251
|
Abstract
MicroRNAs are a class of small non-coding RNAs that are found in plants, animals, and some viruses. They modulate the gene function at the post-transcriptional level and act as a fine tuner of various processes, such as development, proliferation, cell signaling, and apoptosis. They are associated with different types and stages of cancer. Recent studies have shown the involvement of microRNAs in liver diseases caused by various factors, such as Hepatitis C, Hepatitis B, metabolic disorders, and by drug abuse. This review highlights the role of microRNAs in liver diseases and their potential use as therapeutic molecules.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, LRB 215, Worcester, MA 01605, USA
| | | | | |
Collapse
|
252
|
Lewis MA, Steel KP. MicroRNAs in mouse development and disease. Semin Cell Dev Biol 2010; 21:774-80. [PMID: 20152923 PMCID: PMC2938480 DOI: 10.1016/j.semcdb.2010.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 02/04/2010] [Indexed: 01/07/2023]
Abstract
MicroRNAs, small non-coding RNAs which act as repressors of target genes, were discovered in 1993, and since then have been shown to play important roles in the development of numerous systems. Consistent with this role, they are also implicated in the pathogenesis of multiple diseases. Here we review the involvement of microRNAs in mouse development and disease, with particular reference to deafness as an example.
Collapse
Affiliation(s)
- Morag A Lewis
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | |
Collapse
|
253
|
Xia HQ, Pan Y, Peng J, Lu GX. Over-expression of miR375 reduces glucose-induced insulin secretion in Nit-1 cells. Mol Biol Rep 2010; 38:3061-5. [PMID: 20221699 DOI: 10.1007/s11033-010-9973-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 01/19/2010] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are 19- to 25-nt fragments cleaved from 70- to 100-nt hairpin precursors. These molecules participate in essential biological processes. It was estimated that 30% of all protein-coding genes are miRNA targets. Thousands of miRNAs have already been identified in plants and animals, but little is known about their biological roles. MicroRNA375 (miR375) is highly expressed in pancreatic islets of humans and mice and regulates insulin secretion in isolated pancreatic cells. To improve our understanding of the biological roles of miR375, we constructed the plasmid pAAV-miR375 and transfected it into mouse Nit-1 cells. Real-time PCR and Northern blot analysis showed that the Nit-1 cells transfected with pAAV-miR375 over-expressed the mature miR375 compared with Nit-1 cells transfected with control plasmid or untransfected cells. The expression of myotrophin (Mtpn) decreased and insulin secretion was reduced in Nit-1 cells transfected with pAAV-miR375. In this study, we successfully established an over-expression system for miR375 and a technique to study the biological function of miRNAs by over-expression. We verified that miR375 reduced glucose-induced insulin secretion by down-regulating the expression of Mtpn in Nit-1 cells in vitro, suggesting that miR375 has potential therapeutic applications in type II diabetes.
Collapse
Affiliation(s)
- Hua-Qiang Xia
- Institute of Reproduction and Stem Cell Engineering, Central South University, 110 Xiangya Road, Changsha 410078, China
| | | | | | | |
Collapse
|
254
|
AN Y, YANG YK, GAO F, ZHU KY, MU TW, TENG CB. Identification of MicroRNAs Regulating Ptf1a Expression in Mouse Pancreas Development*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
255
|
Brown LJ, Longacre MJ, Hasan NM, Kendrick MA, Stoker SW, Macdonald MJ. Chronic reduction of the cytosolic or mitochondrial NAD(P)-malic enzyme does not affect insulin secretion in a rat insulinoma cell line. J Biol Chem 2010; 284:35359-67. [PMID: 19858194 DOI: 10.1074/jbc.m109.040394] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cytosolic malic enzyme (ME1) has been suggested to augment insulin secretion via the malate-pyruvate and/or citrate-pyruvate shuttles, through the production of NADPH or other metabolites. We used selectable vectors expressing short hairpin RNA (shRNA) to stably decrease Me1 mRNA levels by 80-86% and ME1 enzyme activity by 78-86% with either of two shRNAs in the INS-1 832/13 insulinoma cell line. Contrary to published short term ME1 knockdown experiments, our long term targeted cells showed normal insulin secretion in response to glucose or to glutamine plus 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid. We found no increase in the mRNAs and enzyme activities of the cytosolic isocitrate dehydrogenase or glucose-6-phosphate dehydrogenase, which also produce cytosolic NADPH. There was no compensatory induction of the mRNAs for the mitochondrial malic enzymes Me2 or Me3. Interferon pathway genes induced in preliminary small interfering RNA experiments were not induced in the long term shRNA experiments. We repeated our study with an improved vector containing Tol2 transposition sequences to produce a higher rate of stable transferents and shortened time to testing, but this did not alter the results. We similarly used stably expressed shRNA to reduce mitochondrial NAD(P)-malic enzyme (Me2) mRNA by up to 95%, with severely decreased ME2 protein and a 90% decrease in enzyme activity. Insulin release to glucose or glutamine plus 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid remained normal. The maintenance of robust insulin secretion after lowering expression of either one of these malic enzymes is consistent with the redundancy of pathways of pyruvate cycling and/or cytosolic NADPH production in insulinoma cells.
Collapse
Affiliation(s)
- Laura J Brown
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | |
Collapse
|
256
|
Abstract
MicroRNAs are a class of small non-coding RNAs that are found in plants, animals, and some viruses. They modulate the gene function at the post-transcriptional level and act as a fine tuner of various processes, such as development, proliferation, cell signaling, and apoptosis. They are associated with different types and stages of cancer. Recent studies have shown the involvement of microRNAs in liver diseases caused by various factors, such as Hepatitis C, Hepatitis B, metabolic disorders, and by drug abuse. This review highlights the role of microRNAs in liver diseases and their potential use as therapeutic molecules.
Collapse
|
257
|
Simion A, Laudadio I, Prévot PP, Raynaud P, Lemaigre FP, Jacquemin P. MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2. Biochem Biophys Res Commun 2009; 391:293-8. [PMID: 19913497 DOI: 10.1016/j.bbrc.2009.11.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 11/07/2009] [Indexed: 12/20/2022]
Abstract
MicroRNAs are small, non-coding RNAs that posttranscriptionally regulate gene expression mainly by binding to the 3'UTR of their target mRNAs. Recent data revealed that microRNAs have an important role in pancreas and liver development and physiology. Using cloning and microarray profiling approaches, we show that a unique repertoire of microRNAs is expressed at the onset of liver and pancreas organogenesis, and in pancreas and liver at key stages of cell fate determination. Among the microRNAs that are expressed at these stages, miR-495 and miR-218 were predicted to, respectively, target the Onecut (OC) transcription factors Hepatocyte Nuclear Factor-6 (HNF-6/OC-1) and OC-2, two important regulators of liver and pancreas development. MiR-495 and miR-218 are dynamically expressed in developing liver and pancreas, and by transient transfection, we show that they target HNF-6 and OC-2 3'UTRs. Moreover, when overexpressed in cultured cells, miR-495 and miR-218 decrease the endogenous levels of HNF-6 and OC-2 mRNA. These results indicate that the expression of regulators of liver and pancreas development is modulated by microRNAs. They also suggest a developmental role for miR-495 and miR-218.
Collapse
Affiliation(s)
- Alexandru Simion
- Université catholique de Louvain, de Duve Institute, 75 Avenue Hippocrate 7529, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
258
|
Lavker RM, Jia-Yu, Ryan DG. The tiny world of microRNAs in the cross hairs of the mammalian eye. Hum Genomics 2009; 3:332-48. [PMID: 19706364 PMCID: PMC3525195 DOI: 10.1186/1479-7364-3-4-332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Robert M Lavker
- Department of Dermatology, Northwestern University, Chicago, IL 20611, USA.
| | | | | |
Collapse
|
259
|
Abstract
The discovery in mammalian cells of hundreds of small RNA molecules, called microRNAs, with the potential to modulate the expression of the majority of the protein-coding genes has revolutionized many areas of biomedical research, including the diabetes field. MicroRNAs function as translational repressors and are emerging as key regulators of most, if not all, physiological processes. Moreover, alterations in the level or function of microRNAs are associated with an increasing number of diseases. Here, we describe the mechanisms governing the biogenesis and activities of microRNAs. We present evidence for the involvement of microRNAs in diabetes mellitus, by outlining the contribution of these small RNA molecules in the control of pancreatic beta-cell functions and by reviewing recent studies reporting changes in microRNA expression in tissues isolated from diabetes animal models. MicroRNAs hold great potential as therapeutic targets. We describe the strategies developed for the delivery of molecules mimicking or blocking the function of these tiny regulators of gene expression in living animals. In addition, because changes in serum microRNA profiles have been shown to occur in association with different human diseases, we also discuss the potential use of microRNAs as blood biomarkers for prevention and management of diabetes.
Collapse
Affiliation(s)
- I G M Kolfschoten
- Department of Cellular Biology and Morphology, University of Lausanne, Switzerland
| | | | | | | |
Collapse
|
260
|
Lynn FC. Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrinol Metab 2009; 20:452-9. [PMID: 19800254 DOI: 10.1016/j.tem.2009.05.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/14/2009] [Accepted: 05/19/2009] [Indexed: 12/12/2022]
Abstract
Maintenance of homeostasis during environmental flux requires constant metabolic adjustment, achieved partly through the fine regulation of gene expression. MicroRNAs are key players in this regulatory milieu; they have been implicated in regulating gene expression within several metabolically active tissues including the endocrine pancreas, liver and adipose tissue. Recent studies, for example, implicate miR-375 in pancreatic islet cell viability and function, and removal or overexpression of miR-375 profoundly affects glucose metabolism. In the liver, miR-122 is important for normal lipid metabolism. In fact, misexpression of miRNAs can occur in some diseases, suggesting that restoring miRNA expression is a potential therapeutic approach for both metabolic syndrome and diabetes.
Collapse
Affiliation(s)
- Francis C Lynn
- Department of Surgery, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
261
|
MicroRNAs are involved in homocysteine-induced cardiac remodeling. Cell Biochem Biophys 2009; 55:153-62. [PMID: 19669742 DOI: 10.1007/s12013-009-9063-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/20/2009] [Indexed: 12/25/2022]
Abstract
Elevated level of homocysteine (Hcy) called hyperhomocysteinemia (HHcy) is one of the major risk factors for chronic heart failure. Although the role of Hcy in cardiac remodeling is documented, the regulatory mechanism involved therein is still nebulous. MicroRNAs (miRNAs) and dicer have been implicated in regulation of cardiovascular diseases. Dicer is the only known enzyme involved in miRNA maturation. We investigated the involvement of dicer and miRNA in Hcy-induced cardiac remodeling. HL-1 cardiomyocytes were cultured in different doses of Hcy. Total RNA was isolated and RT-PCR and real-time PCR was performed for dicer, MMP-2,-9, TIMP-1,-3, and NOX-4. MiRNA microarray was used for analyzing the differential expression of miRNAs. Individual miRNA assay was also done. Western blotting was used to assess the MMP-9 expression in HHcy cardiomyocytes. The RT-PCR results suggest that dicer expression is enhanced in HHcy cardiomyocytes suggesting its involvement in cardiac remodeling caused due to high dose of Hcy. On the other hand, high dose of Hcy increased NOX-4 expression, a marker for oxidative stress. Additionally, HHcy cardiomyocytes showed elevated levels of MMP-2,-9 and TIMP-1,-3, and reduced expression of TIMP-4, suggesting cardiac remodeling due to oxidative stress. The miRNA microarray assay revealed differential expression of 11 miRNAs and among them miR-188 show dramatic downregulation. These findings suggest that dicer and miRNAs especially miR-188 are involved in Hcy-induced cardiac remodeling.
Collapse
|
262
|
Soukup GA, Fritzsch B, Pierce ML, Weston MD, Jahan I, McManus MT, Harfe BD. Residual microRNA expression dictates the extent of inner ear development in conditional Dicer knockout mice. Dev Biol 2009; 328:328-41. [PMID: 19389351 PMCID: PMC2793102 DOI: 10.1016/j.ydbio.2009.01.037] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 01/25/2009] [Accepted: 01/27/2009] [Indexed: 01/09/2023]
Abstract
Inner ear development requires coordinated transformation of a uniform sheet of cells into a labyrinth with multiple cell types. While numerous regulatory proteins have been shown to play critical roles in this process, the regulatory functions of microRNAs (miRNAs) have not been explored. To demonstrate the importance of miRNAs in inner ear development, we generated conditional Dicer knockout mice by the expression of Cre recombinase in the otic placode at E8.5. Otocyst-derived ganglia exhibit rapid neuron-specific miR-124 depletion by E11.5, degeneration by E12.5, and profound defects in subsequent sensory epithelial innervations by E17.5. However, the small and malformed inner ear at E17.5 exhibits residual and graded hair cell-specific miR-183 expression in the three remaining sensory epithelia (posterior crista, utricle, and cochlea) that closely corresponds to the degree of hair cell and sensory epithelium differentiation, and Fgf10 expression required for morphohistogenesis. The highest miR-183 expression is observed in near-normal hair cells of the posterior crista, whereas the reduced utricular macula demonstrates weak miR-183 expression and develops presumptive hair cells with numerous disorganized microvilli instead of ordered stereocilia. The correlation of differential and delayed depletion of mature miRNAs with the derailment of inner ear development demonstrates that miRNAs are crucial for inner ear neurosensory development and neurosensory-dependent morphogenesis.
Collapse
Affiliation(s)
- Garrett A Soukup
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.
| | | | | | | | | | | | | |
Collapse
|
263
|
Avnit-Sagi T, Kantorovich L, Kredo-Russo S, Hornstein E, Walker MD. The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 2009; 4:e5033. [PMID: 19343226 PMCID: PMC2660411 DOI: 10.1371/journal.pone.0005033] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Accepted: 03/02/2009] [Indexed: 02/07/2023] Open
Abstract
microRNAs (miRNAs) are known to play an essential role in controlling a broad range of biological processes including animal development. Accordingly, many miRNAs are expressed preferentially in one or a small number of cell types. Yet the mechanisms responsible for this selectivity are not well understood. The aim of this study was to elucidate the molecular basis of cell-specific expression of the pri-miR-375 gene, which is selectively expressed in pancreatic islets, and has been implicated both in the development of islets, and the function of mature pancreatic beta cells. An evolutionarily conserved 768 bp region of DNA upstream of the pri-miR-375 gene was linked to GFP and luciferase reporter genes, and expression monitored in transgenic mice and transfected cultured cells. Deletion and targeted mutagenesis analysis was used to evaluate the functional significance of sequence blocks within the upstream fragment. 5′-RACE analysis was used for mapping the pri-miR-375 gene transcription start site. The conserved 768 bp region was able to direct preferential expression of a GFP reporter gene to pancreatic islets in transgenic mice. Deletion analysis using a luciferase reporter gene in transfected cultured cell lines confirmed the cell specificity of the putative promoter region, and identified several key cis-elements essential for optimal activity, including E-boxes and a TATA sequence. Consistent with this, 5′-RACE analysis identified a transcription start site within this DNA region, 24 bp downstream of the TATA sequence. These studies define the promoter of the pri-miR-375 gene, and show that islet-specific expression of the pri-miR-375 gene is controlled at the transcriptional level. Detailed analysis of the transcriptional mechanisms controlling expression of miRNA genes will be essential to permit a comprehensive understanding of the complex role of miRNAs such as miR-375 in developmental processes.
Collapse
Affiliation(s)
- Tali Avnit-Sagi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Lia Kantorovich
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Kredo-Russo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael D. Walker
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
264
|
miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 2009; 106:5813-8. [PMID: 19289822 DOI: 10.1073/pnas.0810550106] [Citation(s) in RCA: 594] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Altered growth and development of the endocrine pancreas is a frequent cause of the hyperglycemia associated with diabetes. Here we show that microRNA-375 (miR-375), which is highly expressed in pancreatic islets, is required for normal glucose homeostasis. Mice lacking miR-375 (375KO) are hyperglycemic, exhibit increased total pancreatic alpha-cell numbers, fasting and fed plasma glucagon levels, and increased gluconeogenesis and hepatic glucose output. Furthermore, pancreatic beta-cell mass is decreased in 375KO mice as a result of impaired proliferation. In contrast, pancreatic islets of obese mice (ob/ob), a model of increased beta-cell mass, exhibit increased expression of miR-375. Genetic deletion of miR-375 from these animals (375/ob) profoundly diminished the proliferative capacity of the endocrine pancreas and resulted in a severely diabetic state. Bioinformatic analysis of transcript data from 375KO islets revealed that miR-375 regulates a cluster of genes controlling cellular growth and proliferation. These data provide evidence that miR-375 is essential for normal glucose homeostasis, alpha- and beta-cell turnover, and adaptive beta-cell expansion in response to increasing insulin demand in insulin resistance.
Collapse
|
265
|
Abstract
MicroRNAs (miRNAs) are tiny, endogenous, conserved, non-coding RNAs that negatively modulate gene expression by either promoting the degradation of mRNA or down-regulating the protein production by translational repression. They maintain optimal dose of cellular proteins and thus play a crucial role in the regulation of biological functions. Recent discovery of miRNAs in the heart and their differential expressions in pathological conditions provide glimpses of undiscovered regulatory mechanisms underlying cardiovascular diseases. Nearly 50 miRNAs are overexpressed in mouse heart. The implication of several miRNAs in cardiovascular diseases has been well documented such as miRNA-1 in arrhythmia, miRNA-29 in cardiac fibrosis, miRNA-126 in angiogenesis and miRNA-133 in cardiac hypertrophy. Aberrant expression of Dicer (an enzyme required for maturation of all miRNAs) during heart failure indicates its direct involvement in the regulation of cardiac diseases. MiRNAs and Dicer provide a particular layer of network of precise gene regulation in heart and vascular tissues in a spatiotemporal manner suggesting their implications as a powerful intervention tool for therapy. The combined strategy of manipulating miRNAs in stem cells for their target directed differentiation and optimizing the mode of delivery of miRNAs to the desired cells would determine the future potential of miRNAs to treat a disease. This review embodies the recent progress made in microRNomics of cardiovascular diseases and the future of miRNAs as a potential therapeutic target - the putative challenges and the approaches to deal with it.
Collapse
Affiliation(s)
- Paras Kumar Mishra
- Department of Physiology & Biophysics, University of Louisville School of Medicine, KY, USA
| | | | | | | |
Collapse
|
266
|
Hand NJ, Master ZR, Le Lay J, Friedman JR. Hepatic function is preserved in the absence of mature microRNAs. Hepatology 2009; 49:618-26. [PMID: 19127519 PMCID: PMC2635423 DOI: 10.1002/hep.22656] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate gene expression through partial or complete complementarity with target messenger RNAs. The function of miRNAs in normal liver physiology is largely unknown. We address the role of Dicer1 in the differentiated liver. We derived mice lacking Dicer1 function in hepatocytes and assessed the loss of mature miRNA via quantitative polymerase chain reaction. Gene expression microarray analysis was performed on liver RNA from mutant and control mice. Liver sections from mutant and control mice were examined and liver function tests were performed. Mice lacking Dicer1 function in hepatocytes appeared and behaved normally. Despite the loss of mature miRNAs, hepatic function was maintained, as reflected by normal blood glucose, albumin, cholesterol, and bilirubin. However, mutant mice between 2 and 4 months of age exhibited progressive hepatocyte damage with elevated serum alanine aminotransferase and aspartate aminotransferase. Liver mass was increased in mutant mice, as were cellular markers of both proliferation and apoptosis. Microarray analysis indicated large-scale changes in gene expression, with increased expression of many miRNA targets, particularly imprinted genes. CONCLUSIONS Loss of miRNA processing in the liver at late gestation has a remarkably mild phenotype, suggesting that miRNAs do not play an essential role in hepatic function. However, miRNA deficiency results in hepatocyte apoptosis, hepatocyte regeneration, and portal inflammation. Finally, microarray analysis of gene expression in the mutant liver supports a previously hypothesized role for Dicer1 in the repression of imprinted genes.
Collapse
Affiliation(s)
- Nicholas J. Hand
- Department of Pediatrics, University of Pennsylvania School of Medicine Children's Hospital of Philadelphia The Joseph Stokes, Jr. Research Institute ARC 1007B 3615 Civic Center Boulevard Philadelphia, PA 19104-4318
| | - Zankhana R. Master
- Department of Pediatrics, University of Pennsylvania School of Medicine Children's Hospital of Philadelphia The Joseph Stokes, Jr. Research Institute ARC 1007B 3615 Civic Center Boulevard Philadelphia, PA 19104-4318
| | - John Le Lay
- Department of Genetics University of Pennsylvania School of Medicine Children's Hospital of Philadelphia The Joseph Stokes, Jr. Research Institute ARC 1007B 3615 Civic Center Boulevard Philadelphia, PA 19104-4318
| | - Joshua R. Friedman
- Department of Pediatrics, University of Pennsylvania School of Medicine Children's Hospital of Philadelphia The Joseph Stokes, Jr. Research Institute ARC 1007B 3615 Civic Center Boulevard Philadelphia, PA 19104-4318,To whom correspondence should be addressed Phone 267-426-7223 Fax 206-984-2191
| |
Collapse
|
267
|
Tang X, Muniappan L, Tang G, Ozcan S. Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription. RNA (NEW YORK, N.Y.) 2009; 15:287-293. [PMID: 19096044 PMCID: PMC2648717 DOI: 10.1261/rna.1211209] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Accepted: 11/07/2008] [Indexed: 05/27/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding ribonucleotides that bind mRNAs and function mainly as translational repressors in mammals. MicroRNAs have been implicated to play a role in many diseases, including diabetes. Several reports indicate an important function for miRNAs in insulin production as well as insulin secretion. We have recently carried out a screen in the pancreatic beta-cell line MIN6 to identify miRNAs with altered abundance in response to changes in glucose concentrations. This screen resulted in identification of 61 glucose-regulated miRNAs from a total of 108 miRNAs detectable in MIN6 cells. Many of the identified miRNAs, including miR-124a, miR-107, and miR-30d were up-regulated in the presence of high glucose. Only a few of the miRNAs, including miR-296, miR-484, and miR-690 were significantly down-regulated by high glucose treatment. Interestingly, we found that overexpression of miR-30d, one of the miRNAs up-regulated by glucose, increased insulin gene expression, while inhibition of miR-30d abolished glucose-stimulated insulin gene transcription. Overexpression or inhibition of miR-30d did not have any effect on insulin secretion. These data suggest that the putative target genes of miR-30d may be negative regulators of insulin gene expression.
Collapse
Affiliation(s)
- Xiaoqing Tang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, 40536, USA
| | | | | | | |
Collapse
|
268
|
Morita S, Hara A, Kojima I, Horii T, Kimura M, Kitamura T, Ochiya T, Nakanishi K, Matoba R, Matsubara K, Hatada I. Dicer is required for maintaining adult pancreas. PLoS One 2009; 4:e4212. [PMID: 19148298 PMCID: PMC2621087 DOI: 10.1371/journal.pone.0004212] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/09/2008] [Indexed: 11/18/2022] Open
Abstract
Dicer1, an essential component of RNA interference and the microRNA pathway, has many important roles in the morphogenesis of developing tissues. Dicer1 null mice have been reported to die at E7.5; therefore it is impossible to study its function in adult tissues. We previously reported that Dicer1-hypomorphic mice, whose Dicer1 expression was reduced to 20% in all tissues, were unexpectedly viable. Here we analyzed these mice to ascertain whether the down-regulation of Dicer1 expression has any influence on adult tissues. Interestingly, all tissues of adult (8–10 week old) Dicer1-hypomorphic mice were histologically normal except for the pancreas, whose development was normal at the fetal and neonatal stages; however, morphologic abnormalities in Dicer1-hypomorphic mice were detected after 4 weeks of age. This suggested that Dicer1 is important for maintaining the adult pancreas.
Collapse
Affiliation(s)
- Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Showa-machi Maebashi, Japan
- Japan Health Sciences Foundation, Chuo, Tokyo, Japan
| | - Akemi Hara
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Showa-machi Maebashi, Japan
| | - Itaru Kojima
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Showa-machi Maebashi, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Showa-machi Maebashi, Japan
| | - Mika Kimura
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Showa-machi Maebashi, Japan
- Japan Health Sciences Foundation, Chuo, Tokyo, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Showa-machi Maebashi, Japan
| | - Takahiro Ochiya
- National Cancer Center Research Institute, Section for Studies on Metastasis, Tsukiji, Chuo-ku, Tokyo, Japan
| | | | - Ryo Matoba
- DNA Chip Research Inc., Suehirocho, Tsurumi-ku, Yokohama, Japan
| | | | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Showa-machi Maebashi, Japan
- * E-mail:
| |
Collapse
|
269
|
Correa-Medina M, Bravo-Egana V, Rosero S, Ricordi C, Edlund H, Diez J, Pastori RL. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns 2008; 9:193-9. [PMID: 19135553 DOI: 10.1016/j.gep.2008.12.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/08/2008] [Accepted: 12/11/2008] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that inhibit gene expression through binding to complementary messenger RNA sequences. miRNAs have been predicted to target genes important for pancreas development, proper endocrine cell function and metabolism. We previously described that miRNA-7 (miR-7) was the most abundant and differentially expressed islet miRNA, with 200-fold higher expression in mature human islets than in acinar tissue. Here we have analyzed the temporal and spatial expression of miR-7 in human fetal pancreas from 8 to 22 weeks of gestational age (wga). Human fetal (8-22wga) and adult pancreases were processed for immunohistochemistry, in situ hybridization, and quantitative RT-PCR of miRNA and mRNA. miR-7 was expressed in the human developing pancreas from around 9wga and reached its maximum expression levels between 14 and 18wga, coinciding with the exponential increase of the pancreatic endocrine hormones. Throughout development miR-7 expression was preferentially localized to endocrine cells and its expression persisted in the adult pancreas. The present study provides a detailed analysis of the spatiotemporal expression of miR-7 in developing human pancreas. The specific localization of miR-7 expression to fetal and adult endocrine cells indicates a potential role for miR-7 in endocrine cell differentiation and/or function. Future functional studies of a potential role for miR-7 function in islet cell differentiation and physiology are likely to identify novel targets for the treatment of diabetes and will lead to the development of improved protocols for generating insulin-producing cells for cell replacement therapy.
Collapse
Affiliation(s)
- Mayrin Correa-Medina
- Cell Transplant Center, Diabetes Research Institute University of Miami Leonard M. Miller School of Medicine, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
270
|
Bernardo AS, Hay CW, Docherty K. Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic beta cell. Mol Cell Endocrinol 2008; 294:1-9. [PMID: 18687378 DOI: 10.1016/j.mce.2008.07.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 05/15/2008] [Accepted: 07/04/2008] [Indexed: 12/26/2022]
Abstract
In recent years major progress has been made in understanding the role of transcription factors in the development of the endocrine pancreas in the mouse. Here we describe how a number of these transcription factors play a role in maintaining the differentiated phenotype of the beta cell, and in the mechanisms that allow the beta cell to adapt to changing metabolic demands that occur throughout life. Amongst these factors, Pdx1 plays a critical role in defining the region of the primitive gut that will form the pancreas, Ngn3 expression drives cells towards an endocrine lineage, and a number of additional proteins including Pdx1, in a second wave of expression, Pax4, NeuroD1/beta2, and MafA act as beta cell differentiation factors. In the mature beta cell Pdx1, MafA, beta2, and Nkx2.2 play important roles in regulating expression of insulin and to some extent other genes responsible for maintaining beta cell function. We emphasise here that data from gene expression studies in rodents seldom map on to the known structure of the corresponding human promoters. In the adult the beta cell is particularly susceptible to autoimmune-mediated attack and to the toxic metabolic milieu associated with over-eating, and utilises a number of these transcription factors in its defence. Pdx1 has anti-apoptotic and proliferative activities that help facilitate the maintenance of beta cell mass, while Ngn3 may be involved in the recruitment of progenitor cells, and Pax4 (and possibly HNF1alpha and Hnf4alpha) in the proliferation of beta cells in the adult pancreas. Other transcription factors with a more widespread pattern of expression that play a role in beta cell survival or proliferation include Foxo1, CREB family members, NFAT, FoxM1, Snail and Asc-2.
Collapse
Affiliation(s)
- Andreia S Bernardo
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | |
Collapse
|
271
|
Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol 2008; 326:4-35. [PMID: 19013144 DOI: 10.1016/j.ydbio.2008.10.024] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 02/06/2023]
Abstract
Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.
Collapse
Affiliation(s)
- George K Gittes
- Children's Hospital of Pittsburgh and the University of Pittsburgh School of Medicine, Department of Pediatric Surgery, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
272
|
Joglekar MV, Joglekar VM, Hardikar AA. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 2008; 9:109-13. [PMID: 18977315 DOI: 10.1016/j.gep.2008.10.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 10/08/2008] [Accepted: 10/08/2008] [Indexed: 12/12/2022]
Abstract
During pancreatic islet development, sequential changes in gene expression are known to be necessary for efficient differentiation and function of the endocrine pancreas. Several studies till now have demonstrated that microRNAs (miRNAs), which regulate translation of gene transcripts, influence gene expression cascades involved in pancreas development. Some of these miRNAs; miR-7 and miR-375 have been known to be expressed at high levels in pancreas and are also known to be involved in Zebrafish pancreas development as well as insulin secretion in mice. We demonstrate here that 4 different islet-specific microRNAs (miR-7, miR-9, miR-375 and miR-376) are expressed at high levels during human pancreatic islet development. Of these, miR-375, is seen to be differentially expressed in human islet beta- as well as non-beta-cells. Though no significant difference in abundance of miR-375 was noted in either cell type, analysis of islet-specific miRNA and mRNA in single cells show that non-beta cells contain higher levels of miR-375. Our data demonstrate that miRNAs that are known to be regulated during Zebrafish pancreatic development may play similar role in human pancreatic islet development.
Collapse
Affiliation(s)
- Mugdha V Joglekar
- Stem Cells and Diabetes Section, Lab # 12, National Center for Cell Science, Ganeshkhind Road, Pune, MH 411007, India
| | | | | |
Collapse
|
273
|
Affiliation(s)
- Thomas Thum
- From the Department of Internal Medicine I, Junior Research Group Cardiac Wounding and Healing, Interdisciplinary Center for Clinical Research (IZKF), University Hospital, Julius Maximilians University, Würzburg, Germany
| |
Collapse
|
274
|
Reid JG, Nagaraja AK, Lynn FC, Drabek RB, Muzny DM, Shaw CA, Weiss MK, Naghavi AO, Khan M, Zhu H, Tennakoon J, Gunaratne GH, Corry DB, Miller J, McManus MT, German MS, Gibbs RA, Matzuk MM, Gunaratne PH. Mouse let-7 miRNA populations exhibit RNA editing that is constrained in the 5'-seed/ cleavage/anchor regions and stabilize predicted mmu-let-7a:mRNA duplexes. Genes Dev 2008; 18:1571-81. [PMID: 18614752 PMCID: PMC2556275 DOI: 10.1101/gr.078246.108] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 06/27/2008] [Indexed: 11/25/2022]
Abstract
Massively parallel sequencing of millions of < 30-nt RNAs expressed in mouse ovary, embryonic pancreas (E14.5), and insulin-secreting beta-cells (betaTC-3) reveals that approximately 50% of the mature miRNAs representing mostly the mmu-let-7 family display internal insertion/deletions and substitutions when compared to precursor miRNA and the mouse genome reference sequences. Approximately, 12%-20% of species associated with mmu-let-7 populations exhibit sequence discrepancies that are dramatically reduced in nucleotides 3-7 (5'-seed) and 10-15 (cleavage and anchor sites). This observation is inconsistent with sequencing error and leads us to propose that the changes arise predominantly from post-transcriptional RNA-editing activity operating on miRNA:target mRNA complexes. Internal nucleotide modifications are most enriched at the ninth nucleotide position. A common ninth base edit of U-to-G results in a significant increase in stability of down-regulated let-7a targets in inhibin-deficient mice (Inha-/-). An excess of U-insertions (14.8%) over U-deletions (1.5%) and the presence of cleaved intermediates suggest that a mammalian TUTase (terminal uridylyl transferase) mediated dUTP-dependent U-insertion/U-deletion cycle may be a possible mechanism. We speculate that mRNA target site-directed editing of mmu-let-7a duplex-bulges stabilizes "loose" miRNA:mRNA target associations and functions to expand the target repertoire and/or enhance mRNA decay over translational repression. Our results also demonstrate that the systematic study of sequence variation within specific RNA classes in a given cell type from millions of sequences generated by next-generation sequencing (NGS) technologies ("intranomics") can be used broadly to infer functional constraints on specific parts of completely uncharacterized RNAs.
Collapse
Affiliation(s)
- Jeffrey G. Reid
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ankur K. Nagaraja
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Francis C. Lynn
- Diabetes Center, University of California, San Francisco, California 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA
| | - Rafal B. Drabek
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michelle K. Weiss
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Arash O. Naghavi
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Mahjabeen Khan
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Huifeng Zhu
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - Jayantha Tennakoon
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | | | - David B. Corry
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jonathan Miller
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael T. McManus
- Diabetes Center, University of California, San Francisco, California 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA
| | - Michael S. German
- Diabetes Center, University of California, San Francisco, California 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Martin M. Matzuk
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Preethi H. Gunaratne
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
275
|
Affiliation(s)
- Michael D Walker
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
276
|
Chong MMW, Rasmussen JP, Rudensky AY, Rundensky AY, Littman DR. The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. ACTA ACUST UNITED AC 2008; 205:2005-17. [PMID: 18725527 PMCID: PMC2526196 DOI: 10.1084/jem.20081219] [Citation(s) in RCA: 305] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) are implicated in the differentiation and function of many cell types. We provide genetic and in vivo evidence that the two RNaseIII enzymes, Drosha and Dicer, do indeed function in the same pathway. These have previously been shown to mediate the stepwise maturation of miRNAs (Lee, Y., C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, J. Lee, P. Provost, O. Radmark, S. Kim, and V.N. Kim. 2003. Nature. 425:415–419), and genetic ablation of either within the T cell compartment, or specifically within Foxp3+ regulatory T (T reg) cells, results in identical phenotypes. We found that miRNA biogenesis is indispensable for the function of T reg cells. Specific deletion of either Drosha or Dicer phenocopies mice lacking a functional Foxp3 gene or Foxp3+ cells, whereas deletion throughout the T cell compartment also results in spontaneous inflammatory disease, but later in life. Thus, miRNA-dependent regulation is critical for preventing spontaneous inflammation and autoimmunity.
Collapse
Affiliation(s)
- Mark M W Chong
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
277
|
Abstract
MicroRNAs (miRNAs) are a family of endogenous small noncoding RNA molecules, of 19–28 nucleotides in length. In humans, up to 3% of all genes are estimated to encode these evolutionarily conserved sequences. miRNAs are thought to control expression of thousands of target mRNAs. Mammalian miRNAs generally negatively regulate gene expression by repressing translation, possibly through effects on mRNA stability and compartmentalisation, and/or the translation process itself. An extensive range of in silico and experimental techniques have been applied to our understanding of the occurrence and functional relevance of such sequences, and antisense technologies have been successfully used to control miRNA expression in vitro and in vivo. Interestingly, miRNAs have been identified in both normal and pathological conditions, including differentiation and development, metabolism, proliferation, cell death, viral infection and cancer. Of specific relevance and excitement to the area of diabetes research, miRNA regulation has been implicated in insulin secretion from pancreatic β-cells, diabetic heart conditions and nephropathy. Further analyses of miRNAs in vitro and in vivo will, undoubtedly, enable us determine their potential to be exploited as therapeutic targets in diabetes.
Collapse
|
278
|
Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen R, Han DY, Zhu H, Agno JE, Gunaratne PH, DeMayo FJ, Matzuk MM. Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol 2008; 22:2336-52. [PMID: 18687735 DOI: 10.1210/me.2008-0142] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dicer is an evolutionarily conserved ribonuclease III that is necessary for microRNA (miRNA) processing and the synthesis of small interfering RNAs from long double-stranded RNA. Although it has been shown that Dicer plays important roles in the mammalian germline and early embryogenesis, the functions of Dicer-dependent pathways in the somatic cells of the female reproductive tract are unknown. Using a transgenic line in which Cre recombinase is driven by the anti-Müllerian hormone receptor type 2 promoter, we conditionally inactivated Dicer1 in the mesenchyme of the developing Müllerian ducts and postnatally in ovarian granulosa cells and mesenchyme-derived cells of the oviducts and uterus. Deletion of Dicer in these cell types results in female sterility and multiple reproductive defects including decreased ovulation rates, compromised oocyte and embryo integrity, prominent bilateral paratubal (oviductal) cysts, and shorter uterine horns. The paratubal cysts act as a reservoir for spermatozoa and oocytes and prevent embryos from transiting the oviductal isthmus and passing the uterotubal junction to enter the uterus for implantation. Deep sequencing of small RNAs in oviduct revealed down-regulation of specific miRNAs in Dicer conditional knockout females compared with wild type. The majority of these differentially expressed miRNAs are predicted to regulate genes important for Müllerian duct differentiation and mesenchyme-derived structures, and several of these putative target genes were significantly up-regulated upon conditional deletion of Dicer1. Thus, our findings reveal diverse and critical roles for Dicer and its miRNA products in the development and function of the female reproductive tract.
Collapse
Affiliation(s)
- Ankur K Nagaraja
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Tang X, Tang G, Ozcan S. Role of microRNAs in diabetes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:697-701. [PMID: 18655850 DOI: 10.1016/j.bbagrm.2008.06.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/18/2008] [Accepted: 06/27/2008] [Indexed: 11/17/2022]
Abstract
Diabetes is one of the most common chronic diseases in the world. Multiple and complex factors including various genetic and physiological changes can lead to type 1 and type 2 diabetes. However, the major mechanisms underlying the pathogenesis of diabetes remain obscure. With the recent discovery of microRNAs (miRNAs), these small ribonucleotides have been implicated as new players in the pathogenesis of diabetes and diabetes-associated complications. MiRNAs have been shown to regulate insulin production, insulin secretion, and insulin action. This review summarizes the recent progress in the cutting-edge research of miRNAs involved in diabetes and diabetes related complications.
Collapse
Affiliation(s)
- Xiaoqing Tang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, 741 South Limestone, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
280
|
Locke JM, Harries LW. RNA processing and mRNA surveillance in monogenic diabetes. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:203-12. [PMID: 19787084 PMCID: PMC2733086 DOI: 10.4137/grsb.s782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the eukaryotic cell a number of molecular mechanisms exist to regulate the nature and quantity of transcripts intended for translation. For monogenic diabetes an understanding of these processes is aiding scientists and clinicians in studying and managing this disease. Knowledge of RNA processing and mRNA surveillance pathways is helping to explain disease mechanisms, form genotype-phenotype relationships, and identifying new regions within genes to screen for mutations. Furthermore, recent insights into the regulatory role of micro RNAs (miRNAs) and RNA editing in the pancreas suggests that these mechanisms may also be important in the progression to the diabetic state.
Collapse
Affiliation(s)
- Jonathan M Locke
- Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Exeter, UK
| | | |
Collapse
|
281
|
Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 2008; 389:305-12. [DOI: 10.1515/bc.2008.026] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Fine-tuning of insulin secretion from pancreatic β-cells participates in blood glucose homeostasis. Defects in this process can lead to chronic hyperglycemia and diabetes mellitus. Several proteins controlling insulin exocytosis have been identified, but the mechanisms regulating their expression remain poorly understood. Here, we show that two non-coding microRNAs, miR124a and miR96, modulate the expression of proteins involved in insulin exocytosis and affect secretion of the β-cell line MIN6B1. miR124a increases the levels of SNAP25, Rab3A and synapsin-1A and decreases those of Rab27A and Noc2. Inhibition of Rab27A expression is mediated by direct binding to the 3′-untranslated region of Rab27A mRNA. The effect on the other genes is indirect and linked to changes in mRNA levels. Over-expression of miR124a leads to exaggerated hormone release under basal conditions and a reduction in glucose-induced secretion. miR96 increases mRNA and protein levels of granuphilin, a negative modulator of insulin exocytosis, and decreases the expression of Noc2, resulting in lower capacity of MIN6B1 cells to respond to secretagogues. Our data identify miR124a and miR96 as novel regulators of the expression of proteins playing a critical role in insulin exocytosis and in the release of other hormones and neurotransmitters.
Collapse
|
282
|
Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem Biophys Res Commun 2007; 366:922-6. [PMID: 18086561 DOI: 10.1016/j.bbrc.2007.12.052] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 12/05/2007] [Indexed: 01/19/2023]
Abstract
MicroRNAs (miRNAs) are non-coding gene products that regulate gene expression through specific binding to target mRNAs. Cell-specific patterns of miRNAs are associated with the acquisition and maintenance of a given phenotype, such as endocrine pancreas (islets). We hypothesized that a subset of miRNAs could be differentially expressed in the islets. Using miRNA microarray technology and quantitative RT-PCR we identified a subset of miRNAs that are the most differentially expressed islet miRNAs (ratio islet/acinar>150-fold), miR-7 being the most abundant. A similarly high ratio for miR-7 was observed in human islets. The ratio islet/acinar for miR-375, a previously described islet miRNA, was <10 and is 2.5x more abundant in the islets than miR-7. Therefore, we conclude that miR-7 is the most abundant endocrine miRNA in islets while miR-375 is the most abundant intra-islet miRNA. Our results may offer new insights into regulatory pathways of islet gene expression.
Collapse
|
283
|
Joglekar MV, Parekh VS, Hardikar AA. New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol Metab 2007; 18:393-400. [PMID: 18023200 DOI: 10.1016/j.tem.2007.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Revised: 09/21/2007] [Accepted: 10/12/2007] [Indexed: 10/22/2022]
Abstract
MicroRNAs (miRNAs) are 18-22 nucleotide RNA molecules that mediate post-transcriptional gene silencing, primarily by binding to the 3' untranslated region of their target mRNA. Several studies have demonstrated the role of miRNAs in mouse pancreas development (miR-124a, miR-503, miR-541, miR-214) as well as in insulin secretion (miR-375, miR-9). Pancreatic transcription factors that are temporally expressed during early pancreas development are re-expressed during pancreas regeneration following pancreatectomy in mice. The only exception to this is Neurogenin3 (NGN3). Here, we discuss recent evidence for miRNA-mediated silencing of ngn3, which inhibits endocrine cell development via the classical 'stem cell pathway' during mouse pancreatic regeneration, thereby favoring beta-cell regeneration.
Collapse
Affiliation(s)
- Mugdha V Joglekar
- Stem Cells and Diabetes Section, Lab 10, National Center for Cell Science, Ganeshkhind Road, Pune 411007, India
| | | | | |
Collapse
|