251
|
Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, Guo D, Fu L, Cui Y, Liu X, Arledge KC, Chen YH, Zhang L, Wang X. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res 2013; 23:986-93. [PMID: 23835475 PMCID: PMC3731569 DOI: 10.1038/cr.2013.92] [Citation(s) in RCA: 499] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 12/15/2022] Open
Abstract
The spike glycoprotein (S) of recently identified Middle East respiratory syndrome coronavirus (MERS-CoV) targets the cellular receptor, dipeptidyl peptidase 4 (DPP4). Sequence comparison and modeling analysis have revealed a putative receptor-binding domain (RBD) on the viral spike, which mediates this interaction. We report the 3.0 Å-resolution crystal structure of MERS-CoV RBD bound to the extracellular domain of human DPP4. Our results show that MERS-CoV RBD consists of a core and a receptor-binding subdomain. The receptor-binding subdomain interacts with DPP4 β-propeller but not its intrinsic hydrolase domain. MERS-CoV RBD and related SARS-CoV RBD share a high degree of structural similarity in their core subdomains, but are notably divergent in the receptor-binding subdomain. Mutagenesis studies have identified several key residues in the receptor-binding subdomain that are critical for viral binding to DPP4 and entry into the target cell. The atomic details at the interface between MERS-CoV RBD and DPP4 provide structural understanding of the virus and receptor interaction, which can guide development of therapeutics and vaccines against MERS-CoV infection.
Collapse
Affiliation(s)
- Nianshuang Wang
- Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, Zhang Y, Zhang W, Yuan Y, Bao J, Zhang B, Shi Y, Yan J, Gao GF. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 2013; 500:227-31. [PMID: 23831647 PMCID: PMC7095341 DOI: 10.1038/nature12328] [Citation(s) in RCA: 527] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/30/2013] [Indexed: 12/17/2022]
Abstract
The newly emergent Middle East respiratory syndrome coronavirus (MERS-CoV) can cause severe pulmonary disease in humans, representing the second example of a highly pathogenic coronavirus, the first being SARS-CoV. CD26 (also known as dipeptidyl peptidase 4, DPP4) was recently identified as the cellular receptor for MERS-CoV. The engagement of the MERS-CoV spike protein with CD26 mediates viral attachment to host cells and virus-cell fusion, thereby initiating infection. Here we delineate the molecular basis of this specific interaction by presenting the first crystal structures of both the free receptor binding domain (RBD) of the MERS-CoV spike protein and its complex with CD26. Furthermore, binding between the RBD and CD26 is measured using real-time surface plasmon resonance with a dissociation constant of 16.7 nM. The viral RBD is composed of a core subdomain homologous to that of the SARS-CoV spike protein, and a unique strand-dominated external receptor binding motif that recognizes blades IV and V of the CD26 β-propeller. The atomic details at the interface between the two binding entities reveal a surprising protein-protein contact mediated mainly by hydrophilic residues. Sequence alignment indicates, among betacoronaviruses, a possible structural conservation for the region homologous to the MERS-CoV RBD core, but a high variation in the external receptor binding motif region for virus-specific pathogenesis such as receptor recognition.
Collapse
Affiliation(s)
- Guangwen Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Baker KS, Leggett RM, Bexfield NH, Alston M, Daly G, Todd S, Tachedjian M, Holmes CEG, Crameri S, Wang LF, Heeney JL, Suu-Ire R, Kellam P, Cunningham AA, Wood JLN, Caccamo M, Murcia PR. Metagenomic study of the viruses of African straw-coloured fruit bats: detection of a chiropteran poxvirus and isolation of a novel adenovirus. Virology 2013; 441:95-106. [PMID: 23562481 PMCID: PMC3667569 DOI: 10.1016/j.virol.2013.03.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/21/2013] [Accepted: 03/11/2013] [Indexed: 12/12/2022]
Abstract
Viral emergence as a result of zoonotic transmission constitutes a continuous public health threat. Emerging viruses such as SARS coronavirus, hantaviruses and henipaviruses have wildlife reservoirs. Characterising the viruses of candidate reservoir species in geographical hot spots for viral emergence is a sensible approach to develop tools to predict, prevent, or contain emergence events. Here, we explore the viruses of Eidolon helvum, an Old World fruit bat species widely distributed in Africa that lives in close proximity to humans. We identified a great abundance and diversity of novel herpes and papillomaviruses, described the isolation of a novel adenovirus, and detected, for the first time, sequences of a chiropteran poxvirus closely related with Molluscum contagiosum. In sum, E. helvum display a wide variety of mammalian viruses, some of them genetically similar to known human pathogens, highlighting the possibility of zoonotic transmission.
Collapse
Affiliation(s)
- Kate S Baker
- University of Cambridge, Department of Veterinary Medicine, Madingley Rd, Cambridge, Cambridgeshire, CB3 0ES, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Abstract
Innate immune response is the first line of antiviral defense resulting, in most cases, in pathogen clearance with minimal clinical consequences. Viruses have developed diverse strategies to subvert host defense mechanisms and increase their survival. In the transmissible gastroenteritis virus (TGEV) as a model, we previously reported that accessory gene 7 counteracts the host antiviral response by associating with the catalytic subunit of protein phosphatase 1 (PP1c). In the present work, the effect of the absence of gene 7 on the host cell, during infection, was further analyzed by transcriptomic analysis. The pattern of gene expression of cells infected with a recombinant mutant TGEV, lacking gene 7 expression (rTGEV-Δ7), was compared to that of cells infected with the parental virus (rTGEV-wt). Genes involved in the immune response, the interferon response, and inflammation were upregulated during TGEV infection in the absence of gene 7. An exacerbated innate immune response during infection with rTGEV-Δ7 virus was observed both in vitro and in vivo. An increase in macrophage recruitment and activation in lung tissues infected with rTGEV-Δ7 virus was observed compared to cells infected with the parental virus. In summary, the absence of protein 7 both in vitro and in vivo led to increased proinflammatory responses and acute tissue damage after infection. In a porcine animal model, which is immunologically similar to humans, we present a novel example of how viral proteins counteract host antiviral pathways to determine the infection outcome and pathogenesis.
Collapse
|
255
|
Affiliation(s)
- Charles D Gomersall
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.
| | | |
Collapse
|
256
|
Guery B, Poissy J, el Mansouf L, Séjourné C, Ettahar N, Lemaire X, Vuotto F, Goffard A, Behillil S, Enouf V, Caro V, Mailles A, Che D, Manuguerra JC, Mathieu D, Fontanet A, van der Werf S. Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission. Lancet 2013; 381:2265-72. [PMID: 23727167 PMCID: PMC7159298 DOI: 10.1016/s0140-6736(13)60982-4] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Human infection with a novel coronavirus named Middle East Respiratory Syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia and the Middle East in September, 2012, with 44 laboratory-confirmed cases as of May 23, 2013. We report detailed clinical and virological data for two related cases of MERS-CoV disease, after nosocomial transmission of the virus from one patient to another in a French hospital. METHODS Patient 1 visited Dubai in April, 2013; patient 2 lives in France and did not travel abroad. Both patients had underlying immunosuppressive disorders. We tested specimens from the upper (nasopharyngeal swabs) or the lower (bronchoalveolar lavage, sputum) respiratory tract and whole blood, plasma, and serum specimens for MERS-CoV by real-time RT-PCR targeting the upE and Orf1A genes of MERS-CoV. FINDINGS Initial clinical presentation included fever, chills, and myalgia in both patients, and for patient 1, diarrhoea. Respiratory symptoms rapidly became predominant with acute respiratory failure leading to mechanical ventilation and extracorporeal membrane oxygenation (ECMO). Both patients developed acute renal failure. MERS-CoV was detected in lower respiratory tract specimens with high viral load (eg, cycle threshold [Ct] values of 22·9 for upE and 24 for Orf1a for a bronchoalveolar lavage sample from patient 1; Ct values of 22·5 for upE and 23·9 for Orf1a for an induced sputum sample from patient 2), whereas nasopharyngeal specimens were weakly positive or inconclusive. The two patients shared the same room for 3 days. The incubation period was estimated at 9-12 days for the second case. No secondary transmission was documented in hospital staff despite the absence of specific protective measures before the diagnosis of MERS-CoV was suspected. Patient 1 died on May 28, due to refractory multiple organ failure. INTERPRETATION Patients with respiratory symptoms returning from the Middle East or exposed to a confirmed case should be isolated and investigated for MERS-CoV with lower respiratory tract sample analysis and an assumed incubation period of 12 days. Immunosuppression should also be taken into account as a risk factor. FUNDING French Institute for Public Health Surveillance, ANR grant Labex Integrative Biology of Emerging Infectious Diseases, and the European Community's Seventh Framework Programme projects EMPERIE and PREDEMICS.
Collapse
Affiliation(s)
- Benoit Guery
- Service de Gestion du Risque Infectieux, Vigilances et Infectiologie, Hopital Huriez, Pavillon Fourrier, Centre Hospitalier Régional et Universitaire de Lille, Université de Lille 2, Lille Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Guery B, van der Werf S. Coronavirus: need for a therapeutic approach. THE LANCET. INFECTIOUS DISEASES 2013; 13:726-7. [PMID: 23782860 PMCID: PMC7129097 DOI: 10.1016/s1473-3099(13)70153-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Benoit Guery
- Service de Gestion du Risque Infectieux, Vigilances et Infectiologie, Hopital Huriez, 59045 Lille Cedex, France.
| | | |
Collapse
|
258
|
Chan RWY, Chan MCW, Agnihothram S, Chan LLY, Kuok DIT, Fong JHM, Guan Y, Poon LLM, Baric RS, Nicholls JM, Peiris JSM. Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures. J Virol 2013; 87:6604-14. [PMID: 23552422 PMCID: PMC3676115 DOI: 10.1128/jvi.00009-13] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/12/2013] [Indexed: 01/11/2023] Open
Abstract
Since April 2012, there have been 17 laboratory-confirmed human cases of respiratory disease associated with newly recognized human betacoronavirus lineage C virus EMC (HCoV-EMC), and 7 of them were fatal. The transmissibility and pathogenesis of HCoV-EMC remain poorly understood, and elucidating its cellular tropism in human respiratory tissues will provide mechanistic insights into the key cellular targets for virus propagation and spread. We utilized ex vivo cultures of human bronchial and lung tissue specimens to investigate the tissue tropism and virus replication kinetics following experimental infection with HCoV-EMC compared with those following infection with human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome coronavirus (SARS-CoV). The innate immune responses elicited by HCoV-EMC were also investigated. HCoV-EMC productively replicated in human bronchial and lung ex vivo organ cultures. While SARS-CoV productively replicated in lung tissue, replication in human bronchial tissue was limited. Immunohistochemistry revealed that HCoV-EMC infected nonciliated bronchial epithelium, bronchiolar epithelial cells, alveolar epithelial cells, and endothelial cells. Transmission electron microscopy showed virions within the cytoplasm of bronchial epithelial cells and budding virions from alveolar epithelial cells (type II). In contrast, there was minimal HCoV-229E infection in these tissues. HCoV-EMC failed to elicit strong type I or III interferon (IFN) or proinflammatory innate immune responses in ex vivo respiratory tissue cultures. Treatment of human lung tissue ex vivo organ cultures with type I IFNs (alpha and beta IFNs) at 1 h postinfection reduced the replication of HCoV-EMC, suggesting a potential therapeutic use of IFNs for treatment of human infection.
Collapse
Affiliation(s)
- Renee W. Y. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Michael C. W. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sudhakar Agnihothram
- Departments of Epidemiology and Microbiology and Immunology, Gillings School of Global Public Health, and School of Medicine, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Louisa L. Y. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Denise I. T. Kuok
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Joanne H. M. Fong
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Y. Guan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L. M. Poon
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ralph S. Baric
- Departments of Epidemiology and Microbiology and Immunology, Gillings School of Global Public Health, and School of Medicine, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - John M. Nicholls
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - J. S. Malik Peiris
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
259
|
Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus. J Virol 2013; 87:8638-50. [PMID: 23720729 DOI: 10.1128/jvi.01055-13] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the novel Middle East respiratory syndrome coronavirus (MERS-CoV) is closely related to Tylonycteris bat CoV HKU4 (Ty-BatCoV HKU4) and Pipistrellus bat CoV HKU5 (Pi-BatCoV HKU5) in bats from Hong Kong, and other potential lineage C betacoronaviruses in bats from Africa, Europe, and America, its animal origin remains obscure. To better understand the role of bats in its origin, we examined the molecular epidemiology and evolution of lineage C betacoronaviruses among bats. Ty-BatCoV HKU4 and Pi-BatCoV HKU5 were detected in 29% and 25% of alimentary samples from lesser bamboo bat (Tylonycteris pachypus) and Japanese pipistrelle (Pipistrellus abramus), respectively. Sequencing of their RNA polymerase (RdRp), spike (S), and nucleocapsid (N) genes revealed that MERS-CoV is more closely related to Pi-BatCoV HKU5 in RdRp (92.1% to 92.3% amino acid [aa] identity) but is more closely related to Ty-BatCoV HKU4 in S (66.8% to 67.4% aa identity) and N (71.9% to 72.3% aa identity). Although both viruses were under purifying selection, the S of Pi-BatCoV HKU5 displayed marked sequence polymorphisms and more positively selected sites than that of Ty-BatCoV HKU4, suggesting that Pi-BatCoV HKU5 may generate variants to occupy new ecological niches along with its host in diverse habitats. Molecular clock analysis showed that they diverged from a common ancestor with MERS-CoV at least several centuries ago. Although MERS-CoV may have diverged from potential lineage C betacoronaviruses in European bats more recently, these bat viruses were unlikely to be the direct ancestor of MERS-CoV. Intensive surveillance for lineage C betaCoVs in Pipistrellus and related bats with diverse habitats and other animals in the Middle East may fill the evolutionary gap.
Collapse
|
260
|
Abstract
Pathogen discovery is critically important to infectious diseases and public health. Nearly all new outbreaks are caused by the emergence of novel viruses. Genomic tools for pathogen discovery include consensus PCR, microarrays, and deep sequencing. Downstream studies are often necessary to link a candidate novel virus to a disease.
Viral pathogen discovery is of critical importance to clinical microbiology, infectious diseases, and public health. Genomic approaches for pathogen discovery, including consensus polymerase chain reaction (PCR), microarrays, and unbiased next-generation sequencing (NGS), have the capacity to comprehensively identify novel microbes present in clinical samples. Although numerous challenges remain to be addressed, including the bioinformatics analysis and interpretation of large datasets, these technologies have been successful in rapidly identifying emerging outbreak threats, screening vaccines and other biological products for microbial contamination, and discovering novel viruses associated with both acute and chronic illnesses. Downstream studies such as genome assembly, epidemiologic screening, and a culture system or animal model of infection are necessary to establish an association of a candidate pathogen with disease.
Collapse
|
261
|
Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol 2013; 87:7790-2. [PMID: 23678167 DOI: 10.1128/jvi.01244-13] [Citation(s) in RCA: 846] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
262
|
Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus. mBio 2013; 4:e00165-13. [PMID: 23631916 PMCID: PMC3663187 DOI: 10.1128/mbio.00165-13] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED A novel human coronavirus (HCoV-EMC) was recently identified in the Middle East as the causative agent of a severe acute respiratory syndrome (SARS) resembling the illness caused by SARS coronavirus (SARS-CoV). Although derived from the CoV family, the two viruses are genetically distinct and do not use the same receptor. Here, we investigated whether HCoV-EMC and SARS-CoV induce similar or distinct host responses after infection of a human lung epithelial cell line. HCoV-EMC was able to replicate as efficiently as SARS-CoV in Calu-3 cells and similarly induced minimal transcriptomic changes before 12 h postinfection. Later in infection, HCoV-EMC induced a massive dysregulation of the host transcriptome, to a much greater extent than SARS-CoV. Both viruses induced a similar activation of pattern recognition receptors and the interleukin 17 (IL-17) pathway, but HCoV-EMC specifically down-regulated the expression of several genes within the antigen presentation pathway, including both type I and II major histocompatibility complex (MHC) genes. This could have an important impact on the ability of the host to mount an adaptive host response. A unique set of 207 genes was dysregulated early and permanently throughout infection with HCoV-EMC, and was used in a computational screen to predict potential antiviral compounds, including kinase inhibitors and glucocorticoids. Overall, HCoV-EMC and SARS-CoV elicit distinct host gene expression responses, which might impact in vivo pathogenesis and could orient therapeutic strategies against that emergent virus. IMPORTANCE Identification of a novel coronavirus causing fatal respiratory infection in humans raises concerns about a possible widespread outbreak of severe respiratory infection similar to the one caused by SARS-CoV. Using a human lung epithelial cell line and global transcriptomic profiling, we identified differences in the host response between HCoV-EMC and SARS-CoV. This enables rapid assessment of viral properties and the ability to anticipate possible differences in human clinical responses to HCoV-EMC and SARS-CoV. We used this information to predict potential effective drugs against HCoV-EMC, a method that could be more generally used to identify candidate therapeutics in future disease outbreaks. These data will help to generate hypotheses and make rapid advancements in characterizing this new virus.
Collapse
|
263
|
Koopmans M. Surveillance strategy for early detection of unusual infectious disease events. Curr Opin Virol 2013; 3:185-91. [PMID: 23612329 PMCID: PMC7102709 DOI: 10.1016/j.coviro.2013.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/21/2013] [Accepted: 02/14/2013] [Indexed: 01/05/2023]
Abstract
New pathogens continue to emerge, and the increased connectedness of populations across the globe through international travel and trade favors rapid dispersal of any new disease. The ability to respond to such events has increased but the question is what ‘preparedness’ means at the level of the clinician. Clinicians deal with patients with unexplained illness on a daily basis, and even with syndromes highly indicative of infectious diseases, the cause of illness is often not detected, unless extensive and costly diagnostic work-ups are done. This review discusses innovations in diagnostics and surveillance aimed at early detection of unusual disease. Risk based approaches are promising, but optimal preparedness planning requires multidisciplinary partnerships across domains, and a global translational research agenda to develop tools, systems, and evidence for interventions.
Collapse
Affiliation(s)
- Marion Koopmans
- Laboratory for Infectious Diseases, Center for Infectious Disease Control, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| |
Collapse
|
264
|
Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013; 495:251-4. [PMID: 23486063 PMCID: PMC7095326 DOI: 10.1038/nature12005] [Citation(s) in RCA: 1530] [Impact Index Per Article: 139.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/13/2013] [Indexed: 11/08/2022]
Abstract
Most human coronaviruses cause mild upper respiratory tract disease but may be associated with more severe pulmonary disease in immunocompromised individuals. However, SARS coronavirus caused severe lower respiratory disease with nearly 10% mortality and evidence of systemic spread. Recently, another coronavirus (human coronavirus-Erasmus Medical Center (hCoV-EMC)) was identified in patients with severe and sometimes lethal lower respiratory tract infection. Viral genome analysis revealed close relatedness to coronaviruses found in bats. Here we identify dipeptidyl peptidase 4 (DPP4; also known as CD26) as a functional receptor for hCoV-EMC. DPP4 specifically co-purified with the receptor-binding S1 domain of the hCoV-EMC spike protein from lysates of susceptible Huh-7 cells. Antibodies directed against DPP4 inhibited hCoV-EMC infection of primary human bronchial epithelial cells and Huh-7 cells. Expression of human and bat (Pipistrellus pipistrellus) DPP4 in non-susceptible COS-7 cells enabled infection by hCoV-EMC. The use of the evolutionarily conserved DPP4 protein from different species as a functional receptor provides clues about the host range potential of hCoV-EMC. In addition, it will contribute critically to our understanding of the pathogenesis and epidemiology of this emerging human coronavirus, and may facilitate the development of intervention strategies.
Collapse
|
265
|
Abstract
A novel betacoronavirus, human coronavirus (HCoV-EMC), has recently been detected in humans with severe respiratory disease. Further characterization of HCoV-EMC suggests that this virus is different from severe acute respiratory syndrome coronavirus (SARS-CoV) because it is able to replicate in multiple mammalian cell lines and it does not use angiotensin-converting enzyme 2 as a receptor to achieve infection. Additional research is urgently needed to better understand the pathogenicity and tissue tropism of this virus in humans. In their recent study published in mBio, Kindler et al. shed some light on these important topics (E. Kindler, H. R. Jónsdóttir, M. Muth, O. J. Hamming, R. Hartmann, R. Rodriguez, R. Geffers, R. A. Fouchier, C. Drosten, M. A. Müller, R. Dijkman, and V. Thiel, mBio 4[1]:e00611-12, 2013). These authors report the use of differentiated pseudostratified human primary airway epithelial cells, an in vitro model with high physiological relevance to the human airway epithelium, to characterize the cellular tropism of HCoV-EMC. More importantly, the authors demonstrate the potential use of type I and type III interferons (IFNs) to control viral infection.
Collapse
|
266
|
Reusken C, Mou H, Godeke GJ, van der Hoek L, Meyer B, Müller MA, Haagmans B, de Sousa R, Schuurman N, Dittmer U, Rottier P, Osterhaus A, Drosten C, Bosch BJ, Koopmans M. Specific serology for emerging human coronaviruses by protein microarray. ACTA ACUST UNITED AC 2013; 18:20441. [PMID: 23594517 DOI: 10.2807/1560-7917.es2013.18.14.20441] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present a serological assay for the specific detection of IgM and IgG antibodies against the emerging human coronavirus hCoV-EMC and the SARS-CoV based on protein microarray technology. The assay uses the S1 receptor-binding subunit of the spike protein of hCoV-EMC and SARS-CoV as antigens. The assay has been validated extensively using putative cross-reacting sera of patient cohorts exposed to the four common hCoVs and sera from convalescent patients infected with hCoV-EMC or SARS-CoV.
Collapse
Affiliation(s)
- C Reusken
- Centre for Infectious Disease Control, Division Virology, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol 2013; 87:6150-60. [PMID: 23536651 DOI: 10.1128/jvi.03372-12] [Citation(s) in RCA: 255] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Infection with human coronavirus 229E (HCoV-229E) is associated with the common cold and may result in pneumonia in immunocompromised patients. The viral spike (S) protein is incorporated into the viral envelope and mediates infectious entry of HCoV-229E into host cells, a process that depends on the activation of the S-protein by host cell proteases. However, the proteases responsible for HCoV-229E activation are incompletely defined. Here we show that the type II transmembrane serine proteases TMPRSS2 and HAT cleave the HCoV-229E S-protein (229E-S) and augment 229E-S-driven cell-cell fusion, suggesting that TMPRSS2 and HAT can activate 229E-S. Indeed, engineered expression of TMPRSS2 and HAT rendered 229E-S-driven virus-cell fusion insensitive to an inhibitor of cathepsin L, a protease previously shown to facilitate HCoV-229E infection. Inhibition of endogenous cathepsin L or TMPRSS2 demonstrated that both proteases can activate 229E-S for entry into cells that are naturally susceptible to infection. In addition, evidence was obtained that activation by TMPRSS2 rescues 229E-S-dependent cell entry from inhibition by IFITM proteins. Finally, immunohistochemistry revealed that TMPRSS2 is coexpressed with CD13, the HCoV-229E receptor, in human airway epithelial (HAE) cells, and that CD13(+) TMPRSS2(+) cells are preferentially targeted by HCoV-229E, suggesting that TMPRSS2 can activate HCoV-229E in infected humans. In sum, our results indicate that HCoV-229E can employ redundant proteolytic pathways to ensure its activation in host cells. In addition, our observations and previous work suggest that diverse human respiratory viruses are activated by TMPRSS2, which may constitute a target for antiviral intervention.
Collapse
|
268
|
Chan JFW, Chan KH, Choi GKY, To KKW, Tse H, Cai JP, Yeung ML, Cheng VCC, Chen H, Che XY, Lau SKP, Woo PCY, Yuen KY. Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation. J Infect Dis 2013; 207:1743-52. [PMID: 23532101 PMCID: PMC7107374 DOI: 10.1093/infdis/jit123] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The emerging novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) was recently isolated from patients with severe pneumonia and renal failure and was associated with an unexplained high crude fatality rate of 56%. We performed a cell line susceptibility study with 28 cell lines. HCoV-EMC was found to infect the human respiratory tract (polarized airway epithelium cell line Calu-3, embryonic fibroblast cell line HFL, and lung adenocarcinoma cell line A549), kidney (embryonic kidney cell line HEK), intestinal tract (colorectal adenocarcinoma cell line Caco-2), liver cells (hepatocellular carcinoma cell line Huh-7), and histiocytes (malignant histiocytoma cell line His-1), as evident by detection of high or increasing viral load in culture supernatants, detection of viral nucleoprotein expression by immunostaining, and/or detection of cytopathic effects. Although an infected human neuronal cell line (NT2) and infected monocyte and T lymphocyte cell lines (THP-1, U937, and H9) had increased viral loads, their relatively lower viral production corroborated with absent nucleoprotein expression and cytopathic effects. This range of human tissue tropism is broader than that for all other HCoVs, including SARS coronavirus, HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63, which may explain the high mortality associated with this disease. A recent cell line susceptibility study showed that HCoV-EMC can infect primate, porcine, and bat cells and therefore may jump interspecies barriers. We found that HCoV-EMC can also infect civet lung fibroblast and rabbit kidney cell lines. These findings have important implications for the diagnosis, pathogenesis, and transmission of HCoV-EMC.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Rd, Pokfulam, Hong Kong Special Administrative Region, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Gautret P, Charrel R, Belhouchat K, Drali T, Benkouiten S, Nougairede A, Zandotti C, Memish ZA, al Masri M, Gaillard C, Brouqui P, Parola P. Lack of nasal carriage of novel corona virus (HCoV-EMC) in French Hajj pilgrims returning from the Hajj 2012, despite a high rate of respiratory symptoms. Clin Microbiol Infect 2013; 19:E315-7. [PMID: 23452263 PMCID: PMC7128239 DOI: 10.1111/1469-0691.12174] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 11/30/2022]
Abstract
A cohort of 154 French Hajj pilgrims participating in the 2012 Hajj were systematically sampled with nasal swabs prior to returning to France, and screened for the novel HCoV-EMC coronavirus by two real-time RT-PCR assays. Despite a high rate of respiratory symptoms (83.4%), including 41.0% influenza-like illness, no case of HCoV-EMC infection was detected. Despite the fact that zoonotic transmission was suspected in the first few cases, a recent family cluster in the Kingdom of Saudi Arabia suggests that the virus might show at least limited spread from person to person, which justifies continuing epidemiological surveillance.
Collapse
Affiliation(s)
- P Gautret
- IHU Méditerranée Infection, APHM Public Hospitals of Marseille, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Khan G. A novel coronavirus capable of lethal human infections: an emerging picture. Virol J 2013; 10:66. [PMID: 23445530 PMCID: PMC3599982 DOI: 10.1186/1743-422x-10-66] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/22/2013] [Indexed: 11/10/2022] Open
Abstract
In September 2012, a novel coronavirus was isolated from a patient in Saudi Arabia who had died of an acute respiratory illness and renal failure. The clinical presentation was reminiscent of the outbreak caused by the SARS-coronavirus (SARS-CoV) exactly ten years ago that resulted in over 8000 cases. Sequence analysis of the new virus revealed that it was indeed a member of the same genus as SARS-CoV. By mid-February 2013, 12 laboratory-confirmed cases had been reported with 6 fatalities. The first 9 cases were in individuals resident in the Middle East, while the most recent 3 cases were in family members resident in the UK. The index case in the UK family cluster had travel history to Pakistan and Saudi Arabia. Although the current evidence suggests that this virus is not highly transmissible among humans, there is a real danger that it may spread to other parts of the world. Here, a brief review of the events is provided to summarize the rapidly emerging picture of this new virus.
Collapse
Affiliation(s)
- Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (Tawam Hospital Campus), United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
271
|
Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus. J Virol 2013; 87:5300-4. [PMID: 23449793 DOI: 10.1128/jvi.03496-12] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infections with human coronavirus EMC (HCoV-EMC) are associated with severe pneumonia. We demonstrate that HCoV-EMC resembles severe acute respiratory syndrome coronavirus (SARS-CoV) in productively infecting primary and continuous cells of the human airways and in preventing the induction of interferon regulatory factor 3 (IRF-3)-mediated antiviral alpha/beta interferon (IFN-α/β) responses. However, HCoV-EMC was markedly more sensitive to the antiviral state established by ectopic IFN. Thus, HCoV-EMC can utilize a broad range of human cell substrates and suppress IFN induction, but it does not reach the IFN resistance of SARS-CoV.
Collapse
|
272
|
Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential. mBio 2013; 4:e00611-12. [PMID: 23422412 PMCID: PMC3573664 DOI: 10.1128/mbio.00611-12] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent emergence of a novel human coronavirus (HCoV-EMC) in the Middle East raised considerable concerns, as it is associated with severe acute pneumonia, renal failure, and fatal outcome and thus resembles the clinical presentation of severe acute respiratory syndrome (SARS) observed in 2002 and 2003. Like SARS-CoV, HCoV-EMC is of zoonotic origin and closely related to bat coronaviruses. The human airway epithelium (HAE) represents the entry point and primary target tissue for respiratory viruses and is highly relevant for assessing the zoonotic potential of emerging respiratory viruses, such as HCoV-EMC. Here, we show that pseudostratified HAE cultures derived from different donors are highly permissive to HCoV-EMC infection, and by using reverse transcription (RT)-PCR and RNAseq data, we experimentally determined the identity of seven HCoV-EMC subgenomic mRNAs. Although the HAE cells were readily responsive to type I and type III interferon (IFN), we observed neither a pronounced inflammatory cytokine nor any detectable IFN responses following HCoV-EMC, SARS-CoV, or HCoV-229E infection, suggesting that innate immune evasion mechanisms and putative IFN antagonists of HCoV-EMC are operational in the new host. Importantly, however, we demonstrate that both type I and type III IFN can efficiently reduce HCoV-EMC replication in HAE cultures, providing a possible treatment option in cases of suspected HCoV-EMC infection. IMPORTANCE A novel human coronavirus, HCoV-EMC, has recently been described to be associated with severe respiratory tract infection and fatalities, similar to severe acute respiratory syndrome (SARS) observed during the 2002-2003 epidemic. Closely related coronaviruses replicate in bats, suggesting that, like SARS-CoV, HCoV-EMC is of zoonotic origin. Since the animal reservoir and circumstances of zoonotic transmission are yet elusive, it is critically important to assess potential species barriers of HCoV-EMC infection. An important first barrier against invading respiratory pathogens is the epithelium, representing the entry point and primary target tissue of respiratory viruses. We show that human bronchial epithelia are highly susceptible to HCoV-EMC infection. Furthermore, HCoV-EMC, like other coronaviruses, evades innate immune recognition, reflected by the lack of interferon and minimal inflammatory cytokine expression following infection. Importantly, type I and type III interferon treatment can efficiently reduce HCoV-EMC replication in the human airway epithelium, providing a possible avenue for treatment of emerging virus infections.
Collapse
|
273
|
Smith I, Wang LF. Bats and their virome: an important source of emerging viruses capable of infecting humans. Curr Opin Virol 2013; 3:84-91. [PMID: 23265969 PMCID: PMC7102720 DOI: 10.1016/j.coviro.2012.11.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/17/2012] [Accepted: 11/22/2012] [Indexed: 01/09/2023]
Abstract
Bats are being increasingly recognized as an important reservoir of zoonotic viruses of different families, including SARS coronavirus, Nipah virus, Hendra virus and Ebola virus. Several recent studies hypothesized that bats, an ancient group of flying mammals, are the major reservoir of several important RNA virus families from which other mammalian viruses of livestock and humans were derived. Although this hypothesis needs further investigation, the premise that bats carry a large number of viruses is commonly accepted. The question of whether bats have unique biological features making them ideal reservoir hosts has been the subject of several recent reviews. In this review, we will focus on the public health implications of bat derived zoonotic viral disease outbreaks, examine the drivers and risk factors of past disease outbreaks and outline research directions for better control of future disease events.
Collapse
Affiliation(s)
- Ina Smith
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Lin-Fa Wang
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
274
|
Pollack MP, Pringle C, Madoff LC, Memish ZA. Latest outbreak news from ProMED-mail: novel coronavirus -- Middle East. Int J Infect Dis 2012; 17:e143-4. [PMID: 23270612 PMCID: PMC7129867 DOI: 10.1016/j.ijid.2012.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 01/16/2023] Open
|
275
|
Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines. mBio 2012; 3:mBio.00515-12. [PMID: 23232719 PMCID: PMC3520110 DOI: 10.1128/mbio.00515-12] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A new human coronavirus (hCoV-EMC) has emerged very recently in the Middle East. The clinical presentation resembled that of the severe acute respiratory syndrome (SARS) as encountered during the epidemic in 2002/2003. In both cases, acute renal failure was observed in humans. HCoV-EMC is a member of the same virus genus as SARS-CoV but constitutes a sister species. Here we investigated whether it might utilize angiotensin-converting enzyme 2 (ACE2), the SARS-CoV receptor. Knowledge of the receptor is highly critical because the restriction of the SARS receptor to deep compartments of the human respiratory tract limited the spread of SARS. In baby hamster kidney (BHK) cells, lentiviral transduction of human ACE2 (hACE2) conferred permissiveness and replication for SARS-CoV but not for hCoV-EMC. Monkey and human kidney cells (LLC-MK2, Vero, and 769-P) and swine kidney cells were permissive for both viruses, but only SARS-CoV infection could be blocked by anti-hACE2 antibody and could be neutralized by preincubation of virus with soluble ACE2. Our data show that ACE2 is neither necessary nor sufficient for hCoV-EMC replication. Moreover, hCoV-EMC, but not SARS-CoV, replicated in cell lines from Rousettus, Rhinolophus, Pipistrellus, Myotis, and Carollia bats, representing four major chiropteran families from both suborders. As human CoV normally cannot replicate in bat cells from different families, this suggests that hCoV-EMC might use a receptor molecule that is conserved in bats, pigs, and humans, implicating a low barrier against cross-host transmission. A new human coronavirus (hCoV) emerged recently in the Middle East. The disease resembled SARS (severe acute respiratory syndrome), causing a fatal epidemic in 2002/2003. Coronaviruses have a reservoir in bats and because this novel virus is related to SARS-CoV, we investigated whether it might replicate in bat cells and use the same receptor (angiotensin-converting enzyme 2 [ACE2]). This knowledge is highly critical, because the SARS-CoV receptor influenced pathology, and its localization in the deep respiratory tract is thought to have restricted the transmissibility of SARS. Our data show that hCoV-EMC does not need the SARS-CoV receptor to infect human cells. Moreover, the virus is capable of infecting human, pig, and bat cells. This is remarkable, as human CoVs normally cannot replicate in bat cells as a consequence of host adaptation. Our results implicate that the new virus might use a receptor that is conserved between bats, pigs and humans suggesting a low barrier against cross-host transmission.
Collapse
|
276
|
Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio 2012; 3:mBio.00473-12. [PMID: 23170002 PMCID: PMC3509437 DOI: 10.1128/mbio.00473-12] [Citation(s) in RCA: 653] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A novel human coronavirus (HCoV-EMC/2012) was isolated from a man with acute pneumonia and renal failure in June 2012. This report describes the complete genome sequence, genome organization, and expression strategy of HCoV-EMC/2012 and its relation with known coronaviruses. The genome contains 30,119 nucleotides and contains at least 10 predicted open reading frames, 9 of which are predicted to be expressed from a nested set of seven subgenomic mRNAs. Phylogenetic analysis of the replicase gene of coronaviruses with completely sequenced genomes showed that HCoV-EMC/2012 is most closely related to Tylonycteris bat coronavirus HKU4 (BtCoV-HKU4) and Pipistrellus bat coronavirus HKU5 (BtCoV-HKU5), which prototype two species in lineage C of the genus Betacoronavirus. In accordance with the guidelines of the International Committee on Taxonomy of Viruses, and in view of the 75% and 77% amino acid sequence identity in 7 conserved replicase domains with BtCoV-HKU4 and BtCoV-HKU5, respectively, we propose that HCoV-EMC/2012 prototypes a novel species in the genus Betacoronavirus. HCoV-EMC/2012 may be most closely related to a coronavirus detected in Pipistrellus pipistrellus in The Netherlands, but because only a short sequence from the most conserved part of the RNA-dependent RNA polymerase-encoding region of the genome was reported for this bat virus, its genetic distance from HCoV-EMC remains uncertain. HCoV-EMC/2012 is the sixth coronavirus known to infect humans and the first human virus within betacoronavirus lineage C. Coronaviruses are capable of infecting humans and many animal species. Most infections caused by human coronaviruses are relatively mild. However, the outbreak of severe acute respiratory syndrome (SARS) caused by SARS-CoV in 2002 to 2003 and the fatal infection of a human by HCoV-EMC/2012 in 2012 show that coronaviruses are able to cause severe, sometimes fatal disease in humans. We have determined the complete genome of HCoV-EMC/2012 using an unbiased virus discovery approach involving next-generation sequencing techniques, which enabled subsequent state-of-the-art bioinformatics, phylogenetics, and taxonomic analyses. By establishing its complete genome sequence, HCoV-EMC/2012 was characterized as a new genotype which is closely related to bat coronaviruses that are distant from SARS-CoV. We expect that this information will be vital to rapid advancement of both clinical and vital research on this emerging pathogen.
Collapse
|
277
|
Chan JFW, Li KSM, To KKW, Cheng VCC, Chen H, Yuen KY. Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? J Infect 2012; 65:477-89. [PMID: 23072791 PMCID: PMC7112628 DOI: 10.1016/j.jinf.2012.10.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 12/23/2022]
Abstract
Fouchier et al. reported the isolation and genome sequencing of a novel coronavirus tentatively named "human betacoronavirus 2c EMC/2012 (HCoV-EMC)" from a Saudi patient presenting with pneumonia and renal failure in June 2012. Genome sequencing showed that this virus belongs to the group C species of the genus betacoronavirus and phylogenetically related to the bat coronaviruses HKU4 and HKU5 previously found in lesser bamboo bat and Japanese Pipistrelle bat of Hong Kong respectively. Another patient from Qatar with similar clinical presentation and positive RT-PCR test was reported in September 2012. We compare and contrast the clinical presentation, laboratory diagnosis and management of infection due to this novel coronavirus and that of SARS coronavirus despite the paucity of published information on the former. Since 70% of all emerging infectious pathogens came from animals, the emergence of this novel virus may represent another instance of interspecies jumping of betacoronavirus from animals to human similar to the group A coronavirus OC43 possibly from a bovine source in the 1890s and the group B SARS coronavirus in 2003 from bat to civet and human. Despite the apparently low transmissibility of the virus at this stage, research preparedness against another SARS-like pandemic is an important precautionary strategy.
Collapse
Affiliation(s)
- Jasper F W Chan
- Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | | | | | | | | | | |
Collapse
|