251
|
Husain S, Abdel-Latif AA. Effects of prostaglandin F(2alpha)and carbachol on MAP kinases, cytosolic phospholipase A(2)and arachidonic acid release in cat iris sphincter smooth muscle cells. Exp Eye Res 2001; 72:581-90. [PMID: 11311050 DOI: 10.1006/exer.2001.0991] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signal transduction pathways initiated by Ca(2+)-mobilizing agonists, such as prostaglandin F(2alpha)(PGF(2alpha)) and carbachol (CCh), leading to activation of cytosolic phospholipase A(2)(cPLA(2)) and arachidonic acid (AA) release in a wide variety of tissues remain obscure. To further define the role of protein kinases in receptor mediated stimulation of cPLA(2)and consequently AA release we have investigated the role of mitogen-activated protein (MAP) kinases and protein kinase C (PKC) in PGF(2alpha)- and CCh-induced cPLA(2)phosphorylation and AA release in cat iris sphincter smooth muscle (CISM) cells. The cells were prelabeled with [(3)H]AA for 24 hr and incubated in the absence or presence of the agonist for 5-10 min as indicated. MAP kinases activities and cPLA(2)phosphorylation were determined in immunoprecipitates obtained by using anti-p38 MAP kinase and anti-cPLA(2)antibodies. We found that: (a) PGF(2alpha)and CCh increased p38 MAP kinase activity by 197 and 215%, respectively, and increased p42/p44 MAP kinase activity by 200 and 125%, respectively. (b) SB202190, a p38 MAP kinase specific inhibitor, inhibited PGF(2alpha)- and CCh-induced cPLA(2)phosphorylation by 92 and 85%, respectively, and AA release by 62 and 78%, respectively. (c) PD98059, a p42/p44 MAP kinase inhibitor, inhibited CCh-induced cPLA(2)phosphorylation by 70% and AA release by 71%, but had no effect on that of PGF(2alpha). (d) Inhibition of PKC activity by RO 31-8220 inhibited both PGF(2alpha)- and CCh-stimulation of p38 MAP kinase, p42/p44 MAP kinases and cPLA(2)phosphorylation. We conclude from these results that in CISM cells PGF(2alpha)-induced cPLA(2)phosphorylation and AA release is mediated through p38 MAP kinase, but not through p42/p44 MAP kinases, whereas that of CCh is mediated through both p38 MAP kinase and p42/p44 MAP kinases. These effects of PGF(2alpha)and CCh are regulated by the MAP kinases in a PKC-dependent manner. Studies aimed at elucidating the role of protein kinases in the coupling mechanism between the activation of PGF(2alpha)and muscarinic receptors, and the stimulation of cPLA(2)and AA release in the smooth muscles of the iris-ciliary body will provide important information about the role of protein kinases signaling pathways in smooth muscle function, as well as about the mechanism of the intraocular pressure-lowering effects of PGF(2alpha)and its analog, latanoprost, in glaucoma therapy.
Collapse
Affiliation(s)
- S Husain
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta 30912-2100, USA
| | | |
Collapse
|
252
|
Capper EA, Marshall LA. Mammalian phospholipases A(2): mediators of inflammation, proliferation and apoptosis. Prog Lipid Res 2001; 40:167-97. [PMID: 11275266 DOI: 10.1016/s0163-7827(01)00002-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- E A Capper
- SmithKline Beecham Pharmaceuticals, Department of Immunology, Upper Merion, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | |
Collapse
|
253
|
Farooqui AA, Horrocks LA. Plasmalogens, phospholipase A2, and docosahexaenoic acid turnover in brain tissue. J Mol Neurosci 2001; 16:263-72; discussion 279-84. [PMID: 11478381 DOI: 10.1385/jmn:16:2-3:263] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Plasmalogens are glycerophospholipids of neural membranes containing vinyl ether bonds. Their synthetic pathway is located in peroxisomes and endoplasmic reticulum. The rate-limiting enzymes are in the peroxisomes and are induced by docosahexaenoic acid (DHA). Plasmalogens often contain arachidonic acid (AA) or DHA at the sn-2 position of the glycerol moiety. The receptor-mediated hydrolysis of plasmalogens by cytosolic plasmalogen-selective phospholipase A2 generates AA or DHA and lysoplasmalogens. AA is metabolized to eicosanoids. The mechanism of signaling with DHA is not known. The plasmalogen-selective phospholipase A2 differs from other intracellular phospholipases A2 in molecular mass, kinetic properties, substrate specificity, and response to glycosaminoglycans, gangliosides, and sialoglycoproteins. A major portion of [3H]DHA incorporated into neural membranes is found at the sn-2 position of ethanolamine glycerophospholipids. Studies with a mutant cell line defective in plasmalogen biosynthesis indicate that the incorporation of DHA is reduced in this RAW 264.7 cell line by 50%. In contrast, the incorporation of AA remains unaffected. This is reversed completely when the growth medium is supplemented with sn-1-hexadecylglycerol, suggesting that DHA can be selectively targeted for incorporation into plasmalogens. We suggest that deficiencies of DHA and plasmalogens in peroxisomal disorders, Alzheimer's disease (AD), depression, and attention deficit hyperactivity disorders (ADHD) may be responsible for abnormal signal transduction associated with learning disability, cognitive deficit, and visual dysfunction. These abnormalities in the signal-transduction process can be partially corrected by supplementation with a diet enriched with DHA.
Collapse
Affiliation(s)
- A A Farooqui
- Department of Molecular and Cellular Biochemistry The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
254
|
Lupo G, Anfuso CD, Ragusa N, Strosznajder RP, Walski M, Alberghina M. t-Butyl hydroperoxide and oxidized low density lipoprotein enhance phospholipid hydrolysis in lipopolysaccharide-stimulated retinal pericytes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1531:143-55. [PMID: 11278179 DOI: 10.1016/s1388-1981(01)00102-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Free radicals induced by organic peroxides or oxidized low density lipoprotein (oxLDL) play a critical role in the development of atherosclerosis. In investigating this process, and the concomitant inflammatory response, the role of pericytes, cells supporting the endothelial ones in blood vessels, has received little attention. In this study we tested the hypothesis that tert-butyl hydroperoxide (t-BuOOH) and oxLDL, administered in sublethal doses to the culture medium of retinal pericytes, function as prooxidant signals to increase the stimulation of the peroxidation process induced by lipopolysaccharide (LPS). Confluent cell monolayers were exposed to t-BuOOH (25-400 microM), native LDL or oxLDL (3.4-340 nmol hydroperoxides/mg protein, 1-100 micro). LPS (1 microg/ml), t-BuOOH (200 microM), and oxLDL (100 microM), but not native LDL, incubated for 24 h with cells, markedly increased lipid peroxidation, cytosolic phospholipase A2 (cPLA2) activity and arachidonic acid (AA) release in a time- and dose-dependent manner. AACOCF(3), a potent cPLA2 inhibitor, and the antioxidant alpha-tocopherol strongly inhibited the prooxidant-stimulated AA release. Long-term exposure to maximal concentrations of t-BuOOH (400 microM) or oxLDL (100 microM) had a sharp cytotoxic effect on the cells, described by morphological and biochemical indices. The presence of t-BuOOH or oxLDL at the same time, synergistically increased phospholipid hydrolysis induced by LPS alone. 400 microM t-BuOOH or 100 microM oxLDL had no significant effect on the stimulation of an apoptosis process estimated by DNA laddering and light and electron microscopy. The results indicate that (i) pericytes may be the target of extensive oxidative damage; (ii) activation of cPLA2 mediates AA liberation; (iii) as long-term regulatory signals, organic peroxide and specific constituents of oxLDL increase the pericyte ability to degrade membrane phospholipids mediated by LPS which was used, in the present study, to simulate in vitro an inflammatory burst in the retinal capillaries.
Collapse
Affiliation(s)
- G Lupo
- Department of Biochemistry, Faculty of Medicine, University of Catania, Italy
| | | | | | | | | | | |
Collapse
|
255
|
Murakami M, Koduri RS, Enomoto A, Shimbara S, Seki M, Yoshihara K, Singer A, Valentin E, Ghomashchi F, Lambeau G, Gelb MH, Kudo I. Distinct arachidonate-releasing functions of mammalian secreted phospholipase A2s in human embryonic kidney 293 and rat mastocytoma RBL-2H3 cells through heparan sulfate shuttling and external plasma membrane mechanisms. J Biol Chem 2001; 276:10083-96. [PMID: 11106649 DOI: 10.1074/jbc.m007877200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We analyzed the ability of a diverse set of mammalian secreted phospholipase A(2) (sPLA(2)) to release arachidonate for lipid mediator generation in two transfected cell lines. In human embryonic kidney 293 cells, the heparin-binding enzymes sPLA(2)-IIA, -IID, and -V promote stimulus-dependent arachidonic acid release and prostaglandin E(2) production in a manner dependent on the heparan sulfate proteoglycan glypican. In contrast, sPLA(2)-IB, -IIC, and -IIE, which bind weakly or not at all to heparanoids, fail to elicit arachidonate release, and addition of a heparin binding site to sPLA(2)-IIC allows it to release arachidonate. Heparin nonbinding sPLA(2)-X liberates arachidonic acid most likely from the phosphatidylcholine-rich outer plasma membrane in a glypican-independent manner. In rat mastocytoma RBL-2H3 cells that lack glypican, sPLA(2)-V and -X, which are unique among sPLA(2)s in being able to hydrolyze phosphatidylcholine-rich membranes, act most likely on the extracellular face of the plasma membrane to markedly augment IgE-dependent immediate production of leukotriene C(4) and platelet-activating factor. sPLA(2)-IB, -IIA, -IIC, -IID, and -IIE exert minimal effects in RBL-2H3 cells. These results are also supported by studies with sPLA(2) mutants and immunocytostaining and reveal that sPLA(2)-dependent lipid mediator generation occur by distinct (heparanoid-dependent and -independent) mechanisms in HEK293 and RBL-2H3 cells.
Collapse
Affiliation(s)
- M Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Mandal AK, Zhang Z, Chou JY, Zimonjic D, Keck CL, Popescu N, Mukherjee AB. Molecular characterization of murine pancreatic phospholipase A(2). DNA Cell Biol 2001; 20:149-57. [PMID: 11313018 DOI: 10.1089/104454901300068988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pancreatic secretory phospholipase A(2) (sPLA(2)IB) is considered to be a digestive enzyme, although it has several important receptor-mediated functions. In this study, using the newly isolated murine sPLA(2)IB cDNA clone as a probe, we demonstrate that in addition to the pancreas, the sPLA(2)IB mRNA was expressed in extrapancreatic organs such as the liver, spleen, duodenum, colon, and lungs. We also demonstrate that sPLA(2)IB mRNA expression was detectable from the 17(th) day of gestation in the developing mouse fetus, coinciding with the time of completion of differentiation of the pancreas. Furthermore, the mRNA expression pattern of sPLA(2)IB was distinct from those of sPLA(2)IIA and cPLA(2) in various tissues examined. The murine sPLA(2)IB gene structure is well conserved, consistent with findings in other mammalian species, and this gene mapped to the region of mouse chromosome 5F1-G1.1. Taken together, our results suggest that sPLA(2)IB plays important roles both in the pancreas and in extrapancreatic tissues and that in the mouse, its expression is developmentally regulated.
Collapse
Affiliation(s)
- A K Mandal
- Section on Developmental Genetics, Heritable Disorders Branch, The National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
257
|
Shakhov AN, Nedospasov SA. Expression profiling in knockout mice: lymphotoxin versus tumor necrosis factor in the maintenance of splenic microarchitecture. Cytokine Growth Factor Rev 2001; 12:107-19. [PMID: 11312122 DOI: 10.1016/s1359-6101(01)00004-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Expression profiling provides a powerful approach to define the underlying molecular mechanisms in disease. Several techniques referred collectively to as gene profiling may be also helpful in the analysis of the phenotype of mice with targeted mutations, especially if applied to distinct histological compartments, to specific cell types or to evaluate the effect of specific challenges, such as infection. Here we review several of the existing techniques applicable to genetic knockout studies, and share our experience from the study of mice with tumor necrosis factor (TNF) and lymphotoxin (LT) deficiencies, with specific emphasis on the distinction between TNF- and LT-mediated signalling pathways in vivo. Gene expression profiling analysis of TNF/LT-deficient mice supports the notion that TNF and LT, originally discovered as distinct biological activities, manifest both distinct and redundant functions in vivo.
Collapse
Affiliation(s)
- A N Shakhov
- Intramural Research Support Program, SAIC Frederick, Division of Basic Sciences, Building 560, Room 31-33, NCI-FCRDC, PO Box B, Frederick, MD 21702, USA.
| | | |
Collapse
|
258
|
Specty O, Pageaux JF, Dauça M, Lagarde M, Laugier C, Fayard JM. Control of cell proliferation via transduction of sPLA(2)-I activity and possible PPAR activation at the nuclear level. FEBS Lett 2001; 490:88-92. [PMID: 11172817 DOI: 10.1016/s0014-5793(00)02414-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pancreatic phospholipase A2 (PLA(2)-I) stimulates U(III) cells proliferation, a rat uterine cell line, after binding to membrane receptors, internalization and translocation. Here, we demonstrate that during these steps of internalization, PLA(2)-I retains its hydrolytic activity and thus could exert its proliferative effect via nuclear phospholipids hydrolysis. Since fatty acids and eicosanoids released by such activity are known to be ligands of PPAR, we study the expression of these nuclear receptors and demonstrate that, in the experimental conditions where PLA(2)-I stimulates U(III) cells proliferation, PLA(2)-I also regulates PPAR expression indicating a possible mechanism of its proliferative effect.
Collapse
Affiliation(s)
- O Specty
- INSERM U352, Laboratoire de Biochimie et Pharmacologie, INSA-Lyon, 20 Avenue A. Einstein, 69621 Villeurbanne Cedex, France
| | | | | | | | | | | |
Collapse
|
259
|
Hyvönen MT, Oörni K, Kovanen PT, Ala-Korpela M. Changes in a phospholipid bilayer induced by the hydrolysis of a phospholipase A2 enzyme: a molecular dynamics simulation study. Biophys J 2001; 80:565-78. [PMID: 11159426 PMCID: PMC1301257 DOI: 10.1016/s0006-3495(01)76038-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phospholipase A2 (PLA2) enzymes are important in numerous physiological processes. Their function at lipid-water interfaces is also used as a biophysical model for protein-membrane interactions. These enzymes catalyze the hydrolysis of the sn-2 bonds of various phospholipids and the hydrolysis products are known to increase the activity of the enzymes. Here, we have applied molecular dynamics (MD) simulations to study the membrane properties in three compositionally different systems that relate to PLA2 enzyme action. One-nanosecond simulations were performed for a 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) bilayer and for two of its PLA2-hydrolyzed versions, i.e., bilayers consisting of lysophospholipids and of either free charged linoleate or free uncharged linoleic acid molecules. The results revealed loosening of the structure in the hydrolyzed bilayer due to increased mobility of the molecules in the direction normal to the bilayer. This loss of integrity due to the hydrolysis products is in accord with observations that not only the presence of hydrolysis products, but also a variety of other perturbations of the membrane may activate PLA2. Additionally, changes were observed in other structural parameters and in the electrostatic potential across the membrane-water interface. These changes are discussed in relation to the simulation methodology and the experimental observations of PLA2-hydrolyzed membranes.
Collapse
Affiliation(s)
- M T Hyvönen
- NMR Research Group, Department of Physical Sciences, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | |
Collapse
|
260
|
Fonteh AN, LaPorte T, Swan D, McAlexander MA. A decrease in remodeling accounts for the accumulation of arachidonic acid in murine mast cells undergoing apoptosis. J Biol Chem 2001; 276:1439-49. [PMID: 11022038 DOI: 10.1074/jbc.m006551200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The goal of this study was to examine arachidonic acid (AA) metabolism by murine bone marrow-derived mast cells (BMMC) during apoptosis induced by cytokine depletion. BMMC deprived of cytokines for 12-48 h displayed apoptotic characteristics. During apoptosis, levels of AA, but not other unsaturated fatty acids, correlated with the percentage of apoptotic cells. A decrease in both cytosolic phospholipase A(2) expression and activity indicated that cytosolic phospholipase A(2) did not account for AA mobilization during apoptosis. Free AA accumulation is also unlikely to be due to decreases in 5-lipoxygenase and/or cyclooxygenase activities, since BMMC undergoing apoptosis produced similar amounts of leukotriene B(4) and significantly greater amounts of PGD(2) than control cells. Arachidonoyl-CoA synthetase and CoA-dependent transferase activities responsible for incorporating AA into phospholipids were not altered during apoptosis. However, there was an increase in arachidonate in phosphatidylcholine (PC) and neutral lipids concomitant with a 40.7 +/- 8.1% decrease in arachidonate content in phosphatidylethanolamine (PE), suggesting a diminished capacity of mast cells to remodel arachidonate from PC to PE pools. Further evidence of a decrease in AA remodeling was shown by a significant decrease in microsomal CoA-independent transacylase activity. Levels of lyso-PC and lyso-PE were not altered in cells undergoing apoptosis, suggesting that the accumulation of lysophospholipids did not account for the decrease in CoA-independent transacylase activity or the induction of apoptosis. Together, these data suggest that the mole quantities of free AA closely correlated with apoptosis and that the accumulation of AA in BMMC during apoptosis was mediated by a decreased capacity of these cells to remodel AA from PC to PE.
Collapse
Affiliation(s)
- A N Fonteh
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27154, USA.
| | | | | | | |
Collapse
|
261
|
Sampey AV, Hall PH, Mitchell RA, Metz CN, Morand EF. Regulation of synoviocyte phospholipase A2 and cyclooxygenase 2 by macrophage migration inhibitory factor. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/1529-0131(200106)44:6%3c1273::aid-art219%3e3.0.co;2-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
262
|
Abstract
During the acute inflammatory response to implanted medical devices, human neutrophils (PMN) release oxidative and hydrolytic activities which may ultimately contribute to the degradation of the biomaterial. In this study, the biological activities secreted by live PMNs which may contribute to biodegradation were investigated using a 14C label in the monomer unit of a poly(ester-urea-urethane) (PEUU) substrate. By using specific inhibitors, it was possible to propose a mechanism for PMN-mediated biodegradation. PMN, labeled with 3H-arachidonic acid, released significantly more 3H when adherent to PEUU than when adherent to tissue culture grade polystyrene (P<0.05). The phospholipase A2 (PLA2) inhibitors, aristolochic acid (ARIST) and quinacrine (QUIN), decreased the release of 3H and inhibited PEUU biodegradation (>50%, P<0.05). ARIST had no effect on cell viability, whereas QUIN significantly decreased it. The serine protease inhibitor, phenylmethylsulfonylfluoride inhibited biodegradation, but did not decrease cell survival. There is evidence to suggest that activation via the PLA2 pathway caused the release of hydrolytic activities which were able to elicit 14C release from PEUU. The role of oxidative compounds which were released via activation by phorbol myristate acetate (PMA), was not apparent, since PMA inhibited biodegradation and cell survival (>40%, P<0.05). This study has shown that it is possible to find out the differences in PMN activation through the PLA2 pathway when exposed to different material surfaces, making this a model system worthy of further investigation.
Collapse
Affiliation(s)
- R S Labow
- Cardiovascular Devices Division, University of Ottawa Heart Institute, ON, Canada.
| | | | | |
Collapse
|
263
|
Almer G, Gu�gan C, Teismann P, Naini A, Rosoklija G, Hays AP, Chen C, Przedborski S. Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann Neurol 2001. [DOI: 10.1002/1531-8249(20010201)49:2<176::aid-ana37>3.0.co;2-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
264
|
Gelb MH, Valentin E, Ghomashchi F, Lazdunski M, Lambeau G. Cloning and recombinant expression of a structurally novel human secreted phospholipase A2. J Biol Chem 2000; 275:39823-6. [PMID: 11031251 PMCID: PMC3422575 DOI: 10.1074/jbc.c000671200] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammals contain a diverse set of secreted phospholipases A(2) (sPLA(2)s) that liberate arachidonic acid from phospholipids for the production of eicosanoids and exert a variety of physiological and pathological effects. We report the cloning, recombinant expression, and kinetic properties of a novel human sPLA(2) that defines a new structural class of sPLA(2)s called group XII. The human group XII (hGXII) cDNA contains a putative signal peptide of 22 residues followed by a mature protein of 167 amino acids that displays homology to all known sPLA(2)s only over a short stretch of amino acids in the active site region. Northern blot and reverse transcription-polymerase chain reaction analyses show that the tissue distribution of hGXII is distinct from the other human sPLA(2)s with strong expression in heart, skeletal muscle, kidney, and pancreas and weaker expression in brain, liver, small intestine, lung, placenta, ovaries, testis, and prostate. Catalytically active hGXII was produced in Escherichia coli and shown to be Ca(2+)-dependent despite the fact that it is predicted to have an unusual Ca(2+)-binding loop. Similar to the previously characterized mouse group IIE sPLA(2)s, the specific activity of hGXII is low in comparison to that of other mammalian sPLA(2), suggesting that hGXII could have novel functions that are independent of its phospholipase A(2) activity.
Collapse
Affiliation(s)
- Michael H. Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195
| | - Emmanuel Valentin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UPR 411, 660 route des Lucioles, Sophia Antipolis 06560 Valbonne, France
| | - Farideh Ghomashchi
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195
| | - Michel Lazdunski
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UPR 411, 660 route des Lucioles, Sophia Antipolis 06560 Valbonne, France
| | - Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UPR 411, 660 route des Lucioles, Sophia Antipolis 06560 Valbonne, France
| |
Collapse
|
265
|
El Mahdani NE, Ameyar M, Cai Z, Colard O, Masliah J, Chouaib S. Resistance to TNF-induced cytotoxicity correlates with an abnormal cleavage of cytosolic phospholipase A2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6756-61. [PMID: 11120795 DOI: 10.4049/jimmunol.165.12.6756] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To investigate the mechanism underlying the absence of arachidonic acid (AA) release by TNF in TNF-resistant cells, we first performed comparative analysis of phospholipid pools in both TNF-sensitive (MCF7) and their equivalent resistant cells (C1001). Quantification and incorporation studies of [(3)H]AA indicated that TNF-resistant cells were not depleted in AA. Furthermore, distribution of this fatty acid in different phospholipid pools was similar in both sensitive cells and their resistant counterparts, ruling out a defect in phospholipid pools. Since phospholipase A(2) (PLA(2)) are the main enzymes releasing free AA, we investigated their relative contribution in the acquisition of cell resistance to TNF-induced cell death and AA release. For this purpose, we used two PLA(2) inhibitors, methylarachidonyl fluorophosphate (MAFP) and bromoenol lactone (BEL), which selectively and irreversibly inhibit the cytosolic PLA(2) (cPLA(2)) and the Ca(2+)-independent PLA(2), respectively. Although a significant inhibitory effect of MAFP on both TNF-induced AA release and PLA(2) activity in MCF7 was observed, BEL had no effect. The inhibitory effect of MAFP on cPLA(2) activity correlated with an inhibition of TNF-induced cell death. Western blot analysis revealed that TNF induced a differential cleavage of cPLA(2) in TNF-sensitive vs TNF-resistant cells. Although the p70 (70-kDa) form of cPLA(2) was specifically increased in TNF-sensitive cells, a cleaved form, p50 (50 kDa), was selectively observed in TNF-resistant C1001 cells in the presence or absence of TNF. These findings suggest that the acquisition of cell resistance to this cytokine may involve an abnormal cPLA(2) cleavage.
Collapse
Affiliation(s)
- N E El Mahdani
- Institut National de la Santé et de la Recherche Médicale Unité 487, Cytokines et Immunologie des Tumeurs Humaines, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | |
Collapse
|
266
|
Valentin E, Singer AG, Ghomashchi F, Lazdunski M, Gelb MH, Lambeau G. Cloning and recombinant expression of human group IIF-secreted phospholipase A(2). Biochem Biophys Res Commun 2000; 279:223-8. [PMID: 11112443 DOI: 10.1006/bbrc.2000.3908] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian-secreted phospholipases A(2) (sPLA(2)) form a diverse family of at least nine enzymes that hydrolyze phospholipids to release free fatty acids and lysophospholipids. We report here the cloning and characterization of human group IIF sPLA(2) (hGIIF sPLA(2)). The full-length cDNA codes for a signal peptide of 20 amino acid followed by a mature protein of 148 amino acids containing all of the structural features of catalytically active group II sPLA(2)s. hGIIF sPLA(2) gene is located on chromosome 1 and lies within a sPLA(2) gene cluster of about 300 kbp that also contains the genes for group IIA, IIC, IID, IIE, and V sPLA(2)s. In adult tissues, hGIIF is highly expressed in placenta, testis, thymus, liver, and kidney. Finally, recombinant expression of hGIIF sPLA(2) in Escherichia coli shows that the enzyme is Ca(2+)-dependent, maximally active at pH 7-8, and hydrolyzes phosphatidylglycerol versus phosphatidylcholine with a 15-fold preference.
Collapse
Affiliation(s)
- E Valentin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UPR 411, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
267
|
Secreted phospholipase A2 induces vascular endothelial cell migration. Blood 2000. [DOI: 10.1182/blood.v96.12.3809.h8003809_3809_3815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secreted phospholipase A2 (sPLA2) regulates a variety of cellular functions. The present investigation was undertaken to elucidate the potential role of sPLA2 in endothelial cell (EC) migration. Bovine aortic endothelial cells (BAECs) exposed to sPLA2 placed in the lower compartment of a modified Boyden chamber displayed increased migration compared to cells exposed to vehicle. The effect of sPLA2 on EC migration was time and dose dependent. Migration of BAECs was observed at 30 minutes, increased over 1 to 2 hours, and declined thereafter. At 2 hours of stimulation, sPLA2 (0.01-2 μmol/L) induced 1.2- to 3-fold increased cell migration compared with media alone. Among the different sPLA2s tested, bee venom, Naja naja, and porcine and human pancreatic PLA2s all evoked a migratory response in ECs. Moreover, human synovial fluid, obtained from patients with arthritis and containing sPLA2 activity, induced EC migration. Migration of ECs was significantly reduced after exposure to a catalytic site mutant of pancreatic sPLA2with decreased lipolytic activity as compared to wild-type sPLA2. Similarly, pretreatment of human synovial fluid withp-bromophenacyl bromide, an irreversible inhibitor of sPLA2, markedly decreased the ability of human synovial fluid to stimulate EC migration. Moreover, migration of ECs was stimulated on exposure to hydrolytic products of sPLA2activity including arachidonic acid, lysophosphatidic acid, and lysophosphatidylcholine. These findings suggest that sPLA2plays a physiologic role in induction of EC migration. Moreover, the effects of sPLA2 on EC migration are mediated, at least in part, by its catalytic activity.
Collapse
|
268
|
Abstract
AbstractSecreted phospholipase A2 (sPLA2) regulates a variety of cellular functions. The present investigation was undertaken to elucidate the potential role of sPLA2 in endothelial cell (EC) migration. Bovine aortic endothelial cells (BAECs) exposed to sPLA2 placed in the lower compartment of a modified Boyden chamber displayed increased migration compared to cells exposed to vehicle. The effect of sPLA2 on EC migration was time and dose dependent. Migration of BAECs was observed at 30 minutes, increased over 1 to 2 hours, and declined thereafter. At 2 hours of stimulation, sPLA2 (0.01-2 μmol/L) induced 1.2- to 3-fold increased cell migration compared with media alone. Among the different sPLA2s tested, bee venom, Naja naja, and porcine and human pancreatic PLA2s all evoked a migratory response in ECs. Moreover, human synovial fluid, obtained from patients with arthritis and containing sPLA2 activity, induced EC migration. Migration of ECs was significantly reduced after exposure to a catalytic site mutant of pancreatic sPLA2with decreased lipolytic activity as compared to wild-type sPLA2. Similarly, pretreatment of human synovial fluid withp-bromophenacyl bromide, an irreversible inhibitor of sPLA2, markedly decreased the ability of human synovial fluid to stimulate EC migration. Moreover, migration of ECs was stimulated on exposure to hydrolytic products of sPLA2activity including arachidonic acid, lysophosphatidic acid, and lysophosphatidylcholine. These findings suggest that sPLA2plays a physiologic role in induction of EC migration. Moreover, the effects of sPLA2 on EC migration are mediated, at least in part, by its catalytic activity.
Collapse
|
269
|
Cho W. Structure, function, and regulation of group V phospholipase A(2). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:48-58. [PMID: 11080676 DOI: 10.1016/s1388-1981(00)00109-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The hydrolysis of membrane phospholipid by phospholipase A(2) (PLA(2)) is a key step in the production of inflammatory eicosanoids. Recent cell studies have shown that secretory group V PLA(2) (gVPLA(2)) is involved in agonist-induced eicosanoid biosynthesis in mouse P388D1 cell line, mast cells, and transfected HEK 293 cells. gVPLA(2) is homologous to other group II PLA(2) family members but has distinctive enzymatic properties, including its activity to effectively hydrolyze phosphatidylcholine (PC) vesicles and the outer plasma membrane of mammalian cells. Mutational studies showed that gVPLA(2) has a unique structure that allows effective binding to PC membranes and efficient catalysis of an active-site-bound PC substrate. Thanks to this unique structure and activity, exogenously added gVPLA(2) can induce the eicosanoid biosynthesis in unstimulated inflammatory cells, including human neutrophils and eosinophils, suggesting that it might be able to trigger inflammatory responses under certain physiological conditions. Extensive structure-function and cell studies showed that gVPLA(2) could act directly on the outer plasma membranes of neutrophils and eosinophils. The release of fatty acids and lysophospholipids from the cell surfaces induces the translocation and activation of cytosolic PLA(2) and 5-lipoxygenase, resulting in the leukotriene synthesis. In case of neutrophils, induction of leukotriene B(4) synthesis by gVPLA(2) leads to the phosphorylation of cytosolic PLA(2) by a leukotriene B(4) receptor and MAP kinase-mediated mechanism. Finally, heparan sulfate proteoglycans in neutrophils appear to play a role of internalizing and degrading the cell surface-bound gVPLA(2) to protect the cells from extensive lipolytic damage.
Collapse
Affiliation(s)
- W Cho
- Department of Chemistry (M/C 111), University of Illinois at Chicago, 60607-7061, USA.
| |
Collapse
|
270
|
Valentin E, Lambeau G. Increasing molecular diversity of secreted phospholipases A(2) and their receptors and binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:59-70. [PMID: 11080677 DOI: 10.1016/s1388-1981(00)00110-4] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Secreted phospholipases A(2) (sPLA(2)s) form a large family of structurally related enzymes which are widespread in nature. Snake venoms are known for decades to contain a tremendous molecular diversity of sPLA(2)s which can exert a myriad of toxic and pharmacological effects. Recent studies indicate that mammalian cells also express a variety of sPLA(2)s with ten distinct members identified so far, in addition to the various other intracellular PLA(2)s. Furthermore, scanning of nucleic acid databases fueled by the different genome projects indicates that several sPLA(2)s are also present in invertebrate animals like Drosophila melanogaster as well as in plants. All of these sPLA(2)s catalyze the hydrolysis of glycerophospholipids at the sn-2 position to release free fatty acids and lysophospholipids, and thus could be important for the biosynthesis of biologically active lipid mediators. However, the recent identification of a variety of membrane and soluble proteins that bind to sPLA(2)s suggests that the sPLA(2) enzymes could also function as high affinity ligands. So far, most of the binding data have been accumulated with venom sPLA(2)s and group IB and IIA mammalian sPLA(2)s. Collectively, venom sPLA(2)s have been shown to bind to membrane and soluble mammalian proteins of the C-type lectin superfamily (M-type sPLA(2) receptor and lung surfactant proteins), to pentraxin and reticulocalbin proteins, to factor Xa and to N-type receptors. Venom sPLA(2)s also associate with three distinct types of sPLA(2) inhibitors purified from snake serum that belong to the C-type lectin superfamily, to the three-finger protein superfamily and to proteins containing leucine-rich repeats. On the other hand, mammalian group IB and IIA sPLA(2)s can bind to the M-type receptor, and group IIA sPLA(2)s can associate with lung surfactant proteins, factor Xa and proteoglycans including glypican and decorin, a mammalian protein containing a leucine-rich repeat.
Collapse
Affiliation(s)
- E Valentin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, 660 route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
| | | |
Collapse
|
271
|
Yedgar S, Lichtenberg D, Schnitzer E. Inhibition of phospholipase A(2) as a therapeutic target. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:182-7. [PMID: 11080687 DOI: 10.1016/s1388-1981(00)00120-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hydrolysis of cell membrane phospholipids by phospholipase A(2) (PLA(2)) leads to the production of numerous lipid mediators of diverse pathological conditions, mainly inflammatory diseases. These include lysophospholipids and their derivatives, and arachidonic acid and its derivatives (the eicosanoids). Both these groups of mediators are produced predominantly by the secretory PLA(2)s (sPLA(2)s) which hydrolyze the phospholipids of the cell surface membrane. Protection of cell membrane from these 'inflammatory enzymes' can therefore be used for the treatment of inflammatory processes. A prototype of cell-impermeable PLA(2) inhibitors, which protect the cell membrane from different sPLA(2)s without affecting vital phospholipid metabolism, is presented and discussed in the present review.
Collapse
Affiliation(s)
- S Yedgar
- Department of Biochemistry, Hebrew University-hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
272
|
Buckland AG, Wilton DC. The antibacterial properties of secreted phospholipases A(2). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:71-82. [PMID: 11080678 DOI: 10.1016/s1388-1981(00)00111-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is a considerable body of evidence to support the antibacterial properties of the group IIa phospholipase A(2) as an important physiological function. This enzyme is able to act as an acute phase protein and may be part of the innate defence system of the body, acting in concert with other antibacterial proteins and peptides. The enzyme is most effective against Gram-positive bacteria whereas penetration of the lipopolysaccharide coat of Gram-negative bacteria requires bactericidal/permeability-increasing protein (BPI) as an additional permeabilizing factor. The global cationic nature of this protein (pI>10.5) appears to facilitate penetration of the anionic bacterial cell wall. In addition, the considerable preference of the enzyme for anionic phospholipid interfaces provides specificity toward anionic bacterial membranes as opposed to zwitterionic eucaryotic cell membranes.
Collapse
Affiliation(s)
- A G Buckland
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, SO16 7PX, Southampton, UK
| | | |
Collapse
|
273
|
Dessen A. Structure and mechanism of human cytosolic phospholipase A(2). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:40-7. [PMID: 11080675 DOI: 10.1016/s1388-1981(00)00108-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
cPLA(2) is an 85-kDa enzyme whose primary function, the release of arachidonic acid from phospholipid membranes, is a crucial reaction in the metabolism of lipid mediators of inflammation. cPLA(2) consists of two domains: an N-terminal, C2-type unit analogous to those present in other membrane-targeting molecules, and a catalytic domain harboring an active site dyad at the bottom of a deep, mostly hydrophobic catalytic funnel. The absence of a third active site residue in the cPLA(2) cleft, as observed in other lipases, suggests that the enzyme proceeds through a novel catalytic mechanism. Crystallographic and biochemical studies of cPLA(2) will provide essential information for the development of small molecule inhibitors which may be employed in the control of inflammatory and other highly regulated processes.
Collapse
Affiliation(s)
- A Dessen
- Institut de Biologie Structurale Jean-Pierre Ebel, 41 rue Jules Horowitz, 38027, Grenoble, France.
| |
Collapse
|
274
|
Murakami M, Nakatani Y, Kuwata H, Kudo I. Cellular components that functionally interact with signaling phospholipase A(2)s. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:159-66. [PMID: 11080685 DOI: 10.1016/s1388-1981(00)00118-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Accumulating evidence has suggested that cytosolic phospholipase A(2) (cPLA(2)) and several secretory PLA(2) (sPLA(2)) isozymes are signaling PLA(2)s that are functionally coupled with downstream cyclooxygenase (COX) isozymes for prostaglandin (PG) biosynthesis. Arachidonic acid (AA) released by cPLA(2) and sPLA(2)s is supplied to both COX-1 and COX-2 in the immediate, and predominantly to COX-2 in the delayed, PG-biosynthetic responses. Vimentin, an intermediate filament component, acts as a functional perinuclear adapter for cPLA(2), in which the C2 domain of cPLA(2) associates with the head domain of vimentin in a Ca(2+)-sensitive manner. The heparin-binding signaling sPLA(2)-IIA, IID and V bind the glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan glypican, which plays a role in sorting of these isozymes into caveolae and perinuclear compartments. Phospholipid scramblase, which facilitates transbilayer movement of anionic phospholipids, renders the cellular membranes more susceptible to signaling sPLA(2)s. There is functional cooperation between cPLA(2) and signaling sPLA(2)s in that prior activation of cPLA(2) is required for the signaling sPLA(2)s to act properly. cPLA(2)-derived AA is oxidized by 12/15-lipoxygenase, the products of which not only augment the induction of sPLA(2) expression, but also cause membrane perturbation, leading to increased cellular susceptibility to the signaling sPLA(2)s. sPLA(2)-X, a heparin-non-binding sPLA(2) isozyme, is capable of releasing AA from intact cells in the absence of cofactors. This property is attributed to its ability to avidly hydrolyze zwitterionic phosphatidylcholine, a major phospholipid in the outer plasma membrane. sPLA(2)-V can also utilize this route in several cell types. Taken together, the AA-releasing function of sPLA(2)s depends on the presence of regulatory cofactors and interfacial binding to membrane phospholipids, which differ according to cell type, stimuli, secretory processes, and subcellular distributions.
Collapse
Affiliation(s)
- M Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, 142-8555, Tokyo, Japan
| | | | | | | |
Collapse
|
275
|
Hirabayashi T, Shimizu T. Localization and regulation of cytosolic phospholipase A(2). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:124-38. [PMID: 11080682 DOI: 10.1016/s1388-1981(00)00115-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Liberation of arachidonic acid by cytosolic phospholipase A(2) (cPLA(2)) upon cell activation is often the initial and rate-limiting step in leukotriene and prostaglandin biosynthesis. This review discusses the essential features of cPLA(2) isoforms and addresses intriguing insights into the catalytic and regulatory mechanisms. Gene expression, posttranslational modification and subcellular localization can regulate these isoforms. Translocation of cPLA(2)alpha from the cytosol to the perinuclear region in response to calcium transients is critical for the immediate arachidonic acid release. Therefore, particular emphasis is placed on the mechanism of the translocation and the role of the proteins and lipids implicated in this process. The regional distribution and cellular localization of cPLA(2) may help to better understand its function as an arachidonic acid supplier to downstream enzymes and as a regulator of specific cellular processes.
Collapse
Affiliation(s)
- T Hirabayashi
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Japan.
| | | |
Collapse
|
276
|
Liu Y, Hong Y, Androphy EJ, Chen JJ. Rb-independent induction of apoptosis by bovine papillomavirus type 1 E7 in response to tumor necrosis factor alpha. J Biol Chem 2000; 275:30894-900. [PMID: 10887172 DOI: 10.1074/jbc.m000640200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bovine papillomavirus type 1 (BPV-1) is a small DNA virus that causes fibropapillomas of the host. BPV-1 has served as the prototype for studies of the molecular biology of the papillomaviruses. BPV-1 efficiently induces anchorage-independent growth and focus formation in murine C127 cells. The transforming properties of BPV-1 primarily reside in two genes, E5 and E6. Each of these genes is sufficient to transform cells. Although no independent transformation activity has been detected for E7, it was shown to be required for full transformation of C127 by BPV-1. We investigated the biological activities of BPV-1 E7 in several assays. Our results indicate that expression of BPV-1 E7 sensitizes cells to tumor necrosis factor alpha (TNF)-induced apoptosis. The TNF-induced apoptosis in E7-expressing cells was accompanied by increased release of arachidonic acid, indicating that phospholipase A(2) was activated. Unlike the E7 proteins from the cancer-related human papillomaviruses, the BPV-1 E7 protein does not associate efficiently with the retinoblastoma protein (pRB) in vitro, nor does it significantly affect the pRB levels in cultured cells. Furthermore, BPV-1 E7 sensitizes Rb-null cells to TNF-induced apoptosis. These studies indicate that BPV-1 E7 can sensitize cells to apoptosis through mechanisms that are independent of pRB.
Collapse
Affiliation(s)
- Y Liu
- Department of Dermatology, New England Medical Center and Tufts University School of Medicine and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
277
|
Ivanovski G, Copic A, Krizaj I, Gubensek F, Pungercar J. The amino acid region 115-119 of ammodytoxins plays an important role in neurotoxicity. Biochem Biophys Res Commun 2000; 276:1229-34. [PMID: 11027615 DOI: 10.1006/bbrc.2000.3605] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quadruple (Y115K/I116K/R118M/N119L) and double (Y115K/I116K) mutants of ammodytoxin A, a presynaptically toxic phospholipase A(2) from Vipera ammodytes ammodytes venom, were prepared and characterized. The enzymatic activity of the quadruple mutant on phosphatidylcholine micelles was threefold higher than that of AtxA, presumably due to higher phospholipid-binding affinity, whereas the activity of the double mutant was twofold lower. The substantial decrease by more than two orders of magnitude in the lethal potency of both mutants, together with their decreased binding affinity for neuronal receptors, indicates involvement of the amino acid region 115-119 in neurotoxicity. The similar decrease of toxicity for the two mutants points to the importance of the residues Y115 and I116.
Collapse
Affiliation(s)
- G Ivanovski
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Jamova 39, Ljubljana, SI-1000, Slovenia
| | | | | | | | | |
Collapse
|
278
|
Abstract
Alzheimer's disease (AD) is a progressive, neurodestructive process of the human neocortex, characterized by the deterioration of memory and higher cognitive function. A progressive and irreversible brain disorder, AD is characterized by three major pathogenic episodes involving (a) an aberrant processing and deposition of beta-amyloid precursor protein (betaAPP) to form neurotoxic beta-amyloid (betaA) peptides and an aggregated insoluble polymer of betaA that forms the senile plaque, (b) the establishment of intraneuronal neuritic tau pathology yielding widespread deposits of agyrophilic neurofibrillary tangles (NFT) and (c) the initiation and proliferation of a brain-specific inflammatory response. These three seemingly disperse attributes of AD etiopathogenesis are linked by the fact that proinflammatory microglia, reactive astrocytes and their associated cytokines and chemokines are associated with the biology of the microtubule associated protein tau, betaA speciation and aggregation. Missense mutations in the presenilin genes PS1 and PS2, implicated in early onset familial AD, cause abnormal betaAPP processing with resultant overproduction of betaA42 and related neurotoxic peptides. Specific betaA fragments such as betaA42 can further potentiate proinflammatory mechanisms. Expression of the inducible oxidoreductase cyclooxygenase-2 and cytosolic phospholipase A2 (cPLA2) are strongly activated during cerebral ischemia and trauma, epilepsy and AD, indicating the induction of proinflammatory gene pathways as a response to brain injury. Neurotoxic metals such as aluminum and zinc, both implicated in AD etiopathogenesis, and arachidonic acid, a major metabolite of brain cPLA2 activity, each polymerize hyperphosphorylated tau to form NFT-like bundles. Further, epidemiological and longitudinal studies have identified a reduced risk for AD in patients (<70 yrs) previously treated with non-steroidal anti-inflammatory drugs for non-CNS afflictions that include arthritis. This review will focus on the interrelationships between the mechanisms of PS1, PS2 and betaAPP gene expression, tau and betaA deposition and the induction, regulation and proliferation in AD of the neuroinflammatory response. Novel therapeutic interventions in AD are discussed.
Collapse
Affiliation(s)
- W J Lukiw
- Neuroscience Center and Department of Ophthalmology, New Orleans 70112-2272, USA
| | | |
Collapse
|
279
|
Kuwata H, Yamamoto S, Miyazaki Y, Shimbara S, Nakatani Y, Suzuki H, Ueda N, Yamamoto S, Murakami M, Kudo I. Studies on a mechanism by which cytosolic phospholipase A2 regulates the expression and function of type IIA secretory phospholipase A2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4024-31. [PMID: 11034413 DOI: 10.4049/jimmunol.165.7.4024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although it has been proposed that arachidonate release by several secretory phospholipase A2 (sPLA2) isozymes is modulated by cytosolic PLA2 (cPLA2), the cellular component(s) that intermediates between these two signaling PLA2s remains unknown. Here we provide evidence that 12- or 15-lipoxygenase (12/15-LOX), which lies downstream of cPLA2, plays a pivotal role in cytokine-induced gene expression and function of sPLA2-IIA. The sPLA2-IIA expression and associated PGE2 generation induced by cytokines in rat fibroblastic 3Y1 cells were markedly attenuated by antioxidants that possess 12/15-LOX inhibitory activity. 3Y1 cells expressed 12/15-LOX endogenously, and forcible overexpression of 12/15-LOX in these cells greatly enhanced cytokine-induced expression of sPLA2-IIA, with a concomitant increase in delayed PG generation. Moreover, studies using 293 cells stably transfected with sPLA2-IIA revealed that stimulus-dependent hydrolysis of membrane phospholipids by sPLA2-IIA was enhanced by overexpression of 12/15-LOX. These results indicate that the product(s) generated by the cPLA2-12/15-LOX pathway following cell activation may play two roles: enhancement of sPLA2-IIA gene expression and membrane sensitization that leads to accelerated sPLA2-IIA-mediated hydrolysis.
Collapse
Affiliation(s)
- H Kuwata
- Department of Health Chemistry, Showa University School of Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Enomoto A, Murakami M, Valentin E, Lambeau G, Gelb MH, Kudo I. Redundant and segregated functions of granule-associated heparin-binding group II subfamily of secretory phospholipases A2 in the regulation of degranulation and prostaglandin D2 synthesis in mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4007-14. [PMID: 11034411 DOI: 10.4049/jimmunol.165.7.4007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We herein demonstrate that mast cells express all known members of the group II subfamily of secretory phospholipase A2 (sPLA2) isozymes, and those having heparin affinity markedly enhance the exocytotic response. Rat mastocytoma RBL-2H3 cells transfected with heparin-binding (sPLA2-IIA, -V, and -IID), but not heparin-nonbinding (sPLA2-IIC), enzymes released more granule-associated markers (beta-hexosaminidase and histamine) than mock- or cytosolic PLA2alpha (cPLA2alpha)-transfected cells after stimulation with IgE and Ag. Site-directed mutagenesis of sPLA2-IIA and -V revealed that both the catalytic and heparin-binding domains are essential for this function. Confocal laser and electron microscopic analyses revealed that sPLA2-IIA, which was stored in secretory granules in unstimulated cells, accumulated on the membranous sites where fusion between the plasma membrane and granule membranes occurred in activated cells. These results suggest that the heparin-binding sPLA2s bind to the perigranular membranes through their heparin-binding domain, and lysophospholipids produced in situ by their enzymatic action may facilitate the ongoing membrane fusion. In contrast to the redundant role of sPLA2-IIA, -IID, and -V in the regulation of degranulation, only sPLA2-V had the ability to markedly augment IgE/Ag-stimulated immediate PGD2 production, which reached a level comparable to that elicited by cPLA2alpha. The latter observation reveals an unexplored functional segregation among the three related isozymes expressed in the same cell population.
Collapse
Affiliation(s)
- A Enomoto
- Department of Health Chemistry, Showa University School of Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
281
|
Racké K, Hammermann R, Juergens UR. Potential role of EDG receptors and lysophospholipids as their endogenous ligands in the respiratory tract. Pulm Pharmacol Ther 2000; 13:99-114. [PMID: 10873548 DOI: 10.1006/pupt.2000.0241] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The role of lipid mediators derived from membrane glycerophospholipids and sphingolipids as intracellular messenger has been studied intensively during the last two decades, but with the recent discovery of high affinity G-protein coupled receptors for the lysophospholipids lysophosphatidic acid (LPA), sphingosine-1-phosphate (S1P) and sphingosylphosphorylcholine (SPC), increasing attention has been paid to the role of these lipid mediators as extracellular mediators. This review will summarize the biosynthesis and metabolism of lysophospholipids and describe the family of endothelial differentiation gene (EDG) receptors as high affinity receptors for lysophospholipids. Furthermore, an overview of the numerous biological effects of lysophospholipids which might be mediated by EDG receptors will be given together with an outlook on the potential role of such mechanisms in pulmonary physiology and pathophysiology.
Collapse
Affiliation(s)
- K Racké
- Institute of Pharmacology & Toxicology, University of Bonn, Reuterstrabetae 2b, Bonn, D-53113, Germany.
| | | | | |
Collapse
|
282
|
Enomoto A, Murakami M, Kudo I. Internalization and degradation of type IIA phospholipase A(2) in mast cells. Biochem Biophys Res Commun 2000; 276:667-72. [PMID: 11027529 DOI: 10.1006/bbrc.2000.3468] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whereas exogenous types IB and X secretory phospholipase A(2) (sPLA(2)) elicited prostaglandin D(2) (PGD(2)) production in mouse bone marrow-derived mast cells (BMMC), sPLA(2)-IIA was unable to do so. In search of a mechanism underlying this cellular refractoriness to exogenous sPLA(2)-IIA, we now report that this isozyme is promptly associated with cell surfaces, internalized, and then degraded in BMMC. Adsorption of sPLA(2)-IIA to BMMC was prevented by addition of heparin to the medium. Moreover, a heparin-nonbinding sPLA(2)-IIA mutant did not bind to BMMC. These results indicate that this sPLA(2)-IIA inactivation process depends on its rapid binding to heparan sulfate proteoglycan (HSPG) on BMMC surfaces. Thus, the present observations represent a particular situation in which cell surface HSPG exhibit a negative regulatory effect on cellular function of sPLA(2)-IIA, and argue that HSPG does not always act as a functional adapter for heparin-binding sPLA(2)s in mammalian cells as has been demonstrated before.
Collapse
Affiliation(s)
- A Enomoto
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | | | | |
Collapse
|
283
|
Fonteh AN, Atsumi G, LaPorte T, Chilton FH. Secretory phospholipase A2 receptor-mediated activation of cytosolic phospholipase A2 in murine bone marrow-derived mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2773-82. [PMID: 10946309 DOI: 10.4049/jimmunol.165.5.2773] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The current study examined the signal transduction steps involved in the selective release of arachidonic acid (AA) induced by the addition of secretory phospholipase A2 (sPLA2) isotypes to bone marrow-derived mast cells (BMMC). Overexpression of sPLA2 receptors caused a marked increase in AA and PGD2 release after stimulation of BMMC, implicating sPLA2 receptors in this process. The hypothesis that the release of AA by sPLA2 involved activation of cytosolic PLA2 (cPLA2) was next tested. Addition of group IB PLA2 to BMMC caused a transient increase in cPLA2 activity and translocation of this activity to membrane fractions. Western analyses revealed that these changes in cPLA2 were accompanied by a time-dependent gel shift of cPLA2 induced by phosphorylation of cPLA2 at various sites. A noncatalytic ligand of the sPLA2 receptor, p-amino-phenyl-alpha-D-mannopyranoside BSA, also induced an increase in cPLA2 activity in BMMC. sPLA2 receptor ligands induced the phosphorylation of p44/p42 mitogen-activated protein kinase. Additionally, an inhibitor of p44/p42 mitogen-activated protein kinase (PD98059) significantly inhibited sPLA2-induced cPLA2 activation and AA release. sPLA2 receptor ligands also increased Ras activation while an inhibitor of tyrosine phosphorylation (herbimycin) inhibited the increase in cPLA2 activation and AA release. Addition of partially purified sPLA2 from BMMC enhanced cPLA2 activity and AA release. Similarly, overexpression of mouse groups IIA or V PLA2 in BMMC induced an increase in AA release. These data suggest that sPLA2 mediate the selective release of AA by binding to cell surface receptors and then inducing signal transduction events that lead to cPLA2 activation.
Collapse
Affiliation(s)
- A N Fonteh
- Departments of Internal Medicine, Pulmonary and Critical Care Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
284
|
Pedersen S, Lambert IH, Thoroed SM, Hoffmann EK. Hypotonic cell swelling induces translocation of the alpha isoform of cytosolic phospholipase A2 but not the gamma isoform in Ehrlich ascites tumor cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5531-9. [PMID: 10951212 DOI: 10.1046/j.1432-1327.2000.01615.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We demonstrate that two isoforms of the cytosolic phospholipase A2, cPLA2alpha and cPLA2gamma, are present in Ehrlich ascites tumor cells. Both enzymes are almost uniformly distributed throughout the cells under control conditions, as visualized by laser-scanning confocal microscopy. Stimulation by either hypotonic cell swelling or addition of the Ca2+ ionophore A23187 results in translocation of cPLA2alpha, but not cPLA2gamma, to the nucleus, where it forms hot-spot-like clusters. Our group previously showed that release of radioactively labeled arachidonic acid, incorporated into the phospholipids of Ehrlich cells, was immediately and transiently increased on hypotonic cell swelling [Thoroed, S.M., Lauritzen, L., Lambert, I.H., Hansen, H.S. & Hoffmann, E.K. (1997) J. Membr. Biol. 160, 47-58]. We now demonstrate that arachidonic acid is released from the nuclear fraction following hypotonic exposure. Stimulation of Ehrlich cells with A23187 also leads to an increase in arachidonic acid release from the nucleus. However, as hypotonic cell swelling is not accompanied by any detectable increase in intracellular concentration of free cytosolic Ca2+ ([Ca2+]i), stimulus-induced translocation of cPLA2alpha can also occur without elevation of [Ca2+]i. The stimulus-induced translocation of cPLA2alpha appears not to be prevented by inhibition of mitogen-activated protein (MAP) kinase activation, p38 MAP kinase, tyrosine kinases and protein kinase C, hence, phosphorylation is not crucial for the stimulus-induced translocation of cPLA2alpha. Disruption of F-actin did not affect the translocation process, thus, an intact F-actin cytoskeleton does not seem to be required for translocation of cPLA2alpha.
Collapse
Affiliation(s)
- S Pedersen
- August Krogh Institute, Department of Biochemistry, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
285
|
Choudhury QG, Mckay DT, Flower RJ, Croxtall JD. Investigation into the involvement of phospholipases A(2) and MAP kinases in modulation of AA release and cell growth in A549 cells. Br J Pharmacol 2000; 131:255-65. [PMID: 10991918 PMCID: PMC1572326 DOI: 10.1038/sj.bjp.0703573] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
1. We have investigated the contribution of specific PLA(2)s to eicosanoid release from A549 cells by using specific inhibitors of secretory PLA(2) (ONO-RS-82 and oleyloxyethylphosphocholine), cytosolic PLA(2) (AACOCF(3) and MAFP) and calcium-independent PLA(2) (HELSS, MAFP and PACOCF(3)). Similarly, by using specific inhibitors of p38 MAPK (SB 203580), ERK1/2 MAPK (Apigenin) and MEK1/2 (PD 98059) we have further evaluated potential pathways of AA release in this cell line. 2. ONO-RS-82 and oleyloxyethylphosphocholine had no significant effect on EGF or IL-1beta stimulated (3)H-AA or PGE(2) release or cell proliferation. AACOCF(3), HELSS, MAFP and PACOCF(3) significantly inhibited both EGF and IL-1beta stimulated (3)H-AA and PGE(2) release as well as cell proliferation. Apigenin and PD 98509 significantly inhibited both EGF and IL-1beta stimulated (3)H-AA and PGE(2) release and cell proliferation whereas, SB 203580 had no significant effect on EGF or IL-1beta stimulated (3)H-AA release, or cell proliferation but significantly suppressed EGF or IL-1beta stimulated PGE(2) release. 3. These results confirm that the liberation of AA release, generation of PGE(2) and cell proliferation is mediated largely through the actions of cPLA(2) whereas, sPLA(2) plays no significant role. We now also report a hitherto unsuspected contribution of iPLA(2) to this process and demonstrate that the stimulating action of EGF and IL-1beta in AA release and cell proliferation is mediated in part via a MEK and ERK-dependent pathway (but not through p38MAPK). We therefore propose that selective inhibitors of MEK and MAPK pathways may be useful in controlling AA release, eicosanoid production and cell proliferation.
Collapse
Affiliation(s)
- Qamrul G Choudhury
- Department of Biochemical Pharmacology, The William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine and Dentistry (Queen Mary and Westfield College), Charterhouse Square, London EC1M 6BQ
| | - Diane T Mckay
- Department of Biochemical Pharmacology, The William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine and Dentistry (Queen Mary and Westfield College), Charterhouse Square, London EC1M 6BQ
| | - Roderick J Flower
- Department of Biochemical Pharmacology, The William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine and Dentistry (Queen Mary and Westfield College), Charterhouse Square, London EC1M 6BQ
| | - Jamie D Croxtall
- Department of Biochemical Pharmacology, The William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine and Dentistry (Queen Mary and Westfield College), Charterhouse Square, London EC1M 6BQ
- Author for correspondence:
| |
Collapse
|
286
|
Gijón MA, Spencer DM, Leslie CC. Recent advances in the regulation of cytosolic phospholipase A(2). ADVANCES IN ENZYME REGULATION 2000; 40:255-68. [PMID: 10828354 DOI: 10.1016/s0065-2571(99)00031-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- M A Gijón
- Division of Basic Science, Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | |
Collapse
|
287
|
Lüschen S, Adam D, Ussat S, Kreder D, Schneider-Brachert W, Krönke M, Adam-Klages S. Activation of ERK1/2 and cPLA(2) by the p55 TNF receptor occurs independently of FAN. Biochem Biophys Res Commun 2000; 274:506-12. [PMID: 10913368 DOI: 10.1006/bbrc.2000.3173] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The generation of proinflammatory eicosanoids in response to tumor necrosis factor (TNF) involves the activation of cytosolic phospholipase A(2) (cPLA(2)), presumably by phosphorylation through extracellular signal-regulated kinases (ERK). Earlier results had suggested that a pathway involving the p55 TNF receptor (TNF-R55), neutral sphingomyelinase (N-SMase), and c-Raf-1 activates ERK and cPLA(2). We have previously shown that a cytoplasmic region of TNF-R55 distinct from the death domain regulates the activation of N-SMase through binding of the adapter protein FAN. Analysis of embryonal fibroblasts from FAN knockout mice revealed that TNF-induced activation of both ERK and cPLA(2) occurs without involvement of FAN. Furthermore, we provide evidence that the TNF-dependent activation of ERK and cPLA(2) requires the intact death domain of TNF-R55. Finally, we demonstrate that in murine fibroblasts cPLA(2) is phosphorylated in response to TNF solely by ERK, but not by p38 mitogen-activated protein kinase, suggesting a signaling pathway from TNF-R55 via the death domain to ERK and cPLA(2).
Collapse
Affiliation(s)
- S Lüschen
- Institut für Immunologie, Christian-Albrechts-Universität Kiel, Brunswiker Strasse 4, Kiel, 24105, Germany
| | | | | | | | | | | | | |
Collapse
|
288
|
Mounier CM, Luchetta P, Lecut C, Koduri RS, Faure G, Lambeau G, Valentin E, Singer A, Ghomashchi F, Béguin S, Gelb MH, Bon C. Basic residues of human group IIA phospholipase A2 are important for binding to factor Xa and prothrombinase inhibition comparison with other mammalian secreted phospholipases A2. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4960-9. [PMID: 10931177 DOI: 10.1046/j.1432-1327.2000.01523.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human secreted group IIA phospholipase A2 (hGIIA) was reported to inhibit prothrombinase activity because of binding to factor Xa. This study further shows that hGIIA and its catalytically inactive H48Q mutant prolong the lag time of thrombin generation in human platelet-rich plasma with similar efficiency, indicating that hGIIA exerts an anticoagulant effect independently of phospholipid hydrolysis under ex vivo conditions. Charge reversal of basic residues on the interfacial binding surface (IBS) of hGIIA leads to decreased ability to inhibit prothrombinase activity, which correlates with a reduced affinity for factor Xa, as determined by surface plasmon resonance. Mutation of other surface-exposed basic residues, hydrophobic residues on the IBS, and His48, does not affect the ability of hGIIA to inhibit prothrombinase activity and bind to factor Xa. Other basic, but not neutral or acidic, mammalian secreted phospholipases A2 (sPLA2s) exert a phospholipid-independent inhibitory effect on prothrombinase activity, suggesting that these basic sPLA2s also bind to factor Xa. In conclusion, this study demonstrates that the anticoagulant effect of hGIIA is independent of phospholipid hydrolysis and is based on its interaction with factor Xa, leading to prothrombinase inhibition, even under ex vivo conditions. This study also shows that such an interaction involves basic residues located on the IBS of hGIIA, and suggests that other basic mammalian sPLA2s may also inhibit blood coagulation by a similar mechanism to that described for hGIIA.
Collapse
Affiliation(s)
- C M Mounier
- Unité des Venins, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Balsinde J, Balboa MA, Dennis EA. Identification of a third pathway for arachidonic acid mobilization and prostaglandin production in activated P388D1 macrophage-like cells. J Biol Chem 2000; 275:22544-9. [PMID: 10811815 DOI: 10.1074/jbc.m910163199] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Previous studies have demonstrated that P388D(1) macrophages are able to mobilize arachidonic acid (AA) and synthesize prostaglandins in two temporally distinct phases. The first phase is triggered by platelet-activating factor within minutes, but needs the cells to be previously exposed to bacterial lipopolysaccharide (LPS) for periods up to 1 h. It is thus a primed immediate phase. The second, delayed phase occurs in response to LPS alone over long incubation periods spanning several hours. Strikingly, the effector enzymes involved in both of these phases are the same, namely the cytosolic group IV phospholipase A(2) (cPLA(2)), the secretory group V phospholipase A(2), and cyclooxygenase-2, although the regulatory mechanisms differ. Here we report that P388D(1) macrophages mobilize AA and produce prostaglandins in response to zymosan particles in a manner that is clearly different from the two described above. Zymosan triggers an immediate AA mobilization response from the macrophages that neither involves the group v phospholipase A(2) nor requires the cells to be primed by LPS. The group VI Ca(2+)-independent phospholipase A(2) is also not involved. Zymosan appears to signal exclusively through activation of the cPLA(2), which is coupled to the cyclooxygenase-2. These results define a secretory PLA(2)-independent pathway for AA mobilization in the P388D(1) macrophages, and demonstrate that, under certain experimental settings, stimulation of the cPLA(2) is sufficient to generate a prostaglandin biosynthetic response in the P388D(1) macrophages.
Collapse
Affiliation(s)
- J Balsinde
- Department of Chemistry and Biochemistry, Revelle College and School of Medicine, University of California at San Diego, La Jolla, California 92093-0601, USA.
| | | | | |
Collapse
|
290
|
Kawamura M, Hatanaka K, Saito M, Ogino M, Ono T, Ogino K, Matsuo S, Harada Y. Are the anti-inflammatory effects of dexamethasone responsible for inhibition of the induction of enzymes involved in prostanoid formation in rat carrageenin-induced pleurisy? Eur J Pharmacol 2000; 400:127-35. [PMID: 10913594 DOI: 10.1016/s0014-2999(00)00377-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Since anti-inflammatory steroids modulate multiple gene expression, including the expression of prostaglandin H synthase-2 and phospholipase A(2), at the molecular level, we studied the effects of dexamethasone on rat carrageenin-induced pleurisy to elucidate whether regulation of phospholipase A(2) and prostaglandin H synthase-2 expression is the primary mechanism of its anti-inflammatory action. Suppression of plasma exudation by a lower dose of dexamethasone (0.3 mg/kg) was almost equal to that by aspirin (100 mg/kg), but that by higher dexamethasone doses (3 and 30 mg/kg) was considerably stronger, suggesting the involvement of effects other than that on prostanoid formation. The lower dose of dexamethasone also significantly reduced the pleural exudate neutrophil count and prostanoid levels. However, this dose affected neither the prostaglandin H synthase-2 level nor the phospholipase A(2) activity in the exudate cells. The prostaglandin H synthase-2 level was affected only at the higher doses, while phospholipase A(2) activity was not. These results suggest that the anti-inflammatory effects of dexamethasone in acute inflammation cannot be ascribed to direct interference with prostanoid formation via suppression of phospholipase A(2) and prostaglandin H synthase-2 expression.
Collapse
Affiliation(s)
- M Kawamura
- Department of Pharmacology, Kitasato University School of Medicine, Kitasato 1-15-1, Kanagawa 228-8555, Sagamihara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
291
|
Abstract
Since their identification in 1979, the cysteinyl leukotrienes (cysLTs) have been shown to be prominent in many inflammatory conditions, including asthma, allergic rhinitis, rheumatoid arthritis, psoriasis, cystic fibrosis and inflammatory bowel disease. They are potent pro-inflammatory agents, as well as causing bronchoconstriction, and undoubtedly have a role in asthma. The cysLTs are products of arachidonic acid metabolism and have been shown to have effects via a cysteinyl leukotriene receptor (CysLTR1) on vascular permeability, mucus production, chemotaxis and bronchial smooth muscle. Their detection in certain body fluids in allergic, aspirin-sensitive and exercise-induced asthma is well documented and potential roles in pathogenesis, proposed. The development of agents affecting production or action offers an exciting new approach to the treatment of asthma. Two approaches to antileukotriene therapy have been developed: blocking their production by inhibiting the action of 5-lipoxygenase enzyme or blocking the CysLTR1. Both approaches have been tried in studies in asthma and overall the results are encouraging, with a decrease in both daytime and nocturnal symptoms, a decrease in additional beta 2 agonist usage and improvement in lung function. The changes, however, are small in some studies. This may be a reflection of disease severity in the study subjects, but of note is a heterogeneity of response to these treatments that may be genetically determined. Antileukotriene therapy has been shown to have an effect in specific types of asthma where the role of cysLTs seems well established--aspirin-sensitive/intolerant asthma and exercise-induced asthma. Longer term studies are needed in other areas such as severe asthma and chronic persistent asthma in both children and adults to provide evidence for the appropriate placement of antileukotriene treatment in current asthma guidelines, in comparison with other established treatments.
Collapse
Affiliation(s)
- S D Crowther
- Department of Respiratory Medicine, 2nd Floor, Thomas Guy House, Guy's Hospital, St Thomas Street, London SE1 9RT, UK
| | | |
Collapse
|
292
|
Talbot K, Young RA, Jolly-Tornetta C, Lee VM, Trojanowski JQ, Wolf BA. A frontal variant of Alzheimer's disease exhibits decreased calcium-independent phospholipase A2 activity in the prefrontal cortex. Neurochem Int 2000; 37:17-31. [PMID: 10781842 DOI: 10.1016/s0197-0186(00)00006-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A frontal variant of Alzheimer's disease (AD) has recently been identified on neuropathological and neuropsychological grounds (Johnson, J.K., Head, E., Kim, R., Starr, A., Cotman, C.W., 1999. Clinical and pathological evidence for a frontal variant of Alzheimer Disease. Arch. Neurol. 56, 1233-1239). Frontal AD differs strikingly from typical AD by the occurrence of neurofibrillary tangle densities in the frontal cortex as high or higher than in the entorhinal cortex. Since cerebrocortical membranes are commonly abnormal in Alzheimer's disease (AD), we assayed frontal AD cases for enzymes regulating membrane phospholipid composition. We specifically measured activity of phospholipase A2s (PLA2s) in dorsolateral prefrontal and lateral temporal cortices of frontal AD cases (n=12), which have respectively high and low densities of neurofibrillary tangles. In neither cortical area was Ca(2+)-dependent PLA2 activity abnormal compared to controls (n=12). In contrast, a significant 42% decrease in Ca(2+)-independent PLA2 activity was found in the dorsolateral prefrontal, but not the lateral temporal, cortex of the frontal AD cases. Similarly, the dorsolateral prefrontal cortex, but not the lateral temporal cortex of the frontal AD cases suffered a 42% decrease in total free fatty acid content, though neither that decrease nor those in any one species of free fatty acid was significant. The observed biochemical changes probably occurred in neurons given (a) our finding that PLA2 activity of cultured human NT2 neurons is virtually all Ca(2+)-independent and (b) the finding of others that nearly all Ca(2+)-independent PLA2 in brain gray matter is neuronal. The decrease in Ca(2+)-independent PLA2 activity is not readily attributable to Group VI or VIII iPLA2s since neither NT2N neurons nor our brain homogenates were greatly inhibited by drugs potently suppressing those iPLA2s. Decreased Ca(2+)-independent PLA2 activity in frontal AD may reflect a compensatory response to pathologically accelerated phospholipid metabolism early in the disorder. That could cause an early elevation of prefrontal free fatty acids, which can stimulate polymerization of tau and thus promote the prefrontal neurofibrillary tangle formation characteristic of frontal AD.
Collapse
Affiliation(s)
- K Talbot
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
293
|
Ueno N, Murakami M, Kudo I. Functional crosstalk between phospholipase D(2) and signaling phospholipase A(2)/cyclooxygenase-2-mediated prostaglandin biosynthetic pathways. FEBS Lett 2000; 475:242-6. [PMID: 10869564 DOI: 10.1016/s0014-5793(00)01691-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We performed reconstitution analyses of functional interaction between phospholipase A(2) (PLA(2)) and phospholipase D (PLD) enzymes. Cotransfection of HEK293 cells with cytosolic (cPLA(2)) or type IIA secretory (sPLA(2)-IIA) PLA(2) and PLD(2), but not PLD(1), led to marked augmentation of stimulus-induced arachidonate release. Interleukin-1-stimulated arachidonate release was accompanied by prostaglandin E(2) production via cyclooxygenase-2, the expression of which was augmented by PLD(2). Conversely, activation of PLD(2), not PLD(1), was facilitated by cPLA(2) or sPLA(2)-IIA. Thus, our results revealed functional crosstalk between signaling PLA(2)s and PLD(2) in the regulation of various cellular responses in which these enzymes have been implicated.
Collapse
Affiliation(s)
- N Ueno
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, 142-8555, Tokyo, Japan
| | | | | |
Collapse
|
294
|
Atsumi G, Murakami M, Kojima K, Hadano A, Tajima M, Kudo I. Distinct roles of two intracellular phospholipase A2s in fatty acid release in the cell death pathway. Proteolytic fragment of type IVA cytosolic phospholipase A2alpha inhibits stimulus-induced arachidonate release, whereas that of type VI Ca2+-independent phospholipase A2 augments spontaneous fatty acid release. J Biol Chem 2000; 275:18248-58. [PMID: 10747887 DOI: 10.1074/jbc.m000271200] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic phospholipase A(2)alpha (cPLA(2)alpha; type IVA), an essential initiator of stimulus-dependent arachidonic acid (AA) metabolism, underwent caspase-mediated cleavage at Asp(522) during apoptosis. Although the resultant catalytically inactive N-terminal fragment, cPLA(2)(1-522), was inessential for cell growth and the apoptotic process, it was constitutively associated with cellular membranes and attenuated both the A23187-elicited immediate and the interleukin-1-dependent delayed phases of AA release by several phospholipase A(2)s (PLA(2)s) involved in eicosanoid generation, without affecting spontaneous AA release by PLA(2)s implicated in phospholipid remodeling. Confocal microscopic analysis revealed that cPLA(2)(1-522) was distributed in the nucleus. Pharmacological and transfection studies revealed that Ca(2+)-independent PLA(2) (iPLA(2); type VI), a phospholipid remodeling PLA(2), contributes to the cell death-associated increase in fatty acid release. iPLA(2) was cleaved at Asp(183) by caspase-3 to a truncated enzyme lacking most of the first ankyrin repeat, and this cleavage resulted in increased iPLA(2) functions. iPLA(2) had a significant influence on cell growth or death, according to cell type. Collectively, the caspase-truncated form of cPLA(2)alpha behaves like a naturally occurring dominant-negative molecule for stimulus-induced AA release, rendering apoptotic cells no longer able to produce lipid mediators, whereas the caspase-truncated form of iPLA(2) accelerates phospholipid turnover that may lead to apoptotic membranous changes.
Collapse
Affiliation(s)
- G Atsumi
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan
| | | | | | | | | | | |
Collapse
|
295
|
Hayashi Y, Kobayashi M, Kuwata H, Atsumi G, Deguchi K, Feng Wei X, Kudo I, Hasegawa K. Interferon-gamma and interleukin 4 inhibit interleukin 1beta-induced delayed prostaglandin E(2)generation through suppression of cyclooxygenase-2 expression in human fibroblasts. Cytokine 2000; 12:603-12. [PMID: 10843735 DOI: 10.1006/cyto.1999.0622] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin (IL-)1 stimulates prostaglandin E(2)(PGE(2)) generation in fibroblasts, and preferential couplings between particular phospholipase A(2)(PLA(2)) and cyclooxygenase (COX) isozymes are implicated with IL-1-induced delayed PGE(2)generation. The regulatory effects of interferon (IFN)-gamma and IL-4 on IL-1beta-induced COX, PLA(2)isoforms expression and terminal delayed PGE(2)generation were examined in three types of human fibroblasts. These human fibroblasts constitutively expressed cytosolic PLA(2)(cPLA(2)) and COX-1 enzymes, and exhibited delayed PGE(2)generation in response to IL-1beta. IL-1beta also stimulated expression of cPLA(2)and COX-2 only, while constitutive and IL-1beta-induced type IIA and type V secretory PLA(2)s (sPLA(2)s) expression could not be detected. A COX-2 inhibitor and cPLA(2)inhibitor markedly suppressed the IL-1beta-induced delayed PGE(2)generation, while a type IIA sPLA(2)inhibitor failed to affect it. IFN-gamma and IL-4 dramatically inhibited the IL-1beta-induced delayed PGE(2)generation; these cytokines apparently suppressed IL-1beta-stimulated COX-2 expression and only weakly suppressed cPLA(2)expression in response to IL-1beta. These results indicate that IL-1beta-induced delayed PGE(2)generation in these human fibroblasts mainly depends on de novo induction of COX-2 and cPLA(2), irrespective of the constitutive presence of COX-1, and that IFN-gamma and IL-4 inhibit IL-1beta-induced delayed PGE(2)generation by suppressing, predominantly, COX-2 expression.
Collapse
Affiliation(s)
- Y Hayashi
- Department of Periodontology and Periodontics, Dental School, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
296
|
Alaoui El Azher M, Havet N, Singer M, Dumarey C, Touqui L. Inhibition by unsaturated fatty acids of type II secretory phospholipase A2 synthesis in guinea-pig alveolar macrophages evidence for the eicosanoid-independent pathway. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3633-9. [PMID: 10848980 DOI: 10.1046/j.1432-1327.2000.01392.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of arachidonic acid (C20:4) on the production of secretory type II phospholipase A2 (sPLA2-II) by guinea-pig alveolar macrophages was investigated. We show that incubation of these cells with 1-30 microM of arachidonic acid inhibits the synthesis of sPLA2-II in a concentration-dependent manner with an IC50 of approximately 7.5 microM. The inhibition by low concentrations (5 microM) of arachidonic acid was partially reduced by pretreatment of alveolar macrophages with cyclooxygenase or cytochrome P450 inhibitors (aspirin and 1-aminobenzotriazole, respectively), but not by lipoxygenase inhibitor, BW A4C. However, these inhibitors failed to interfere with the effect of high concentrations (30 microM) of arachidonic acid, suggesting that the latter may act on the expression of sPLA2-II, at least in part, independently of eicosanoid generation. Indeed, a similar inhibitory effect on sPLA2-II activity and mRNA expression was observed with other unsaturated fatty acids such as eicosapentaenoic (C20:5) and oleic (C18:1) acids, but not with the saturated fatty acid, palmitic acid (C16:0). In addition, arachidonic acid partially reduced the secretion of tumor necrosis factor alpha, an important intermediate in the induction of sPLA2-II synthesis by guinea-pig alveolar macrophages. However, addition of recombinant tumor necrosis factor alpha failed to reverse the inhibitory effect of arachidonic acid on sPLA2-II expression, suggesting that this process occurs downstream of tumor necrosis factor alpha secretion. We conclude that the expression of sPLA2-II in alveolar macrophages is down-regulated at the transcriptional level by arachidonic acid either directly or via its cyclooxygenase and cytochrome P450-derived metabolites.
Collapse
Affiliation(s)
- M Alaoui El Azher
- Unité de Pharmacologie Cellulaire, Unité Associée Pasteur/INSERM U485, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
297
|
Huwiler A, Kolter T, Pfeilschifter J, Sandhoff K. Physiology and pathophysiology of sphingolipid metabolism and signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1485:63-99. [PMID: 10832090 DOI: 10.1016/s1388-1981(00)00042-1] [Citation(s) in RCA: 312] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- A Huwiler
- Zentrum der Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt, Germany.
| | | | | | | |
Collapse
|
298
|
Shindou H, Ishii S, Uozumi N, Shimizu T. Roles of cytosolic phospholipase A(2) and platelet-activating factor receptor in the Ca-induced biosynthesis of PAF. Biochem Biophys Res Commun 2000; 271:812-7. [PMID: 10814544 DOI: 10.1006/bbrc.2000.2723] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Casein-elicited peritoneal exudate cells (PEC), mainly consisted of neutrophils, were collected from platelet-activating factor receptor-knock-out (PAFR-KO), cytosolic phospholipase A(2) knock-out (cPLA(2)-KO), and wild-type (WT) mice. After stimulation of PEC with calcium ionophore A 23187, PAF levels were measured by radio-ligand binding assay using receptor-rich membrane fraction prepared from the PAF receptor transgenic mice. We found that the level of PAF production by PEC was not different between WT and PAFR-KO mice. On the other hand, cPLA(2)-KO mice were deficient in the PAF production. These results provide the direct evidence while cPLA(2) is essential in the production of PAF, PAF receptor deficiency has little effect on the PAF production.
Collapse
Affiliation(s)
- H Shindou
- Department of Biochemistry and Molecular Biology, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | |
Collapse
|
299
|
Balsinde J, Balboa MA, Li WH, Llopis J, Dennis EA. Cellular regulation of cytosolic group IV phospholipase A2 by phosphatidylinositol bisphosphate levels. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5398-402. [PMID: 10799904 DOI: 10.4049/jimmunol.164.10.5398] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytosolic group IV phospholipase A2 (cPLA2) is a ubiquitously expressed enzyme with key roles in intracellular signaling. The current paradigm for activation of cPLA2 by stimuli proposes that both an increase in intracellular calcium and mitogen-activated protein kinase-mediated phosphorylation occur together to fully activate the enzyme. Calcium is currently thought to be needed for translocation of the cPLA2 to the membrane via a C2 domain, whereas the role of cPLA2 phosphorylation is less clearly defined. Herein, we report that brief exposure of P388D1 macrophages to UV radiation results in a rapid, cPLA2-mediated arachidonic acid mobilization, without increases in intracellular calcium. Thus, increased Ca2+ availability is a dispensable signal for cPLA2 activation, which suggests the existence of alternative mechanisms for the enzyme to efficiently interact with membranes. Our previous in vitro data suggested the importance of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) in the association of cPLA2 to model membranes and hence in the regulation of cPLA2 activity. Experiments described herein show that PtdInsP2 also serves a similar role in vivo. Moreover, inhibition of PtdInsP2 formation during activation conditions leads to inhibition of the cPLA2-mediated arachidonic acid mobilization. These results suggest that cellular PtdInsP2 levels are involved in the regulation of group IV cPLA2 activation.
Collapse
Affiliation(s)
- J Balsinde
- Department of Chemistry, University of California at San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
300
|
Gosslau A, Rensing L. Induction of Hsp68 by oxidative stress involves the lipoxygenase pathway in C6 rat glioma cells. Brain Res 2000; 864:114-23. [PMID: 10793193 DOI: 10.1016/s0006-8993(00)02195-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The induction of Hsp68 by heat shock (HS) and oxidative stress (OS) involves different pathways in C6 rat glioma cells. The pathways were analyzed by specific inhibitors of signal transduction cascades. Quercetin (inhibitor of PLA(2) and lipoxygenase) inhibited only the OS-induced but not the HS-induced expression of Hsp68. Preincubation with quinacrine (inhibitor of PLA(2)) before stress also suppressed the expression of Hsp68 only after oxidative stress. Moreover, another inhibitor of lipoxygenase (alpha-tocopherol) exclusively suppressed OS-induced Hsp68 expression. This different regulation was confirmed by exposing the cells to arachidonic acid (AA) during stress which strongly increased the induction of Hsp68 only after OS. PGE(2) (metabolite of cyclooxygenase) and indomethacin (inhibitor of cyclooxygenase) had no influence on Hsp68 expression in response to both stressors. The results suggest that the induction of Hsp68 by oxidative stress is mainly transmitted by the lipoxygenase pathway in C6 rat glioma cells.
Collapse
Affiliation(s)
- A Gosslau
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, P.O. Box 330440, D-28334, Bremen, Germany
| | | |
Collapse
|