251
|
Székely JI, Pataki Á. Effects of vitamin D on immune disorders with special regard to asthma, COPD and autoimmune diseases: a short review. Expert Rev Respir Med 2013; 6:683-704. [PMID: 23234453 DOI: 10.1586/ers.12.57] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This paper reviews the recent data on the role of vitamin D (VD) in the genesis of various immunological disorders. It inhibits immune reactions in general, but it enhances the transcription of 'endogenous antibiotics' such as cathelicidin and defensins. VD inhibits the genesis of both Th1- and Th2-cell mediated diseases. The pleiotropic character VD-induced effects are due to the altered transcription of hundreds of genes. VD supplementation in most related studies reduced the prevalence of asthma. Th1-dependent autoimmune diseases (e.g., multiple sclerosis, Type 1 diabetes, Crohn's disease, rheumatoid arthritis and so on) are also inhibited by VD due to inhibition of antigen presentation, reduced polarization of Th0 cells to Th1 cells and reduced production of cytokines from the latter cells. VD seems to also be a useful adjunct in the prevention of allograft rejection. Last but not least, VD supplementation may be useful in the prevention or adjunct treatment of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Joseph I Székely
- Institute of Human Physiology and Clinical Experimental Research, School of Medicine, Semmelweis University, 37 - 47 Tüzoltó u., Budapest, H-1094, Hungary.
| | | |
Collapse
|
252
|
Keith ME, LaPorta E, Welsh J. Stable expression of human VDR in murine VDR-null cells recapitulates vitamin D mediated anti-cancer signaling. Mol Carcinog 2013; 53:286-99. [PMID: 23681781 DOI: 10.1002/mc.21975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/14/2012] [Accepted: 10/01/2012] [Indexed: 11/08/2022]
Abstract
Mammary tumor cells derived from vitamin D receptor (VDR) knock-out (KO) mice were engineered to stably express wild-type (WT) or mutated VDR for characterization of the mechanisms by which 1,25-dihydroxyvitamin D (1,25D), the VDR ligand, mediates growth regulation. Although KO cells were completely resistant to 1,25D, introduction of WT human VDR restored gene expression and growth inhibition in response to 1,25D and a variety of structural analogs. Pdgfb, Vegfa, and Nfkbi were identified as genomic targets of both human and murine VDR signaling in this cell model. KO cells expressing hVDRs containing point mutations (W286R, R274L) that reduce or abolish ligand binding did not exhibit changes in gene expression or growth in response to physiological doses of 1,25D but did respond to higher doses and more potent analogs. KO cells expressing hVDR with the G46D point mutation, which abrogates VDR binding to DR3 response elements, exhibited partial growth inhibition in response to 1,25D and synthetic vitamin D analogs, providing proof of principle that VDR signaling through alternative genomic or non-genomic mechanisms contributes to vitamin D mediated growth effects in transformed cells. We conclude that the 1,25D-VDR signaling axis that triggers anti-cancer effects is highly conserved between the murine and human systems despite differences in VDR protein, cofactors, and target genes and that these actions are not solely mediated via canonical VDRE signaling.
Collapse
Affiliation(s)
- Meggan E Keith
- Cancer Research Center, University at Albany, Rensselaer, New York
| | | | | |
Collapse
|
253
|
He Q, Ananaba GA, Patrickson J, Pitts S, Yi Y, Yan F, Eko FO, Lyn D, Black CM, Igietseme JU, Thierry-Palmer M. Chlamydial infection in vitamin D receptor knockout mice is more intense and prolonged than in wild-type mice. J Steroid Biochem Mol Biol 2013; 135. [PMID: 23201171 PMCID: PMC4065015 DOI: 10.1016/j.jsbmb.2012.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vitamin D hormone (1,25-dihydroxyvitamin D) is involved in innate immunity and induces host defense peptides in epithelial cells, suggesting its involvement in mucosal defense against infections. Chlamydia trachomatis is a major cause of bacterial sexually transmitted disease worldwide. We tested the hypothesis that the vitamin D endocrine system would attenuate chlamydial infection. Vitamin D receptor knock-out mice (VDR(-/-)) and wild-type mice (VDR(+/+)) were infected with 10(3) inclusion forming units of Chlamydia muridarum and cervical epithelial cells (HeLa cells) were infected with C. muridarum at multiplicity of infection 5:1 in the presence and absence of 1,25-dihydroxyvitamin D3. VDR(-/-) mice exhibited significantly higher bacterial loading than wild-type VDR(+/+) mice (P<0.01) and cleared the chlamydial infection in 39 days, compared with 18 days for VDR(+/+) mice. Monocytes and neutrophils were more numerous in the uterus and oviduct of VDR(-/-) mice than in VDR(+/+) mice (P<0.05) at d 45 after infection. Pre-treatment of HeLa cells with 10nM or 100nM 1,25-dihydroxyvitamin D3 decreased the infectivity of C. muridarum (P<0.001). Several differentially expressed protein spots were detected by proteomic analysis of chlamydial-infected HeLa cells pre-treated with 1,25-dihydroxyvitamin D3. Leukocyte elastase inhibitor (LEI), an anti-inflammatory protein, was up-regulated. Expression of LEI in the ovary and oviduct of infected VDR(+/+) mice was greater than that of infected VDR(-/-) mice. We conclude that the vitamin D endocrine system reduces the risk for prolonged chlamydial infections through regulation of several proteins and that LEI is involved in its anti-inflammatory activity.
Collapse
Affiliation(s)
- Qing He
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Lindh JD, Björkhem-Bergman L, Eliasson E. Vitamin D and drug-metabolising enzymes. Photochem Photobiol Sci 2013; 11:1797-801. [PMID: 22903070 DOI: 10.1039/c2pp25194a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Experimental studies on the molecular regulation of human drug metabolism have revealed that vitamin D up-regulates transcription of several key enzymes, such as CYP3A4, through the vitamin D receptor pathway in intestinal and hepatic cells. Recent data suggest that this results in seasonal changes with higher clearance of orally administered drugs during periods with high UV-B radiation and vitamin D levels. Taken together, vitamin D status might contribute to inter- and intraindividual differences in drug metabolism, but the therapeutic impact of these findings remains to be established.
Collapse
Affiliation(s)
- Jonatan D Lindh
- Karolinska Institutet, Department of Laboratory Medicine, Clinical Pharmacology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | |
Collapse
|
255
|
Zhang D, Peng C, Zhao H, Xia Y, Zhang D, Dong H, Song J, Zhou L, Cai S, Zou F. Induction of thymic stromal lymphopoietin expression in 16-HBE human bronchial epithelial cells by 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3. Int J Mol Med 2013; 32:203-10. [PMID: 23595236 DOI: 10.3892/ijmm.2013.1353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/02/2013] [Indexed: 11/05/2022] Open
Abstract
Vitamin D exerts profound effects on airway epithelial cells. Thymic stromal lymphopoietin (TSLP) derived from airway epithelial cells plays a role in the innate and antigen‑specific adaptive immune responses. However, the effect of vitamin D on TSLP expression in airway epithelial cells is unclear. In this study, 16-HBE human bronchial epithelial (HBE) cells were cultured with various concentrations of 25-hydroxyvitamin D(3) (25 D(3)) and 1,25-dihydroxyvitamin D(3) (1,25 D(3)). The expression of TSLP in the 16-HBE human bronchial epithelial cell line was analyzed by PCR and enzyme-linked immunosorbent assay (ELISA). We found that the 16-HBE cells converted inactive 25 D(3) to active 1,25 D(3) and that TSLP mRNA and protein expression levels were significantly increased, peaking at 2 or 12 h in the cells exposed to 500 nM 25 D(3) and 50 nM 1,25 D(3) respectively. Since vitamin D(3) upregulated protein 1 (VDUP1) plays a multifunctional role in a variety of cellular responses, we hypothesized that VDUP1 is involved in the induction of TSLP production by 25 D(3). The results showed that the mRNA and protein levels of VDUP1 were significantly upregulated by vitamin D. Furthermore, the silencing of VDUP1 by small interfering RNA (siRNA) significantly inhibited the 25 D(3)- and 1,25 D(3)-mediated induction of TSLP expression. To characterize the metabolic properties of vitamin D in airway epithelial biology, we used the chemical inhibitor of 1α-hydroxylase, itraconazole. The results revealed that itraconazole (10-6 M) reduced the 25 D(3)- but not the 1,25 D(3)-induced TSLP expression in 16-HBE cells. Based on these data, it can be concluded that vitamin D increases TSLP expression in 16-HBE cells through the VDUP1 pathway, which suggests a novel mechanism by which vitamin D alters immune function in the lungs.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Guangzhou, Guangdong 510515, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
PDLIM2 expression is driven by vitamin D and is involved in the pro-adhesion, and anti-migration and -invasion activity of vitamin D. Oncogene 2013; 33:1904-11. [PMID: 23584482 DOI: 10.1038/onc.2013.123] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 01/29/2013] [Accepted: 02/13/2013] [Indexed: 12/15/2022]
Abstract
1Alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3], the biologically active form of vitamin D3, is a pleiotropic hormone that exerts its effects on a wide range of tissues, resulting in different biological responses such as anticancer activity. It is the ligand of the vitamin D receptor (VDR), a nuclear receptor with transactivating capacity. We demonstrated in this study that 1,25(OH)2D3 induces PDZ-LIM domain-containing protein 2 (PDLIM2) expression. PDLIM2 is an adaptor molecule that links different components of the cytoskeleton, and was recently shown to be repressed in human breast cancer cells by hypermethylation of regulatory promoter regions, leading to enhanced tumorigenicity. We demonstrated that PDLIM2 was a direct target gene of 1,25(OH)2D3; its upregulation was VDR-dependent and a functional VDRE in the promoter was identified. Moreover, 1,25(OH)2D3 induced demethylation of the PDLIM2 promoter, leading to enhanced transcription. Finally, PDLIM2 was found to be crucial for 1,25(OH)2D3-induced cell adhesion and for mediating the ability of 1,25(OH)2D3 to suppress cancer cell migration and invasion. This study provides mechanistic insights into the anticancer activities of 1,25(OH)2D3 in human breast cancer cells.
Collapse
|
257
|
Rid R, Wagner M, Maier CJ, Hundsberger H, Hintner H, Bauer JW, Onder K. Deciphering the calcitriol-induced transcriptomic response in keratinocytes: presentation of novel target genes. J Mol Endocrinol 2013; 50:131-49. [PMID: 23256991 DOI: 10.1530/jme-11-0191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Numerous studies to date have been aimed at unraveling the large suite of calcitriol (1α,25-dihydroxyvitamin D(3)) response genes in diverse tissues including skin, where this hormone is involved in regulating keratinocyte proliferation, differentiation, permeability barrier formation, innate immunity promotion, antimicrobial peptide production, and wound healing. However, the various approaches differ considerably in probed cell types, scale, throughput, and statistical reliability and do, of note, not reveal much overlap. To further expand our knowledge on presently elusive targets and characterize the extent of fragmentation of existing datasets, we have performed whole-transcriptome microarray examinations of calcitriol-treated human primary keratinocytes. Out of 28,869 genes investigated, we uncovered 86 differentially expressed (67 upregulated and 19 downregulated) candidates that were functionally clustered into five annotation categories: response to wounding, protease inhibition, secondary metabolite biosynthesis, cellular migration, and amine biosynthetic processes. A complementary RTq-PCR study of 78 nominees selected thereof demonstrated significant differential expression of 55 genes (48 upregulated and seven downregulated) within biological replicates. Our hit list contains nine previously authenticated targets (16.36%, proof of concept) and 46 novel genes (83.6%) that have not yet been explicitly described as being differentially regulated within human primary keratinocytes. Direct vitamin D receptor response element predictions within the regulatory promoter regions of 50 of the RTq-PCR-validated targets agreed with known biological functionality and corroborated our stringent data validation pipeline. Altogether, our results indicate the value of continuing these kinds of gene expression studies, which contribute to an enhanced comprehension of calcitriol-mediated processes that may be dysregulated in human skin pathophysiology.
Collapse
Affiliation(s)
- Raphaela Rid
- Division of Molecular Dermatology, Department of Dermatology, Paracelsus Private Medical University Salzburg, Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
258
|
Hossein-nezhad A, Spira A, Holick MF. Influence of vitamin D status and vitamin D3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial. PLoS One 2013; 8:e58725. [PMID: 23527013 PMCID: PMC3604145 DOI: 10.1371/journal.pone.0058725] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/05/2013] [Indexed: 12/31/2022] Open
Abstract
Background Although there have been numerous observations of vitamin D deficiency and its links to chronic diseases, no studies have reported on how vitamin D status and vitamin D3 supplementation affects broad gene expression in humans. The objective of this study was to determine the effect of vitamin D status and subsequent vitamin D supplementation on broad gene expression in healthy adults. (Trial registration: ClinicalTrials.gov NCT01696409). Methods and Findings A randomized, double-blind, single center pilot trial was conducted for comparing vitamin D supplementation with either 400 IUs (n = 3) or 2000 IUs (n = 5) vitamin D3 daily for 2 months on broad gene expression in the white blood cells collected from 8 healthy adults in the winter. Microarrays of the 16 buffy coats from eight subjects passed the quality control filters and normalized with the RMA method. Vitamin D3 supplementation that improved serum 25-hydroxyvitamin D concentrations was associated with at least a 1.5 fold alteration in the expression of 291 genes. There was a significant difference in the expression of 66 genes between subjects at baseline with vitamin D deficiency (25(OH)D<20 ng/ml) and subjects with a 25(OH)D>20 ng/ml. After vitamin D3 supplementation gene expression of these 66 genes was similar for both groups. Seventeen vitamin D-regulated genes with new candidate vitamin D response elements including TRIM27, CD83, COPB2, YRNA and CETN3 which have been shown to be important for transcriptional regulation, immune function, response to stress and DNA repair were identified. Conclusion/Significance Our data suggest that any improvement in vitamin D status will significantly affect expression of genes that have a wide variety of biologic functions of more than 160 pathways linked to cancer, autoimmune disorders and cardiovascular disease with have been associated with vitamin D deficiency. This study reveals for the first time molecular finger prints that help explain the nonskeletal health benefits of vitamin D. Trial Registration ClinicalTrials.gov NCT01696409
Collapse
Affiliation(s)
- Arash Hossein-nezhad
- Department of Medicine, Section of Endocrinology, Nutrition, and Diabetes, Vitamin D, Skin and Bone Research Laboratory, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Avrum Spira
- Department of Medicine, Section of Computational Biomedicine, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Michael F. Holick
- Department of Medicine, Section of Endocrinology, Nutrition, and Diabetes, Vitamin D, Skin and Bone Research Laboratory, Boston University Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
259
|
Transcriptional effects of 1,25 dihydroxyvitamin D(3) physiological and supra-physiological concentrations in breast cancer organotypic culture. BMC Cancer 2013; 13:119. [PMID: 23497279 PMCID: PMC3637238 DOI: 10.1186/1471-2407-13-119] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 03/08/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Vitamin D transcriptional effects were linked to tumor growth control, however, the hormone targets were determined in cell cultures exposed to supra physiological concentrations of 1,25(OH)(2)D(3) (50-100nM). Our aim was to evaluate the transcriptional effects of 1,25(OH)(2)D(3) in a more physiological model of breast cancer, consisting of fresh tumor slices exposed to 1,25(OH)(2)D(3) at concentrations that can be attained in vivo. METHODS Tumor samples from post-menopausal breast cancer patients were sliced and cultured for 24 hours with or without 1,25(OH)(2)D(3) 0.5nM or 100nM. Gene expression was analyzed by microarray (SAM paired analysis, FDR≤0.1) or RT-qPCR (p≤0.05, Friedman/Wilcoxon test). Expression of candidate genes was then evaluated in mammary epithelial/breast cancer lineages and cancer associated fibroblasts (CAFs), exposed or not to 1,25(OH)(2)D(3) 0.5nM, using RT-qPCR, western blot or immunocytochemistry. RESULTS 1,25(OH)(2)D(3) 0.5nM or 100nM effects were evaluated in five tumor samples by microarray and seven and 136 genes, respectively, were up-regulated. There was an enrichment of genes containing transcription factor binding sites for the vitamin D receptor (VDR) in samples exposed to 1,25(OH)(2)D(3) near physiological concentration. Genes up-modulated by both 1,25(OH)(2)D(3) concentrations were CYP24A1, DPP4, CA2, EFTUD1, TKTL1, KCNK3. Expression of candidate genes was subsequently evaluated in another 16 samples by RT-qPCR and up-regulation of CYP24A1, DPP4 and CA2 by 1,25(OH)(2)D(3) was confirmed. To evaluate whether the transcripitonal targets of 1,25(OH)(2)D(3) 0.5nM were restricted to the epithelial or stromal compartments, gene expression was examined in HB4A, C5.4, SKBR3, MDA-MB231, MCF-7 lineages and CAFs, using RT-qPCR. In epithelial cells, there was a clear induction of CYP24A1, CA2, CD14 and IL1RL1. In fibroblasts, in addition to CYP24A1 induction, there was a trend towards up-regulation of CA2, IL1RL1, and DPP4. A higher protein expression of CD14 in epithelial cells and CA2 and DPP4 in CAFs exposed to 1,25(OH)(2)D(3) 0.5nM was detected. CONCLUSIONS In breast cancer specimens a short period of 1,25(OH)(2)D(3) exposure at near physiological concentration modestly activates the hormone transcriptional pathway. Induction of CYP24A1, CA2, DPP4, IL1RL1 expression appears to reflect 1,25(OH)(2)D(3) effects in epithelial as well as stromal cells, however, induction of CD14 expression is likely restricted to the epithelial compartment.
Collapse
|
260
|
Pierrot-Deseilligny C, Souberbielle JC. Contribution of vitamin D insufficiency to the pathogenesis of multiple sclerosis. Ther Adv Neurol Disord 2013; 6:81-116. [PMID: 23483715 PMCID: PMC3582312 DOI: 10.1177/1756285612473513] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The contribution of vitamin D insufficiency to the pathogenesis of multiple sclerosis (MS) is reviewed. Among the multiple recently discovered actions of vitamin D, an immunomodulatory role has been documented in experimental autoimmune encephalomyelitis and in humans. This action in the peripheral immune system is currently the main known mechanism through which vitamin D might influence MS, but other types of actions could be involved within the central nervous system. Furthermore, vitamin D insufficiency is widespread in temperate countries and in patients with MS at the earliest stages of the disease, suggesting that the deleterious effects related to vitamin D insufficiency may be exerted in these patients. In fact, many genetic and environmental risk factors appear to interact and contribute to MS. In genetics, several human leukocyte antigen (HLA) alleles (more particularly HLA-DRB1*1501) could favour the disease whereas some others could be protective. Some of the genes involved in vitamin D metabolism (e.g. CYP27B1) also play a significant role. Furthermore, three environmental risk factors have been identified: past Epstein-Barr virus infection, vitamin D insufficiency and cigarette smoking. Interactions between genetic and environmental risk or protective factors may occur during the mother's pregnancy and could continue during childhood and adolescence and until the disease is triggered in adulthood, therefore possibly modulating the MS risk throughout the first decades of life. Furthermore, some clinical findings already strongly suggest that vitamin D status influences the relapse rate and radiological lesions in patients with MS, although the results of adequately powered randomized clinical trials using vitamin D supplementation have not yet been reported. While awaiting these incontrovertible results, which might be long in coming, patients with MS who are currently in vitamin D insufficiency should be supplemented, at least for their general health status, using moderate doses of the vitamin.
Collapse
Affiliation(s)
- Charles Pierrot-Deseilligny
- Service de Neurologie 1, Hôpital de la Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Pierre et Marie Curie (Paris VI), Paris, France
| | | |
Collapse
|
261
|
Wrzosek M, Łukaszkiewicz J, Wrzosek M, Jakubczyk A, Matsumoto H, Piątkiewicz P, Radziwoń-Zaleska M, Wojnar M, Nowicka G. Vitamin D and the central nervous system. Pharmacol Rep 2013; 65:271-8. [DOI: 10.1016/s1734-1140(13)71003-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 11/02/2012] [Indexed: 02/06/2023]
|
262
|
Satoh JI, Tabunoki H. Molecular network of chromatin immunoprecipitation followed by deep sequencing-based vitamin D receptor target genes. Mult Scler 2013; 19:1035-45. [PMID: 23401126 DOI: 10.1177/1352458512471873] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Vitamin D is a liposoluble vitamin essential for calcium metabolism. The ligand-bound vitamin D receptor (VDR), heterodimerized with retinoid X receptor, interacts with vitamin D response elements (VDREs) to regulate gene expression. Vitamin D deficiency due to insufficient sunlight exposure confers an increased risk for multiple sclerosis (MS). OBJECTIVE To study a protective role of vitamin D in multiple sclerosis (MS), it is important to characterize the global molecular network of VDR target genes (VDRTGs) in immune cells. METHODS We identified genome-wide VDRTGs collectively from two distinct chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) datasets of VDR-binding sites derived from calcitriol-treated human cells of B cell and monocyte origins. We mapped short reads of next generation sequencing (NGS) data on hg19 with Bowtie, detected the peaks with Model-based Analysis of ChIP-Seq (MACS), and identified genomic locations by GenomeJack, a novel genome viewer for NGS platforms. RESULTS We found 2997 stringent peaks distributed on protein-coding genes, chiefly located in the promoter and the intron on VDRE DR3 sequences. However, the corresponding transcriptome data verified calcitriol-induced upregulation of only a small set of VDRTGs. The molecular network of 1541 calcitriol-responsive VDRTGs showed a significant relationship with leukocyte transendothelial migration, Fcγ receptor-mediated phagocytosis, and transcriptional regulation by VDR, suggesting a pivotal role of genome-wide VDRTGs in immune regulation. CONCLUSION These results suggest the working hypothesis that persistent deficiency of vitamin D might perturb the complex network of VDRTGs in immune cells, being responsible for induction of an autoimmune response causative for MS.
Collapse
Affiliation(s)
- Jun-ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan.
| | | |
Collapse
|
263
|
Abstract
The main physiological actions of the biologically most active metabolite of vitamin D, 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3)), are calcium and phosphorus uptake and transport and thereby controlling bone formation. Other emergent areas of 1α,25(OH)(2)D(3) action are in the control of immune functions, cellular growth and differentiation. All genomic actions of 1α,25(OH)(2)D(3) are mediated by the transcription factor vitamin D receptor (VDR) that has been the subject of intense study since the 1980's. Thus, vitamin D signaling primarily implies the molecular actions of the VDR. In this review, we present different perspectives on the VDR that incorporate its role as transcription factor and member of the nuclear receptor superfamily, its dynamic changes in genome-wide locations and DNA binding modes, its interaction with chromatin components and its primary protein-coding and non-protein coding target genes and finally how these aspects are united in regulatory networks. By comparing the actions of the VDR, a relatively well-understood and characterized protein, with those of other transcription factors, we aim to build a realistic positioning of vitamin D signaling in the context of other intracellular signaling systems.
Collapse
Affiliation(s)
- Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | | |
Collapse
|
264
|
Anglin RES, Samaan Z, Walter SD, McDonald SD. Vitamin D deficiency and depression in adults: systematic review and meta-analysis. Br J Psychiatry 2013; 202:100-7. [PMID: 23377209 DOI: 10.1192/bjp.bp.111.106666] [Citation(s) in RCA: 501] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND There is conflicting evidence about the relationship between vitamin D deficiency and depression, and a systematic assessment of the literature has not been available. AIMS To determine the relationship, if any, between vitamin D deficiency and depression. METHOD A systematic review and meta-analysis of observational studies and randomised controlled trials was conducted. RESULTS One case-control study, ten cross-sectional studies and three cohort studies with a total of 31 424 participants were analysed. Lower vitamin D levels were found in people with depression compared with controls (SMD = 0.60, 95% CI 0.23-0.97) and there was an increased odds ratio of depression for the lowest v. highest vitamin D categories in the cross-sectional studies (OR = 1.31, 95% CI 1.0-1.71). The cohort studies showed a significantly increased hazard ratio of depression for the lowest v. highest vitamin D categories (HR = 2.21, 95% CI 1.40-3.49). CONCLUSIONS Our analyses are consistent with the hypothesis that low vitamin D concentration is associated with depression, and highlight the need for randomised controlled trials of vitamin D for the prevention and treatment of depression to determine whether this association is causal.
Collapse
Affiliation(s)
- Rebecca E S Anglin
- Department of Psychiatry and Behavioural Neurosciences, St Joseph's Hospital, 50 Charlton Avenue E, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
265
|
|
266
|
1,25-Dihydroxyvitamin D3 promotes a sustained LPS-induced NF-κB-dependent expression of CD55 in human monocytic THP-1 cells. PLoS One 2012; 7:e49318. [PMID: 23152895 PMCID: PMC3495912 DOI: 10.1371/journal.pone.0049318] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/10/2012] [Indexed: 01/05/2023] Open
Abstract
The vitamin D3 system imposes immunosuppressive effects on monocytic cells, in part, by inhibiting NF-κB-dependent expression of proinflammatory mediators. CD55, a cell surface complement regulatory protein that promotes protective and anti-inflammatory properties, is reportedly an NF-κB target gene transiently induced in monocytic cells by the bacterial endotoxin LPS. CD55 is elevated on white cells in women experiencing preterm labor (a pathophysiology commonly associated with bacterial infection) and failure to maintain CD55 was associated with subsequent preterm delivery. We examined the influence of vitamin D3 signaling on LPS-induced expression of CD55 in human monocytic THP-1 cells using quantitative PCR, immunoblot, immunohistochemistry, and NF-κB activation pathway inhibitors. Non-NF-κB targets CD14 and CD11b, which modulate bacterial surveillance and eradication, respectively, were also examined. LPS produced a rapid transient 1.6-fold increase in CD55 mRNA. 1,25-D3 alone did not affect CD55 mRNA expression within the first 48 h. However, in 1,25-D3 pretreated cells, LPS produced a >4-fold immediate and sustained increase in CD55 mRNA and protein expression, which was blocked by NF-κB inhibitors. Our results unexpectedly suggest that vitamin D3 signaling may promote an anti-inflammatory response through an NF-κB-dependent increase in CD55 expression. As expected, LPS or 1,25-D3 alone led to sustained increases in CD14 and CD11b expression. In 1,25-D3 pretreated cells, LPS differentially regulated protein expression - CD14 (21-fold increase) and CD11b (a transient 2-fold decrease) - principally at the posttranscriptional level. The coordinated temporal expression of CD55, CD14 and CD11b would contribute to an anti-inflammatory response by providing protection against complement-mediated cell lysis during pathogen recognition and eradication. Overall, the vitamin D3 system may play a role coordinating an anti-inflammatory response pattern of the host complement immune system. This may be particularly important when considering the high rates of preterm births in blacks, a population that exhibits reduced circulating vitamin D3 levels.
Collapse
|
267
|
Kickler K, Ni Choileain S, Williams A, Richards A, Astier AL. Calcitriol modulates the CD46 pathway in T cells. PLoS One 2012; 7:e48486. [PMID: 23144765 PMCID: PMC3483209 DOI: 10.1371/journal.pone.0048486] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/02/2012] [Indexed: 11/19/2022] Open
Abstract
The complement regulator CD46 is a costimulatory molecule for human T cells that induces a regulatory Tr1 phenotype, characterized by large amounts of IL-10 secretion. Secretion of IL-10 upon CD46 costimulation is largely impaired in T cells from patients with multiple sclerosis (MS). Vitamin D can exert a direct effect on T cells, and may be beneficial in several pathologies, including MS. In this pilot study, we examined whether active vitamin D (1,25(OH)(2)D(3) or calcitriol) could modulate the CD46 pathway and restore IL-10 production by CD46-costimulated CD4+ T cells from patients with MS. In healthy T cells, calcitriol profoundly affects the phenotype of CD46-costimulated CD4+ T cells, by increasing the expression of CD28, CD25, CTLA-4 and Foxp3 while it concomitantly decreased CD46 expression. Similar trends were observed in MS CD4+ T cells except for CD25 for which a striking opposite effect was observed: while CD25 was normally induced on MS T cells by CD46 costimulation, addition of calcitriol consistently inhibited its induction. Despite the aberrant effect on CD25 expression, calcitriol increased the IL-10:IFNγ ratio, characteristic of the CD46-induced Tr1 phenotype, in both T cells from healthy donors and patients with MS. Hence, we show that calcitriol affects the CD46 pathway, and that it promotes anti-inflammatory responses mediated by CD46. Moreover, it might be beneficial for T cell responses in MS.
Collapse
Affiliation(s)
- Karoline Kickler
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Siobhan Ni Choileain
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
- Multiple Sclerosis Research Centre, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Anna Williams
- Multiple Sclerosis Research Centre, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Anna Richards
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Anne L. Astier
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
- Multiple Sclerosis Research Centre, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
268
|
Abstract
Asthma, one of the most prevalent diseases affecting people worldwide, is a chronic respiratory disease characterized by heightened airway inflammation, airway hyperresponsiveness and airflow obstruction in response to specific triggers. While the specific mechanisms responsible for asthma are not well understood, changing environmental factors associated with urban lifestyles may underlie the increased prevalence of the disorder. Vitamin D is of particular interest in asthma since vitamin D concentrations decrease with increased time spent indoors, decreased exposure to sunlight, less exercise, obesity, and inadequate calcium intake. Additionally, a growing body of literature suggests that there is a relationship between vitamin D status and respiratory symptoms, presumably through immunomodulatory effects of vitamin D. This review discusses vitamin D as it relates to asthma across the age spectrum, with a focus on human studies.
Collapse
|
269
|
Kempker JA, Han JE, Tangpricha V, Ziegler TR, Martin GS. Vitamin D and sepsis: An emerging relationship. DERMATO-ENDOCRINOLOGY 2012; 4:101-8. [PMID: 22928065 PMCID: PMC3427188 DOI: 10.4161/derm.19859] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vitamin D insufficiency and sepsis are both highly prevalent worldwide problems and this article reviews the emerging science that is defining the intersections of these conditions. The importance of vitamin D’s role in skeletal health has long been understood but recent evidence is beginning to highlight its role in the functioning of other physiologic systems of the body. Basic science data reveal its integral role in local immune responses to pathogens and the systemic inflammatory pathways of sepsis. Furthermore, clinical scientists have found associations with respiratory infections, critical illness and sepsis but the causal relationship and its clinical impact have yet to be clearly defined. The article ends with speculations on the connections between racial disparities and seasonal differences in sepsis and vitamin D insufficiency.
Collapse
|
270
|
Kim TK, Wang J, Janjetovic Z, Chen J, Tuckey RC, Nguyen MN, Tang EKY, Miller D, Li W, Slominski AT. Correlation between secosteroid-induced vitamin D receptor activity in melanoma cells and computer-modeled receptor binding strength. Mol Cell Endocrinol 2012; 361:143-52. [PMID: 22546549 PMCID: PMC3409337 DOI: 10.1016/j.mce.2012.04.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/04/2012] [Accepted: 04/09/2012] [Indexed: 11/28/2022]
Abstract
To define the interaction of novel secosteroids produced by the action of cytochrome P450scc with vitamin D receptor (VDR), we used a human melanoma line overexpressing VDR fused with enhanced green fluorescent protein (EGFP) and tested the ligand induced translocation of VDR from the cytoplasm to the nucleus. Hydroxyderivatives of vitamin D(3) with a full length (D(3)) side chain and hydroxy-secosteroids with a shortened side chain (pD) stimulated VDR translocation and inhibited proliferation, however, with different potencies. In general the D(3) were more potent than pD analogues. Molecular modeling of the binding of the secosteroids to the VDR genomic binding pocket (G-pocket) correlated well with the experimental data for VDR translocation. In contrast, docking scores for the non-genomic binding site of the VDR were poor. In conclusion, both the length of the side chain and the number and position of hydroxyl groups affect the activation of VDR by novel secosteroids.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Departments of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jin Wang
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Zorica Janjetovic
- Departments of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianjun Chen
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert C. Tuckey
- School of Biomolecular, Biomedical and Chemical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Minh N. Nguyen
- School of Biomolecular, Biomedical and Chemical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Edith K. Y. Tang
- School of Biomolecular, Biomedical and Chemical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Duane Miller
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Wei Li
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Corresponding author and address for reprints: Andrzej Slominski, MD/PhD, Department of Pathology, 930 Madison Avenue, Memphis, TN 38163; Tel: 901-4483741; Fax: 901-4486979; ; or Wei Li PhD, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 847 Monroe Avenue, room 327, Memphis, TN 38163; Tel: 901-448-7532; Fax: 901-448-6828; .
| | - Andrzej T. Slominski
- Departments of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
- Division of Dermatology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Corresponding author and address for reprints: Andrzej Slominski, MD/PhD, Department of Pathology, 930 Madison Avenue, Memphis, TN 38163; Tel: 901-4483741; Fax: 901-4486979; ; or Wei Li PhD, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 847 Monroe Avenue, room 327, Memphis, TN 38163; Tel: 901-448-7532; Fax: 901-448-6828; .
| |
Collapse
|
271
|
Environmental risk factors for multiple sclerosis: a review with a focus on molecular mechanisms. Int J Mol Sci 2012; 13:11718-11752. [PMID: 23109880 PMCID: PMC3472772 DOI: 10.3390/ijms130911718] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/31/2012] [Accepted: 09/06/2012] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disabling disease of the central nervous system commonly affecting young adults. Pathologically, there are patches of inflammation (plaques) with demyelination of axons and oligodendrocyte loss. There is a global latitude gradient in MS prevalence, and incidence of MS is increasing (particularly in females). These changes suggest a major role for environmental factors in causation of disease. We have reviewed the evidence and potential mechanisms of action for three exposures: vitamin D, Epstein Barr virus and cigarette smoking. Recent advances supporting gene-environment interactions are reviewed. Further research is needed to establish mechanisms of causality in humans and to explore preventative strategies.
Collapse
|
272
|
Brożyna AA, Jóźwicki W, Janjetovic Z, Slominski AT. Expression of the vitamin D-activating enzyme 1α-hydroxylase (CYP27B1) decreases during melanoma progression. Hum Pathol 2012; 44:374-87. [PMID: 22995334 DOI: 10.1016/j.humpath.2012.03.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/22/2012] [Accepted: 03/28/2012] [Indexed: 11/19/2022]
Abstract
1α-Hydroxylase (CYP27B1), the enzyme responsible for the synthesis of the biologically active form of vitamin D (1,25(OH)(2)D(3)), is expressed in the skin. To assess the correlation between progression of melanocytic tumors and CYP27B1, we analyzed its expression in 29 benign nevi, 75 primary cutaneous melanomas, 40 metastases, and 4 re-excision and 6 normal skin biopsies. Immunoreactivity for CYP27B1 was significantly lower in the vertical growth phase and metastatic melanomas (0.6 and 0.5 arbitrary units, respectively) in comparison with nevi and radial growth phase tumors (1.2 and 1.1 arbitrary units, respectively); and expression was reduced in more advanced lesions (Clark levels III-V, Breslow thickness ≥2.1 mm; 0.8 and 0.7 arbitrary units, respectively). There was an inverse correlation between CYP27B1 and Ki-67 expression. Furthermore, CYP27B1 expression was reduced in primary melanomas that created metastases in comparison with non-metastasizing melanomas. Reduced CYP27B1 expression in radial growth phase was related to shorter overall survival (810 versus 982 versus 1151 days in melanomas with absent, low, and high CYP27B1 immunoreactivity), and low CYP27B1 expression in radial growth phase and vertical growth phase was related to shorter disease-free survival (114 versus 339 versus 737 days and 129 versus 307 versus 737 days, respectively, in melanomas with absent, low, and high CYP27B1). Also, CYP27B1 expression was inversely related to melanin in melanoma cells in vivo and melanoma cells cultured in vitro. Thus, reduction of CYP27B1 correlates with melanoma phenotype and behavior, and its lack affects the survival of melanoma patients, indicating a role in the pathogenesis and progression of this cancer.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-796 Bydgoszcz, Poland
| | | | | | | |
Collapse
|
273
|
Maternal early-pregnancy vitamin D status is associated with maternal depressive symptoms in the Amsterdam Born Children and Their Development cohort. Psychosom Med 2012; 74:751-7. [PMID: 22879429 DOI: 10.1097/psy.0b013e3182639fdb] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine low maternal vitamin D status as a potential risk factor for high levels of depressive symptoms in a pregnant population. METHODS In the Amsterdam Born Children and Their Development cohort, maternal serum vitamin D (n = 4236) was measured during early pregnancy (median, 13 weeks) and labeled "deficient" (≤ 29.9 nM), "insufficient" (30-49.9 nM), "sufficient" (50-79.9 nM), and "normal" (≥ 80 nM). Maternal depressive symptoms were measured by the Center for Epidemiological Studies Depression Scale at 16-week gestation. The association of vitamin D status with high levels of depressive symptoms (Center for Epidemiological Studies Depression score ≥ 16) was assessed by multivariate logistic regression (final sample, 4101). RESULTS Overall, 23% of women had vitamin D deficiency, and 21% of women had vitamin D insufficiency. Women with high levels of depressive symptoms (28%) had lower vitamin D concentrations than women with low levels of depressive symptoms (p < .001). After adjustment for constitutional factors, life-style and psychosocial covariates, and sociodemographic factors, vitamin D deficiency (odds ratio [OR], 1.48; 95% confidence interval [CI], 1.13-1.95) and insufficiency (OR, 1.44; 95% CI, 1.12-1.85) were significantly associated with high levels of depressive symptoms. Additional analyses revealed a linear trend, with an OR of 1.05 (95% CI, 1.02-1.08) for each 10-nM decrease in vitamin D status. CONCLUSIONS In this study, low early-pregnancy vitamin D status was associated with elevated depressive symptoms in pregnancy. Further research, using a randomized controlled design, would be required to confirm the causality of this association and the potential benefits of higher vitamin D intake for psychosocial health.
Collapse
|
274
|
Annweiler C, Beauchet O. Possibility of a new anti-alzheimer's disease pharmaceutical composition combining memantine and vitamin D. Drugs Aging 2012; 29:81-91. [PMID: 22233455 DOI: 10.2165/11597550-000000000-00000] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia. In addition to a decrease in brain cholinergic activity, AD is also marked by glutamatergic excitotoxicity that results in neuronal death, characterized clinically by a loss of learning and memory abilities. The currently available drugs for symptomatic treatment of AD (i.e. memantine and acetylcholinesterase inhibitors) only temporarily slow down the natural history of the disease process. Among them, memantine is the only one that acts as a non-competitive low-affinity modulator of N-methyl-D-aspartate (NMDA) receptors. Memantine's modulation of NMDA receptors has been reported to prevent the neuronal necrosis induced by glutamatergic calcium neurotoxicity, but not the neuronal apoptosis resulting from oxidative stress. This observation calls for new drug regimen strategies based on memantine combined with molecules having antioxidant effects, in order to create a multi-target therapy to increase neuronal protection and prevent AD progression. We wish to highlight that vitamin D is a secosteroid hormone that is suggested to have neuroprotective effects that include regulation of neuronal calcium homeostasis, as well as antioxidant, neurotrophic and anti-inflammatory properties. The combination of memantine plus vitamin D may provide, in one treatment, enhanced protection against several degenerative processes linked to AD. Based on the present rationale, a clinical trial testing this hypothesis is currently in recruitment (AD-IDEA trial; ClinicalTrials.gov identifier: NCT01409694). This new pharmaceutical composition may provide an effective solution to the problem of neuronal death and cognitive decline in AD.
Collapse
Affiliation(s)
- Cédric Annweiler
- Department of Neuroscience, Division of Geriatric Medicine, Angers University Hospital, Angers, France
| | | |
Collapse
|
275
|
1α,25(OH)(2)-Vitamin D3 increases dysferlin expression in vitro and in a human clinical trial. Mol Ther 2012; 20:1988-97. [PMID: 22910291 DOI: 10.1038/mt.2012.156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dysferlinopathies are a heterogenous group of autosomal recessive inherited muscular dystrophies caused by mutations in DYSF gene. Dysferlin is expressed mainly in skeletal muscle and in monocytes and patients display a severe reduction or absence of protein in both tissues. Vitamin D3 promotes differentiation of the promyelocytic leukemia HL60 cells. We analyzed the effect of vitamin D3 on dysferlin expression in vitro using HL60 cells, monocytes and myotubes from controls and carriers of a single mutation in DYSF. We also performed an observational study with oral vitamin D3 in a cohort of 21 carriers. Fifteen subjects were treated for 1 year and dysferlin expression in monocytes was analysed before and after treatment. Treatment with vitamin D3 increased expression of dysferlin in vitro. The effect of vitamin D3 was mediated by both a nongenomic pathway through MEK/ERK and a genomic pathway involving binding of vitamin D3 receptor to the dysferlin promoter. Carriers treated with vitamin D3 had significantly increased expression of dysferlin in monocytes compared with nontreated carriers (P < 0.05). These findings will have important therapeutic implications since a combination of different molecular strategies together with vitamin D3 uptake could increase dysferlin expression to nonpathological protein levels.
Collapse
|
276
|
Castro LCGD. [The vitamin D endocrine system]. ACTA ACUST UNITED AC 2012; 55:566-75. [PMID: 22218438 DOI: 10.1590/s0004-27302011000800010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 10/21/2011] [Indexed: 01/18/2023]
Abstract
The vitamin D endocrine system comprises a group of 7-dehydrocholesterol-derived secosteroid molecules, including its active metabolite 1,25-dihydroxy-vitamin D (1,25(OH)(2)D), its precursors and other metabolites, its binding protein (DBP) and nuclear receptor (VDR), as well as cytochrome P450 complex enzymes participating in activation and inactivation pathways of those molecules. The biologic effects of 1,25(OH)(2)D are mediated by VDR, a ligand-activated transcription factor which is a member of the nuclear receptors family, spread in almost all human cells. In addition to its classic role in the regulation of calcium metabolism and bone health, evidence suggests that 1,25(OH)(2)D directly or indirectly modulates about 3% of the human genome, participating in the regulation of chief functions of systemic homeostasis, such as cell growth, differentiation and apoptosis, regulation of immune, cardiovascular and musculoskeletal systems, and insulin metabolism. Given the critical influence of the vitamin D endocrine system in many processes of systemic metabolic equilibrium, the laboratory assays available for the evaluation of this system have to present high accuracy and reproducibility, enabling the establishment of cutoff points that, beyond being consensually accepted, reliably express the vitamin D status of the organism, and the respective clinical-metabolic impacts on the global health of the individual.
Collapse
|
277
|
Kempker JA, Tangpricha V, Ziegler TR, Martin GS. Vitamin D in sepsis: from basic science to clinical impact. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:316. [PMID: 22809263 PMCID: PMC3580673 DOI: 10.1186/cc11252] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The growing basic and clinical investigations into the extraskeletal effects of vitamin D have revealed roles in the functioning of the immune system, generating interesting questions about this nutrient's connections to sepsis. This article briefly reviews the current science of the function of vitamin D in the immune system as well as the emerging clinical literature regarding its associations with respiratory infections, sepsis, and critical illness. Finally, we offer views on the potential future directions for research in the field by outlining potential relevant scenarios and outcomes.
Collapse
|
278
|
Zhang Q, Kanterewicz B, Buch S, Petkovich M, Parise R, Beumer J, Lin Y, Diergaarde B, Hershberger PA. CYP24 inhibition preserves 1α,25-dihydroxyvitamin D(3) anti-proliferative signaling in lung cancer cells. Mol Cell Endocrinol 2012; 355:153-61. [PMID: 22386975 PMCID: PMC3312998 DOI: 10.1016/j.mce.2012.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/09/2012] [Accepted: 02/07/2012] [Indexed: 01/08/2023]
Abstract
Human lung tumors aberrantly express the 1α,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3))-catabolizing enzyme, CYP24. We hypothesized that CYP24 reduces 1,25(OH)(2)D(3)-mediated transcription and allows lung cancer cells to escape its growth-inhibitory action. To test this, H292 lung cancer cells and the CYP24-selective inhibitor CTA091 were utilized. In H292 cells, CTA091 reduces 1,25(OH)(2)D(3) catabolism, significantly increases 1,25(OH)(2)D(3)-mediated growth inhibition, and increases 1,25(OH)(2)D(3) effects on induced and repressed genes in gene expression profiling studies. Pathway mapping of repressed genes uncovered cell cycle as a predominant 1,25(OH)(2)D(3) target. In H292 cells, 1,25(OH)(2)D(3) significantly decreases cyclin E2 levels and induces G(0)/G(1) arrest. A broader set of cyclins is down-regulated when 1,25(OH)(2)D(3) is combined with CTA091, and cell cycle arrest further increases. Effects of CTA091 on 1,25(OH)(2)D(3) signaling are vitamin D receptor-dependent. These data provide evidence that CYP24 limits 1,25(OH)(2)D(3) anti-proliferative signaling in cancer cells, and suggest that CTA091 may be beneficial in preserving 1,25(OH)(2)D(3) action in lung cancer.
Collapse
Affiliation(s)
- Qiuhong Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
279
|
The Role of Vitamin D Deficiency in the Pathogenesis of Osteoporosis and in the Modulation of the Immune System in HIV-Infected Patients. Clin Rev Bone Miner Metab 2012. [DOI: 10.1007/s12018-012-9131-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
280
|
Vitamin D signaling in the bovine immune system: a model for understanding human vitamin D requirements. Nutrients 2012; 4:181-96. [PMID: 22666545 PMCID: PMC3347026 DOI: 10.3390/nu4030181] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/29/2012] [Accepted: 03/05/2012] [Indexed: 12/31/2022] Open
Abstract
The endocrine physiology of vitamin D in cattle has been rigorously investigated and has yielded information on vitamin D requirements, endocrine function in health and disease, general metabolism, and maintenance of calcium homeostasis in cattle. These results are relevant to human vitamin D endocrinology. The current debate regarding vitamin D requirements is centered on the requirements for proper intracrine and paracrine vitamin D signaling. Studies in adult and young cattle can provide valuable insight for understanding vitamin D requirements as they relate to innate and adaptive immune responses during infectious disease. In cattle, toll-like receptor recognition activates intracrine and paracrine vitamin D signaling mechanism in the immune system that regulates innate and adaptive immune responses in the presence of adequate 25-hydroxyvitamin D. Furthermore, experiments with mastitis in dairy cattle have provided in vivo evidence for the intracrine vitamin D signaling mechanism in macrophages as well as vitamin D mediated suppression of infection. Epidemiological evidence indicates that circulating concentrations above 32 ng/mL of 25-hydroxyvitamin D are necessary for optimal vitamin D signaling in the immune system, but experimental evidence is lacking for that value. Experiments in cattle can provide that evidence as circulating 25-hydroxyvitamin D concentrations can be experimentally manipulated within ranges that are normal for humans and cattle. Additionally, young and adult cattle can be experimentally infected with bacteria and viruses associated with significant diseases in both cattle and humans. Utilizing the bovine model to further delineate the immunomodulatory role of vitamin D will provide potentially valuable insights into the vitamin D requirements of both humans and cattle, especially as they relate to immune response capacity and infectious disease resistance.
Collapse
|
281
|
Abstract
The keratinocytes of the skin are unique in being not only the primary source of vitamin D for the body, but in possessing both the enzymatic machinery to metabolize the vitamin D produced to active metabolites (in particular 1,25(OH)(2)D) and the vitamin D receptor (VDR) that enables the keratinocytes to respond to the 1,25(OH)(2)D thus generated. Numerous functions of the skin are regulated by vitamin D and/or its receptor. These include inhibition of proliferation, stimulation of differentiation including formation of the permeability barrier, promotion of innate immunity, regulation of the hair follicle cycle, and suppression of tumor formation. Regulation of these actions is exerted by a number of different coregulator complexes including the coactivators vitamin D receptor interacting protein (DRIP) complex also known as Mediator and the steroid receptor coactivator (SRC) family (of which SRC 2 and 3 are found in keratincytes), the inhibitor hairless (Hr), and β-catenin whose impact on VDR function is complex. Different coregulators appear to be involved in different VDR regulated functions. This review will examine the various functions of vitamin D and its receptor in the skin, and explore the mechanisms by which these functions are regulated.
Collapse
Affiliation(s)
- Daniel D Bikle
- Veterans Affairs Medical Center/University of California, San Francisco, San Francisco, CA 94121, USA.
| |
Collapse
|
282
|
Byers SW, Rowlands T, Beildeck M, Bong YS. Mechanism of action of vitamin D and the vitamin D receptor in colorectal cancer prevention and treatment. Rev Endocr Metab Disord 2012; 13:31-8. [PMID: 21861107 PMCID: PMC3262916 DOI: 10.1007/s11154-011-9196-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vitamin D and its analogs are potent inhibitors of colorectal cancer growth and metastasis. A number of recent studies have defined the intersections between the β-catenin-TCF pathway (a known contributor to colorectal cancer progression) and the vitamin D receptor (VDR) pathway, shedding light on the underlying mechanisms. Vitamin D also regulates the innate immune response, and as such influences susceptibility to inflammatory bowel disease, a predisposing factor in colorectal cancer. Understanding the role of vitamin D in these different contexts will enable development of next generation vitamin D analogs that will serve as both chemopreventatives and cancer therapeutics, without the accompanying side effects of hypercalcemia usually associated with high vitamin D intake. This review summarizes the mechanisms of action of vitamin D and the VDR in the context of the gastrointestinal tract and colorectal carcinogenesis.
Collapse
Affiliation(s)
- Stephen W Byers
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, E415 Research Building, 3970 Reservoir Road, NW, Washington, DC 20057, USA.
| | | | | | | |
Collapse
|
283
|
Abstract
Vitamin D has emerged as a pleiotropic regulator of human physiology, and recent work has revealed that it has several roles in control of human immune system function. Vitamin D was originally characterized for its role in calcium homeostasis, and the active form, 1,25-dihydroxyvitamin D (1,25D), can be produced in the kidney by 1α-hydroxylation of circulating 25-hydroxyvitamin D catalyzed by the enzyme CYP27B1. Renal CYP27B1 expression is regulated by calcium regulatory inputs, and 1,25D produced in the kidney was thought to function largely as an endocrine hormone. However, it is now clear that CYP27B1 is expressed in numerous tissues, and that 1,25D acts at several sites in the body in an intracrine or paracrine manner. In particular, both CYP27B1 and the vitamin D receptor (VDR) are expressed in several cell types in the immune system, where CYP27B1 production is controlled by a number of immune-specific inputs. Recent research has opened several windows on the molecular mechanisms by which 1,25D signaling regulates both innate and adaptive immune responses in humans. Moreover, intervention trials are beginning to provide evidence that vitamin D supplementation can bolster clinical responses to infection. This review will discuss recent developments in our understanding of how immune signaling controls local vitamin D metabolism and how, in turn, the 1,25D-bound VDR modulates immune system function. A particular emphasis will be placed on the interplay between vitamin D signaling and signaling through different classes of pattern recognition receptors in the production of antimicrobial peptides during innate immune responses to microbial infection.
Collapse
Affiliation(s)
- John H White
- Department of Physiology, McGill University, McIntyre Bldg., Rm. 1112, 3655 Drummond St, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
284
|
Al-Daghri NM, Al-Attas O, Alokail MS, Alkharfy KM, Draz HM, Agliardi C, Mohammed AK, Guerini FR, Clerici M. Vitamin D Receptor Gene Polymorphisms and HLA DRB1*04 Cosegregation in Saudi Type 2 Diabetes Patients. THE JOURNAL OF IMMUNOLOGY 2012; 188:1325-32. [DOI: 10.4049/jimmunol.1101954] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
285
|
Handel AE, Williamson AJ, Ramagopalan SV. Concealed effects of gene–environment interactions in genome-wide association. Mult Scler Relat Disord 2012; 1:39-42. [DOI: 10.1016/j.msard.2011.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 08/05/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
286
|
Suzuki M, Yoshioka M, Hashimoto M, Murakami M, Kawasaki K, Noya M, Takahashi D, Urashima M. 25-hydroxyvitamin D, vitamin D receptor gene polymorphisms, and severity of Parkinson's disease. Mov Disord 2011; 27:264-71. [PMID: 22213340 DOI: 10.1002/mds.24016] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/17/2011] [Accepted: 09/26/2011] [Indexed: 12/12/2022] Open
Abstract
We aimed to examine associations among serum 25-hydroxyvitamin D levels, 1,25-dihyroxyvitamin D levels, vitamin D receptor polymorphisms, vitamin D binding protein gene polymorphisms, and the severity of Parkinson's disease. In 137 patients, the severity of Parkinson's disease was evaluated using Hoehn & Yahr stage and Unified Parkinson's Disease Rating Stage by neurologists and compared with 25-hydroxyvitamin D, 1,25-hydroxyvitamin D, vitamin D receptor polymorphisms, ie, FokI (rs10735810), BsmI (rs1544410), Cdx2 (rs11568820), ApaI (rs7976091), and TaqI (rs731236), and vitamin D binding protein gene polymorphisms GC1 (rs7041)/GC2 (rs4588) in a cross-sectional study. Mean ± standard deviation levels of 25-hydroxyvitamin D were 21.1 ± 9.0 ng/mL. Levels were deficient (<20 ng/mL) in 49% of patients. In contrast, 1,25-hydroxyvitamin D levels were considered normal in all patients. Higher circulating 25-hydroxyvitamin D levels were significantly associated with milder Parkinson's disease evaluated by Hoehn & Yahr stage (P = .002) and total Unified Parkinson's Disease Rating Stage (P = .004) even after multivariate adjustment for 8 covariates, including disease duration. However, significant associations were not observed in 1,25-hydroxyvitamin D levels. Under multivariate analysis with 25-hydroxyvitamin D as well as other 8 covariates including disease duration, carriers of vitamin D receptor FokICC genotype had a milder form of Parkinson's disease: odds ratio, 0.32; 95% confidence interval, 0.16 to 0.66, P = 0.002. These results suggest that higher 25-hydroxyvitamin D levels and the vitamin D receptor FokICC genotype may be independently associated with milder forms of Parkinson's disease. However, significant associations were not observed in 1,25-hydroxyvitamin D levels.
Collapse
Affiliation(s)
- Masahiko Suzuki
- Department of Neurology, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
287
|
Bochud M, Burnier M, Guessous I. Top Three Pharmacogenomics and Personalized Medicine Applications at the Nexus of Renal Pathophysiology and Cardiovascular Medicine. CURRENT PHARMACOGENOMICS AND PERSONALIZED MEDICINE 2011; 9:299-322. [PMID: 23049672 PMCID: PMC3460365 DOI: 10.2174/187569211798377135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/08/2011] [Accepted: 10/13/2011] [Indexed: 12/18/2022]
Abstract
Pharmacogenomics is a field with origins in the study of monogenic variations in drug metabolism in the 1950s. Perhaps because of these historical underpinnings, there has been an intensive investigation of 'hepatic pharmacogenes' such as CYP450s and liver drug metabolism using pharmacogenomics approaches over the past five decades. Surprisingly, kidney pathophysiology, attendant diseases and treatment outcomes have been vastly under-studied and under-theorized despite their central importance in maintenance of health, susceptibility to disease and rational personalized therapeutics. Indeed, chronic kidney disease (CKD) represents an increasing public health burden worldwide, both in developed and developing countries. Patients with CKD suffer from high cardiovascular morbidity and mortality, which is mainly attributable to cardiovascular events before reaching end-stage renal disease. In this paper, we focus our analyses on renal function before end-stage renal disease, as seen through the lens of pharmacogenomics and human genomic variation. We herein synthesize the recent evidence linking selected Very Important Pharmacogenes (VIP) to renal function, blood pressure and salt-sensitivity in humans, and ways in which these insights might inform rational personalized therapeutics. Notably, we highlight and present the rationale for three applications that we consider as important and actionable therapeutic and preventive focus areas in renal pharmacogenomics: 1) ACE inhibitors, as a confirmed application, 2) VDR agonists, as a promising application, and 3) moderate dietary salt intake, as a suggested novel application. Additionally, we emphasize the putative contributions of gene-environment interactions, discuss the implications of these findings to treat and prevent hypertension and CKD. Finally, we conclude with a strategic agenda and vision required to accelerate advances in this under-studied field of renal pharmacogenomics with vast significance for global public health.
Collapse
Affiliation(s)
- Murielle Bochud
- Institute of Social and Preventive Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Michel Burnier
- Service of Nephrology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Idris Guessous
- Institute of Social and Preventive Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Unit of Population Epidemiology, Division of Primary Care medicine, Department of Community Medicine and Primary Care and Emergency Medicine, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
288
|
Fernandes de Abreu DA, Landel V, Féron F. Seasonal, gestational and postnatal influences on multiple sclerosis: The beneficial role of a vitamin D supplementation during early life. J Neurol Sci 2011; 311:64-8. [DOI: 10.1016/j.jns.2011.08.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/23/2011] [Accepted: 08/29/2011] [Indexed: 11/15/2022]
|
289
|
White JH. Regulation of intracrine production of 1,25-dihydroxyvitamin D and its role in innate immune defense against infection. Arch Biochem Biophys 2011; 523:58-63. [PMID: 22107948 DOI: 10.1016/j.abb.2011.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/03/2011] [Indexed: 12/31/2022]
Abstract
Vitamin D was discovered as the cure for nutritional rickets. Classically, hormonal 1,25-dihydroxyvitamin D (1,25D), produced in the kidney by CYP27B1-catalyzed 1α-hydroxylation from its circulating 25-hydroxy precursor, has been considered to function as a critical endocrine regulator of calcium homeostasis. However, our appreciation of vitamin D metabolism and physiological function has evolved dramatically in recent years. First, vitamin D is now recognized as a pleiotropic regulator of human physiology, with emerging roles in cancer chemoprevention, cardio-protection, and, in particular, regulation of immune system functions. Moreover, CYP27B1 is very widely expressed, and evidence is rapidly accumulating that local CYP27B1-catalyzed production of 1,25D, controlled by tissue-specific signals, is critical for its physiological actions. Nowhere is this more apparent than in the innate immune system, where recent studies have shown that CYP27B1 expression is under control of several immune signaling pathways, and that signaling by 1,25D in macrophages and dendritic cells is critical for innate immune responses to infection. This review will describe our current knowledge of the signaling pathways that lead to 1,25D production in the immune system and the downstream signaling events it controls in response to pathogen recognition.
Collapse
Affiliation(s)
- John H White
- Department of Physiology, McIntyre Bldg., Rm. 1112, 3655 Drummond St., Montreal, Qc, Canada H3G 1Y6.
| |
Collapse
|
290
|
Yu J, Gattoni-Celli M, Zhu H, Bhat NR, Sambamurti K, Gattoni-Celli S, Kindy MS. Vitamin D3-enriched diet correlates with a decrease of amyloid plaques in the brain of AβPP transgenic mice. J Alzheimers Dis 2011; 25:295-307. [PMID: 21422528 DOI: 10.3233/jad-2011-101986] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In addition to its function in calcium and bone metabolism, vitamin D is neuroprotective and important for mitigating inflammation. Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the central nervous system, characterized by neuronal loss in many areas of the brain, and the formation of senile (neuritic) plaques, which increase in number and size over time. The goal of this project was to investigate whether vitamin D3 supplementation would affect amyloid plaque formation in amyloid-β protein precursor (AβPP) transgenic mice that spontaneously develop amyloid plaques within 3-4 months of birth. AβPP mice were fed control, vitamin D3-deficient or vitamin D3-enriched diets for five months, starting immediately after weaning. At the end of the study, the animals were subjected to behavioral studies, sacrificed, and examined for bone changes and brain amyloid load, amyloid-β (Aβ) peptide levels, inflammatory changes, and nerve growth factor (NGF) content. The results obtained indicate that a vitamin D3-enriched diet correlates with a decrease in the number of amyloid plaques, a decrease in Aβ peptides, a decrease in inflammation, and an increase in NGF in the brains of AβPP mice. These observations suggest that a vitamin D3-enriched diet may benefit AD patients.
Collapse
Affiliation(s)
- Jin Yu
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | |
Collapse
|
291
|
Douard V, Suzuki T, Sabbagh Y, Lee J, Shapses S, Lin S, Ferraris RP. Dietary fructose inhibits lactation-induced adaptations in rat 1,25-(OH)₂D₃ synthesis and calcium transport. FASEB J 2011; 26:707-21. [PMID: 22038050 DOI: 10.1096/fj.11-190264] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We recently showed that excessive fructose consumption, already associated with numerous metabolic abnormalities, reduces rates of intestinal Ca(2+) transport. Using a rat lactation model with increased Ca(2+) requirements, we tested the hypothesis that mechanisms underlying these inhibitory effects of fructose involve reductions in renal synthesis of 1,25-(OH)(2)D(3). Pregnant and virgin (control) rats were fed isocaloric fructose or, as controls, glucose, and starch diets from d 2 of gestation to the end of lactation. Compared to virgins, lactating dams fed glucose or starch had higher rates of intestinal transcellular Ca(2+) transport, elevated intestinal and renal expression of Ca(2+) channels, Ca(2+)-binding proteins, and CaATPases, as well as increased levels of 25-(OH)D(3) and 1,25-(OH)(2)D(3). Fructose consumption prevented almost all of these lactation-induced increases, and reduced vitamin D receptor binding to promoter regions of Ca(2+) channels and binding proteins. Changes in 1,25-(OH)(2)D(3) level were tightly correlated with alterations in expression of 1α-hydroxylase but not with levels of parathyroid hormone and of 24-hydroxylase. Bone mineral density, content, and mechanical strength each decreased with lactation, but then fructose exacerbated these effects. When Ca(2+) requirements increase during lactation or similar physiologically challenging conditions, excessive fructose consumption may perturb Ca(2+) homeostasis because of fructose-induced reductions in synthesis of 1,25-(OH)(2)D(3).
Collapse
Affiliation(s)
- Veronique Douard
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07101-1709, USA
| | | | | | | | | | | | | |
Collapse
|
292
|
Berlanga-Taylor AJ, Disanto G, Ebers GC, Ramagopalan SV. Vitamin D-gene interactions in multiple sclerosis. J Neurol Sci 2011; 311:32-6. [PMID: 22000399 DOI: 10.1016/j.jns.2011.08.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/23/2011] [Accepted: 08/29/2011] [Indexed: 10/16/2022]
Abstract
Vitamin D has been studied for over a century and its functions related to calcium homeostasis are well established. Over the last 30 years or so it has become increasingly clear that it has a wider role in physiology and, importantly, also in disease. Vitamin D deficiency has been linked to multiple sclerosis (MS); however the molecular mechanisms of this association were poorly understood. Recent technological advances have provided major insights as to how vitamin D may exert its role, particularly through the actions of the vitamin D receptor (VDR). In this review we aim to highlight the importance of the interaction between vitamin D and MS associated genes which provide a biological basis for the association between vitamin D and MS risk.
Collapse
|
293
|
Forster RE, Jurutka PW, Hsieh JC, Haussler CA, Lowmiller CL, Kaneko I, Haussler MR, Kerr Whitfield G. Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells. Biochem Biophys Res Commun 2011; 414:557-62. [PMID: 21982773 DOI: 10.1016/j.bbrc.2011.09.117] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 01/06/2023]
Abstract
Isoforms of the mammalian klotho protein serve as membrane co-receptors that regulate renal phosphate and calcium reabsorption. Phosphaturic effects of klotho are mediated in cooperation with fibroblast growth factor receptor-1 and its FGF23 ligand. The vitamin D receptor and its 1,25-dihydroxyvitamin D(3) ligand are also crucial for calcium and phosphate regulation at the kidney and participate in a feedback loop with FGF23 signaling. Herein we characterize vitamin D receptor-mediated regulation of klotho mRNA expression, including the identification of vitamin D responsive elements (VDREs) in the vicinity of both the mouse and human klotho genes. In keeping with other recent studies of vitamin D-regulated genes, multiple VDREs control klotho expression, with the most active elements located at some distance (-31 to -46 kb) from the klotho transcriptional start site. We therefore postulate that the mammalian klotho gene is up-regulated by liganded VDR via multiple remote VDREs. The phosphatemic actions of 1,25-dihydroxyvitamin D(3) are thus opposed via the combined phosphaturic effects of FGF23 and klotho, both of which are upregulated by the liganded vitamin D receptor.
Collapse
Affiliation(s)
- Ryan E Forster
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA.
| | | | | | | | | | | | | | | |
Collapse
|
294
|
Vitamin D receptor (VDR) gene SNPs influence VDR expression and modulate protection from multiple sclerosis in HLA-DRB1*15-positive individuals. Brain Behav Immun 2011; 25:1460-7. [PMID: 21664963 DOI: 10.1016/j.bbi.2011.05.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/26/2011] [Accepted: 05/26/2011] [Indexed: 11/20/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease with a multifactorial etiology. The HLA-DRB1*15 allele, is the main genetic risk factor for MS in Caucasians; recent findings showed that the transcription of this molecule is regulated by the vitamin D/vitamin D receptor (VDR) complex. We analyzed SNPs within the VDR gene in association with the HLA-DRB1 locus in 641 MS patients diagnosed according to McDonald criteria and 558 age- and sex-matched healthy controls, to verify possible correlations between the vitamin D/VDR complex, HLA-DRB1, and susceptibility to MS. Results confirmed that HLA-DRB1*15 is a strong predisposing allele (p<1×10(-7); OR: 3.04; 95% CI: 2.02-4.60) for MS. Cosegregation analyses of VDR SNPs with HLA-DRB1*15 indicated a reduction of risk for MS given by the presence of the -DRB1*15-rs731236 T VDR haplotype (p=9.5×10(-5); OR: 2.52; 95% CI: 1.56-4.06) and, conversely, an augmented risk for disease associated with the -DRB1*15-rs731236 C VDR haplotype. Analyses performed on HLA-DRB1*15-positive MS patients and HC alone confirmed the protective role of rs731236 TT VDR genotype (p(y)=0.004; OR: 0.53; 95% CI: 0.33-0.83); notably, FACS, PCR, and confocal microscopy analyses showed that rs731236 TT genotype is associated with an augmented VDR expression in MBP-stimulated PBMC from patients. In conclusion, rs731236 TT VDR genotype modulates VDR expression and confers protection against MS in HLA-DRB1*15-positive individuals. Results herein offer a model justifying the interaction between the major genetic (HLA-DRB*15) and environmental (vitamin D) factors associated with MS onset.
Collapse
|
295
|
Pereira F, Barbáchano A, Silva J, Bonilla F, Campbell MJ, Muñoz A, Larriba MJ. KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Hum Mol Genet 2011; 20:4655-65. [PMID: 21890490 DOI: 10.1093/hmg/ddr399] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
KDM6B/JMJD3 is a histone H3 lysine demethylase with an important gene regulatory role in development and physiology. Here, we show that human JMJD3 expression is induced by the active vitamin D metabolite 1α,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and that JMJD3 modulates the gene regulatory action of this hormone. 1,25(OH)(2)D(3) activates the JMJD3 gene promoter and increases the level of JMJD3 RNA in human cancer cells. JMJD3 upregulation was strictly dependent on vitamin D receptor (VDR) expression and was abolished by cycloheximide. In SW480-ADH colon cancer cells, JMJD3 knockdown or expression of an inactive mutant JMJD3 fragment decreased the induction by 1,25(OH)(2)D(3) of several target genes and of an epithelial adhesive phenotype. Moreover, JMJD3 knockdown upregulated the epithelial-to-mesenchymal transition inducers SNAIL1 and ZEB1 and the mesenchymal markers fibronectin and LEF1, while it downregulated the epithelial proteins E-cadherin, Claudin-1 and Claudin-7. Additionally, JMJD3 knockdown abolished the nuclear export of β-catenin and the inhibition of β-catenin transcriptional activity caused by 1,25(OH)(2)D(3). Importantly, the expression of JMJD3 correlated directly with that of VDR and inversely with that of SNAI1 in a series of 96 human colon tumours. Our results indicate for the first time that an epigenetic gene coding for a histone demethylase such as JMJD3 is a VDR co-target that partially mediates the effects of 1,25(OH)(2)D(3) on human colon.
Collapse
Affiliation(s)
- Fábio Pereira
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, E-28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
296
|
Leow L, Simpson T, Cursons R, Karalus N, Hancox RJ. Vitamin D, innate immunity and outcomes in community acquired pneumonia. Respirology 2011; 16:611-6. [PMID: 21244571 DOI: 10.1111/j.1440-1843.2011.01924.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVE Vitamin D regulates the production of the antimicrobial peptides cathelicidin and beta-defensin-2, which play an important role in the innate immune response to infection. We hypothesized that vitamin D deficiency would be associated with lower levels of these peptides and worse outcomes in patients admitted to hospital with community acquired pneumonia. METHODS Associations between mortality and serum levels of 25-hydroxyvitamin D, cathelicidin and beta-defensin-2 were investigated in a prospective cohort of 112 patients admitted with community acquired pneumonia during winter. RESULTS Severe 25-hydroxyvitamin D deficiency (<30nmol/L) was common in this population (15%) and was associated with a higher 30-day mortality compared with patients with sufficient 25-hydroxyvitamin D (>50nmol/L) (odds ratio 12.7, 95% confidence interval: 2.2-73.3, P=0.004). These associations were not explained by differences in age, comorbidities, or the severity of the acute illness. Neither cathelicidin nor beta-defensin-2 levels predicted mortality, although there was a trend towards increased mortality with lower cathelicidin (P=0.053). Neither cathelicidin nor beta-defensin-2 levels correlated with 25-hydroxyvitamin D. CONCLUSIONS 25-hydroxyvitamin D deficiency is associated with increased mortality in patients admitted to hospital with community acquired pneumonia during winter. Contrary to our hypothesis, 25-hydroxyvitamin D levels were not associated with levels of cathelicidin or beta-defensin-2.
Collapse
Affiliation(s)
- Leong Leow
- Respiratory Research Unit, Waikato Hospital Department of Molecular Genetics, University of Waikato, Hamilton Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
297
|
Heikkinen S, Väisänen S, Pehkonen P, Seuter S, Benes V, Carlberg C. Nuclear hormone 1α,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy. Nucleic Acids Res 2011; 39:9181-93. [PMID: 21846776 PMCID: PMC3241659 DOI: 10.1093/nar/gkr654] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A global understanding of the actions of the nuclear hormone 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) and its vitamin D receptor (VDR) requires a genome-wide analysis of VDR binding sites. In THP-1 human monocytic leukemia cells we identified by ChIP-seq 2340 VDR binding locations, of which 1171 and 520 occurred uniquely with and without 1α,25(OH)2D3 treatment, respectively, while 649 were common. De novo identified direct repeat spaced by 3 nucleotides (DR3)-type response elements (REs) were strongly associated with the ligand-responsiveness of VDR occupation. Only 20% of the VDR peaks diminishing most after ligand treatment have a DR3-type RE, in contrast to 90% for the most growing peaks. Ligand treatment revealed 638 1α,25(OH)2D3 target genes enriched in gene ontology categories associated with immunity and signaling. From the 408 upregulated genes, 72% showed VDR binding within 400 kb of their transcription start sites (TSSs), while this applied only for 43% of the 230 downregulated genes. The VDR loci showed considerable variation in gene regulatory scenarios ranging from a single VDR location near the target gene TSS to very complex clusters of multiple VDR locations and target genes. In conclusion, ligand binding shifts the locations of VDR occupation to DR3-type REs that surround its target genes and occur in a large variety of regulatory constellations.
Collapse
Affiliation(s)
- Sami Heikkinen
- Department of Biosciences, University of Eastern Finland, FIN-70210 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
298
|
Haussler MR, Jurutka PW, Mizwicki M, Norman AW. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)₂vitamin D₃: genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab 2011; 25:543-59. [PMID: 21872797 DOI: 10.1016/j.beem.2011.05.010] [Citation(s) in RCA: 437] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The conformationally flexible secosteroid, 1α,25(OH)₂vitamin D₃ (1α,25(OH)₂D₃) initiates biological responses via binding to the vitamin D receptor (VDR). The VDR contains two overlapping ligand binding sites, a genomic pocket (VDR-GP) and an alternative pocket (VDR-AP), that respectively bind a bowl-like ligand configuration (gene transcription) or a planar-like ligand shape (rapid responses). When occupied by 1α,25(OH)₂D₃, the VDR-GP interacts with the retinoid X receptor to form a heterodimer that binds to vitamin D responsive elements in the region of genes directly controlled by 1α,25(OH)₂D₃. By recruiting complexes of either coactivators or corepressors, activated VDR modulates the transcription of genes encoding proteins that promulgate the traditional genomic functions of vitamin D, including signaling intestinal calcium and phosphate absorption to effect skeletal and calcium homeostasis. 1α,25(OH)₂D₃/VDR control of gene expression and rapid responses also delays chronic diseases of aging such as osteoporosis, cancer, type-1 and -2 diabetes, arteriosclerosis, vascular disease, and infection.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA.
| | | | | | | |
Collapse
|
299
|
El Hayek J, Egeland G, Weiler H. Older age and lower adiposity predict better 25-hydroxy vitamin D concentration in Inuit adults: International Polar Year Inuit Health Survey, 2007-2008. Arch Osteoporos 2011; 6:167-77. [PMID: 22886103 DOI: 10.1007/s11657-011-0062-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 06/14/2011] [Indexed: 02/03/2023]
Abstract
UNLABELLED Our aim was to determine the prevalence and correlates of serum 25-hydroxy vitamin D (25(OH)D) concentration in Inuit adults. Low 25(OH)D concentration (< 50 nmol/L) was common; the strongest positive predictors were older age and healthy waist circumference. Nutritional health promotion and interventions along with longitudinal nutritional assessments are needed. PURPOSE While 25(OH)D concentration of Canadian Inuit has not been examined on a large scale, Nutrition Canada Survey (1973) suggested that Inuit have low intakes of vitamin D. Our main purpose was to determine the prevalence and correlates of 25(OH)D concentration in a recent Inuit Health Survey. METHODS Inuit adults (≥ 18 years) participated in the 2007-2008 International Polar Year Inuit Health Survey conducted in the months of August to October. Households were selected randomly in 36 communities. Dietary intake was assessed using a 24-h recall and a food frequency questionnaire. Anthropometric measurements, household living conditions, supplement use, and health status were assessed. In fasting samples, serum 25(OH)D and parathyroid hormone were measured using chemiluminesent assays (Diasorin, Liaison). RESULTS Of the 2,595 participants, serum 25(OH)D was available on 2,207, of whom 67.4% and 42.2% had concentrations below 75 and 50 nmol/L, respectively. Further, 27.2% had values <37.5 nmol/L. Older adults (≥ 51 years) consumed higher quantities of traditional food and consequently had higher vitamin D intake than younger adults (18-30 and 31-50 years) (p < 0.05). The strongest positive predictors of 25(OH)D (≥ 50 or 75 nmol/L) among Inuit adults were older age and healthy waist circumference. CONCLUSIONS This is the first population assessment of dietary vitamin D and 25(OH)D concentration in Inuit adults. The high prevalence of suboptimal 25(OH)D concentration noted in the late summer and early fall raises concerns of greater prevalence and more severe inadequacies in the winter.
Collapse
Affiliation(s)
- Jessy El Hayek
- School of Dietetics and Human Nutrition, McGill University, Macdonald Campus, Ste-Anne-de-Bellevue, QC, Canada
| | | | | |
Collapse
|
300
|
Akhabir L, Sandford A. Genetics of interleukin 1 receptor-like 1 in immune and inflammatory diseases. Curr Genomics 2011; 11:591-606. [PMID: 21629437 PMCID: PMC3078684 DOI: 10.2174/138920210793360907] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/06/2010] [Accepted: 08/23/2010] [Indexed: 01/08/2023] Open
Abstract
Interleukin 1 receptor-like 1 (IL1RL1) is gaining in recognition due to its involvement in immune/inflammatory disorders. Well-designed animal studies have shown its critical role in experimental allergic inflammation and human in vitro studies have consistently demonstrated its up-regulation in several conditions such as asthma and rheumatoid arthritis. The ligand for IL1RL1 is IL33 which emerged as playing an important role in initiating eosinophilic inflammation and activating other immune cells resulting in an allergic phenotype.An IL1RL1 single nucleotide polymorphism (SNP) was among the most significant results of a genome-wide scan investigating eosinophil counts; in the same study, this SNP associated with asthma in 10 populations.The IL1RL1 gene resides in a region of high linkage disequilibrium containing interleukin 1 receptor genes as well as interleukin 18 receptor and accessory genes. This poses a challenge to researchers interested in deciphering genetic association signals in the region as all of the genes represent interesting candidates for asthma and allergic disease.The IL1RL1 gene and its resulting soluble and receptor proteins have emerged as key regulators of the inflammatory process implicated in a large variety of human pathologies We review the function and expression of the IL1RL1 gene. We also describe the role of IL1RL1 in asthma, allergy, cardiovascular disease, infections, liver disease and kidney disease.
Collapse
Affiliation(s)
- Loubna Akhabir
- Department of Medicine, University of British Columbia, UBC James Hogg Research Centre, Providence Heart + Lung Institute, Room 166, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | | |
Collapse
|