251
|
Hu JJ, Nie SM, Gao Y, Yan XS, Huang JX, Li TL, Liu SS, Mao CX, Zhou JJ, Xu YJ, Wang W, Meng FJ, Feng XQ. [The correlations and prognostic value of neutrophil to lymphocyte ratio, immunophenotype and cytogenetic abnormalities in patients with newly diagnosed multiple myeloma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:1044-1046. [PMID: 32023739 PMCID: PMC7342691 DOI: 10.3760/cma.j.issn.0253-2727.2019.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 11/17/2022]
Affiliation(s)
- J J Hu
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - S M Nie
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Y Gao
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - X S Yan
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - J X Huang
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - T L Li
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - S S Liu
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - C X Mao
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - J J Zhou
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Y J Xu
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - W Wang
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - F J Meng
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - X Q Feng
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
252
|
Gokhale S, Lu W, Zhu S, Liu Y, Hart RP, Rabinowitz JD, Xie P. Elevated Choline Kinase α-Mediated Choline Metabolism Supports the Prolonged Survival of TRAF3-Deficient B Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 204:459-471. [PMID: 31826940 DOI: 10.4049/jimmunol.1900658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022]
Abstract
Specific deletion of the tumor suppressor TRAF3 from B lymphocytes in mice leads to the prolonged survival of mature B cells and expanded B cell compartments in secondary lymphoid organs. In the current study, we investigated the metabolic basis of TRAF3-mediated regulation of B cell survival by employing metabolomic, lipidomic, and transcriptomic analyses. We compared the polar metabolites, lipids, and metabolic enzymes of resting splenic B cells purified from young adult B cell-specific Traf3 -/- and littermate control mice. We found that multiple metabolites, lipids, and enzymes regulated by TRAF3 in B cells are clustered in the choline metabolic pathway. Using stable isotope labeling, we demonstrated that phosphocholine and phosphatidylcholine biosynthesis was markedly elevated in Traf3 -/- mouse B cells and decreased in TRAF3-reconstituted human multiple myeloma cells. Furthermore, pharmacological inhibition of choline kinase α, an enzyme that catalyzes phosphocholine synthesis and was strikingly increased in Traf3 -/- B cells, substantially reversed the survival phenotype of Traf3 -/- B cells both in vitro and in vivo. Taken together, our results indicate that enhanced phosphocholine and phosphatidylcholine synthesis supports the prolonged survival of Traf3 -/- B lymphocytes. Our findings suggest that TRAF3-regulated choline metabolism has diagnostic and therapeutic value for B cell malignancies with TRAF3 deletions or relevant mutations.
Collapse
Affiliation(s)
- Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ 08544.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901; and
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854
| | - Yingying Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901; and.,W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ 08544.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901; and
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854; .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901; and
| |
Collapse
|
253
|
Comprehensive detection of recurring genomic abnormalities: a targeted sequencing approach for multiple myeloma. Blood Cancer J 2019; 9:101. [PMID: 31827071 PMCID: PMC6906304 DOI: 10.1038/s41408-019-0264-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
Recent genomic research efforts in multiple myeloma have revealed clinically relevant molecular subgroups beyond conventional cytogenetic classifications. Implementing these advances in clinical trial design and in routine patient care requires a new generation of molecular diagnostic tools. Here, we present a custom capture next-generation sequencing (NGS) panel designed to identify rearrangements involving the IGH locus, arm level, and focal copy number aberrations, as well as frequently mutated genes in multiple myeloma in a single assay. We sequenced 154 patients with plasma cell disorders and performed a head-to-head comparison with the results from conventional clinical assays, i.e., fluorescent in situ hybridization (FISH) and single-nucleotide polymorphism (SNP) microarray. Our custom capture NGS panel had high sensitivity (>99%) and specificity (>99%) for detection of IGH translocations and relevant chromosomal gains and losses in multiple myeloma. In addition, the assay was able to capture novel genomic markers associated with poor outcome such as bi-allelic events involving TP53. In summary, we show that a multiple myeloma designed custom capture NGS panel can detect IGH translocations and CNAs with very high concordance in relation to FISH and SNP microarrays and importantly captures the most relevant and recurrent somatic mutations in multiple myeloma rendering this approach highly suitable for clinical application in the modern era.
Collapse
|
254
|
Kreitman RJ. Hairy cell leukemia: present and future directions. Leuk Lymphoma 2019; 60:2869-2879. [PMID: 31068044 PMCID: PMC7435069 DOI: 10.1080/10428194.2019.1608536] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023]
Abstract
Hairy cell leukemia (HCL) is an indolent B-cell malignancy, with long-term responses to purine analogs, but with decreasing efficacy and increasing toxicity with repeated courses. Leukemic cells express CD22, CD20, CD25, tartrate-resistant acid phosphatase (TRAP), annexin 1A (Anxa1), and BRAF V600E mutation. HCLv, lacking CD25, Anxa1, TRAP, and BRAF V600E, is more aggressive and less purine analog-sensitive. A molecularly defined IGHV4-34+ variant is also resistant whether HCL or HCLv immunophenotypically. Traces of HCL cells, termed minimal residual disease (MRD), accompany most with complete remission (CR) and may cause relapse. Rituximab has limited single-agent activity, but frequent CR without MRD when combined with purine analog, albeit with chemotherapy toxicities. The anti-CD22 recombinant immunotoxin Moxetumomab Pasudotox can achieve MRD-negative CR in multiply relapsed HCL without chemotherapy toxicities and was FDA approved in 2018 as Lumoxiti. Investigational oral non-chemotherapy options also include Vemurafenib or Dabrafenib/Trametinib targeting BRAF V600E ± MEK, and Ibrutinib targeting Bruton's tyrosine kinase.
Collapse
|
255
|
Hu Y, Chen W, Wang J. Mutations In Thirty Hotspot Genes In Newly Diagnosed Chinese Multiple Myeloma Patients. Onco Targets Ther 2019; 12:9999-10010. [PMID: 31819496 PMCID: PMC6877412 DOI: 10.2147/ott.s216289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022] Open
Abstract
Objective In recent years, whole-genome sequencing and whole-exon sequencing have revealed the spectrum of gene mutations in multiple myeloma (MM). Gene mutations may play an important role in the pathogenesis, progression, and prognosis of this disease. On the basis of these studies, we established a box of mutations in 30 hotspot genes and analyzed the characteristics in newly diagnosed MM patients in China. Methods Bone marrow samples were collected. Mononuclear cells were isolated and plasma cells were separated using CD138 magnetic beads. Gene mutations were detected by PCR and Sanger sequencing. Fluorescence in situ hybridization (FISH) was used to analyze 1q21, 17p13.1, 14q32/16q23, 14q32/4p16, and 14q32/11q13.3. In the first part of this study, characterization of 30 genes and FISH analysis were performed in 40 patients. For economic reasons, in the second part of this study, 12 of 30 genes were characterized in another 46 patients. Results In the 40 patients of the first part of this study, single nucleotide polymorphisms (SNPs) were detected in 7 genes (CRBN, ATM, FAT4, FAM46C, RB1, NR3C1, and SPEN), while 16 genes were mutated (ATM, CUL4B, IRF4, CCND1, KRAS, DIS3, CRBN, TP53, FAT4, NR3C1, VCAN, RB1, SP140, NRAS, EGR1, and BRAF). Overall, 83 mutations of 30 genes were identified, including 54 intronic mutations, 18 missense mutations, 6 synonymous mutations, 3 5'/3'-UTR mutations, and 2 deletions mutations. Cytogenetic abnormalities were also screened in the 40 patients assayed, with 50% of the patients having 1q21+, 12.5% having 17p-, 15% having t(4;14), and 17.5% having t(11;14). DIS3 was mutated in 4/40, three of which involved t(4;14) or t(11;14). TP53 was mutated in two non-17p- patients, one of whom survived only 7 months, while the other survived 13 months. Three genes (ATM, CUL4B, and IRF4) with a high mutation rate were analyzed for an association with survival. There was no statistically significant difference in 2-year PFS (progress free survival) and 2-year OS (overall survival) between patients with or without ATM or CUL4B mutation (P>0.05). This finding was also obtained for IFR4 mutation, but patients with IFR4 mutation did show trends for longer PFS and OS. Conclusion SNPs and other types of gene mutations are common in newly diagnosed Chinese multiple myeloma patients. The genes most commonly featuring SNPs are CRBN, ATM, FAT4, and FAM46C, while the genes most commonly featuring other mutation types are ATM, CUL4B, and IRF4. There were differences in the profiles of genes affected by SNPs and by other mutation types. Intronic mutations were the most common mutation type. Gene mutations may differ among patients with different cytogenetic abnormalities. Genetic mutations may be associated with prognosis.
Collapse
Affiliation(s)
- Ying Hu
- Department of Hematology, Aerospace Center Hospital, Beijing 100049, People's Republic of China
| | - Wenming Chen
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jingbo Wang
- Department of Hematology, Aerospace Center Hospital, Beijing 100049, People's Republic of China
| |
Collapse
|
256
|
Gao M, Li C, Xiao H, Dong H, Jiang S, Fu Y, Gong L. hsa_circ_0007841: A Novel Potential Biomarker and Drug Resistance for Multiple Myeloma. Front Oncol 2019; 9:1261. [PMID: 31803627 PMCID: PMC6877741 DOI: 10.3389/fonc.2019.01261] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose: Circular RNA (circRNA) is a key regulatory factor in the development and progression of human tumors. However, the working mechanism and clinical significance of most circRNAs remain unknown in human cancers, including multiple myeloma (MM). Patients and Methods: This study employs high-throughput circRNA microarray with bioinformatics to identify differentially expressed circRNAs in patients with MM. The hsa_circ_0007841 expressions were observed in the MM tissues of 86 patients. Drug-resistant cell lines and pathological features were also detected. In addition, the relationship between hsa_circ_0007841 expressions in the MM tissues and the pathological features of patients with MM were evaluated and role of hsa_circ_0007841 as a potential biomarker and therapeutic target was assessed. Results: The results show that in the MM cell lines and drug-resistant cell lines, hsa_circ_0007841 expression was significantly upregulated, which was closely associated with disease prognosis. Specifically, hsa_circ_0007841 upregulation was correlated with chromosomal aberrations such as gain 1q21, t (4:14) and mutations in ATR and IRF4 genes. This finding was corroborated in large samples. Finally, bioinformatics analysis showed that eight differentially expressed miRNAs and 10 candidate mRNAs interacted with hsa_circ_0007841, shedding some new light on the basic functional research. Conclusion: This study may be the first to report that hsa_circ_0007841 is significantly upregulated in MM. It also suggests that hsa_circ_0007841 may be a novel biomarker for MM and its involvement in the progression of MM.
Collapse
Affiliation(s)
- Meng Gao
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Chengyuan Li
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Han Xiao
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hang Dong
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Siyi Jiang
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yunfeng Fu
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Liying Gong
- The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
257
|
Da Vià MC, Solimando AG, Garitano-Trojaola A, Barrio S, Munawar U, Strifler S, Haertle L, Rhodes N, Teufel E, Vogt C, Lapa C, Beilhack A, Rasche L, Einsele H, Kortüm KM. CIC Mutation as a Molecular Mechanism of Acquired Resistance to Combined BRAF-MEK Inhibition in Extramedullary Multiple Myeloma with Central Nervous System Involvement. Oncologist 2019; 25:112-118. [PMID: 32043788 DOI: 10.1634/theoncologist.2019-0356] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Combined MEK-BRAF inhibition is a well-established treatment strategy in BRAF-mutated cancer, most prominently in malignant melanoma with durable responses being achieved through this targeted therapy. However, a subset of patients face primary unresponsiveness despite presence of the activating mutation at position V600E, and others acquire resistance under treatment. Underlying resistance mechanisms are largely unknown, and diagnostic tests to predict tumor response to BRAF-MEK inhibitor treatment are unavailable. Multiple myeloma represents the second most common hematologic malignancy, and point mutations in BRAF are detectable in about 10% of patients. Targeted inhibition has been successfully applied, with mixed responses observed in a substantial subset of patients mirroring the widespread spatial heterogeneity in this genomically complex disease. Central nervous system (CNS) involvement is an extremely rare, extramedullary form of multiple myeloma that can be diagnosed in less than 1% of patients. It is considered an ultimate high-risk feature, associated with unfavorable cytogenetics, and, even with intense treatment applied, survival is short, reaching less than 12 months in most cases. Here we not only describe the first patient with an extramedullary CNS relapse responding to targeted dabrafenib and trametinib treatment, we furthermore provide evidence that a point mutation within the capicua transcriptional repressor (CIC) gene mediated the acquired resistance in this patient. KEY POINTS: BRAF mutations constitute an attractive druggable target in multiple myeloma. This is the first genomic dissection of the central nervous system involvement in a multiple myeloma patient harboring a druggable BRAFV600E mutation. Deep genomic characterization of the extramedullary lesion prompted a personalized therapeutic approach. Acquisition of CIC mutation confers a mechanism of BRAF-MEK inhibitor drug resistance in multiple myeloma. The in silico interrogation of the CoMMpass clinical study revealed 10 patients with somatic mutations of CIC and its downregulation at gene expression level in multiple myeloma. CIC gene silencing decreases the sensitivity of multiple myeloma cells to BRAF-MEK inhibition in vitro. The correlation between CIC downregulation and ETV4/5 nuclear factor expression in multiple myeloma BRAF-mutant cells is shown for the first time. CIC mutation, its downregulation, and the related downstream effect on MMP24 support disseminative potential providing new clues in the extramedullary biology definition.
Collapse
Affiliation(s)
| | - Antonio Giovanni Solimando
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | - Santiago Barrio
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Umair Munawar
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Susanne Strifler
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Larissa Haertle
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Nadine Rhodes
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Eva Teufel
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Cornelia Vogt
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - K Martin Kortüm
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
258
|
Insights into the genomic landscape of MYD88 wild-type Waldenström macroglobulinemia. Blood Adv 2019; 2:2937-2946. [PMID: 30401751 DOI: 10.1182/bloodadvances.2018022962] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/05/2018] [Indexed: 01/20/2023] Open
Abstract
Activating MYD88 mutations are present in 95% of Waldenström macroglobulinemia (WM) patients, and trigger NF-κB through BTK and IRAK. The BTK inhibitor ibrutinib is active in MYD88-mutated (MYD88 MUT ) WM patients, but shows lower activity in MYD88 wild-type (MYD88 WT ) disease. MYD88 WT patients also show shorter overall survival, and increased risk of disease transformation in some series. The genomic basis for these findings remains to be clarified. We performed whole exome and transcriptome sequencing of sorted tumor samples from 18 MYD88 WT patients and compared findings with WM patients with MYD88 MUT disease. We identified somatic mutations predicted to activate NF-κB (TBL1XR1, PTPN13, MALT1, BCL10, NFKB2, NFKBIB, NFKBIZ, and UDRL1F), impart epigenomic dysregulation (KMT2D, KMT2C, and KDM6A), or impair DNA damage repair (TP53, ATM, and TRRAP). Predicted NF-κB activating mutations were downstream of BTK and IRAK, and many overlapped with somatic mutations found in diffuse large B-cell lymphoma. A distinctive transcriptional profile in MYD88 WT WM was identified, although most differentially expressed genes overlapped with MYD88 MUT WM consistent with the many clinical and morphological characteristics that are shared by these WM subgroups. Overall survival was adversely affected by mutations in DNA damage response in MYD88 WT WM patients. The findings depict genomic and transcriptional events associated with MYD88 WT WM and provide mechanistic insights for disease transformation, decreased ibrutinib activity, and novel drug approaches for this population.
Collapse
|
259
|
Maura F, Bolli N, Angelopoulos N, Dawson KJ, Leongamornlert D, Martincorena I, Mitchell TJ, Fullam A, Gonzalez S, Szalat R, Abascal F, Rodriguez-Martin B, Samur MK, Glodzik D, Roncador M, Fulciniti M, Tai YT, Minvielle S, Magrangeas F, Moreau P, Corradini P, Anderson KC, Tubio JMC, Wedge DC, Gerstung M, Avet-Loiseau H, Munshi N, Campbell PJ. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat Commun 2019; 10:3835. [PMID: 31444325 PMCID: PMC6707220 DOI: 10.1038/s41467-019-11680-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/23/2019] [Indexed: 01/11/2023] Open
Abstract
The multiple myeloma (MM) genome is heterogeneous and evolves through preclinical and post-diagnosis phases. Here we report a catalog and hierarchy of driver lesions using sequences from 67 MM genomes serially collected from 30 patients together with public exome datasets. Bayesian clustering defines at least 7 genomic subgroups with distinct sets of co-operating events. Focusing on whole genome sequencing data, complex structural events emerge as major drivers, including chromothripsis and a novel replication-based mechanism of templated insertions, which typically occur early. Hyperdiploidy also occurs early, with individual trisomies often acquired in different chronological windows during evolution, and with a preferred order of acquisition. Conversely, positively selected point mutations, whole genome duplication and chromoplexy events occur in later disease phases. Thus, initiating driver events, drawn from a limited repertoire of structural and numerical chromosomal changes, shape preferred trajectories of evolution that are biologically relevant but heterogeneous across patients.
Collapse
Affiliation(s)
- Francesco Maura
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Medical Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Niccoló Bolli
- Department of Medical Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nicos Angelopoulos
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Kevin J Dawson
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Daniel Leongamornlert
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Inigo Martincorena
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Thomas J Mitchell
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Anthony Fullam
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Santiago Gonzalez
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Hinxton, UK
| | - Raphael Szalat
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Federico Abascal
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Bernardo Rodriguez-Martin
- CIMUS - Molecular Medicine and Chronic Diseases Research Centre, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mehmet Kemal Samur
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dominik Glodzik
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marco Roncador
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Mariateresa Fulciniti
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yu Tzu Tai
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Stephane Minvielle
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Florence Magrangeas
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Philippe Moreau
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Paolo Corradini
- Department of Medical Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jose M C Tubio
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- CIMUS - Molecular Medicine and Chronic Diseases Research Centre, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - David C Wedge
- University of Oxford, Big Data Institute, Oxford, UK
| | - Moritz Gerstung
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Hinxton, UK
| | | | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Veterans Administration Boston Healthcare System, West Roxbury, MA, USA.
| | - Peter J Campbell
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
260
|
Vlummens P, De Veirman K, Menu E, De Bruyne E, Offner F, Vanderkerken K, Maes K. The Use of Murine Models for Studying Mechanistic Insights of Genomic Instability in Multiple Myeloma. Front Genet 2019; 10:740. [PMID: 31475039 PMCID: PMC6704229 DOI: 10.3389/fgene.2019.00740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal plasma cells in the bone marrow. In normal plasma cell development, cells undergo programmed DNA breaks and translocations, a process necessary for generation of a wide repertoire of antigen-specific antibodies. This process also makes them vulnerable for the acquisition of chromosomal defects. Well-known examples of these aberrations, already seen at time of MM diagnosis, are hyperdiploidy or the translocations involving the immunoglobulin heavy chain. Over the recent years, however, novel aspects concerning genomic instability and its role in tumor development, disease progression and nascence of refractory disease were identified. As such, genomic instability is becoming a very relevant research topic with the potential identification of novel disease pathways. In this review, we aim to describe recent studies involving murine MM models focusing on the deregulation of processes implicated in genomic instability and their clinical impact. More specifically, we will discuss chromosomal instability, DNA damage and repair responses, development of drug resistance, and recent insights into the study of clonal hierarchy using different murine MM models. Lastly, we will discuss the importance and the use of murine MM models in the pre-clinical evaluation of promising novel therapeutic agents.
Collapse
Affiliation(s)
- Philip Vlummens
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Clinical Hematology, Ghent University Hospital, Gent, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fritz Offner
- Department of Clinical Hematology, Ghent University Hospital, Gent, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
261
|
Mutational processes contributing to the development of multiple myeloma. Blood Cancer J 2019; 9:60. [PMID: 31387987 PMCID: PMC6684612 DOI: 10.1038/s41408-019-0221-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 12/20/2022] Open
Abstract
To gain insight into multiple myeloma (MM) tumorigenesis, we analyzed the mutational signatures in 874 whole-exome and 850 whole-genome data from the CoMMpass Study. We identified that coding and non-coding regions are differentially dominated by distinct single-nucleotide variant (SNV) mutational signatures, as well as five de novo structural rearrangement signatures. Mutational signatures reflective of different principle mutational processes—aging, defective DNA repair, and apolipoprotein B editing complex (APOBEC)/activation-induced deaminase activity—characterize MM. These mutational signatures show evidence of subgroup specificity—APOBEC-attributed signatures associated with MAF translocation t(14;16) and t(14;20) MM; potentially DNA repair deficiency with t(11;14) and t(4;14); and aging with hyperdiploidy. Mutational signatures beyond that associated with APOBEC are independent of established prognostic markers and appear to have relevance to predicting high-risk MM.
Collapse
|
262
|
Saka B, Sayitoğlu M, İstemihan Z, Karan MA, Erten N, Doğan Ö, Özbek U, Genç S, Taşçıoğlu C, Kalayoğlu-Beşışık S. The Role of the Local Bone Marrow Renin-Angiotensin System in Multiple Myeloma. Turk J Haematol 2019; 36:178-185. [PMID: 31042345 PMCID: PMC6682785 DOI: 10.4274/tjh.galenos.2019.2018.0420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: Angiotensin II promotes growth and angiogenesis via type 1 receptors (AGTR1) in certain tumors. In this study, we examine the bone marrow AGTR1 expression in multiple myeloma (MM) and its relationship with the regulation of angiogenesis and prognostic factors. Materials and Methods: Bone marrow AGTR1 mRNA levels of 39 MM patients and 15 healthy controls were analyzed with quantitative RT-PCR. Immunohistochemical staining of the tissue vascular endothelial growth factor (VEGF), CD34, and factor VIIIrAg (fVIIIrAg) was used to assess bone marrow angiogenesis. Results: Bone marrow samples of the patients showed increased VEGF, fVIIIrAg, and CD34 staining and higher AGTR1 expression levels when compared to controls. Patients with severe-diffuse bone marrow infiltration showed higher bone marrow VEGF, fVIIIrAg, CD34, and AGTR1 mRNA levels when compared to other patients. Conclusion: AGTR1 expression was found positively correlated with plasma β2-microglobulin level and patients with increased AGTR1 expression showed increased bone marrow CD34 levels.
Collapse
Affiliation(s)
- Bülent Saka
- İstanbul University, İstanbul Faculty of Medicine, Department of Internal Medicine, İstanbul, Turkey
| | - Müge Sayitoğlu
- İstanbul University, Aziz Sancar Institute of Experimental Research, Department of Genetics, İstanbul, Turkey
| | - Zülal İstemihan
- İstanbul University, İstanbul Faculty of Medicine, Department of Internal Medicine, İstanbul, Turkey
| | - M. Akif Karan
- İstanbul University, İstanbul Faculty of Medicine, Department of Internal Medicine, İstanbul, Turkey
| | - Nilgün Erten
- İstanbul University, İstanbul Faculty of Medicine, Department of Internal Medicine, İstanbul, Turkey
| | - Öner Doğan
- İstanbul University, İstanbul Faculty of Medicine, Department of Pathology, İstanbul, Turkey
| | - Uğur Özbek
- İstanbul University, Aziz Sancar Institute of Experimental Research, Department of Genetics, İstanbul, Turkey
| | - Sema Genç
- İstanbul University, İstanbul Faculty of Medicine, Department of Biochemistry, İstanbul, Turkey
| | - Cemil Taşçıoğlu
- İstanbul University, İstanbul Faculty of Medicine, Department of Internal Medicine, İstanbul, Turkey
| | - Sevgi Kalayoğlu-Beşışık
- İstanbul University, İstanbul Faculty of Medicine, Department of Internal Medicine, İstanbul, Turkey
| |
Collapse
|
263
|
High-Risk Multiple Myeloma: Integrated Clinical and Omics Approach Dissects the Neoplastic Clone and the Tumor Microenvironment. J Clin Med 2019; 8:jcm8070997. [PMID: 31323969 PMCID: PMC6678140 DOI: 10.3390/jcm8070997] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease that includes a subgroup of 10–15% of patients facing dismal survival despite the most intensive treatment. Despite improvements in biological knowledge, MM is still an incurable neoplasia, and therapeutic options able to overcome the relapsing/refractory behavior represent an unmet clinical need. The aim of this review is to provide an integrated clinical and biological overview of high-risk MM, discussing novel therapeutic perspectives, targeting the neoplastic clone and its microenvironment. The dissection of the molecular determinants of the aggressive phenotypes and drug-resistance can foster a better tailored clinical management of the high-risk profile and therapy-refractoriness. Among the current clinical difficulties in MM, patients’ management by manipulating the tumor niche represents a major challenge. The angiogenesis and the stromal infiltrate constitute pivotal mechanisms of a mutual collaboration between MM and the non-tumoral counterpart. Immuno-modulatory and anti-angiogenic therapy hold great efficacy, but variable and unpredictable responses in high-risk MM. The comprehensive understanding of the genetic heterogeneity and MM high-risk ecosystem enforce a systematic bench-to-bedside approach. Here, we provide a broad outlook of novel druggable targets. We also summarize the existing multi-omics-based risk profiling tools, in order to better select candidates for dual immune/vasculogenesis targeting.
Collapse
|
264
|
Maura F, Degasperi A, Nadeu F, Leongamornlert D, Davies H, Moore L, Royo R, Ziccheddu B, Puente XS, Avet-Loiseau H, Campbell PJ, Nik-Zainal S, Campo E, Munshi N, Bolli N. A practical guide for mutational signature analysis in hematological malignancies. Nat Commun 2019; 10:2969. [PMID: 31278357 PMCID: PMC6611883 DOI: 10.1038/s41467-019-11037-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 06/10/2019] [Indexed: 02/08/2023] Open
Abstract
Analysis of mutational signatures is becoming routine in cancer genomics, with implications for pathogenesis, classification, prognosis, and even treatment decisions. However, the field lacks a consensus on analysis and result interpretation. Using whole-genome sequencing of multiple myeloma (MM), chronic lymphocytic leukemia (CLL) and acute myeloid leukemia, we compare the performance of public signature analysis tools. We describe caveats and pitfalls of de novo signature extraction and fitting approaches, reporting on common inaccuracies: erroneous signature assignment, identification of localized hyper-mutational processes, overcalling of signatures. We provide reproducible solutions to solve these issues and use orthogonal approaches to validate our results. We show how a comprehensive mutational signature analysis may provide relevant biological insights, reporting evidence of c-AID activity among unmutated CLL cases or the absence of BRCA1/BRCA2-mediated homologous recombination deficiency in a MM cohort. Finally, we propose a general analysis framework to ensure production of accurate and reproducible mutational signature data.
Collapse
Affiliation(s)
- Francesco Maura
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, Milan, 20122, Italy.
- Cancer, Ageing, and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Andrea Degasperi
- Cancer, Ageing, and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Medical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Ferran Nadeu
- Patologia Molecular de Neoplàsies Limfoides, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Daniel Leongamornlert
- Cancer, Ageing, and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Helen Davies
- Cancer, Ageing, and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Medical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Luiza Moore
- Cancer, Ageing, and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Romina Royo
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, 08036, Barcelona, Spain
| | - Bachisio Ziccheddu
- Department of Clinical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| | - Xose S Puente
- Unitat Hematopatologia, Hospital Clínic of Barcelona, Universitat de Barcelona, 08036, Barcelona, Spain
- Departamento de Bioquimica y Biologia Molecular, Instituto Universitario de Oncologia (IUOPA), Universidad de Oviedo, Oviedo, 33003, Spain
| | | | - Peter J Campbell
- Cancer, Ageing, and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Serena Nik-Zainal
- Cancer, Ageing, and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Medical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Elias Campo
- Patologia Molecular de Neoplàsies Limfoides, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, 08036, Barcelona, Spain
| | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
- Veterans Administration Boston Healthcare System, West Roxbury, 02130, MA, USA
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, Milan, 20122, Italy.
- Department of Clinical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy.
| |
Collapse
|
265
|
Anwer F, Gee KM, Iftikhar A, Baig M, Russ AD, Saeed S, Zar MA, Razzaq F, Carew J, Nawrocki S, Al-Kateb H, Cavalcante Parr NN, McBride A, Valent J, Samaras C. Future of Personalized Therapy Targeting Aberrant Signaling Pathways in Multiple Myeloma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2019; 19:397-405. [PMID: 31036508 PMCID: PMC6626550 DOI: 10.1016/j.clml.2019.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/19/2019] [Accepted: 03/17/2019] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a genetically complex disease. Identification of mutations and aberrant signaling pathways that contribute to the progression of MM and drug resistance has potential to lead to specific targets and personalized treatment. Aberrant signal pathways include RAS pathway activation due to RAS or BRAF mutations (targeted by vemurafenib alone or combined with cobimetinib), BCL-2 overexpression in t(11:14) (targeted by venetoclax), JAK2 pathway activation (targeted by ruxolitinib), NF-κB pathway activation (treated with DANFIN combined with bortezomib), MDM2 overexpression, and PI3K/mTOR pathway activation (targeted by BEZ235). Cyclin D1 (CCND1) and MYC are also emerging as key potential targets. In addition, histone deacetylase inhibitors are already in use for the treatment of MM in combination therapy, and targeted inhibition of FGFR3 (AZD4547) is effective in myeloma cells with t(4;14) translocation. Bromodomain and extra terminal (BET) protein antagonists decrease the expression of MYC and have displayed promising antimyeloma activity. A better understanding of the alterations in signaling pathways that promote MM progression will further inform the development of precision therapy for patients.
Collapse
Affiliation(s)
- Faiz Anwer
- Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH.
| | - Kevin Mathew Gee
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ
| | - Ahmad Iftikhar
- Department of Medicine, The University of Arizona, Tucson, AZ
| | - Mirza Baig
- Department of Medicine, Summit Medical Group, Summit, NJ
| | | | - Sabina Saeed
- College of Public Health, The University of Arizona, Tucson, AZ
| | - Muhammad Abu Zar
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Faryal Razzaq
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Jennifer Carew
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Steffan Nawrocki
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Hussam Al-Kateb
- Division of Human Genetics, Children's Hospital, Cincinnati, OH
| | | | - Ali McBride
- College of Pharmacy, The University of Arizona, Tucson, AZ
| | - Jason Valent
- Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Christy Samaras
- Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
266
|
Jones JR, Weinhold N, Ashby C, Walker BA, Wardell C, Pawlyn C, Rasche L, Melchor L, Cairns DA, Gregory WM, Johnson D, Begum DB, Ellis S, Sherborne AL, Cook G, Kaiser MF, Drayson MT, Owen RG, Jackson GH, Davies FE, Greaves M, Morgan GJ. Clonal evolution in myeloma: the impact of maintenance lenalidomide and depth of response on the genetics and sub-clonal structure of relapsed disease in uniformly treated newly diagnosed patients. Haematologica 2019; 104:1440-1450. [PMID: 30733268 PMCID: PMC6601103 DOI: 10.3324/haematol.2018.202200] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/30/2019] [Indexed: 12/27/2022] Open
Abstract
The emergence of treatment resistant sub-clones is a key feature of relapse in multiple myeloma. Therapeutic attempts to extend remission and prevent relapse include maximizing response and the use of maintenance therapy. We used whole exome sequencing to study the genetics of paired samples taken at presentation and at relapse from 56 newly diagnosed patients, following induction therapy, randomized to receive either lenalidomide maintenance or observation as part of the Myeloma XI trial. Patients included were considered high risk, relapsing within 30 months of maintenance randomization. Patients achieving a complete response had predominantly branching evolutionary patterns leading to relapse, characterized by a greater mutational burden, an altered mutational profile, bi-allelic inactivation of tumor suppressor genes, and acquired structural aberrations. Conversely, in patients achieving a partial response, the evolutionary features were predominantly stable with a similar mutational and structural profile seen at both time points. There were no significant differences between patients relapsing after lenalidomide maintenance versus observation. This study shows that the depth of response is a key determinant of the evolutionary patterns seen at relapse. This trial is registered at clinicaltrials.gov identifier: 01554852.
Collapse
Affiliation(s)
- John R Jones
- Department of Haematology, The Royal Marsden Hospital NHS Foundation Trust, London, UK
- The Institute of Cancer Research, London, UK
| | - Niels Weinhold
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cody Ashby
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian A Walker
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Chris Wardell
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Charlotte Pawlyn
- Department of Haematology, The Royal Marsden Hospital NHS Foundation Trust, London, UK
- The Institute of Cancer Research, London, UK
| | - Leo Rasche
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - David A Cairns
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, UK
| | - Walter M Gregory
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, UK
| | | | - Dil B Begum
- The Institute of Cancer Research, London, UK
| | - Sidra Ellis
- The Institute of Cancer Research, London, UK
| | - Amy L Sherborne
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gordon Cook
- Leeds Institute of Cancer and Pathology, University of Leeds, UK
| | - Martin F Kaiser
- Department of Haematology, The Royal Marsden Hospital NHS Foundation Trust, London, UK
- The Institute of Cancer Research, London, UK
| | - Mark T Drayson
- Clinical Immunology, School of Immunity and Infection, University of Birmingham, UK
| | - Roger G Owen
- Leeds Institute of Cancer and Pathology, University of Leeds, UK
| | - Graham H Jackson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Faith E Davies
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mel Greaves
- The Institute of Cancer Research, London, UK
| | - Gareth J Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
267
|
Perrot A, Lauwers-Cances V, Tournay E, Hulin C, Chretien ML, Royer B, Dib M, Decaux O, Jaccard A, Belhadj K, Brechignac S, Fontan J, Voillat L, Demarquette H, Collet P, Rodon P, Sohn C, Lifermann F, Orsini-Piocelle F, Richez V, Mohty M, Macro M, Minvielle S, Moreau P, Leleu X, Facon T, Attal M, Avet-Loiseau H, Corre J. Development and Validation of a Cytogenetic Prognostic Index Predicting Survival in Multiple Myeloma. J Clin Oncol 2019; 37:1657-1665. [PMID: 31091136 PMCID: PMC6804890 DOI: 10.1200/jco.18.00776] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The wide heterogeneity in multiple myeloma (MM) outcome is driven mainly by cytogenetic abnormalities. The current definition of high-risk profile is restrictive and oversimplified. To adapt MM treatment to risk, we need to better define a cytogenetic risk classification. To address this issue, we simultaneously examined the prognostic impact of del(17p); t(4;14); del(1p32); 1q21 gain; and trisomies 3, 5, and 21 in a cohort of newly diagnosed patients with MM. METHODS Data were obtained from 1,635 patients enrolled in four trials implemented by the Intergroupe Francophone du Myélome. The oldest collection of data were used for model development and internal validation. For external validation, one of the two independent data sets was used to assess the performance of the model in patients treated with more current regimens. Six cytogenetic abnormalities were identified as clinically relevant, and a prognostic index (PI) that was based on the parameter estimates of the multivariable Cox model was computed for all patients. RESULTS In all data sets, a higher PI was consistently associated with a poor survival outcome. Dependent on the validation cohorts used, hazard ratios for patients in the high-risk category for death were between six and 15 times higher than those of patients in the low-risk category. Among patients with t(4;14) or del(17p), we observed a worse survival in those classified in the high-risk category than in those in the intermediate-risk category. The PI showed good performance for discriminating between patients who died and those who survived (Harrell's concordance index greater than 70%). CONCLUSION The cytogenetic PI improves the classification of newly diagnosed patients with MM in the high-risk group compared with current classifications. These findings may facilitate the development of risk-adapted treatment strategies.
Collapse
Affiliation(s)
- Aurore Perrot
- Centre Hospitalier Régional Universitaire Nancy, Nancy, France
| | | | - Elodie Tournay
- Centre Hospitalier Universitaire Toulouse, Toulouse, France
| | - Cyrille Hulin
- Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | | | - Bruno Royer
- Centre Hospitalier Universitaire Amiens, Amiens, France
| | - Mamoun Dib
- Centre Hospitalier Universitaire Angers, Angers, France
| | | | - Arnaud Jaccard
- Centre Hospitalier Universitaire Limoges, Limoges, France
| | - Karim Belhadj
- Centre Hospitalier Universitaire Créteil, Créteil, France
| | | | - Jean Fontan
- Centre Hospitalier Universitaire Besancon, Besançon, France
| | - Laurent Voillat
- Centre Hospitalier Chalon sur Saône William Morey, Chalon-sur-Saône, France
| | | | - Philippe Collet
- Centre Hospitalier Universitaire Saint-Étienne, Saint-Étienne, France
| | | | | | | | | | | | - Mohamad Mohty
- Centre Hospitalier Universitaire Paris, Paris, France
| | - Margaret Macro
- Centre Hospitalier Universitaire Caen Normandie, Caen, France
| | | | | | - Xavier Leleu
- Centre Hospitalier Universitaire Poitiers, Poitiers, France
| | - Thierry Facon
- Centre Hospitalier Régional Universitaire Lille, Lille, France
| | - Michel Attal
- Institut Universitaire du Cancer de Toulouse-Oncopole and Centre de Recherches en Cancérologie de Toulouse Institut National de la Santé et de la Recherche Médicale, Toulouse, France
| | - Hervé Avet-Loiseau
- Institut Universitaire du Cancer de Toulouse-Oncopole and Centre de Recherches en Cancérologie de Toulouse Institut National de la Santé et de la Recherche Médicale, Toulouse, France
| | - Jill Corre
- Institut Universitaire du Cancer de Toulouse-Oncopole and Centre de Recherches en Cancérologie de Toulouse Institut National de la Santé et de la Recherche Médicale, Toulouse, France
| |
Collapse
|
268
|
DNA-Repair Gene Mutations Are Highly Prevalent in Circulating Tumour DNA from Multiple Myeloma Patients. Cancers (Basel) 2019; 11:cancers11070917. [PMID: 31261969 PMCID: PMC6678219 DOI: 10.3390/cancers11070917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/08/2019] [Accepted: 06/25/2019] [Indexed: 01/05/2023] Open
Abstract
Mutational characterisation utilising plasma (PL)-derived circulating tumour DNA (ctDNA) in multiple myeloma (MM) has been recently described. Mutational analyses of paired bone marrow (BM) MM cell DNA and ctDNA from 76 patients (n = 24, new diagnosis (ND), n = 52, relapsed/refractory (RR)) for (ras/raf signaling pathway) and tumour protein p53 (TP53) mutations using the OnTarget™ Mutation Detection (OMD) platform was performed. The total number and proportions of mutations in each of the compartments (BM-specific, PL-specific or shared) was significantly higher in RR patients compared to ND patients (p = 0.0002 and p < 0.0001, respectively). Patients with > 2 mutations or > 1% fractional abundance (FA) in the PL had significantly shorter overall survival (OS) (p = 0.04 and p = 0.0006, respectively). Patients with PL-specific TP53 mutations had significantly shorter OS compared to patients with no PL-TP53 mutations (p = 0.003), while no differences were observed in patients with (K-ras) KRAS mutations. Targeted deep amplicon sequencing (TAS) of matched PL and BM samples from 36 MM patients for DNA-repair and RAS-RAF pathway genes found that DNA-repair genes were present at significantly higher levels in the PL when compared to RAS-RAF mutations (p = 0.0095). We conclude that ctDNA analysis identifies a higher prevalence of potentially actionable DNA-repair gene mutated subclones than BM analysis.
Collapse
|
269
|
Sun X, Huang H, Pan X, Li S, Xie Z, Ma Y, Hu B, Wang J, Chen Z, Shi P. EGR1 promotes the cartilage degeneration and hypertrophy by activating the Krüppel-like factor 5 and β-catenin signaling. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2490-2503. [PMID: 31201921 DOI: 10.1016/j.bbadis.2019.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
Abstract
Osteoarthritis is one of the most common orthopedic diseases in elderly people who have lost their mobility. In this study,we observed abnormally high EGR1 expression in the articular cartilage of patients with osteoarthritis. We also found significantly high EGR1 expression in the articular cartilage of mice with destabilized medial meniscus (DMM)-induced osteoarthritis and 20-month-old mice. In vitro experiments indicated that IL-1β could significantly enhance EGR1 expression in primary mouse chondrocytes. EGR1 over-expression in chondrocytes using adenovirus could inhibit COl2A1 expression and enhance MMP9 and MMP13 expression. And silencing EGR1, using RNAi, had the opposite effects. Moreover, EGR1 over-expression accelerated chondrocyte hypertrophy in vitro, and EGR1 knockdown reversed this effect. We then explored the underlying mechanism. EGR1 over-expression increased Kruppel-Like Factor 5 (KLF5) protein level without influencing its synthesis. Enhanced EGR1 expression induced its integration with KLF5, leading to suppressed ubiquitination of KLF5. Moreover, EGR1 prompted β-catenin nuclear transportation to control chondrocyte hypertrophy. Ectopic expression of EGR1 in articular cartilage aggravated the degradation of the cartilage matrix in vivo. The EGR1 inhibitor, ML264, protected chondrocytes from IL-1β-mediated cartilage matrix degradation in vitro and DMM-induced osteoarthritis in vivo. Above all, we demonstrate the effect and mechanisms of EGR1 on osteoarthritis and provide evidence that the ML264 might be a potential drug for treating osteoarthritis in the future.
Collapse
Affiliation(s)
- Xuewu Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Hai Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Xin Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Shuoda Li
- Department of Chinese medicine orthopedics, Ningbo Chinese Medicine Hospital, Ningbo, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Bin Hu
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jiying Wang
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Zhijun Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| |
Collapse
|
270
|
Lê GN, Bones J, Coyne M, Bazou D, Dowling P, O'Gorman P, Larkin AM. Current and future biomarkers for risk-stratification and treatment personalisation in multiple myeloma. Mol Omics 2019; 15:7-20. [PMID: 30652172 DOI: 10.1039/c8mo00193f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple myeloma, an incurable malignancy of the plasma cells in the bone marrow, has a complex pathogenesis due to clonal heterogeneity. Over the years, many clinical trials and researches have led to the development of effective myeloma treatments, resulting in survival prolongation. Molecular prognostic markers for risk-stratification to predict survival, and predictive markers for treatment response are being extensively explored. This review discusses the current risk-adaptive strategies based on genetic and molecular risk signatures that are in practice to predict survival and describes the future prognostic and predictive biomarkers across the fields of genomics, proteomics, and glycomics in myeloma. Gene expression profiling and next generation sequencing are coming to the forefront of risk-stratification and therapeutic-response prediction. Similarly, proteomic and glycomic-based platforms are gaining momentum in biomarker discovery to predict drug resistance and disease progression.
Collapse
Affiliation(s)
- Giao N Lê
- NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merion, Blackrock Co., Dublin A94 X099, Ireland.
| | | | | | | | | | | | | |
Collapse
|
271
|
Ghobrial I, Cruz CH, Garfall A, Shah N, Munshi N, Kaufman J, Boise LH, Morgan G, Adalsteinsson VA, Manier S, Pillai R, Malavasi F, Lonial S. Immunotherapy in Multiple Myeloma: Accelerating on the Path to the Patient. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:332-344. [DOI: 10.1016/j.clml.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/11/2019] [Accepted: 02/11/2019] [Indexed: 11/16/2022]
|
272
|
Hu Y, Chen W, Wang J. Progress in the identification of gene mutations involved in multiple myeloma. Onco Targets Ther 2019; 12:4075-4080. [PMID: 31213829 PMCID: PMC6538831 DOI: 10.2147/ott.s205922] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
Sequencing studies have been used to determine a spectrum of multiple myeloma (MM) mutations. Mutation of certain genes, including KRAS, NRAS, TP53, FAM46C, DIS3 and BRAF, have a high recurrence rate and may play important roles in the pathogenesis, progression and prognosis of MM. Mutations in DIS3, which encodes a highly conserved RNA exonuclease, lead to loss of function. The expression of FAM46C is highly correlated with the expression of ribosomal protein, but the exact function of FAM46C mutation is unclear. There are mutants of IRF4, which is considered an MM survival factor. Mutations in the gene coding for the DNA damage-binding protein (DDB1) may affect interactions with CUL4A, which is part of the cereblon (CRBN) ubiquitin ligase complex. IRF4is part of the complex, which binds to DNA. These findings might explain the resistance to immunomodulatory. TP53 deletion or mutation is often present in B-cell malignancies and is associated with low response rates. Myeloma pathogenic mutations in ATM have been found in adult lymphatic tumors. XBP1 and PSMB5 mutations may be related to bortezomib resistance. Multiple gene mutations (KRAS, NRAS and BRAF) involved in the same pathway were found a single patient. Identification of driver gene mutations has brought great hope to the field of individualized, targeted medicine for MM.
Collapse
Affiliation(s)
- Ying Hu
- Department of Hematology, Aerospace Central Hospital of Peking University, Beijing, People's Republic of China
| | - Wenming Chen
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jingbo Wang
- Department of Hematology, Aerospace Central Hospital of Peking University, Beijing, People's Republic of China
| |
Collapse
|
273
|
Barwick BG, Gupta VA, Vertino PM, Boise LH. Cell of Origin and Genetic Alterations in the Pathogenesis of Multiple Myeloma. Front Immunol 2019; 10:1121. [PMID: 31231360 PMCID: PMC6558388 DOI: 10.3389/fimmu.2019.01121] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
B cell activation and differentiation yields plasma cells with high affinity antibodies to a given antigen in a time-frame that allows for host protection. Although the end product is most commonly humoral immunity, the rapid proliferation and somatic mutation of the B cell receptor also results in oncogenic mutations that cause B cell malignancies including plasma cell neoplasms such as multiple myeloma. Myeloma is the second most common hematological malignancy and results in over 100,000 deaths per year worldwide. The genetic alterations that occur in the germinal center, however, are not sufficient to cause myeloma, but rather impart cell proliferation potential on plasma cells, which are normally non-dividing. This pre-malignant state, referred to as monoclonal gammopathy of undetermined significance or MGUS, provides the opportunity for further genetic and epigenetic alterations eventually resulting in a progressive disease that becomes symptomatic. In this review, we will provide a brief history of clonal gammopathies and detail how some of the key discoveries were interwoven with the study of plasma cells. We will also review the genetic and epigenetic alterations discovered over the past 25 years, how these are instrumental to myeloma pathogenesis, and what these events teach us about myeloma and plasma cell biology. These data will be placed in the context of normal B cell development and differentiation and we will discuss how understanding the biology of plasma cells can lead to more effective therapies targeting multiple myeloma.
Collapse
Affiliation(s)
- Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Vikas A. Gupta
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Paula M. Vertino
- Department of Biomedical Genetics and the Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
274
|
Cengiz Seval G, Beksac M. A comparative safety review of histone deacetylase inhibitors for the treatment of myeloma. Expert Opin Drug Saf 2019; 18:563-571. [PMID: 31070945 DOI: 10.1080/14740338.2019.1615051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Dysregulation of histone deacetylase (HDAC) activity is an epigenetic hallmark of multiple myeloma (MM), leading to aberrant gene expression and cellular signaling in myeloma cell growth, survival and resistance to therapy. Hyper-methylation at diagnosis is a frequent observation, which eventually may convert to hypo-methylation during advanced phases. AREAS COVERED A literature search on 'HDAC inhibitors' and 'multiple myeloma' was carried out using PubMed and Google Scholar in the preparation of this overview on clinical efficacy and safety data. EXPERT OPINION First-generation non-selective HDAC inhibitors have demonstrated minimal single-agent activity in refractory MM. Subsequently, combination therapy has proven an improvement in progression-free survival (PFS) but not response rates. The main concerns are associated with toxicities. Ongoing studies on new and more selective agents, i.e. Romidepsin or Ricolinostat, are promising in terms of better efficacy and less toxicity.
Collapse
Affiliation(s)
- Guldane Cengiz Seval
- a Department of Hematology , Ankara University School of Medicine, Cebeci Hospital , Mamak , Turkey
| | - Meral Beksac
- a Department of Hematology , Ankara University School of Medicine, Cebeci Hospital , Mamak , Turkey
| |
Collapse
|
275
|
Janz S, Zhan F, Sun F, Cheng Y, Pisano M, Yang Y, Goldschmidt H, Hari P. Germline Risk Contribution to Genomic Instability in Multiple Myeloma. Front Genet 2019; 10:424. [PMID: 31139207 PMCID: PMC6518313 DOI: 10.3389/fgene.2019.00424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Genomic instability, a well-established hallmark of human cancer, is also a driving force in the natural history of multiple myeloma (MM) - a difficult to treat and in most cases fatal neoplasm of immunoglobulin producing plasma cells that reside in the hematopoietic bone marrow. Long recognized manifestations of genomic instability in myeloma at the cytogenetic level include abnormal chromosome numbers (aneuploidy) caused by trisomy of odd-numbered chromosomes; recurrent oncogene-activating chromosomal translocations that involve immunoglobulin loci; and large-scale amplifications, inversions, and insertions/deletions (indels) of genetic material. Catastrophic genetic rearrangements that either shatter and illegitimately reassemble a single chromosome (chromotripsis) or lead to disordered segmental rearrangements of multiple chromosomes (chromoplexy) also occur. Genomic instability at the nucleotide level results in base substitution mutations and small indels that affect both the coding and non-coding genome. Sometimes this generates a distinctive signature of somatic mutations that can be attributed to defects in DNA repair pathways, the DNA damage response (DDR) or aberrant activity of mutator genes including members of the APOBEC family. In addition to myeloma development and progression, genomic instability promotes acquisition of drug resistance in patients with myeloma. Here we review recent findings on the genetic predisposition to myeloma, including newly identified candidate genes suggesting linkage of germline risk and compromised genomic stability control. The role of ethnic and familial risk factors for myeloma is highlighted. We address current research gaps that concern the lack of studies on the mechanism by which germline risk alleles promote genomic instability in myeloma, including the open question whether genetic modifiers of myeloma development act in tumor cells, the tumor microenvironment (TME), or in both. We conclude with a brief proposition for future research directions, which concentrate on the biological function of myeloma risk and genetic instability alleles, the potential links between the germline genome and somatic changes in myeloma, and the need to elucidate genetic modifiers in the TME.
Collapse
Affiliation(s)
- Siegfried Janz
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fenghuang Zhan
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States.,Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States
| | - Fumou Sun
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yan Cheng
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael Pisano
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.,Interdisciplinary Graduate Program in Immunology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States
| | - Ye Yang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, China.,Ministry of Education's Key Laboratory of Acupuncture and Medicine Research, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hartmut Goldschmidt
- Medizinische Klinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany.,Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Parameswaran Hari
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
276
|
Li Z, Wong KY, Calin GA, Chng WJ, Chan GCF, Chim CS. Epigenetic silencing of miR-340-5p in multiple myeloma: mechanisms and prognostic impact. Clin Epigenetics 2019; 11:71. [PMID: 31064412 PMCID: PMC6505104 DOI: 10.1186/s13148-019-0669-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
Background miR-340-5p, localized to 5q35, is a tumor suppressor miRNA implicated in multiple cancers. As a CpG island is present at the putative promoter region of its host gene, RNF130, we hypothesized that the intronic miR-340-5p is a tumor suppressor miRNA epigenetically silenced by promoter DNA methylation of its host gene in multiple myeloma. Results By pyrosequencing-confirmed methylation-specific PCR, RNF130/miR-340 was methylated in 8/15 (53.3%) myeloma cell lines but not normal plasma cells. Methylation correlated inversely with the expression of both miR-340-5p and RNF130. In completely methylated WL-2 and RPMI-8226R cells, 5-AzadC treatment led to demethylation and re-expression of miR-340-5p. In primary samples, RNF130/miR-340 methylation was detected in 4 (22.2%) monoclonal gammopathy of undetermined significance, 15 (23.8%) diagnostic myeloma, and 7 (23.3%) relapsed myeloma. RNF130/miR-340 methylation at diagnosis was associated with inferior overall survival (median 27 vs. 68 months; P = 3.944E−5). In WL-2 cells, overexpression of miR-340-5p resulted in reduced cellular proliferation [MTS, P = 0.002; verified in KMS-12-PE (P = 0.002) and RPMI-8226R (P = 2.623E−05) cells], increased cell death (trypan blue, P = 0.005), and enhanced apoptosis by annexin V-PI staining. Moreover, by qRT-PCR, overexpression of miR-340-5p led to repression of both known targets (CCND1 and NRAS) and bioinformatically predicted targets in MAPK signaling (MEKK1, MEKK2, and MEKKK3) and apoptosis (MDM4 and XIAP), hence downregulation of phospho-ERK1/2 and XIAP by Western blot. Furthermore, by qRT-PCR, in CD138-sorted primary samples (n = 37), miR-340-5p and XIAP were inversely correlated (P = 0.002). By luciferase assay, XIAP was confirmed as a direct target of miR-340-5p via targeting of the distal but not proximal seed region binding site. Conclusions Collectively, tumor-specific methylation-mediated silencing of miR-340-5p is likely an early event in myelomagenesis with adverse survival impact, via targeting multiple oncogenes in MAPK signaling and apoptosis, thereby a tumor suppressive miRNA in myeloma. Electronic supplementary material The online version of this article (10.1186/s13148-019-0669-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenhai Li
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Kwan Yeung Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
277
|
Kint N, Vlayen S, Delforge M. The treatment of multiple myeloma in an era of precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1606672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Nicolas Kint
- Department of Internal Medicine, Hematology, University Hospitals Leuven, Leuven, Belgium
- Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Sophie Vlayen
- Department of Internal Medicine, Hematology, University Hospitals Leuven, Leuven, Belgium
- Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Michel Delforge
- Department of Internal Medicine, Hematology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
278
|
CNspector: a web-based tool for visualisation and clinical diagnosis of copy number variation from next generation sequencing. Sci Rep 2019; 9:6426. [PMID: 31015508 PMCID: PMC6478945 DOI: 10.1038/s41598-019-42858-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/08/2019] [Indexed: 11/23/2022] Open
Abstract
Next Generation Sequencing is now routinely used in the practice of diagnostic pathology to detect clinically relevant somatic and germline sequence variations in patient samples. However, clinical assessment of copy number variations (CNVs) and large-scale structural variations (SVs) is still challenging. While tools exist to estimate both, their results are typically presented separately in tables or static plots which can be difficult to read and are unable to show the context needed for clinical interpretation and reporting. We have addressed this problem with CNspector, a multi-scale interactive browser that shows CNVs in the context of other relevant genomic features to enable fast and effective clinical reporting. We illustrate the utility of CNspector at different genomic scales across a variety of sample types in a range of case studies. We show how CNspector can be used for diagnosis and reporting of exon-level deletions, focal gene-level amplifications, chromosome and chromosome arm level amplifications/deletions and in complex genomic rearrangements. CNspector is a web-based clinical variant browser tailored to the clinical application of next generation sequencing for CNV assessment. We have demonstrated the utility of this interactive software in typical applications across a range of tissue types and disease contexts encountered in the context of diagnostic pathology. CNspector is written in R and the source code is available for download under the GPL3 Licence from https://github.com/PapenfussLab/CNspector.
Collapse
|
279
|
Monitoring tumour burden and therapeutic response through analysis of circulating tumour DNA and extracellular RNA in multiple myeloma patients. Leukemia 2019; 33:2022-2033. [PMID: 30992504 DOI: 10.1038/s41375-019-0469-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Monitoring tumour burden and therapeutic response through analyses of circulating cell-free tumour DNA (ctDNA) and extracellular RNA (exRNA) in multiple myeloma (MM) patients were performed in a Phase Ib trial of 24 relapsed/refractory patients receiving oral azacitidine in combination with lenalidomide and dexamethasone. Mutational characterisation of paired BM and PL samples at study entry identified that patients with a higher number of mutations or a higher mutational fractional abundance in PL had significantly shorter overall survival (OS) (p = 0.005 and p = 0.018, respectively). A decrease in ctDNA levels at day 5 of cycle 1 of treatment (C1D5) correlated with superior progression-free survival (PFS) (p = 0.017). Evaluation of exRNA transcripts of candidate biomarkers indicated that high CRBN levels coupled with low levels of SPARC at baseline were associated with shorter OS (p = 0.000003). IKZF1 fold-change <0.05 at C1D5 was associated with shorter PFS (p = 0.0051) and OS (p = 0.0001). Furthermore, patients with high baseline CRBN coupled with low fold-change at C1D5 were at the highest risk of progression (p = 0.0001). In conclusion, this exploratory analysis has provided the first demonstration in MM of ctDNA for predicting disease outcome and of the utility of exRNA as a biomarker of therapeutic response.
Collapse
|
280
|
Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc Natl Acad Sci U S A 2019; 116:9543-9551. [PMID: 30988175 DOI: 10.1073/pnas.1819745116] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Relapsed and refractory (R/R) multiple myeloma (MM) patients have very poor prognosis. Chimeric antigen receptor modified T (CAR T) cells is an emerging approach in treating hematopoietic malignancies. Here we conducted the clinical trial of a biepitope-targeting CAR T against B cell maturation antigen (BCMA) (LCAR-B38M) in 17 R/R MM cases. CAR T cells were i.v. infused after lymphodepleting chemotherapy. Two delivery methods, three infusions versus one infusion of the total CAR T dose, were tested in, respectively, 8 and 9 cases. No response differences were noted among the two delivery subgroups. Together, after CAR T cell infusion, 10 cases experienced a mild cytokine release syndrome (CRS), 6 had severe but manageable CRS, and 1 died of a very severe toxic reaction. The abundance of BCMA and cytogenetic marker del(17p) and the elevation of IL-6 were the key indicators for severe CRS. Among 17 cases, the overall response rate was 88.2%, with 13 achieving stringent complete response (sCR) and 2 reaching very good partial response (VGPR), while 1 was a nonresponder. With a median follow-up of 417 days, 8 patients remained in sCR or VGPR, whereas 6 relapsed after sCR and 1 had progressive disease (PD) after VGPR. CAR T cells were high in most cases with stable response but low in 6 out of 7 relapse/PD cases. Notably, positive anti-CAR antibody constituted a high-risk factor for relapse/PD, and patients who received prior autologous hematopoietic stem cell transplantation had more durable response. Thus, biepitopic CAR T against BCMA represents a promising therapy for R/R MM, while most adverse effects are clinically manageable.
Collapse
|
281
|
Rasche L, Kortüm KM, Raab MS, Weinhold N. The Impact of Tumor Heterogeneity on Diagnostics and Novel Therapeutic Strategies in Multiple Myeloma. Int J Mol Sci 2019; 20:ijms20051248. [PMID: 30871078 PMCID: PMC6429294 DOI: 10.3390/ijms20051248] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/31/2022] Open
Abstract
Myeloma is characterized by extensive inter-patient genomic heterogeneity due to multiple different initiating events. A recent multi-region sequencing study demonstrated spatial differences, with progression events, such as TP53 mutations, frequently being restricted to focal lesions. In this review article, we describe the clinical impact of these two types of tumor heterogeneity. Target mutations are often dominant at one site but absent at other sites, which poses a significant challenge to personalized therapy in myeloma. The same holds true for high-risk subclones, which can be locally restricted, and as such not detectable at the iliac crest, which is the usual sampling site. Imaging can improve current risk classifiers and monitoring of residual disease, but does not allow for deciphering the molecular characteristics of tumor clones. In the era of novel immunotherapies, the clinical impact of heterogeneity certainly needs to be re-defined. Yet, preliminary observations indicate an ongoing impact of spatial heterogeneity on the efficacy of monoclonal antibodies. In conclusion, we recommend combining molecular tests with imaging to improve risk prediction and monitoring of residual disease. Overcoming intra-tumor heterogeneity is the prerequisite for curing myeloma. Novel immunotherapies are promising but research addressing their impact on the spatial clonal architecture is highly warranted.
Collapse
Affiliation(s)
- Leo Rasche
- Department of Internal Medicine 2, University Hospital of Würzburg, 97080 Würzburg, Germany.
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - K Martin Kortüm
- Department of Internal Medicine 2, University Hospital of Würzburg, 97080 Würzburg, Germany.
| | - Marc S Raab
- Department of Internal Medicine V, University Hospital of Heidelberg, 69120 Heidelberg, Germany.
| | - Niels Weinhold
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Department of Internal Medicine V, University Hospital of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
282
|
Ramakrishnan VG, Miller KC, Macon EP, Kimlinger TK, Haug J, Kumar S, Gonsalves WI, Rajkumar SV, Kumar SK. Histone deacetylase inhibition in combination with MEK or BCL-2 inhibition in multiple myeloma. Haematologica 2019; 104:2061-2074. [PMID: 30846494 PMCID: PMC6886422 DOI: 10.3324/haematol.2018.211110] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Despite recent advances in the treatment of multiple myeloma, patients with this disease still inevitably relapse and become refractory to existing therapies. Mutations in K-RAS, N-RAS and B-RAF are common in multiple myeloma, affecting 50% of patients at diagnosis and >70% at relapse. However, targeting mutated RAS/RAF via MEK inhibition is merely cytostatic in myeloma and largely ineffective in the clinic. We examined mechanisms mediating this resistance and identified histone deacetylase inhibitors as potent synergistic partners. Combining the MEK inhibitor AZD6244 (selumetinib) with the pan-histone deacetylase inhibitor LBH589 (panobinostat) induced synergistic apoptosis in RAS/RAF mutated multiple myeloma cell lines. Interestingly, this synergy was dependent on the pro-apoptotic protein BIM. We determined that while single-agent MEK inhibition increased BIM levels, the protein remained sequestered by antiapoptotic BCL-2 family members. LBH589 dissociated BIM from MCL-1 and BCL-XL, which allowed it to bind BAX/BAK and thereby initiate apoptosis. The AZD6244/LBH589 combination was specifically active in cell lines with more BIM:MCL-1 complexes at baseline; resistant cell lines had more BIM:BCL-2 complexes. Those resistant cell lines were synergistically killed by combining the BH3 mimetic ABT-199 (venetoclax) with LBH589. Using more specific histone deacetylase inhibitors, i.e. MS275 (entinostat) and FK228 (romidepsin), and genetic methods, we determined that concomitant inhibition of histone deacetylases 1 and 2 was sufficient to synergize with either MEK or BCL-2 inhibition. Furthermore, these drug combinations effectively killed plasma cells from myeloma patients ex vivo. Given the preponderance of RAS/RAF mutations, and the fact that ABT-199 has demonstrated clinical efficacy in relapsed/refractory multiple myeloma, these drug combinations hold prom ise as biomarker-driven therapies.
Collapse
Affiliation(s)
| | | | - Elaine P Macon
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Teresa K Kimlinger
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Jessica Haug
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Sanjay Kumar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Wilson I Gonsalves
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - S Vincent Rajkumar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Shaji K Kumar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
283
|
Natural history of multiple myeloma with de novo del(17p). Blood Cancer J 2019; 9:32. [PMID: 30846679 PMCID: PMC6405846 DOI: 10.1038/s41408-019-0191-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022] Open
Abstract
We compared the outcomes of 310 patients with newly diagnosed multiple myeloma with del(17p) detected by FISH to patients with high-risk translocations (HRT) (n = 79) and standard-risk (SR) cytogenetics (n = 541). The median progression-free survival (PFS) following initial therapy for the three groups was 21.1, 22, and 30.1 months, respectively (P = 0.437- del(17p) vs. HRT); the median overall survival (OS) was 47.3, 79.1, and 109.8 months, respectively, (P = 0.007- del(17p) vs. HRT). PFS and OS for patients with relative loss of 17p (n = 21) were comparable to other patients with del(17p). The PFS was similar between the del(17p) and HRT groups when stratified for age, ISS stage or treatment. The OS of del(17p) and HRT groups were similar in presence of advanced age, ISS III stage or if patients did not receive a proteasome-inhibitor containing induction. ISS III stage, high LDH and HRT, but not the percentage of cells with del(17p) predicted shorter OS in patients with del(17p). The median OS for low (ISS I, normal LDH and no HRT), intermediate (neither low nor high-risk) and high-risk (ISS III and either elevated LDH or coexistent HRT) groups among del(17p) patients were 96.2, 45.4, and 22.8 months, respectively, allowing further risk stratification.
Collapse
|
284
|
Chattopadhyay S, Thomsen H, Yadav P, da Silva Filho MI, Weinhold N, Nöthen MM, Hoffman P, Bertsch U, Huhn S, Morgan GJ, Goldschmidt H, Houlston R, Hemminki K, Försti A. Genome-wide interaction and pathway-based identification of key regulators in multiple myeloma. Commun Biol 2019; 2:89. [PMID: 30854481 PMCID: PMC6399257 DOI: 10.1038/s42003-019-0329-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/29/2019] [Indexed: 02/08/2023] Open
Abstract
Inherited genetic susceptibility to multiple myeloma has been investigated in a number of studies. Although 23 individual risk loci have been identified, much of the genetic heritability remains unknown. Here we carried out genome-wide interaction analyses on two European cohorts accounting for 3,999 cases and 7,266 controls and characterized genetic susceptibility to multiple myeloma with subsequent meta-analysis that discovered 16 unique interacting loci. These risk loci along with previously known variants explain 17% of the heritability in liability scale. The genes associated with the interacting loci were found to be enriched in transforming growth factor beta signaling and circadian rhythm regulation pathways suggesting immunoglobulin trait modulation, TH17 cell differentiation and bone morphogenesis as mechanistic links between the predisposition markers and intrinsic multiple myeloma biology. Further tissue/cell-type enrichment analysis associated the discovered genes with hemic-immune system tissue types and immune-related cell types indicating overall involvement in immune response.
Collapse
Affiliation(s)
- Subhayan Chattopadhyay
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, 69117, Germany
| | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Pankaj Yadav
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | | | - Niels Weinhold
- University Clinic Heidelberg, Internal Medicine V, Heidelberg, 69117, Germany
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Department of Genomics, Life & Brain Research Center, University of Bonn, Bonn, 53127, Germany
| | - Per Hoffman
- Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Department of Genomics, Life & Brain Research Center, University of Bonn, Bonn, 53127, Germany
- Department of Biomedicine, University of Basel, Basel, 4003, Switzerland
| | - Uta Bertsch
- University Clinic Heidelberg, Internal Medicine V, Heidelberg, 69117, Germany
| | - Stefanie Huhn
- University Clinic Heidelberg, Internal Medicine V, Heidelberg, 69117, Germany
| | - Gareth J Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
| | - Hartmut Goldschmidt
- University Clinic Heidelberg, Internal Medicine V, Heidelberg, 69117, Germany
- National Centre of Tumor Diseases, Heidelberg, 69120, Germany
| | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
- Center for Primary Health Care Research, Lund University, 205 02, Malmö, Sweden
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
- Center for Primary Health Care Research, Lund University, 205 02, Malmö, Sweden.
| |
Collapse
|
285
|
Hyperhaploid plasma cell myeloma characterized by poor outcome and monosomy 17 with frequently co-occurring TP53 mutations. Blood Cancer J 2019; 9:20. [PMID: 30783078 PMCID: PMC6381150 DOI: 10.1038/s41408-019-0182-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 01/20/2023] Open
|
286
|
Stephenson S, Care MA, Fan I, Zougman A, Westhead DR, Doody GM, Tooze RM. Growth Factor-like Gene Regulation Is Separable from Survival and Maturation in Antibody-Secreting Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1287-1300. [PMID: 30642980 PMCID: PMC6360259 DOI: 10.4049/jimmunol.1801407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022]
Abstract
Recurrent mutational activation of the MAP kinase pathway in plasma cell myeloma implicates growth factor-like signaling responses in the biology of Ab-secreting cells (ASCs). Physiological ASCs survive in niche microenvironments, but how niche signals are propagated and integrated is poorly understood. In this study, we dissect such a response in human ASCs using an in vitro model. Applying time course expression data and parsimonious gene correlation network analysis (PGCNA), a new approach established by our group, we map expression changes that occur during the maturation of proliferating plasmablast to quiescent plasma cell under survival conditions including the potential niche signal TGF-β3. This analysis demonstrates a convergent pattern of differentiation, linking unfolded protein response/endoplasmic reticulum stress to secretory optimization, coordinated with cell cycle exit. TGF-β3 supports ASC survival while having a limited effect on gene expression including upregulation of CXCR4. This is associated with a significant shift in response to SDF1 in ASCs with amplified ERK1/2 activation, growth factor-like immediate early gene regulation and EGR1 protein expression. Similarly, ASCs responding to survival conditions initially induce partially overlapping sets of immediate early genes without sustaining the response. Thus, in human ASCs growth factor-like gene regulation is transiently imposed by niche signals but is not sustained during subsequent survival and maturation.
Collapse
Affiliation(s)
- Sophie Stephenson
- Section of Experimental Haematology, Leeds Institute of Medical Research, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Matthew A Care
- Section of Experimental Haematology, Leeds Institute of Medical Research, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Im Fan
- Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals National Health Service Trust, St. James's University Hospital, Leeds LS9 7TF, United Kingdom; and
| | - Alexandre Zougman
- Section of Biomarkers and Therapy, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - David R Westhead
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Gina M Doody
- Section of Experimental Haematology, Leeds Institute of Medical Research, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Reuben M Tooze
- Section of Experimental Haematology, Leeds Institute of Medical Research, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom;
- Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals National Health Service Trust, St. James's University Hospital, Leeds LS9 7TF, United Kingdom; and
| |
Collapse
|
287
|
van Andel H, Kocemba KA, Spaargaren M, Pals ST. Aberrant Wnt signaling in multiple myeloma: molecular mechanisms and targeting options. Leukemia 2019; 33:1063-1075. [PMID: 30770859 PMCID: PMC6756057 DOI: 10.1038/s41375-019-0404-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 01/06/2023]
Abstract
Aberrant activation of Wnt/β-catenin signaling plays a central role in the pathogenesis of a wide variety of malignancies and is typically caused by mutations in core Wnt pathway components driving constitutive, ligand-independent signaling. In multiple myelomas (MMs), however, these pathway intrinsic mutations are rare despite the fact that most tumors display aberrant Wnt pathway activity. Recent studies indicate that this activation is caused by genetic and epigenetic lesions of Wnt regulatory components, sensitizing MM cells to autocrine Wnt ligands and paracrine Wnts emanating from the bone marrow niche. These include deletion of the tumor suppressor CYLD, promotor methylation of the Wnt antagonists WIF1, DKK1, DKK3, and sFRP1, sFRP2, sFRP4, sFRP5, as well as overexpression of the co-transcriptional activator BCL9 and the R-spondin receptor LGR4. Furthermore, Wnt activity in MM is strongly promoted by interaction of both Wnts and R-spondins with syndecan-1 (CD138) on the MM cell-surface. Functionally, aberrant canonical Wnt signaling plays a dual role in the pathogenesis of MM: (I) it mediates proliferation, migration, and drug resistance of MM cells; (II) MM cells secrete Wnt antagonists that contribute to the development of osteolytic lesions by impairing osteoblast differentiation. As discussed in this review, these insights into the causes and consequences of aberrant Wnt signaling in MM will help to guide the development of targeting strategies. Importantly, since Wnt signaling in MM cells is largely ligand dependent, it can be targeted by drugs/antibodies that act upstream in the pathway, interfering with Wnt secretion, sequestering Wnts, or blocking Wnt (co)receptors.
Collapse
Affiliation(s)
- Harmen van Andel
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Kinga A Kocemba
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Steven T Pals
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. .,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands.
| |
Collapse
|
288
|
Kazandjian D, Hill E, Hultcrantz M, Rustad EH, Yellapantula V, Akhlaghi T, Korde N, Mailankody S, Dew A, Papaemmanuil E, Maric I, Kwok M, Landgren O. Molecular underpinnings of clinical disparity patterns in African American vs. Caucasian American multiple myeloma patients. Blood Cancer J 2019; 9:15. [PMID: 30718460 PMCID: PMC6361959 DOI: 10.1038/s41408-019-0177-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/18/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Caucasian Americans (CA) compared with African Americans (AA) have a twofold increased incidence of multiple myeloma (MM) and have an earlier age of diagnosis. However, there is sparse information regarding underlying biological differences across racial/ethnic groups. We characterized genetic alterations using a targeted next-generation sequencing assay called myTYPE, developed at MSKCC, allowing capture of somatic mutations, IgH translocations, gains/losses, and hyperdiploidy. Samples were obtained from the NIH Plasma Cell Dyscrasia Racial Disparity Cohort. In total, 68 patient samples were successfully sequenced and manually curated based on well-established databases. Of the 68 patient samples (47 CA, 21 AA), 84% had at least one type of genomic alteration. Importantly, the IgH translocation, t(11;14), was observed more frequently in the AA group (0 vs. 29%, p = 0.001). Known oncogenic somatic non-synonymous mutations were found in 18 genes and indels in 2 genes. KRAS mutations were the most common mutation found in 16% of patients followed by NRAS and BRAF mutations. TP53 somatic mutations appeared to be more common in CA but lacked significance. This proof-of-principle study indicates the presence of varying underlying tumor biology between racial groups and supports the need of future prospective trials to capture these molecular characteristics.
Collapse
Affiliation(s)
- Dickran Kazandjian
- Myeloma Program, Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Elizabeth Hill
- Myeloma Program, Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Malin Hultcrantz
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Evan H Rustad
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Venkata Yellapantula
- Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Theresia Akhlaghi
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Neha Korde
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Sham Mailankody
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Alex Dew
- Department of Hematology-Oncology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Elli Papaemmanuil
- Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Irina Maric
- Hematology Section, Department of Laboratory Medicine Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Mary Kwok
- Department of Hematology-Oncology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Ola Landgren
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| |
Collapse
|
289
|
Abstract
Multiple myeloma is diagnosed in over 100,000 patients each year worldwide, has an increasing incidence and prevalence in many regions, and follows a relapsing course, making it a significant and growing healthcare challenge. Recent basic, translational, and clinical studies have expanded our therapeutic armamentarium, which now consists of alkylating agents, corticosteroids, deacetylase inhibitors, immunomodulatory agents, monoclonal antibodies, and proteasome inhibitors. New drugs in these categories, and additional agents, including both small and large molecules, as well as cellular therapies, are under development that promise to further expand our capabilities and bring us closer to the cure of this plasma cell dyscrasia.
Collapse
Affiliation(s)
- Chutima Kunacheewa
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Robert Z. Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
290
|
Harding T, Baughn L, Kumar S, Van Ness B. The future of myeloma precision medicine: integrating the compendium of known drug resistance mechanisms with emerging tumor profiling technologies. Leukemia 2019; 33:863-883. [PMID: 30683909 DOI: 10.1038/s41375-018-0362-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
Multiple myeloma (MM) is a hematologic malignancy that is considered mostly incurable in large part due to the inability of standard of care therapies to overcome refractory disease and inevitable drug-resistant relapse. The post-genomic era has been a productive period of discovery where modern sequencing methods have been applied to large MM patient cohorts to modernize our current perception of myeloma pathobiology and establish an appreciation for the vast heterogeneity that exists between and within MM patients. Numerous pre-clinical studies conducted in the last two decades have unveiled a compendium of mechanisms by which malignant plasma cells can escape standard therapies, many of which have potentially quantifiable biomarkers. Exhaustive pre-clinical efforts have evaluated countless putative anti-MM therapeutic agents and many of these have begun to enter clinical trial evaluation. While the palette of available anti-MM therapies is continuing to expand it is also clear that malignant plasma cells still have mechanistic avenues by which they can evade even the most promising new therapies. It is therefore becoming increasingly clear that there is an outstanding need to develop and employ precision medicine strategies in MM management that harness emerging tumor profiling technologies to identify biomarkers that predict efficacy or resistance within an individual's sub-clonally heterogeneous tumor. In this review we present an updated overview of broad classes of therapeutic resistance mechanisms and describe selected examples of putative biomarkers. We also outline several emerging tumor profiling technologies that have the potential to accurately quantify biomarkers for therapeutic sensitivity and resistance at genomic, transcriptomic and proteomic levels. Finally, we comment on the future of implementation for precision medicine strategies in MM and the clear need for a paradigm shift in clinical trial design and disease management.
Collapse
Affiliation(s)
- Taylor Harding
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA
| | - Linda Baughn
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | - Shaji Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic Rochester, Rochester, USA
| | - Brian Van Ness
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
291
|
Högstrand K, Lindvall JM, Sundblad A, Grandien A. Transformation of mature mouse B cells into malignant plasma cells in vitro via introduction of defined genetic elements. Eur J Immunol 2019; 49:454-461. [PMID: 30664244 DOI: 10.1002/eji.201847855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/17/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
Abstract
An experimental system where defined alterations in gene function or gene expression levels in primary B cells would result in the development of transformed plasma cells in vitro would be useful in order to facilitate studies of the underlying molecular mechanisms of plasma cell malignancies. Here, such a system is described in which primary murine B cells rapidly become transformed into surface CD138+ , IgM-/low , CD19- IgM-secreting plasma cells as a result of expression of the transcription factors IRF4 and MYC together with simultaneous expression of BMI1, mutated p53 or silencing of p19Arf , and suppression of intrinsic apoptosis through expression of BCLXL. Analysis of gene expression patterns revealed that this combination of transforming genes resulted in expression of a number of genes previously associated with terminally differentiated B cells (plasma cells) and myeloma cells, whereas many genes associated with mature B cells and B-cell lymphomas were not expressed. Upon transplantation, the transformed cells preferentially localized to the bone marrow, presenting features of a plasma cell malignancy of the IgM isotype. The present findings may also be applicable in the development of novel methods for production of monoclonal antibodies.
Collapse
Affiliation(s)
- Kari Högstrand
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Jessica M Lindvall
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Anne Sundblad
- Hematology Center, CMM, Bioclinicum, Department of Medicine, Karolinska Institutet, Karolinska University Hospital - Solna, Solna, Sweden
| | - Alf Grandien
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|
292
|
Goldsmith SR, Fiala MA, Dukeman J, Ghobadi A, Stockerl-Goldstein K, Schroeder MA, Tomasson M, Wildes TM, Vij R. Next Generation Sequencing-based Validation of the Revised International Staging System for Multiple Myeloma: An Analysis of the MMRF CoMMpass Study. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:285-289. [PMID: 30792096 DOI: 10.1016/j.clml.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The clinical application of the Revised International Staging System (R-ISS) for multiple myeloma may be limited by heterogeneity in clinical interphase fluorescent in situ hybridization (FISH) practices for detecting chromosomal abnormalities (CAs). Next generation sequencing (NGS)-based FISH (Seq-FISH) has demonstrated improved sensitivity and similar specificity relative to clinical FISH, and provides a standardized, single-pass method for identifying high-risk CAs. To date, calculating R-ISS stage using Seq-FISH (R-ISS-NGS) has not been validated. PATIENTS AND METHODS We identified 672 patients with sufficient data to calculate R-ISS-NGS from the Multiple Myeloma Research Foundation (MMRF) CoMMpass Study. R-ISS-NGS was calculated from original ISS stage, lactate dehydrogenase, and CAs detected by Seq-FISH. Endpoints included overall survival and progression-free survival. We conducted multivariate analyses controlling for age and gender in order to compare outcomes across stages I to III of both the original ISS and R-ISS-NGS. RESULTS The median follow-up was 24 months. The R-ISS-NGS resulted in significant redistribution of patients into stage II, relative to the original ISS. With respect to stage I, R-ISS-NGS stages II and III of were associated with worse progression-free survival or overall survival, more so than the staging schema of the ISS, thus validating the use of Seq-FISH in staging. CONCLUSION Using CAs detected by Seq-FISH and data from the CoMMpass study, we validated the R-ISS with a large, generalizable cohort. This study validates the substitution of Seq-FISH for clinical FISH, especially in large registry studies. Additionally, use of the validated R-ISS-NGS will strengthen outcomes research generated from the CoMMpass study.
Collapse
Affiliation(s)
- Scott R Goldsmith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO.
| | - Mark A Fiala
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - James Dukeman
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Armin Ghobadi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Keith Stockerl-Goldstein
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mark A Schroeder
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michael Tomasson
- Department of Internal Medicine, Carver College of Medicine, Iowa City, IA
| | - Tanya M Wildes
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ravi Vij
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
293
|
Nagao Y, Mimura N, Takeda J, Yoshida K, Shiozawa Y, Oshima M, Aoyama K, Saraya A, Koide S, Rizq O, Hasegawa Y, Shiraishi Y, Chiba K, Tanaka H, Nishijima D, Isshiki Y, Kayamori K, Kawajiri-Manako C, Oshima-Hasegawa N, Tsukamoto S, Mitsukawa S, Takeda Y, Ohwada C, Takeuchi M, Iseki T, Misawa S, Miyano S, Ohara O, Yokote K, Sakaida E, Kuwabara S, Sanada M, Iwama A, Ogawa S, Nakaseko C. Genetic and transcriptional landscape of plasma cells in POEMS syndrome. Leukemia 2019; 33:1723-1735. [DOI: 10.1038/s41375-018-0348-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 01/05/2023]
|
294
|
Vikova V, Jourdan M, Robert N, Requirand G, Boireau S, Bruyer A, Vincent L, Cartron G, Klein B, Elemento O, Kassambara A, Moreaux J. Comprehensive characterization of the mutational landscape in multiple myeloma cell lines reveals potential drivers and pathways associated with tumor progression and drug resistance. Theranostics 2019; 9:540-553. [PMID: 30809292 PMCID: PMC6376179 DOI: 10.7150/thno.28374] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/12/2018] [Indexed: 12/30/2022] Open
Abstract
Human multiple myeloma tumor cell lines (HMCLs) have been a cornerstone of research in multiple myeloma (MM) and have helped to shape our understanding of molecular processes that drive tumor progression. A comprehensive characterization of genomic mutations in HMCLs will provide a basis for choosing relevant cell line models to study a particular aspect of myeloma biology, or to screen for an antagonist of certain cancer pathways. Methods: We performed whole exome sequencing on a large cohort of 30 HMCLs, representative of a large molecular heterogeneity of MM, and 8 control samples (epstein-barr virus (EBV)-immortalized B-cells obtained from 8 different patients). We evaluated the sensitivity of HMCLs to ten drugs. Results: We identified a high confidence list of 236 protein-coding genes with mutations affecting the structure of the encoded protein. Among the most frequently mutated genes, there were known MM drivers, such as TP53, KRAS, NRAS, ATM and FAM46C, as well as novel mutated genes, including CNOT3, KMT2D, MSH3 and PMS1. We next generated a comprehensive map of altered key pathways in HMCLs. These include cell growth pathways (MAPK, JAK-STAT, PI(3)K-AKT and TP53 / cell cycle pathway), DNA repair pathway and chromatin modifiers. Importantly, our analysis highlighted a significant association between the mutation of several genes and the response to conventional drugs used in MM as well as targeted inhibitors. Conclusion: Taken together, this first comprehensive exome-wide analysis of the mutational landscape in HMCLs provides unique resources for further studies and identifies novel genes potentially associated with MM pathophysiology, some of which may be targets for future therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Nicolas Robert
- CHU Montpellier, Department of Biological Hematology, Montpellier, France
| | - Guilhem Requirand
- CHU Montpellier, Department of Biological Hematology, Montpellier, France
| | - Stéphanie Boireau
- CHU Montpellier, Department of Biological Hematology, Montpellier, France
| | | | - Laure Vincent
- CHU Montpellier, Department of Clinical Hematology, Montpellier, France
| | - Guillaume Cartron
- Univ Montpellier, UFR de Médecine, Montpellier, France
- CHU Montpellier, Department of Clinical Hematology, Montpellier, France
- Univ Montpellier, UMR CNRS 5235, Montpellier, France
| | - Bernard Klein
- IGH, CNRS, Univ Montpellier, France
- CHU Montpellier, Department of Biological Hematology, Montpellier, France
- Univ Montpellier, UFR de Médecine, Montpellier, France
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, 1305 York Avenue, New York, NY 10021, USA
| | - Alboukadel Kassambara
- IGH, CNRS, Univ Montpellier, France
- CHU Montpellier, Department of Biological Hematology, Montpellier, France
| | - Jérôme Moreaux
- IGH, CNRS, Univ Montpellier, France
- CHU Montpellier, Department of Biological Hematology, Montpellier, France
- Univ Montpellier, UFR de Médecine, Montpellier, France
| |
Collapse
|
295
|
Goldschmidt H, Ashcroft J, Szabo Z, Garderet L. Navigating the treatment landscape in multiple myeloma: which combinations to use and when? Ann Hematol 2019; 98:1-18. [PMID: 30470875 PMCID: PMC6334731 DOI: 10.1007/s00277-018-3546-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 11/06/2018] [Indexed: 12/31/2022]
Abstract
Multiple myeloma is one of the most common hematological malignancies, affecting mainly elderly patients. The treatment landscape for the management of this disease has evolved significantly over the past 15 years, and a vast array of therapeutics is now available, including immunomodulatory drugs, proteasome inhibitors, histone deacetylase inhibitors, and monoclonal antibodies. As a result, deciding which drugs to use and when, and whether these should be used in a particular order or combination, can be challenging. Although combination regimens are often associated with deeper responses and better long-term outcomes than monotherapy, and are becoming the standard of care, they may result in significant incremental toxicity; hence, a sequential approach may be more appropriate for some patients. In particular, treatment choices can vary depending on whether the patient has newly diagnosed multiple myeloma, is eligible for transplant, has relapsed and/or refractory multiple myeloma, or is considered to have high-risk disease. In this review, we discuss factors to be taken into account when making treatment decisions in each of these settings. We also briefly discuss possible therapeutic strategies involving agents that may become available in the future.
Collapse
Affiliation(s)
- Hartmut Goldschmidt
- Internal Medicine V and National Center for Tumor Diseases (NCT), University Clinic Heidelberg, 69120, Heidelberg, Germany.
| | - John Ashcroft
- Department of Haematology, Mid Yorkshire Hospitals NHS Trust, Wakefield, UK
| | - Zsolt Szabo
- Clinical Development, Amgen (Europe) GmbH, Zug, Switzerland
| | - Laurent Garderet
- INSERM, UMR_S 938, Proliferation and Differentiation of Stem Cells, Paris, 75012, France
- AP-HP, Hôpital Saint Antoine, Département d'hématologie et de thérapie cellulaire, Sorbonne Université, Paris 6, Paris, France
| |
Collapse
|
296
|
Abstract
The Precision Medicine Initiative (PMI) aims to change the way diseases are diagnosed and treated by taking into account a patient's genome, lifestyle, and environment. This type of research also uncovers potential biomarkers that can lead to the development of novel targeted therapies. Next-generation sequencing (NGS) is a new technology that facilitates collection of this genetic information by processing large amounts of DNA in an efficient and cost-effective way. NGS is particularly useful in oncology and has already begun to transform cancer management.
Collapse
|
297
|
Toward personalized treatment in multiple myeloma based on molecular characteristics. Blood 2018; 133:660-675. [PMID: 30587529 DOI: 10.1182/blood-2018-09-825331] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022] Open
Abstract
To date, the choice of therapy for an individual multiple myeloma patient has been based on clinical factors such as age and comorbidities. The widespread evolution, validation, and clinical utilization of molecular technologies, such as fluorescence in situ hybridization and next-generation sequencing has enabled the identification of a number of prognostic and predictive biomarkers for progression-free survival, overall survival, and treatment response. In this review, we argue that in order to continue to improve myeloma patient outcomes incorporating such biomarkers into the routine diagnostic workup of patients will allow for the use of personalized, biologically based treatments.
Collapse
|
298
|
Tessoulin B, Moreau-Aubry A, Descamps G, Gomez-Bougie P, Maïga S, Gaignard A, Chiron D, Ménoret E, Le Gouill S, Moreau P, Amiot M, Pellat-Deceunynck C. Whole-exon sequencing of human myeloma cell lines shows mutations related to myeloma patients at relapse with major hits in the DNA regulation and repair pathways. J Hematol Oncol 2018; 11:137. [PMID: 30545397 PMCID: PMC6293660 DOI: 10.1186/s13045-018-0679-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/20/2018] [Indexed: 12/28/2022] Open
Abstract
Background Human myeloma cell lines (HMCLs) are widely used for their representation of primary myeloma cells because they cover patient diversity, although not fully. Their genetic background is mostly undiscovered, and no comprehensive study has ever been conducted in order to reveal those details. Methods We performed whole-exon sequencing of 33 HMCLs, which were established over the last 50 years in 12 laboratories. Gene expression profiling and drug testing for the 33 HMCLs are also provided and correlated to exon-sequencing findings. Results Missense mutations were the most frequent hits in genes (92%). HMCLs harbored between 307 and 916 mutations per sample, with TP53 being the most mutated gene (67%). Recurrent bi-allelic losses were found in genes involved in cell cycle regulation (RB1, CDKN2C), the NFκB pathway (TRAF3, BIRC2), and the p53 pathway (TP53, CDKN2A). Frequency of mutations/deletions in HMCLs were either similar to that of patients (e.g., DIS3, PRDM1, KRAS) or highly increased (e.g., TP53, CDKN2C, NRAS, PRKD2). MAPK was the most altered pathway (82% of HMCLs), mainly by RAS mutants. Surprisingly, HMCLs displayed alterations in epigenetic (73%) and Fanconi anemia (54%) and few alterations in apoptotic machinery. We further identified mutually exclusive and associated mutations/deletions in genes involved in the MAPK and p53 pathways as well as in chromatin regulator/modifier genes. Finally, by combining the gene expression profile, gene mutation, gene deletion, and drug response, we demonstrated that several targeted drugs overcome or bypass some mutations. Conclusions With this work, we retrieved genomic alterations of HMCLs, highlighting that they display numerous and unprecedented abnormalities, especially in DNA regulation and repair pathways. Furthermore, we demonstrate that HMCLs are a reliable model for drug screening for refractory patients at diagnosis or at relapse. Electronic supplementary material The online version of this article (10.1186/s13045-018-0679-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benoît Tessoulin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France. .,Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes, France.
| | - Agnès Moreau-Aubry
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Géraldine Descamps
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Sophie Maïga
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | - David Chiron
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Steven Le Gouill
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes, France
| | - Philippe Moreau
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes, France
| | - Martine Amiot
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | |
Collapse
|
299
|
De Smedt E, Lui H, Maes K, De Veirman K, Menu E, Vanderkerken K, De Bruyne E. The Epigenome in Multiple Myeloma: Impact on Tumor Cell Plasticity and Drug Response. Front Oncol 2018; 8:566. [PMID: 30619733 PMCID: PMC6297718 DOI: 10.3389/fonc.2018.00566] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/13/2018] [Indexed: 01/19/2023] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy that develops primarily in the bone marrow (BM), where reciprocal interactions with the BM niche foster MM cell survival, growth, and drug resistance. MM cells furthermore reshape the BM to their own needs by affecting the different BM stromal cell types resulting in angiogenesis, bone destruction, and immune suppression. Despite recent advances in treatment modalities, MM remains most often incurable due to the development of drug resistance to all standard of care agents. This underscores the unmet need for these heavily treated relapsed/refractory patients. Disruptions in epigenetic regulation are a well-known hallmark of cancer cells, contributing to both cancer onset and progression. In MM, sequencing and gene expression profiling studies have also identified numerous epigenetic defects, including locus-specific DNA hypermethylation of cancer-related and B cell specific genes, genome-wide DNA hypomethylation and genetic defects, copy number variations and/or abnormal expression patterns of various chromatin modifying enzymes. Importantly, these so-called epimutations contribute to genomic instability, disease progression, and a worse outcome. Moreover, the frequency of mutations observed in genes encoding for histone methyltransferases and DNA methylation modifiers increases following treatment, indicating a role in the emergence of drug resistance. In support of this, accumulating evidence also suggest a role for the epigenetic machinery in MM cell plasticity, driving the differentiation of the malignant cells to a less mature and drug resistant state. This review discusses the current state of knowledge on the role of epigenetics in MM, with a focus on deregulated histone methylation modifiers and the impact on MM cell plasticity and drug resistance. We also provide insight into the potential of epigenetic modulating agents to enhance clinical drug responses and avoid disease relapse.
Collapse
Affiliation(s)
- Eva De Smedt
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Lui
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ken Maes
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
300
|
Tremblay-LeMay R, Rastgoo N, Pourabdollah M, Chang H. EZH2 as a therapeutic target for multiple myeloma and other haematological malignancies. Biomark Res 2018; 6:34. [PMID: 30555699 PMCID: PMC6286605 DOI: 10.1186/s40364-018-0148-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that is of great interest in human cancer. It has been shown to have a dual nature, as it can act as a gene repressor or activator. Studies have highlighted the various roles of EZH2 in the pathophysiology of multiple myeloma (MM). It was also shown to have a role in the development of drug resistance in MM. There are several ongoing clinical trials of EZH2 inhibitors in haematological malignancies. Pre-clinical studies have provided a rationale for the therapeutic relevance of EZH2 inhibitors in MM. This paper reviews the evidence supporting the role of EZH2 in MM pathophysiology and drug resistance, with an emphasis on interactions between EZH2 and microRNAs, as well as the prognostic significance of EZH2 expression in MM. Furthermore, results from the pre-clinical studies of EZH2 inhibition in MM and currently available interim results from clinical trials of EZH2 inhibitors in haematological malignancies are presented. Preliminary data exploring anticipated mechanisms of resistance to EZH2 inhibitors are also reviewed. There is therefore strong evidence to support the relevance of targeting EZH2 for the treatment of MM.
Collapse
Affiliation(s)
- Rosemarie Tremblay-LeMay
- 1Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, 200 Elizabeth Street, 11th floor, Toronto, ON M5G 2C4 Canada
| | - Nasrin Rastgoo
- 2Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Canada
| | - Maryam Pourabdollah
- 1Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, 200 Elizabeth Street, 11th floor, Toronto, ON M5G 2C4 Canada
| | - Hong Chang
- 1Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, 200 Elizabeth Street, 11th floor, Toronto, ON M5G 2C4 Canada.,2Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Canada.,3Department of Talent Highland, First Affiliated Hospital of Xi'an Jiao Tong University, Xian, China
| |
Collapse
|