renin receptor, angiotensin II escape via chymase and cathepsin, and the formation of various angiotensin subforms upstream from the blockade, including angiotensin 1–7, angiotensin III, and angiotensin IV. Recently, the direct renin inhibitor aliskiren has been proven effective in reducing plasma renin activity (PRA) and appears to provide additional (tissue) RAAS blockade on top of angiotensin-converting enzyme and angiotensin receptor blockers, underscoring the important role of renin, even (or more so) under adequate RAAS blockade. Reducing PRA however occurs at the expense of an increase plasma renin concentration (PRC). PRC may exert direct effects independent of PRA through the recently discovered (pro-) renin receptor. Additional novel possibilities to interfere in the RAAS, for instance using vitamin D receptor activation, as well as the increased knowledge on alternative pathways, have revived the question on how ideal RAAS-guided therapy should be implemented. Renin and prorenin are pivotal since these are at the base of all of these pathways.
Collapse
|
283
|
Santos KL, Vento MA, Wright JW, Speth RC. The effects of para-chloromercuribenzoic acid and different oxidative and sulfhydryl agents on a novel, non-AT1, non-AT2 angiotensin binding site identified as neurolysin. ACTA ACUST UNITED AC 2013; 184:104-14. [PMID: 23511333 DOI: 10.1016/j.regpep.2013.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/21/2012] [Accepted: 03/03/2013] [Indexed: 11/28/2022]
Abstract
A novel, non-AT1, non-AT2 brain binding site for angiotensin peptides that is unmasked by p-chloromercuribenzoate (PCMB) has been identified as a membrane associated variant of neurolysin. The ability of different organic and inorganic oxidative and sulfhydryl reactive agents to unmask or inhibit 125I-Sar1Ile8 angiotensin II (SI-Ang II) binding to this site was presently examined. In tissue membranes from homogenates of rat brain and testis incubated in assay buffer containing losartan (10 μM) and PD123319 (10 μM) plus 100 μM PCMB, 5 of the 39 compounds tested inhibited 125I-SI Ang II binding in brain and testis. Mersalyl acid, mercuric chloride (HgCl2) and silver nitrate (AgNO3) most potently inhibited 125I-SI Ang II binding with IC50s ~1-20 μM. This HgCl2 inhibition was independent of any interaction of HgCl2 with angiotensin II (Ang II) based on the lack of effect of HgCl2 on the dipsogenic effects of intracerebroventricularly administered Ang II and 125I-SI Ang II binding to AT1 receptors in the liver. Among sulfhydryl reagents, cysteamine and reduced glutathione (GSH), but not oxidized glutathione (GSSG) up to 1mM, inhibited PCMB-unmasked 125I-SI Ang II binding in brain and testis. Thimerosal and 4-hydroxymercuribenzoate moderately inhibited PCMB-unmasked 125I-SI Ang II binding in brain and testis at 100 μM; however, they also unmasked non-AT1, non-AT2 binding independent of PCMB. 4-Hydroxybenzoic acid did not promote 125 I-SI Ang II binding to this binding site indicating that only specific organomercurial compounds can unmask the binding site. The common denominator for all of these interacting substances is the ability to bind to protein cysteine sulfur. Comparison of cysteines between neurolysin and the closely related enzyme thimet oligopeptidase revealed an unconserved cysteine (cys650, based on the full length variant) in the proposed ligand binding channel (Brown et al., 2001) [45] near the active site of neurolysin. It is proposed that the mercuric ion in PCMB and closely related organomercurial compounds binds to cys650, while the acidic anion forms an ionic bond with a nearby arginine or lysine along the channel to effect a conformational change in neurolysin that promotes Ang II binding.
Collapse
Affiliation(s)
- Kira L Santos
- Pharmaceutical Sciences Department, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | | | | | | |
Collapse
|
284
|
Peng H, Li W, Seth DM, Nair AR, Francis J, Feng Y. (Pro)renin receptor mediates both angiotensin II-dependent and -independent oxidative stress in neuronal cells. PLoS One 2013; 8:e58339. [PMID: 23516464 PMCID: PMC3597628 DOI: 10.1371/journal.pone.0058339] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/02/2013] [Indexed: 02/07/2023] Open
Abstract
The binding of renin or prorenin to the (pro)renin receptor (PRR) promotes angiotensin (Ang) II formation and mediates Ang II-independent signaling pathways. In the central nervous system (CNS), Ang II regulates blood pressure via inducing oxidative stress; however, the role of PRR-mediated Ang II-independent signaling pathways in oxidative stress in the CNS remains undefined. To address this question, Neuro-2A cells were infected with control virus or an adeno-associated virus encoding the human PRR. Human PRR over-expression alone increased ROS levels, NADPH oxidase activity, as well as NADPH oxidase (NOX) isoforms 2 and 4 mRNA expression levels and these effects were not blocked by losartan. Moreover, the increase in NOX 2 and NOX 4 mRNA levels, NADPH oxidase activity, and ROS levels induced by PRR over-expression was prevented by mitogen activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) inhibition, and phosphoinositide 3 kinase/Akt (IP3/Akt) inhibition, indicating that PRR regulates NOX activity and ROS formation in neuro-2A cells through Ang II-independent ERK1/2 and IP3/Akt activation. Interestingly, at a concentration of 2 nM or higher, prorenin promoted Ang II formation, and thus further increased the ROS levels in cultured Neuro-2A cells via PRR. In conclusion, human PRR over-expression induced ROS production through both angiotensin II-dependent and -independent mechanisms. We showed that PRR-mediated angiotensin II-independent ROS formation is associated with activation of the MAPK/ERK1/2 and PI3/Akt signaling pathways and up-regulation of mRNA level of NOX 2 and NOX4 isoforms in neuronal cells.
Collapse
Affiliation(s)
- Hua Peng
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Wencheng Li
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Dale M. Seth
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Anand R. Nair
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Yumei Feng
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
285
|
Zaade D, Schmitz J, Benke E, Klare S, Seidel K, Kirsch S, Goldin-Lang P, Zollmann FS, Unger T, Funke-Kaiser H. Distinct signal transduction pathways downstream of the (P)RR revealed by microarray and ChIP-chip analyses. PLoS One 2013; 8:e57674. [PMID: 23469216 PMCID: PMC3587649 DOI: 10.1371/journal.pone.0057674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/23/2013] [Indexed: 12/23/2022] Open
Abstract
The (pro)renin receptor ((P)RR) signaling is involved in different pathophysiologies ranging from cardiorenal end-organ damage via diabetic retinopathy to tumorigenesis. We have previously shown that the transcription factor promyelocytic leukemia zinc finger (PLZF) is an adaptor protein of the (P)RR. Furthermore, recent publications suggest that major functions of the (P)RR are mediated ligand-independently by its transmembrane and intracellular part, which acts as an accessory protein of V-ATPases. The transcriptome and recruitmentome downstream of the V-ATPase function and PLZF in the context of the (P)RR are currently unknown. Therefore, we performed a set of microarray and chromatin-immunoprecipitation (ChIP)-chip experiments using siRNA against the (P)RR, stable overexpression of PLZF, the PLZF translocation inhibitor genistein and the specific V-ATPase inhibitor bafilomycin to dissect transcriptional pathways downstream of the (P)RR. We were able to identify distinct and overlapping genetic signatures as well as novel real-time PCR-validated target genes of the different molecular functions of the (P)RR. Moreover, bioinformatic analyses of our data confirm the role of (P)RŔs signal transduction pathways in cardiovascular disease and tumorigenesis.
Collapse
Affiliation(s)
- Daniela Zaade
- Center for Cardiovascular Research, CCR/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Takahashi K, Yatabe M, Fujiwara K, Hirose T, Totsune K, Yashiro T. In Situ Hybridization Method Reveals (Pro)renin Receptor Expressing Cells in the Pituitary Gland of Rats: Correlation with Anterior Pituitary Hormones. Acta Histochem Cytochem 2013; 46:47-50. [PMID: 23554540 PMCID: PMC3596607 DOI: 10.1267/ahc.12030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/07/2013] [Indexed: 12/28/2022] Open
Abstract
Expression of (pro)renin receptor ((P)RR), a specific receptor for renin and prorenin, was studied in rat pituitary gland. In situ hybridization showed that cells expressing (P)RR mRNA were widely distributed in the anterior lobe and intermediate lobe of the pituitary gland. Double-staining using in situ hybridization for (P)RR mRNA and immunohistochemistry for the pituitary hormones showed that (P)RR mRNA was expressed in most of the GH cells and ACTH cells in the anterior lobe. (P)RR mRNA was also expressed in a few prolactin cells and TSH cells, but not in LH cells. The present study has shown for the first time the distribution of (P)RR mRNA expressing cells in the rat pituitary gland. These findings suggest that (P)RR plays physiological roles in the pituitary gland, such as the modulation of the pituitary hormone secretion.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine
| | - Megumi Yatabe
- Division of Cell Biology and Histology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Ken Fujiwara
- Division of Cell Biology and Histology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Takuo Hirose
- Department of Planning for Drug Development and Clinical Evaluation, Tohoku University Graduate School of Pharmaceutical Sciences and Medicine
| | - Kazuhito Totsune
- Department of Social Welfare, Faculty of Synthetic Welfare, Tohoku Fukushi University
| | - Takashi Yashiro
- Division of Cell Biology and Histology, Department of Anatomy, Jichi Medical University School of Medicine
| |
Collapse
|
287
|
Ferder M, Inserra F, Manucha W, Ferder L. The world pandemic of vitamin D deficiency could possibly be explained by cellular inflammatory response activity induced by the renin-angiotensin system. Am J Physiol Cell Physiol 2013; 304:C1027-39. [PMID: 23364265 DOI: 10.1152/ajpcell.00403.2011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review attempts to show that there may be a relationship between inflammatory processes induced by chronic overstimulation of the renin-angiotensin system (RAS) and the worldwide deficiency of vitamin D (VitD) and that both disorders are probably associated with environmental factors. Low VitD levels represent a risk factor for several apparently different diseases, such as infectious, autoimmune, neurodegenerative, and cardiovascular diseases, as well as diabetes, osteoporosis, and cancer. Moreover, VitD insufficiency seems to predispose to hypertension, metabolic syndrome, left ventricular hypertrophy, heart failure, and chronic vascular inflammation. On the other hand, inappropriate stimulation of the RAS has also been associated with the pathogenesis of hypertension, heart attack, stroke, and hypertrophy of the left ventricle and vascular smooth muscle cells. Because VitD receptors (VDRs) and RAS receptors are almost distributed in the same tissues, a possible link between VitD and the RAS is even more plausible. Furthermore, from an evolutionary point of view, both systems were developed simultaneously, actively participating in the regulation of inflammatory and immunological mechanisms. Changes in RAS activity and activation of the VDR seem to be inversely related; thus any changes in one of these systems would have a completely opposite effect on the other, making it possible to speculate that the two systems could have a feedback relationship. In fact, the pandemic of VitD deficiency could be the other face of increased RAS activity, which probably causes lower activity or lower levels of VitD. Finally, from a therapeutic point of view, the combination of RAS blockade and VDR stimulation appears to be more effective than either RAS blockade or VDR stimulation individually.
Collapse
Affiliation(s)
- Marcelo Ferder
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
288
|
Shao W, Seth DM, Prieto MC, Kobori H, Navar LG. Activation of the renin-angiotensin system by a low-salt diet does not augment intratubular angiotensinogen and angiotensin II in rats. Am J Physiol Renal Physiol 2013; 304:F505-14. [PMID: 23303412 DOI: 10.1152/ajprenal.00587.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In angiotensin II (ANG II) infusion hypertension, there is an augmentation of intratubular angiotensinogen (AGT) and ANG II leading to increased urinary AGT and ANG II excretion rates associated with tissue injury. However, the changes in urinary AGT and ANG II excretion rates and markers of renal injury during physiologically induced stimulation of the renin-angiotensin system (RAS) by a low-salt diet remain unclear. Male Sprague-Dawley rats received a low-salt diet (0.03% NaCl; n = 6) and normal-salt diet (0.3% NaCl, n = 6) for 13 days. Low-salt diet rats had markedly higher plasma renin activity and plasma ANG II levels. Kidney cortex renin mRNA, kidney AGT mRNA, and AGT immunoreactivity were not different; however, medullary renin mRNA, kidney renin content, and kidney ANG II levels were significantly elevated by the low-salt diet. Kidney renin immunoreactivity was also markedly increased in juxtaglomerular apparati and in cortical and medullary collecting ducts. Urinary AGT excretion rates and urinary ANG II excretion rates were not augmented by the low-salt diet. The low-salt diet caused mild renal fibrosis in glomeruli and the tubulointerstitium, but no other signs of kidney injury were evident. These results indicate that, in contrast to the response in ANG II infusion hypertension, the elevated plasma and intrarenal ANG II levels caused by physiological stimulation of RAS are not reflected by increased urinary AGT or ANG II excretion rates or the development of renal injury.
Collapse
Affiliation(s)
- Weijian Shao
- Dept. of Physiology, SL39, Tulane Univ. Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA.
| | | | | | | | | |
Collapse
|
289
|
Hermle T, Guida MC, Beck S, Helmstädter S, Simons M. Drosophila ATP6AP2/VhaPRR functions both as a novel planar cell polarity core protein and a regulator of endosomal trafficking. EMBO J 2013; 32:245-59. [PMID: 23292348 DOI: 10.1038/emboj.2012.323] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/07/2012] [Indexed: 11/09/2022] Open
Abstract
Planar cell polarity (PCP) controls the orientation of cells within tissues and the polarized outgrowth of cellular appendages. So far, six PCP core proteins including the transmembrane proteins Frizzled (Fz), Strabismus (Stbm) and Flamingo (Fmi) have been identified. These proteins form asymmetric PCP domains at apical junctions of epithelial cells. Here, we demonstrate that VhaPRR, an accessory subunit of the proton pump V-ATPase, directly interacts with the protocadherin Fmi through its extracellular domain. It also shows a striking co-localization with PCP proteins during all pupal wing stages in Drosophila. This localization depends on intact PCP domains. Reversely, VhaPRR is required for stable PCP domains, identifying it as a novel PCP core protein. VhaPRR performs an additional role in vesicular acidification as well as endolysosomal sorting and degradation. Membrane proteins, such as E-Cadherin and the Notch receptor, accumulate at the surface and in intracellular vesicles of cells mutant for VhaPRR. This trafficking defect is shared by other V-ATPase subunits. By contrast, the V-ATPase does not seem to have a direct role in PCP regulation. Together, our results suggest two roles for VhaPRR, one for PCP and another in endosomal trafficking. This dual function establishes VhaPRR as a key factor in epithelial morphogenesis.
Collapse
Affiliation(s)
- Tobias Hermle
- Center for Systems Biology (ZBSA), University of Freiburg, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
290
|
Alphan Z, Berberoglu Z, Gorar S, Candan Z, Aktas A, Aral Y, Ademoglu E. Increased total Renin levels but not Angiotensin-converting enzyme activity in obese patients with polycystic ovary syndrome. Med Princ Pract 2013; 22:475-9. [PMID: 23899907 PMCID: PMC5586791 DOI: 10.1159/000351572] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/26/2013] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE To investigate the renin-angiotensin-aldosterone system and angiotensin-converting enzyme (ACE) activity in patients with polycystic ovarian syndrome (PCOS). SUBJECTS AND METHODS In this case-control study, 41 obese (PCOS) women and 29 healthy controls, matched for age and body mass index, were enrolled. Anthropometric, metabolic, and hormonal patterns, including plasma aldosterone, plasma renin, and ACE activity, were measured in each subject. RESULTS Plasma renin levels were significantly higher in PCOS patients (19.7 ± 14.5 µg/ml) compared with controls (12.9 ± 9.0 µg/ml, p < 0.05). ACE activity and aldosterone levels did not significantly differ between both groups (p = 0.15 and p = 0.18, respectively). Analysis of PCOS patients showed a significant correlation of fasting insulin levels with levels of renin (r = 0.305, p < 0.01) and free testosterone (r = 0.384, p = 0.001). Similarly, homeostasis model assessment index was positively correlated with total renin concentrations (r = 0.366, p < 0.01) and free testosterone (r = 0.352, p < 0.01). CONCLUSION Obese PCOS women had higher total renin levels, but not ACE activity and aldosterone levels, related to insulin resistance compared with controls.
Collapse
Affiliation(s)
| | - Zehra Berberoglu
- *Zehra Berberoglu, MD, Ankara Education and Research Hospital, Department of Endocrinology and Metabolism, Şükriye Mh, TR-06340 Sıhhıye, Ankara (Turkey), E-Mail
| | | | | | | | | | | |
Collapse
|
291
|
Shibayama Y, Hitomi H, Nakano D, Kobori H, Mori H, Deguchi K, Masaki T, Ichihara A, Nishiyama A. Role of (pro)renin receptor in Ang II-mediated EGF receptor transactivation. Front Biosci (Elite Ed) 2013; 5:697-705. [PMID: 23277024 DOI: 10.2741/e650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prorenin-induced intracellular signaling pathway is not fully elucidated. We investigated whether the (pro)renin receptor mediates epidermal growth factor (EGF) receptor transactivation through angiotensin (Ang) II-dependent and -independent pathways in human embryo kidney 293 cells. Prorenin (2 nmol/L) caused biphasic phosphorylation of EGF receptor (Tyr992) and extracellular signal-regulated kinase (ERK) 1/2, peaking at 5 minutes followed by a decrease and a second peak at 60-120 minutes, whereas EGF receptor (Tyr1068) and Src were phosphorylated at only 120 minutes. These prorenin-induced phosphorylation processes were inhibited by (pro)renin receptor siRNA. Similarly, Ang II type 1 (AT1) receptor blocker (ARB) or AT1 receptor siRNA completely inhibited prorenin-induced phosphorylation of EGF receptor (Tyr1068) and Src, as well as the late peaks of EGF receptor (Tyr992) and ERK 1/2. However, early peaks of EGF receptor (Tyr992) and ERK 1/2 at 5 minutes were not effectively blocked by ARB or AT1 receptor siRNA. Incubation with prorenin significantly increased Ang II levels of cell lysate. These data indicate that the (pro)renin receptor mediates EGF receptor transactivation in both Ang II-dependent and -independent pathways.
Collapse
Affiliation(s)
- Yuki Shibayama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Prieto MC, Botros FT, Kavanagh K, Navar LG. Prorenin receptor in distal nephron segments of 2-kidney, 1-clip goldblatt hypertensive rats. Ochsner J 2013; 13:26-32. [PMID: 23532382 PMCID: PMC3603183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND The prorenin receptor (PRR) is expressed in the kidneys and has been localized to mesangial cells, renal arterioles, and distal nephron segments. By binding renin or prorenin, this receptor increases renin catalytic activity and activates prorenin. The renin gene is expressed by the principal cells of collecting ducts and is enhanced in angiotensin II (AngII)-dependent hypertension and in both kidneys of 2-kidney, 1-clip (2K1C) Goldblatt hypertensive rats. Colocalization of PRR with prorenin and renin in distal nephron segments may contribute to increased local AngII formation. METHODS We examined the specific cell-type localization of PRR in distal nephron segments and the changes in PRR gene expression in both kidneys of 2K1C hypertensive rats (n=6) and sham-operated rats (n=5). RESULTS After 25 days, systolic blood pressure and plasma renin activity increased to 186 ± 8 mmHg and 12.8 ± 3 ng/AngI/mL/hr, respectively, in 2K1C rats compared to controls (133 ± 9 mmHg and 7.1 ± 1 ng/AngI/mL/hr, respectively). Immunohistochemistry of the PRR on fixed kidney sections showed intense positive staining in the apical aspects of intercalated cells in collecting ducts. PRR immunoreactivity (clipped kidney: 2.3 ± 1 IDU; nonclipped kidney: 1.3 ± 0 IDU; sham: 1.0 ± 0.0 IDU; P<0.05) and messenger RNA levels measured by quantitative real-time polymerase chain reaction (clipped kidney: 1.3 ± 0.1 au; nonclipped kidney: 0.9 ± 0.3 au; sham: 1 ± 0.0 au; P<0.05] were increased in collecting duct cells of clipped kidneys of 2K1C rats compared to nonclipped and sham kidneys. CONCLUSION The enhanced renin gene expression in the collecting ducts of hypertensive rats suggests that the renin secreted by principal cells is then anchored by the PRR on the intercalated cells, thus contributing to increased angiotensin peptide generation in distal nephron segments.
Collapse
Affiliation(s)
- Minolfa C. Prieto
- Department of Physiology and Tulane Renal Hypertension Center, Tulane University School of Medicine, New Orleans, LA
| | - Fady T. Botros
- Department of Physiology and Tulane Renal Hypertension Center, Tulane University School of Medicine, New Orleans, LA
| | - Kimberly Kavanagh
- Department of Physiology and Tulane Renal Hypertension Center, Tulane University School of Medicine, New Orleans, LA
| | - L. Gabriel Navar
- Department of Physiology and Tulane Renal Hypertension Center, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
293
|
Arnold AC, Okamoto LE, Gamboa A, Shibao C, Raj SR, Robertson D, Biaggioni I. Angiotensin II, independent of plasma renin activity, contributes to the hypertension of autonomic failure. Hypertension 2012; 61:701-6. [PMID: 23266540 DOI: 10.1161/hypertensionaha.111.00377] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
At least half of primary autonomic failure patients exhibit supine hypertension, despite profound impairments in sympathetic activity. Although the mechanisms underlying this hypertension are unknown, plasma renin activity is often undetectable, suggesting renin-angiotensin (Ang) pathways are not involved. However, because aldosterone levels are preserved, we tested the hypothesis that Ang II is intact and contributes to the hypertension of autonomic failure. Indeed, circulating Ang II was paradoxically increased in hypertensive autonomic failure patients (52±5 pg/mL, n=11) compared with matched healthy controls (27±4 pg/mL, n=10; P=0.002), despite similarly low renin activity (0.19±0.06 versus 0.34±0.13 ng/mL per hour, respectively; P=0.449). To determine the contribution of Ang II to supine hypertension in these patients, we administered the AT(1) receptor blocker losartan (50 mg) at bedtime in a randomized, double-blind, placebo-controlled study (n=11). Losartan maximally reduced systolic blood pressure by 32±11 mm Hg at 6 hours after administration (P<0.05), decreased nocturnal urinary sodium excretion (P=0.0461), and did not worsen morning orthostatic tolerance. In contrast, there was no effect of captopril on supine blood pressure in a subset of these patients. These findings suggest that Ang II formation in autonomic failure is independent of plasma renin activity, and perhaps Ang-converting enzyme. Furthermore, these studies suggest that elevations in Ang II contribute to the hypertension of autonomic failure, and provide rationale for the use of AT(1) receptor blockers for treatment of these patients.
Collapse
Affiliation(s)
- Amy C Arnold
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6602, USA
| | | | | | | | | | | | | |
Collapse
|
294
|
Li W, Peng H, Seth DM, Feng Y. The Prorenin and (Pro)renin Receptor: New Players in the Brain Renin-Angiotensin System? Int J Hypertens 2012; 2012:290635. [PMID: 23316344 PMCID: PMC3536329 DOI: 10.1155/2012/290635] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/26/2012] [Accepted: 12/05/2012] [Indexed: 12/22/2022] Open
Abstract
It is well known that the brain renin-angiotensin (RAS) system plays an essential role in the development of hypertension, mainly through the modulation of autonomic activities and vasopressin release. However, how the brain synthesizes angiotensin (Ang) II has been a debate for decades, largely due to the low renin activity. This paper first describes the expression of the vasoconstrictive arm of RAS components in the brain as well as their physiological and pathophysiological significance. It then focus on the (pro)renin receptor (PRR), a newly discovered component of the RAS which has a high level in the brain. We review the role of prorenin and PRR in peripheral organs and emphasize the involvement of brain PRR in the pathogenesis of hypertension. Some future perspectives in PRR research are heighted with respect to novel therapeutic target for the treatment of hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Wencheng Li
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue SL-39, New Orleans, LA 70112, USA
| | - Hua Peng
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue SL-39, New Orleans, LA 70112, USA
| | - Dale M. Seth
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue SL-39, New Orleans, LA 70112, USA
| | - Yumei Feng
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue SL-39, New Orleans, LA 70112, USA
| |
Collapse
|
295
|
Chen M, Long Z, Wang Y, Liu J, Pian H, Wang L, Chen Z. Protective effects of saponin on a hypertension target organ in spontaneously hypertensive rats. Exp Ther Med 2012; 5:429-432. [PMID: 23404227 PMCID: PMC3570174 DOI: 10.3892/etm.2012.856] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/26/2012] [Indexed: 11/06/2022] Open
Abstract
The present study was undertaken to investigate the protective effects of saponin on a hypertensive target organ (the kidney) in spontaneously hypertensive rats (SHRs) and also to explore the effect of saponin on the renin-angiotensin-aldosterone system (RAAS). A total of 24, 14-week-old SHRs were randomly divided into three groups; the first was administered low-dose saponin, the second with high-dose saponin and the third with a placebo as the control group. An additional eight healthy male Wistar rats were used as the normal group. The blood pressures (BPs) of the rats were determined using an animal BP-6 non-invasive blood pressure tester. Furthermore, the gene expression of TGFB1, collagen I and prorenin receptor (PRR) was determined by quantitative real time (qRT)-PCR. The histopathological and morphological features of the tissue samples were assessed semi-quantitatively. The content of saponin in the renal samples was lower in SHRs than in the normal healthy rats, but the plasma levels of saponin were similar. Mean arterial pressure (MAP) was reduced 5 days subsequent to saponin treatment by 36±3 and 51±4 mmHg in the low- and high-dose saponin groups, respectively. The anti-hypertensive effect of saponin was dose-related during the first 4 weeks of treatment. The gene expression of TGFB1 and collagen I in the renal samples was significantly suppressed in the low- and high-dose saponin groups compared with that in the control group. The gene expression of PRR was significantly and dose-dependently increased in the saponin-treated groups. These findings suggested that saponin reduced systemic BP and blocked the circulating and tissue RAAS.
Collapse
Affiliation(s)
- Ming Chen
- Department of Pharmacology, Integrative Medicine Clinical College, Anhui University of Traditional Chinese Medicine; Hefei, Anhui 230032; ; Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, Anhui 230032
| | | | | | | | | | | | | |
Collapse
|
296
|
J Spaan J, A Brown M. Renin-angiotensin system in pre-eclampsia: everything old is new again. Obstet Med 2012; 5:147-153. [PMID: 30705695 DOI: 10.1258/om.2012.120007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2012] [Indexed: 01/15/2023] Open
Abstract
This review presents an update of the role of the renin-angiotensin system in normal pregnancy and pre-eclampsia. We have known for years that the circulatory renin-angiotensin system in pre-eclampsia is suppressed. We now know that the circulating renin-angiotensin system does not only have a vasoconstrictor arm, but also a vasodilator arm, which is upregulated in normal pregnancy; this balance is probably disturbed in pre-eclampsia. Recent studies show the importance of the local renin-angiotensin system in the uteroplacental unit for early placentation and regulation of placental blood flow. We discuss the possible role of autoantibodies against the AT1-receptor in pre-eclampsia and the suggestion that activation of the AT1-receptor in the placenta may lead to placental dysfunction and the clinical syndrome of pre-eclampsia.
Collapse
Affiliation(s)
- Julia J Spaan
- Departments of Medicine and Renal Medicine, St George Hospital, University of NSW, Kogarah, NSW, Australia
| | - Mark A Brown
- Departments of Medicine and Renal Medicine, St George Hospital, University of NSW, Kogarah, NSW, Australia
| |
Collapse
|
297
|
Abadir PM, Walston JD, Carey RM. Subcellular characteristics of functional intracellular renin-angiotensin systems. Peptides 2012; 38:437-45. [PMID: 23032352 PMCID: PMC3770295 DOI: 10.1016/j.peptides.2012.09.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/14/2012] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system (RAS) is now regarded as an integral component in not only the development of hypertension, but also in physiologic and pathophysiologic mechanisms in multiple tissues and chronic disease states. While many of the endocrine (circulating), paracrine (cell-to-different cell) and autacrine (cell-to-same cell) effects of the RAS are believed to be mediated through the canonical extracellular RAS, a complete, independent and differentially regulated intracellular RAS (iRAS) has also been proposed. Angiotensinogen, the enzymes renin and angiotensin-converting enzyme (ACE) and the angiotensin peptides can all be synthesized and retained intracellularly. Angiotensin receptors (types I and 2) are also abundant intracellularly mainly at the nuclear and mitochondrial levels. The aim of this review is to focus on the most recent information concerning the subcellular localization, distribution and functions of the iRAS and to discuss the potential consequences of activation of the subcellular RAS on different organ systems.
Collapse
Affiliation(s)
- Peter M. Abadir
- Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging Program, Johns Hopkins University School of Medicine, Baltimore, MD 21224, United States
| | - Jeremy D. Walston
- Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging Program, Johns Hopkins University School of Medicine, Baltimore, MD 21224, United States
| | - Robert M. Carey
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
- Corresponding author at: P.O. Box 801414, University of Virginia Health System, Charlottesville, VA 22908-1414, United States. Tel.: +1 434 924 5510; fax: +1 434 982 3626. (R.M. Carey)
| |
Collapse
|
298
|
Cheng WH, Lu PJ, Hsiao M, Hsiao CH, Ho WY, Cheng PW, Lin CT, Hong LZ, Tseng CJ. Renin activates PI3K-Akt-eNOS signalling through the angiotensin AT₁ and Mas receptors to modulate central blood pressure control in the nucleus tractus solitarii. Br J Pharmacol 2012; 166:2024-35. [PMID: 22224457 DOI: 10.1111/j.1476-5381.2012.01832.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE The renin-angiotensin system (RAS) is critical for the control of blood pressure by the CNS. Recently, direct renin inhibitors were approved as antihypertensive agents. However, the signalling mechanism of renin, which regulates blood pressure in the nucleus tractus solitarii (NTS) remains unclear. Here we have investigated the signalling pathways involved in renin-mediated blood pressure regulation, at the NTS. EXPERIMENTAL APPROACH Depressor responses to renin microinjected into the NTS of Wistar-Kyoto rats were elicited in the absence and presence of the endothelial nitric oxide synthase (eNOS)-specific inhibitor, N(5)-(-iminoethyl)-L-ornithine, Akt inhibitor IV and LY294002, a PI3K inhibitor and GP antagonist-2A [G(q) inhibitor]. Lisinopril (angiotensin converting enzyme inhibitor), losartan, valsartan (angiotensin AT(1) receptor antagonists), D-Ala7-Ang-(1-7) (angiotensin-(1-7) receptor antagonist) were used to study the involvement of RAS on renin-induced depressor effects. KEY RESULTS Microinjection of renin into the NTS produced a prominent depressor effect and increased NO production. Pretreatment with G(q) -PI3K-Akt-eNOS pathway-specific inhibitors significantly attenuated the depressor response evoked by renin. Immunoblotting and immunohistochemical studies further showed that inhibition of PI3K significantly blocked renin-induced eNOS-Ser ¹¹⁷ and Akt-Ser⁴⁷³ phosphorylation in situ. In addition, pre-treatment of the NTS with RAS inhibitors attenuated the vasodepressor effects evoked by renin. Microinjection of renin also increased Ras activation in the NTS. CONCLUSIONS AND IMPLICATIONS Taken together, these results suggest renin modulated blood pressure at the NTS by AT₁ and Mas receptor-mediated activation of G(q) and Ras to evoke PI3K-Akt-eNOS signalling.
Collapse
Affiliation(s)
- Wen-Han Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Renin-Angiotensin system and sympathetic neurotransmitter release in the central nervous system of hypertension. Int J Hypertens 2012; 2012:474870. [PMID: 23227311 PMCID: PMC3512297 DOI: 10.1155/2012/474870] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/18/2012] [Indexed: 02/07/2023] Open
Abstract
Many Studies suggest that changes in sympathetic nerve activity in the central nervous system might have a crucial role in blood pressure control. The present paper discusses evidence in support of the concept that the brain renin-angiotensin system (RAS) might be linked to sympathetic nerve activity in hypertension. The amount of neurotransmitter release from sympathetic nerve endings can be regulated by presynaptic receptors located on nerve terminals. It has been proposed that alterations in sympathetic nervous activity in the central nervous system of hypertension might be partially due to abnormalities in presynaptic modulation of neurotransmitter release. Recent evidence indicates that all components of the RAS have been identified in the brain. It has been proposed that the brain RAS may actively participate in the modulation of neurotransmitter release and influence the central sympathetic outflow to the periphery. This paper summarizes the results of studies to evaluate the possible relationship between the brain RAS and sympathetic neurotransmitter release in the central nervous system of hypertension.
Collapse
|
300
|
Sevá Pessôa B, van der Lubbe N, Verdonk K, Roks AJM, Hoorn EJ, Danser AHJ. Key developments in renin-angiotensin-aldosterone system inhibition. Nat Rev Nephrol 2012; 9:26-36. [PMID: 23165302 DOI: 10.1038/nrneph.2012.249] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The renin-angiotensin-aldosterone system (RAAS) was initially thought to be fairly simple. However, this idea has been challenged following the development of RAAS blockers, including renin inhibitors, angiotensin-converting-enzyme (ACE) inhibitors, type 1 angiotensin II (AT(1))-receptor blockers and mineralocorticoid-receptor antagonists. Consequently, new RAAS components and pathways that might contribute to the effectiveness of these drugs and/or their adverse effects have been identified. For example, an increase in renin levels during RAAS blockade might result in harmful effects via stimulation of the prorenin receptor (PRR), and prorenin-the inactive precursor of renin-might gain enzymatic activity on PRR binding. The increase in angiotensin II levels that occurs during AT(1)-receptor blockade might result in beneficial effects via stimulation of type 2 angiotensin II receptors. Moreover, angiotensin 1-7 levels increase during ACE inhibition and AT(1)-receptor blockade, resulting in Mas receptor activation and the induction of cardioprotective and renoprotective effects, including stimulation of tissue repair by stem cells. Finally, a role of angiotensin II in sodium and potassium handling in the distal nephron has been identified. This finding is likely to have important implications for understanding the effects of RAAS inhibition on whole body sodium and potassium balance.
Collapse
Affiliation(s)
- Bruno Sevá Pessôa
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|