251
|
Facile strategy by hyaluronic acid functional carbon dot-doxorubicin nanoparticles for CD44 targeted drug delivery and enhanced breast cancer therapy. Int J Pharm 2020; 578:119122. [DOI: 10.1016/j.ijpharm.2020.119122] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
|
252
|
Li S, Qiu M, Guo J, Zhao X, Zhong Z, Deng C. Coating‐Sheddable CD44‐Targeted Poly(
d
,
l
‐lactide‐
co
‐glycolide) Nanomedicines Fabricated by Using Photoclick‐Crosslinkable Surfactant. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuai Li
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Min Qiu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Jiakun Guo
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Xiaofei Zhao
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| |
Collapse
|
253
|
Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids Surf B Biointerfaces 2020; 185:110596. [DOI: 10.1016/j.colsurfb.2019.110596] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/22/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
|
254
|
Böttger R, Pauli G, Chao PH, AL Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev 2020; 154-155:79-101. [PMID: 32574575 DOI: 10.1016/j.addr.2020.06.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
Liver diseases such as hepatitis, cirrhosis, and hepatocellular carcinoma are global health problems accounting for approximately 800 million cases and over 2 million deaths per year worldwide. Major drawbacks of standard pharmacological therapies are the inability to deliver a sufficient concentration of a therapeutic agent to the diseased liver, and nonspecific drug delivery leading to undesirable systemic side effects. Additionally, depending on the specific liver disease, drug delivery to a subset of liver cells is required. In recent years, lipid nanoparticles have been developed to passively and actively target drugs to the liver. The success of this approach has been highlighted by the FDA-approval of the first liver-targeting lipid nanoparticle, ONPATTRO, in 2018 and many other promising candidate technologies are expected to follow. This review summarizes recent developments of various lipid-based liver-targeting technologies, namely solid-lipid nanoparticles, liposomes, niosomes and micelles, and discusses the challenges and future perspectives in this field.
Collapse
|
255
|
Francia V, Montizaan D, Salvati A. Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:338-353. [PMID: 32117671 PMCID: PMC7034226 DOI: 10.3762/bjnano.11.25] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/27/2020] [Indexed: 05/17/2023]
Abstract
Nano-sized materials have great potential as drug carriers for nanomedicine applications. Thanks to their size, they can exploit the cellular machinery to enter cells and be trafficked intracellularly, thus they can be used to overcome some of the cellular barriers to drug delivery. Nano-sized drug carriers of very different properties can be prepared, and their surface can be modified by the addition of targeting moieties to recognize specific cells. However, it is still difficult to understand how the material properties affect the subsequent interactions and outcomes at cellular level. As a consequence of this, designing targeted drugs remains a major challenge in drug delivery. Within this context, we discuss the current understanding of the initial steps in the interactions of nano-sized materials with cells in relation to nanomedicine applications. In particular, we focus on the difficult interplay between the initial adhesion of nano-sized materials to the cell surface, the potential recognition by cell receptors, and the subsequent mechanisms cells use to internalize them. The factors affecting these initial events are discussed. Then, we briefly describe the different pathways of endocytosis in cells and illustrate with some examples the challenges in understanding how nanomaterial properties, such as size, charge, and shape, affect the mechanisms cells use for their internalization. Technical difficulties in characterizing these mechanisms are presented. A better understanding of the first interactions of nano-sized materials with cells will help to design nanomedicines with improved targeting.
Collapse
Affiliation(s)
- Valentina Francia
- Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, Netherlands
| | - Daphne Montizaan
- Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, Netherlands
| | - Anna Salvati
- Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, Netherlands
| |
Collapse
|
256
|
Anirudhan TS, Manasa AM. Novel pH/reduction responsive graphene oxide nanoparticles based hydrogel for targeted combination chemotherapy. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1706513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - A. M. Manasa
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Trivandrum, India
| |
Collapse
|
257
|
Setayeshmehr M, Esfandiari E, Rafieinia M, Hashemibeni B, Taheri-Kafrani A, Samadikuchaksaraei A, Kaplan DL, Moroni L, Joghataei MT. Hybrid and Composite Scaffolds Based on Extracellular Matrices for Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:202-224. [PMID: 30648478 DOI: 10.1089/ten.teb.2018.0245] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPACT STATEMENT Scaffolds fabricated from extracellular matrix (ECM) derivatives are composed of conducive structures for cell attachment, proliferation, and differentiation, but generally do not have proper mechanical properties and load-bearing capacity. In contrast, scaffolds based on synthetic biomaterials demonstrate appropriate mechanical strength, but the absence of desirable biological properties is one of their main disadvantages. To integrate mechanical strength and biological cues, these ECM derivatives can be conjugated with synthetic biomaterials. Hence, hybrid scaffolds comprising both advantages of synthetic polymers and ECM derivatives can be considered a robust vehicle for tissue engineering applications.
Collapse
Affiliation(s)
- Mohsen Setayeshmehr
- 1 Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,2 Biomaterials Nanotechnology and Tissue Engineering Group, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran.,3 MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, Maastricht, The Netherlands
| | - Ebrahim Esfandiari
- 4 Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafieinia
- 2 Biomaterials Nanotechnology and Tissue Engineering Group, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- 4 Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Asghar Taheri-Kafrani
- 5 Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Ali Samadikuchaksaraei
- 1 Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,6 Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - David L Kaplan
- 7 Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Lorenzo Moroni
- 3 MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, Maastricht, The Netherlands.,8 CNR Nanotec-Institute of Nanotechnology, c/o Campus Ecotekne, Università del Salento, Lecce, Italy
| | - Mohammad T Joghataei
- 1 Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,6 Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
258
|
Taghavi S, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Hybrid carbon-based materials for gene delivery in cancer therapy. J Control Release 2019; 318:158-175. [PMID: 31862358 DOI: 10.1016/j.jconrel.2019.12.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022]
Abstract
Accumulation at tumor tissue without any damage to healthy normal tissues is an ultimate goal in cancer therapy. Despite many efforts in the field of cancer therapy, this disease remains as the major reason of mortality all over the world. Gene therapy has introduced great opportunity to fight against cancer disease. It should be noted that still some obstacles limit clinical application of gene delivery approach, which have to be overcome for efficient transportation of therapeutic gene to the site of action. In this regard, carbon nanomaterials and their unique physical and chemical properties such as their capability of DNA protection have attracted much attention in the field of nanomedicine and non-viral carriers for therapeutic genes. Although, negligible solubility of carbon nanomaterials in biological environments has limited their biomedical application but their structural characteristics facilitate their chemical modifications thereby overcoming their solubility problem. Moreover, hybridization of modified carbon materials with different polymers provides more biocompatible and capable systems for gene delivery purposes. In the current review, we summarized hybrid carbon-based materials as non-viral carriers for gene delivery.
Collapse
Affiliation(s)
- Sahar Taghavi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
259
|
Lim SH, Li CH, Jeong YI, Jang WY, Choi JM, Jung S. Enhancing Radiotherapeutic Effect With Nanoparticle-Mediated Radiosensitizer Delivery Guided By Focused Gamma Rays In Lewis Lung Carcinoma-Bearing Mouse Brain Tumor Models. Int J Nanomedicine 2019; 14:8861-8874. [PMID: 32009784 PMCID: PMC6859088 DOI: 10.2147/ijn.s227894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022] Open
Abstract
Background Targeting radiosensitizer-incorporated nanoparticles to a tumor could allow for less normal tissue toxicity with more efficient drug release, thus improving the efficacy and safety of radiation treatment. The aim of this study was to improve tumor-specific delivery and bioavailability of a nanoparticle-mediated radiosensitizer in mouse brain tumor models. Methods A pH-sensitive nanoparticle, chitoPEGAcHIS, was conjugated to recombinant peptide HVGGSSV that could bind to tax-interaction protein 1 (TIP-1) as a radiation-inducible receptor. Then the c-Jun N-terminal kinase (JNK) inhibitor, SP600125 was incorporated into this copolymer to fabricate a HVGGSSV-chitoPEGAcHIS-SP600125 (HVSP-NP) nanoradiosensitizer. In vitro and in vivo radiation treatment were performed using a Gamma Knife unit. The tumor targetability of HVSP-NP was estimated by optical bioluminescence. Synergistic therapeutic effects of radiation treatment and HVSP-NP were investigated in Lewis lung carcinoma (LLC) cell-bearing mouse brain tumor models. Results The SP600125 JNK inhibitor effectively reduced DNA damage repair to irradiated LLC cells. A pH sensitivity assay indicated that HVSP-NP swelled at acidic pH and increased in diameter, and its release rate gradually increased. Optical bioluminescence assay showed that radiation induced TIP-1 expression in mouse brain tumor and that the nanoradiosensitizer selectively targeted irradiated tumors. Radiation treatment with HVSP-NP induced greater apoptosis and significantly inhibited tumor growth compared to radiation alone. Conclusion As a novel nanoradiosensitizer, HVSP-NP was found to be able to selectively target irradiated tumors and significantly increase tumor growth delay in LLC-bearing mouse brain tumor models. This research shows that delivering a pH-sensitive nanoradiosensitizer to a brain tumor in which TIP-1 is induced by radiation can result in improved radiosensitizer-release in an acidic microenvironment of tumor tissue and in created synergistic effects in radiation treatment.
Collapse
Affiliation(s)
- Sa-Hoe Lim
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Korea.,Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Chun-Hao Li
- Department of Neurosurgery, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, People's Republic of China
| | - Young-Il Jeong
- Biomedical Research Institute, Pusan National University Hospital, Pusan 602-739, Republic of Korea
| | - Woo-Youl Jang
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Korea.,Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jin-Myung Choi
- Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Shin Jung
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Korea.,Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
260
|
Brachi G, Bussolino F, Ciardelli G, Mattu C. Nanomedicine for Imaging and Therapy of Pancreatic Adenocarcinoma. Front Bioeng Biotechnol 2019; 7:307. [PMID: 31824928 PMCID: PMC6880757 DOI: 10.3389/fbioe.2019.00307] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
Abstract
Pancreatic adenocarcinoma has the worst outcome among all cancer types, with a 5-year survival rate as low as 10%. The lethal nature of this cancer is a result of its silent onset, resistance to therapies, and rapid spreading. As a result, most patients remain asymptomatic and present at diagnosis with an already infiltrating and incurable disease. The tumor microenvironment, composed of a dense stroma and of disorganized blood vessels, coupled with the dysfunctional signal pathways in tumor cells, creates a set of physical and biological barriers that make this tumor extremely hard-to-treat with traditional chemotherapy. Nanomedicine has great potential in pancreatic adenocarcinoma, because of the ability of nano-formulated drugs to overcome biological barriers and to enhance drug accumulation at the target site. Moreover, monitoring of disease progression can be achieved by combining drug delivery with imaging probes, resulting in early detection of metastatic patterns. This review describes the latest development of theranostic formulations designed to concomitantly treat and image pancreatic cancer, with a specific focus on their interaction with physical and biological barriers.
Collapse
Affiliation(s)
| | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute -IRCCS-FPO, Candiolo, Italy
| | | | | |
Collapse
|
261
|
Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
262
|
Mohammed EE, Yilmaz S, Akcin OA, Nalbantoglu B, Ficicioglu C, Sahin F, Coban EA. Cumulus Cells Are Potential Candidates for Cell Therapy. In Vivo 2019; 33:1921-1927. [PMID: 31662520 DOI: 10.21873/invivo.11686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM Cumulus cells (CCs) originate from the membrane granulosa cells and surround oocytes during follicle maturation. CCs produce high levels of hyaluronan that targets CD44, which is a major tumorigenic marker. This study aimed to investigate whether CCs have a role in cell therapy by targeting CD44 in pancreatic cancer cells. MATERIALS AND METHODS CCs were isolated from the oocytes and incubated in a hypoxic environment. BxPC-3 pancreatic cancer cells were treated with CC conditioned media for three days. RESULTS Conditioned media of CC cells incubated in hypoxic conditions caused a 25% reduction in the viability of BxPC-3 cells. Expression of anti-apoptotic genes was down-regulated, while that of pro-apoptotic genes was upregulated. An increased number of BxPC-3 cells exhibited increased levels of reactive oxygen species and arrested in the synthesis (S) phase of the cell cycle. CONCLUSION CCs conditioned medium induced apoptosis of pancreatic cancer cells.
Collapse
Affiliation(s)
| | - Sema Yilmaz
- Division of Pediatric Hematology/Oncology, Health Science University Kartal Lutfi Kirdar Education and Research Hospital, Istanbul, Turkey
| | - Oya Alagoz Akcin
- Department of Gynecology and Obstetrics, Yeditepe University Faculty of Medicine, Istanbul, Turkey
| | | | - Cem Ficicioglu
- Department of Gynecology and Obstetrics, Yeditepe University Faculty of Medicine, Istanbul, Turkey
| | - Fikrettin Sahin
- Department of Bioengineering and Genetics, Yeditepe University Faculty of Medicine, Istanbul, Turkey
| | - Esra Aydemir Coban
- Department of Bioengineering and Genetics, Yeditepe University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
263
|
Miyazaki M, Yuba E, Hayashi H, Harada A, Kono K. Development of pH-Responsive Hyaluronic Acid-Based Antigen Carriers for Induction of Antigen-Specific Cellular Immune Responses. ACS Biomater Sci Eng 2019; 5:5790-5797. [DOI: 10.1021/acsbiomaterials.9b01278] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Maiko Miyazaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hiroshi Hayashi
- Sciencelin, 1-1-35, Nishiawaji, Higashiyodogawa-ku, Osaka, Osaka 533-0031, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
264
|
Fang H, Zhao X, Gu X, Sun H, Cheng R, Zhong Z, Deng C. CD44-Targeted Multifunctional Nanomedicines Based on a Single-Component Hyaluronic Acid Conjugate with All-Natural Precursors: Construction and Treatment of Metastatic Breast Tumors in Vivo. Biomacromolecules 2019; 21:104-113. [PMID: 31532629 DOI: 10.1021/acs.biomac.9b01012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metastasis is responsible for >90% of the deaths of breast cancer patients in the clinic. Here, we report on cross-linked multifunctional hyaluronic acid nanoparticles carrying docetaxel (DTX-CMHN) for enhanced suppression of highly metastatic 4T1 breast tumors in vivo. DTX-CMHN was formed from a single and all-natural hyaluronic acid-g-polytyrosine-lipoic acid conjugate (HA-g-PTyr-LA; HA, 20 kDa; PTyr, 2.2 kDa), and the size of DTX-CMHN increased from 69 to 78 to 96 nm as the increasing degree of substitution (DS) of PTyr increased from 4 to 11 to 15, respectively. Robust encapsulation of DTX was obtained when DS ≥ 11. DTX-CMHN while steady in a nonreducing environment was destabilized under 10 mM glutathione releasing ∼90% of the DTX within 24 h. It is noteworthy that DTX-CMHN exhibited better antitumor, antimigration, and anti-invasion activity in CD44-overexpressed 4T1-Luc breast cancer cells than free DTX. Interestingly, DTX-CMHN displayed a long elimination half-life of 5.75 h, in contrast to half-lives of 2.11 and 0.75 h for its non-cross-linked counterpart (DTX-MHN) and free DTX, respectively. In vivo therapeutic studies showed significantly better inhibition of primary 4T1-Luc tumor growth and lung metastasis and lower toxicity of DTX-CMHN compared with that of free DTX. These multifunctional nanoformulations based on a single and all-natural hyaluronic acid conjugate emerge as a potential nanoplatform for targeted treatment of CD44-positive metastatic tumors.
Collapse
Affiliation(s)
- Huimin Fang
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Xiaofei Zhao
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Xiaolei Gu
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Huanli Sun
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Ru Cheng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Chao Deng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| |
Collapse
|
265
|
Zhong L, Liu Y, Xu L, Li Q, Zhao D, Li Z, Zhang H, Zhang H, Kan Q, Sun J, He Z. Exploring the relationship of hyaluronic acid molecular weight and active targeting efficiency for designing hyaluronic acid-modified nanoparticles. Asian J Pharm Sci 2019; 14:521-530. [PMID: 32104479 PMCID: PMC7032078 DOI: 10.1016/j.ajps.2018.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/12/2018] [Accepted: 11/04/2018] [Indexed: 01/08/2023] Open
Abstract
Although it is reported that the targeting ability of hyaluronic acid (HA)-based nanoparticles (NPs) is molecular weight (MW) dependent, the influence of HA MW on targeting efficiency of HA-functionalized NPs and the underlying mechanism remain elusive. In this study, we constituted three HA-functionalized Dox-loaded NPs (Dox/HCVs) different HA MWs (7, 63, and 102 kDa) and attempted to illustrate the effects of HA MW on the targeting efficiency. The three Dox/HCVs had similar physiochemical and pharmaceutical characteristics, but showed different affinity to CD44 receptor. Furthermore, Dox/HCV-63 exerted the best targeting effect and the highest cytotoxicity compared with Dox/HCV-7 and Dox/HCV-102. It was interesting to found that both the HA-CD44 binding affinity and induced CD44 clustering by HA-based NPs were HA MW-dependent, the two of which determine the apparent targeting efficacy of Dox/HCV NPs in the conflicting directions. Those results laid a good foundation for rationally designing HA-based NPs in cancer therapy.
Collapse
Affiliation(s)
- Lu Zhong
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanying Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingsong Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongyang Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenbao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huicong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haotian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiming Kan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
266
|
Wang Y, Qian J, Yang M, Xu W, Wang J, Hou G, Ji L, Suo A. Doxorubicin/cisplatin co-loaded hyaluronic acid/chitosan-based nanoparticles for in vitro synergistic combination chemotherapy of breast cancer. Carbohydr Polym 2019; 225:115206. [PMID: 31521263 DOI: 10.1016/j.carbpol.2019.115206] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/09/2023]
Abstract
Combination chemotherapy has attracted more and more attention in the field of anticancer treatment. Herein, a synergetic targeted combination chemotherapy of doxorubicin (DOX) and cisplatin in breast cancer was realized by HER2 antibody-decorated nanoparticles assembled from aldehyde hyaluronic acid (AHA) and hydroxyethyl chitosan (HECS). Cisplatin and DOX were successively conjugated onto AHA through chelation and Schiff's base reaction, respectively, forming DOX/cisplatin-loaded AHA inner core. The core was sequentially complexed with HECS and targeting HER2 antibody-conjugated AHA. The formed near-spherical nanoplatform had an average size of ∼160 nm and a zeta potential of -28 mV and displayed pH-responsive surface charge reversal and drug release behaviors. HER2 receptor-mediated active targeting significantly enhanced the cellular uptake of nanoplatform. Importantly, DOX and cisplatin exhibited a synergistic cell-killing effect in human breast cancer MCF-7 cells. These results clearly indicate that the novel nanoplatform is promising for synergistic combination chemotherapy of breast cancer.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Ming Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinlei Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guanghui Hou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lijie Ji
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
267
|
Trombino S, Servidio C, Curcio F, Cassano R. Strategies for Hyaluronic Acid-Based Hydrogel Design in Drug Delivery. Pharmaceutics 2019; 11:E407. [PMID: 31408954 PMCID: PMC6722772 DOI: 10.3390/pharmaceutics11080407] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Hyaluronic acid (HA) is a natural, linear, endogenous polysaccharide that plays important physiological and biological roles in the human body. Nowadays, among biopolymers, HA is emerging as an appealing starting material for hydrogels design due to its biocompatibility, native biofunctionality, biodegradability, non-immunogenicity, and versatility. Since HA is not able to form gels alone, chemical modifications, covalent crosslinking, and gelling agents are always needed in order to obtain HA-based hydrogels. Therefore, in the last decade, different strategies for the design of physical and chemical HA hydrogels have been developed, such as click chemistry reactions, enzymatic and disulfide crosslinking, supramolecular assembly via inclusion complexation, and so on. HA-based hydrogels turn out to be versatile platforms, ranging from static to smart and stimuli-responsive systems, and for these reasons, they are widely investigated for biomedical applications like drug delivery, tissue engineering, regenerative medicine, cell therapy, and diagnostics. Furthermore, the overexpression of HA receptors on various tumor cells makes these platforms promising drug delivery systems for targeted cancer therapy. The aim of the present review is to highlight and discuss recent advances made in the last years on the design of chemical and physical HA-based hydrogels and their application for biomedical purposes, in particular, drug delivery. Notable attention is given to HA hydrogel-based drug delivery systems for targeted therapy of cancer and osteoarthritis.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Camilla Servidio
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy.
| |
Collapse
|
268
|
Kim DM, Shim YH, Kwon H, Kim JP, Park JI, Kim DH, Kim DH, Kim JH, Jeong YI. CD44 Receptor-Specific and Redox-Sensitive Nanophotosensitizers of Hyaluronic Acid-Chlorin e6 Tetramer Having Diselenide Linkages for Photodynamic Treatment of Cancer Cells. J Pharm Sci 2019; 108:3713-3722. [PMID: 31394112 DOI: 10.1016/j.xphs.2019.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/27/2019] [Accepted: 07/19/2019] [Indexed: 01/10/2023]
Abstract
For reactive oxygen species (ROS)-sensitive and CD44 receptor-mediated delivery of photosensitizers, chlorin e6 (ce6) tetramer was synthesized using tetra acid (TA) via selenocystamine linkages and then conjugated with hyaluronic acid (HA) (abbreviated as HAseseCe6TA). HAseseCe6TA nanophotosensitizers were fabricated by dialysis procedure. HAseseCe6TA nanophotosensitizers showed spherical morphology with small particle sizes less than 100 nm and monomodal pattern. When H2O2 was added, size distribution was changed to multimodal pattern and morphological observation showed disintegration of nanophotosensitizers, indicating that HAseseCe6TA nanophotosensitizers have ROS sensitivity. Furthermore, H2O2 addition resulted in acceleration of Ce6 release from HAseseCe6TA nanophotosensitizers. In vitro cell culture study, HAseseCe6TA nanophotosensitizers increase Ce6 uptake ratio, ROS production efficiency, and photodynamic therapy efficacy in both B16F10 cells and CT26 cells. Especially, CD44-receptor blocking of cancer cells by pretreatment of HA showed that fluorescence intensity in B16F10 cells was significantly decreased while fluorescence intensity in CT26 cells was not significantly changed, indicating that HAseseCe6TA nanophotosensitizers can be delivered by CD44 receptor-mediated pathway. In vivo animal tumor xenograft study, HAseseCe6TA nanophotosensitizers was selectively delivered to B16F10 tumor rather than CT26 tumor. These results indicated that HAseseCe6TA nanophotosensitizers have ROS sensitivity and have CD44 receptor-recognition properties.
Collapse
Affiliation(s)
- Doo-Man Kim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 500757, Republic of Korea
| | - Yong Ho Shim
- R & D Center, UltraV Co. Ltd., Seoul 04779, Republic of Korea
| | - Hanjin Kwon
- R & D Center, UltraV Co. Ltd., Seoul 04779, Republic of Korea
| | - Jong-Pil Kim
- Busan Center, Korea Basic Science Institute, Busan 46241, Republic of Korea
| | - Ji-In Park
- Busan Center, Korea Basic Science Institute, Busan 46241, Republic of Korea
| | - Do Hoon Kim
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Douk-Hoon Kim
- Department of Optometry, Masan University, Gyeongnam 51217, Republic of Korea
| | - Jin Hyeok Kim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 500757, Republic of Korea.
| | - Young-Il Jeong
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Gyeongnam 50612, Republic of Korea.
| |
Collapse
|
269
|
Han HJ, Ekweremadu C, Patel N. Advanced drug delivery system with nanomaterials for personalised medicine to treat breast cancer. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
270
|
Yin W, Chen J, Wang G, Zhang D. MicroRNA‑106b functions as an oncogene and regulates tumor viability and metastasis by targeting LARP4B in prostate cancer. Mol Med Rep 2019; 20:951-958. [PMID: 31173237 PMCID: PMC6625195 DOI: 10.3892/mmr.2019.10343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/07/2019] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer (PCa) is the most common malignancy among males worldwide, and is one of the leading causes of cancer‑related mortality. MicroRNAs (miRs) are a type of endogenous, noncoding RNA that serve a key role in pathological processes, and have been demonstrated to be involved in the formation and progression of PCa. Previous studies have reported that miR‑106b acts as an oncogene; however, the specific effects of miR‑106b on PCa have not been fully elucidated. The present study aimed to investigate the role and underlying molecular mechanisms of miR‑106b in the initiation and progression of PCa. In this study, miR‑106b was reported to be overexpressed and la‑related protein 4B (LARP4B) was downregulated in PCa tissues compared with paracancerous tissues. In addition, LARP4B was identified as a target gene of miR‑106b by bioinformatics prediction analysis and a dual luciferase reporter gene assay. Furthermore, MTT, wound healing and Transwell assays were performed to evaluate PCa cell viability, and migration and invasive abilities. The data revealed that inhibition of miR‑106b significantly suppressed the viability, migration and invasion of PCa cells. In addition, inhibition of miR‑106b significantly suppressed the mRNA and protein expression of cancer‑related genes, including matrix metalloproteinase‑2, cluster of differentiation 44 and Ki‑67, and increased that of the tumor suppressor, mothers against decapentaplegic homolog 2. Collectively, the findings of the present study indicated that miR‑106b may target LAR4B to inhibit cancer cell viability, migration and invasion, and may be considered as a novel therapeutic target in PCa.
Collapse
Affiliation(s)
- Weiqi Yin
- Department of Urology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Junfeng Chen
- Department of Urology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Guoyao Wang
- Department of Urology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Dongxu Zhang
- Department of Urology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
271
|
Fang Z, Li X, Xu Z, Du F, Wang W, Shi R, Gao D. Hyaluronic acid-modified mesoporous silica-coated superparamagnetic Fe 3O 4 nanoparticles for targeted drug delivery. Int J Nanomedicine 2019; 14:5785-5797. [PMID: 31440047 PMCID: PMC6679701 DOI: 10.2147/ijn.s213974] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/06/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction: The targeted delivery of anti-cancer drugs to tumor tissue has been recognized as a promising strategy to increase their therapeutic efficacy and reduce side effects. Mesoporous silica-coated superparamagnetic Fe3O4 nanoparticles (NH2-MSNs), a kind of nanocarrier, can passively enter tumor tissues to enhance the permeability and retention of drugs. However, NH2-MSNs do not specifically bind to cancer cells. This drawback encouraged us to develop a more efficient nanocarrier for cancer therapy. Methods: Herein, we describe the development of an effective nanocarrier based on NH2-MSNs, which were modified with hyaluronic acid on their surface (HA-MSNs) and loaded with doxorubicin (DOX). We have successfully fabricated uniform spherical HA-MSNs nanocarriers. The targeting ability of this delivery system was evaluated through specific uptake by cells and IVIS imaging. Results: DOX-HA-MSNs nanocarriers displayed more dramatic cytotoxic activity against 4T1 breast cancer cells compared to GES-1 gastric mucosa cells. In vivo results revealed that once DOX-HA-MSNs nanocarriers are exposed to an external magnetic field, they could be rapidly attracted to the magnet and effectively cross the cytoplasmic membrane via CD44 receptor-mediated transcytosis. This allows them to access the cancer cell cytoplasm and release DOX based on changes in the physiological environment. Both in vitro and in vivo results demonstrated that the HA-MSNs nanocarriers provided better therapeutic efficacy. Conclusion: The HA-MSNs nanocarriers represent an effective new paradigm to treat cancers due to active targeting to the tumor cells. Moreover, the specific uptake by the tumor effectively protects normal tissues to reduce off-target side effects. The reported findings support further investigation of HA-MSNs for cancer therapy.
Collapse
Affiliation(s)
- Zhengzou Fang
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing 210009, People's Republic of China
| | - Xinyuan Li
- Department of Clinical Laboratory, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second Hospital, Huai'an, Jiangsu, People's Republic of China
| | - Zeyan Xu
- Department of Gastroenterology, Jiangsu University, School of Medicine, Zhenjiang 212013, People's Republic of China
| | - Fengyi Du
- Department of Gastroenterology, Jiangsu University, School of Medicine, Zhenjiang 212013, People's Republic of China
| | - Wendi Wang
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing 210009, People's Republic of China
| | - Ruihua Shi
- Department of Gastroenterology, Affiliated Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Daqing Gao
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing 210009, People's Republic of China
| |
Collapse
|
272
|
Chu PY, Tsai SC, Ko HY, Wu CC, Lin YH. Co-Delivery of Natural Compounds with a Dual-Targeted Nanoparticle Delivery System for Improving Synergistic Therapy in an Orthotopic Tumor Model. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23880-23892. [PMID: 31192580 DOI: 10.1021/acsami.9b06155] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Various natural compounds including epigallocatechin gallate (EGCG) and curcumin (CU) have potential in developing anticancer therapy. However, their clinical use is commonly limited by instability and low tissue distribution. EGCG and CU combined treatment can improve the efficacy with synergistic effects. To improve the synergistic effect and overcome the limitations of low tissue distribution, we applied a dual cancer-targeted nanoparticle system to co-deliver EGCG and CU. Nanoparticles were composed of hyaluronic acid, fucoidan, and poly(ethylene glycol)-gelatin to encapsulate EGCG and CU. Furthermore, a dual targeting system was established with hyaluronic acid and fucoidan, which were used as agents for targeting CD44 on prostate cancer cells and P-selectin in tumor vasculature, respectively. Their effect and efficacy were investigated in prostate cancer cells and a orthotopic prostate tumor model. The EGCG/CU-loaded nanoparticles bound to prostate cancer cells, which were uptaken more into cells, leading to a better anticancer efficiency compared to the EGCG/CU combination solution. In addition, the releases of EGCG and CU were regulated by their pH value that avoided the premature release. In mice, treatment of the cancer-targeted EGCG/CU-loaded nanoparticles significantly attenuated the orthotopic tumor growth without inducing organ injuries. Overall, the dual-targeted nanoparticle system for the co-delivery of EGCG and CU greatly improved its synergistic effect in cancer therapy, indicating its great potential in developing treatments for prostate cancer therapy.
Collapse
|
273
|
Kim S, Moon MJ, Poilil Surendran S, Jeong YY. Biomedical Applications of Hyaluronic Acid-Based Nanomaterials in Hyperthermic Cancer Therapy. Pharmaceutics 2019; 11:E306. [PMID: 31266194 PMCID: PMC6680516 DOI: 10.3390/pharmaceutics11070306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
Hyaluronic acid (HA) is a non-sulfated polysaccharide polymer with the properties of biodegradability, biocompatibility, and non-toxicity. Additionally, HA specifically binds to certain receptors that are over-expressed in cancer cells. To maximize the effect of drug delivery and cancer treatment, diverse types of nanomaterials have been developed. HA-based nanomaterials, including micelles, polymersomes, hydrogels, and nanoparticles, play a critical role in efficient drug delivery and cancer treatment. Hyperthermic cancer treatment using HA-based nanomaterials has attracted attention as an efficient cancer treatment approach. In this paper, the biomedical applications of HA-based nanomaterials in hyperthermic cancer treatment and combined therapies are summarized. HA-based nanomaterials may become a representative platform in hyperthermic cancer treatment.
Collapse
Affiliation(s)
- Subin Kim
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Myeong Ju Moon
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Suchithra Poilil Surendran
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Yong Yeon Jeong
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, Korea.
| |
Collapse
|
274
|
Citartan M, Kaur H, Presela R, Tang TH. Aptamers as the chaperones (Aptachaperones) of drugs-from siRNAs to DNA nanorobots. Int J Pharm 2019; 567:118483. [PMID: 31260780 DOI: 10.1016/j.ijpharm.2019.118483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Abstract
Aptamers, nucleic acid ligands that are specific against their corresponding targets are increasingly employed in a variety of applications including diagnostics and therapeutics. The specificity of the aptamers against their targets is also used as the basis for the formulation of the aptamer-based drug delivery system. In this review, we aim to provide an overview on the chaperoning roles of aptamers in acting as the cargo or load carriers, delivering contents to the targeted sites via cell surface receptors. Internalization of the aptamer-biomolecule conjugates via receptor-mediated endocytosis and the strategies to augment the rate of endocytosis are underscored. The cargos chaperoned by aptamers, ranging from siRNAs to DNA origami are illuminated. Possible impediments to the aptamer-based drug deliveries such as susceptibility to nuclease resistance, potentiality for immunogenicity activation, tumor heterogeneity are speculated and the corresponding amendment strategies to address these shortcomings are discussed. We prophesy that the future of the aptamer-based drug delivery will take a trajectory towards DNA nanorobot-based assay.
Collapse
Affiliation(s)
- Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Harleen Kaur
- Aurobindo Biologics, Biologics R&D Center, Unit-17, Industrial Area, Survey No: 77 & 78, Indrakaran Village, Kandi(Mandal), Sangareddy (District), Hyderabad 502329, India
| | - Ravinderan Presela
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
275
|
Gupta RC, Lall R, Srivastava A, Sinha A. Hyaluronic Acid: Molecular Mechanisms and Therapeutic Trajectory. Front Vet Sci 2019; 6:192. [PMID: 31294035 PMCID: PMC6603175 DOI: 10.3389/fvets.2019.00192] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/30/2019] [Indexed: 01/06/2023] Open
Abstract
Hyaluronic acid (also known as hyaluronan or hyaluronate) is naturally found in many tissues and fluids, but more abundantly in articular cartilage and synovial fluid (SF). Hyaluronic acid (HA) content varies widely in different joints and species. HA is a non-sulfated, naturally occurring non-protein glycosaminoglycan (GAG), with distinct physico-chemical properties, produced by synoviocytes, fibroblasts, and chondrocytes. HA has an important role in the biomechanics of normal SF, where it is partially responsible for lubrication and viscoelasticity of the SF. The concentration of HA and its molecular weight (MW) decline as osteoarthritis (OA) progresses with aging. For that reason, HA has been used for more than four decades in the treatment of OA in dogs, horses and humans. HA produces anti-arthritic effects via multiple mechanisms involving receptors, enzymes and other metabolic pathways. HA is also used in the treatment of ophthalmic, dermal, burns, wound repair, and other health conditions. The MW of HA appears to play a critical role in the formulation of the products used in the treatment of diseases. This review provides a mechanism-based rationale for the use of HA in some disease conditions with special reference to OA.
Collapse
Affiliation(s)
- Ramesh C Gupta
- Toxicology Department, Breathitt Veterinary Center, Murray State University, Hopkinsville, KY, United States
| | - Rajiv Lall
- Vets Plus, Inc., Menomonie, WI, United States
| | | | - Anita Sinha
- Vets Plus, Inc., Menomonie, WI, United States
| |
Collapse
|
276
|
Zhang C, Zhang D, Liu J, Wang J, Lu Y, Zheng J, Li B, Jia L. Functionalized MoS 2-erlotinib produces hyperthermia under NIR. J Nanobiotechnology 2019; 17:76. [PMID: 31217009 PMCID: PMC6582482 DOI: 10.1186/s12951-019-0508-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Molybdenum disulfide (MoS2) has been widely explored for biomedical applications due to its brilliant photothermal conversion ability. In this paper, we report a novel multifunctional MoS2-based drug delivery system (MoS2-SS-HA). By decorating MoS2 nanosheets with hyaluronic acid (HA), these functionalized MoS2 nanosheets have been developed as a tumor-targeting chemotherapeutic nanocarrier for near-infrared (NIR) photothermal-triggered drug delivery, facilitating the combination of chemotherapy and photothermal therapy into one system for cancer therapy. RESULTS The nanocomposites (MoS2-SS-HA) generated a uniform diameter (ca. 125 nm), exhibited great biocompatibility as well as high stability in physiological solutions, and could be loaded with the insoluble anti-cancer drug erlotinib (Er). The release of Er was greatly accelerated under near infrared laser (NIR) irradiation, showing that the composites can be used as responsive systems, with Er release controllable through NIR irradiation. MTT assays and confocal imaging results showed that the MoS2-based nanoplatform could selectively target and kill CD44-positive lung cancer cells, especially drug resistant cells (A549 and H1975). In vivo tumor ablation studies prove a better synergistic therapeutic effect of the joint treatment, compared with either chemotherapy or photothermal therapy alone. CONCLUSION The functionalized MoS2 nanoplatform developed in this work could be a potent system for targeted drug delivery and synergistic chemo-photothermal cancer therapy.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Oceanography, Minjiang University, Wucheng Building, 5FL, No.200 Xiyuangong Road, Fuzhou, 350108 Fujian China
| | - Doudou Zhang
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, 350116 Fujian China
| | - Jian Liu
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, 350116 Fujian China
| | - Jie Wang
- Institute of Oceanography, Minjiang University, Wucheng Building, 5FL, No.200 Xiyuangong Road, Fuzhou, 350108 Fujian China
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, 350116 Fujian China
| | - Yusheng Lu
- Institute of Oceanography, Minjiang University, Wucheng Building, 5FL, No.200 Xiyuangong Road, Fuzhou, 350108 Fujian China
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, 350116 Fujian China
| | - Junxia Zheng
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, 350116 Fujian China
| | - Bifei Li
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, 350116 Fujian China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Wucheng Building, 5FL, No.200 Xiyuangong Road, Fuzhou, 350108 Fujian China
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, 350116 Fujian China
| |
Collapse
|
277
|
Gocheva G, Ivanova A. A Look at Receptor–Ligand Pairs for Active-Targeting Drug Delivery from Crystallographic and Molecular Dynamics Perspectives. Mol Pharm 2019; 16:3293-3321. [DOI: 10.1021/acs.molpharmaceut.9b00250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gergana Gocheva
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Anela Ivanova
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
278
|
Ho DWH, Tsui YM, Sze KMF, Chan LK, Cheung TT, Lee E, Sham PC, Tsui SKW, Lee TKW, Ng IOL. Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and stemness-related subpopulations in liver cancer. Cancer Lett 2019; 459:176-185. [PMID: 31195060 DOI: 10.1016/j.canlet.2019.06.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/23/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is heterogeneous, rendering its current curative treatments ineffective. The emergence of single-cell genomics represents a powerful strategy in delineating the complex molecular landscapes of cancers. In this study, we demonstrated the feasibility and merit of using single-cell RNA sequencing to dissect the intra-tumoral heterogeneity and analyze the single-cell transcriptomic landscape to detect rare cell subpopulations of significance. Exploration of the inter-relationship among liver cancer stem cell markers showed two distinct major cell populations according to EPCAM expression, and the EPCAM+ cells had upregulated expression of multiple oncogenes. We also identified a CD24+/CD44+-enriched cell subpopulation within the EPCAM+ cells which had specific signature genes and might indicate a novel stemness-related cell subclone in HCC. Notably, knockdown of signature gene CTSE for CD24+/CD44+ cells significantly reduced self-renewal ability on HCC cells in vitro and the stemness-related role of CTSE was further confirmed by in vivo tumorigenicity assays in nude mice. In summary, single-cell genomics is a useful tool to delineate HCC intratumoral heterogeneity at better resolution. It can identify rare but important cell subpopulations, and may guide better precision medicine in the long run.
Collapse
Affiliation(s)
- Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Karen Man-Fong Sze
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Tan-To Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Eva Lee
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Pak-Chung Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | | | - Terence Kin-Wah Lee
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
279
|
Cho HJ. Recent progresses in the development of hyaluronic acid-based nanosystems for tumor-targeted drug delivery and cancer imaging. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00448-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
280
|
Phua SZF, Yang G, Lim WQ, Verma A, Chen H, Thanabalu T, Zhao Y. Catalase-Integrated Hyaluronic Acid as Nanocarriers for Enhanced Photodynamic Therapy in Solid Tumor. ACS NANO 2019; 13:4742-4751. [PMID: 30964974 DOI: 10.1021/acsnano.9b01087] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photodynamic therapy (PDT) as a treatment method has many advantages such as minimal invasiveness, repeatable dosage, and low systemic toxicity. Issues with conventional PDT agents include the limited availability of endogenous oxygen and difficulty in accumulation at the tumor site, which has hindered the successful treatment of tumors. Herein, we developed catalase-encapsulated hyaluronic-acid-based nanoparticles loaded with adamantane-modified photosensitizer for enhanced PDT of solid tumors. Chlorin e6 (Ce6) as the photosensitizer was modified with adamantane to yield adamantane-modified Ce6 (aCe6). The obtained nanosystem (HA-CAT@aCe6) could target overly expressed CD44 receptors on cancer cells, supplying oxygen by converting endogenous hydrogen peroxide (H2O2) to oxygen, and improving PDT efficacy upon light irradiation. HA-CAT@aCe6 nanoparticles showed high colloidal stability and monodispersity in aqueous solution. The uptake and targeting property of HA-CAT@aCe6 were demonstrated by confocal microscopy and flow cytometry in the MDA-MB-231 cell line possessing overly expressed CD44 receptors. The encapsulated catalase was able to decompose the endogenous H2O2 to generate O2 in situ for relieving hypoxia in cells incubated under hypoxic conditions. Cell viability assays indicated that HA-CAT@aCe6 possessed minimal cytotoxicity in the dark, while presenting high cellular toxicity under 660 nm light irradiation at normoxic conditions. As a result of the catalase capability in relieving hypoxia, HA-CAT@aCe6 also exhibited high cellular cytotoxicity under hypoxic condition. In vivo experiments revealed selective tumor accumulation of HA-CAT@aCe6 in MDA-MB-231 tumor bearing nude mice. Significant tumor regression was observed after intravenous injection of HA-CAT@aCe6 under light irradiation in comparison to the control system without loading catalase. Thus, HA-CAT@aCe6 demonstrated a great potential in overcoming hypoxia for targeted PDT.
Collapse
Affiliation(s)
- Soo Zeng Fiona Phua
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| | - Guangbao Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| | - Wei Qi Lim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
- NTU-Northwestern Institute for Nanomedicine, Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Apoorva Verma
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551 , Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| | - Thirumaran Thanabalu
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551 , Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| |
Collapse
|
281
|
Raloxifene-encapsulated hyaluronic acid-decorated chitosan nanoparticles selectively induce apoptosis in lung cancer cells. Bioorg Med Chem 2019; 27:1629-1638. [DOI: 10.1016/j.bmc.2019.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 01/04/2023]
|
282
|
Tirella A, Kloc-Muniak K, Good L, Ridden J, Ashford M, Puri S, Tirelli N. CD44 targeted delivery of siRNA by using HA-decorated nanotechnologies for KRAS silencing in cancer treatment. Int J Pharm 2019; 561:114-123. [DOI: 10.1016/j.ijpharm.2019.02.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
|
283
|
Targeting Ovarian Cancer Cells Overexpressing CD44 with Immunoliposomes Encapsulating Glycosylated Paclitaxel. Int J Mol Sci 2019; 20:ijms20051042. [PMID: 30818864 PMCID: PMC6429518 DOI: 10.3390/ijms20051042] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 01/06/2023] Open
Abstract
Paclitaxel (PTX) is one of the front-line drugs approved for the treatment of ovarian cancer. However, the application of PTX is limited due to the significant hydrophobicity and poor pharmacokinetics. We previously reported target-directed liposomes carrying tumor-selective conjugated antibody and encapsulated glycosylated PTX (gPTX-L) which successfully overcome the PTX limitation. The tubulin stabilizing activity of gPTX was equivalent to that of PTX while the cytotoxic activity of gPTX was reduced. In human ovarian cancer cell lines, SK-OV-3 and OVK18, the concentration at which cell growth was inhibited by 50% (IC50) for gPTX range from 15–20 nM, which was sensitive enough to address gPTX-L with tumor-selective antibody coupling for ovarian cancer therapy. The cell membrane receptor CD44 is associated with cancer progression and has been recognized as a cancer stem cell marker including ovarian cancer, becoming a suitable candidate to be targeted by gPTX-L therapy. In this study, gPTX-loading liposomes conjugated with anti-CD44 antibody (gPTX-IL) were assessed for the efficacy of targeting CD44-positive ovarian cancer cells. We successfully encapsulated gPTX into liposomes with the loading efficiency (LE) more than 80% in both of gPTX-L and gPTX-IL with a diameter of approximately 100 nm with efficacy of enhanced cytotoxicity in vitro and of convenient treatment in vivo. As the result, gPTX-IL efficiently suppressed tumor growth in vivo. Therefore gPTX-IL could be a promising formulation for effective ovarian cancer therapies.
Collapse
|
284
|
Tavianatou AG, Caon I, Franchi M, Piperigkou Z, Galesso D, Karamanos NK. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J 2019; 286:2883-2908. [PMID: 30724463 DOI: 10.1111/febs.14777] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 02/04/2019] [Indexed: 12/15/2022]
Abstract
Hyaluronan (HA) is a linear nonsulfated glycosaminoglycan of the extracellular matrix that plays a pivotal role in a variety of biological processes. High-molecular weight HA exhibits different biological properties than oligomers and low-molecular weight HA. Depending on their molecular size, HA fragments can influence cellular behavior in a different mode of action. This phenomenon is attributed to the different manner of interaction with the HA receptors, especially CD44 and RHAMM. Both receptors can trigger signaling cascades that regulate cell functional properties, such as proliferation migration, angiogenesis, and wound healing. HA fragments are able to enhance or attenuate the HA receptor-mediated signaling pathways, as they compete with the endogenous HA for binding to the receptors. The modulation of these pathways could be crucial for the development of pathological conditions, such as inflammation and cancer. The primary goal of this review is to critically present the importance of HA molecular size on cellular signaling, functional cell properties, and morphology in normal and pathological conditions, including inflammation and cancer. A deeper understanding of these mechanisms could contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Anastasia G Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH) /Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | | | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH) /Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
285
|
Hsu SH, Yu A, Yeh CA, Sun WS, Lin SZ, Fu RH, Hsieh HH, Wu PY, Hung HS. Biocompatible Nanogold Carrier Coated with Hyaluronic Acid for Efficient Delivery of Plasmid or siRNA to Mesenchymal Stem Cells. ACS APPLIED BIO MATERIALS 2019; 2:1017-1030. [PMID: 35021392 DOI: 10.1021/acsabm.8b00540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Alex Yu
- Department of Acute and Critical Care, Chang-Hua Hospital, Ministry of Health and Welfare, Changhua 51341, Taiwan, R.O.C
- School of Medicine, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Wei-Shen Sun
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
- Translational Medicine Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C
| | - Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
- Translational Medicine Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| |
Collapse
|
286
|
Guo XL, Kang XX, Wang YQ, Zhang XJ, Li CJ, Liu Y, Du LB. Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy. Acta Biomater 2019; 84:367-377. [PMID: 30528609 DOI: 10.1016/j.actbio.2018.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
Because of the synergistic effects of drugs and minimal drug dose for cancer therapy, combination chemotherapy is frequently used in the clinic. In this study, hyaluronic acid-modified amine-terminated fourth-generation polyamidoamine dendrimer nanoparticles were synthesized for systemic co-delivery of cisplatin and doxorubicin (HA@PAMAM-Pt-Dox). In vitro data showed that HA@PAMAM-Pt-Dox can enter the cells through the lysosome mediated-pathway in a time-dependent manner. Cell viability studies indicated that HA@PAMAM-Pt-Dox exhibited a higher anticancer activity on MCF-7 and MDA-MB-231 breast cancer cells at a relative low concentration. HA@PAMAM-Pt-Dox not only efficiently inhibited tumor growth but also significantly reduced the toxicity of Dox. Moreover, intravenous administration of HA@PAMAM-Pt-Dox to MDA-MB-231 tumor-bearing BALB/c nude mice resulted in the accumulation of HA@PAMAM-Pt-Dox at the tumor site, thereby significantly inhibiting tumor growth without apparent toxicity. These results suggested that HA@PAMAM-Pt-Dox has great potential to improve the chemotherapeutic efficacy of cisplatin and doxorubicin in breast cancer. STATEMENT OF SIGNIFICANCE: One of the main problems in cancer treatment is the development of drug resistance. To date, it is believed that combination chemotherapy might be an effective strategy for the above problem. However, for two completely different drugs, combination chemotherapy faces huge difficulties including the antagonistic nature of drugs, variations in drugs in terms of solubility, and limited tumor targeting. Recent developments in nanoscience and nanotechnology provide an effective approach for such disadvantages. Considering the advantages of dendrimers such as control of size and molecular weight, bioavailability, and biosafety, we used fourth-generation dendrimers modified by HA as drug vectors by covalently conjugating them with anticancer drugs (cisplatin and doxorubicin) to form a nanodrug delivery system, named HA@PAMAM-Pt-Dox. We observed that the HA@PAMAM-Pt-Dox system can effectively kill breast cancer cells both in vitro and in vivo, which showed a favorable synergistic effect. This strategy can be extended to other drugs, thus providing a highly effective strategy for cancer treatment.
Collapse
|
287
|
Jiang T, Chen G, Shi X, Guo R. Hyaluronic Acid-Decorated Laponite ® Nanocomposites for Targeted Anticancer Drug Delivery. Polymers (Basel) 2019; 11:E137. [PMID: 30960121 PMCID: PMC6401931 DOI: 10.3390/polym11010137] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
In this study, hyaluronic acid (HA), a natural polysaccharide that can specifically bind to CD44 receptors, was conjugated onto laponite® (LAP) nanodisks for the encapsulation and specific delivery of the anti-cancer drug doxorubicin (DOX) to CD44-overexpressed cancer cells. The prepared LM-HA could encapsulate DOX efficiently and release drug in a continuous manner with pH-responsiveness. In vitro cell viability assay proved that LM-HA had good biocompatibility, and drug-loaded LM-HA/DOX exhibited targeted anti-tumor effects against HeLa cells with CD44 receptors overexpressed. In addition, the flow cytometric detection and confocal laser scanning microscope results confirmed that LM-HA/DOX could be specifically internalized by HeLa cells via CD44-mediated endocytosis. Therefore, the HA-modified LAP nanodisks with high drug loading efficiency, pH-sensitive drug release properties and CD44 targetability might be an efficient nanoplatform for cancer chemotherapy.
Collapse
Affiliation(s)
- Tingting Jiang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Guangxiang Chen
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Xiangyang Shi
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Rui Guo
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
288
|
Kenny RG, Marmion CJ. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chem Rev 2019; 119:1058-1137. [PMID: 30640441 DOI: 10.1021/acs.chemrev.8b00271] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While medicinal inorganic chemistry has been practised for over 5000 years, it was not until the late 1800s when Alfred Werner published his ground-breaking research on coordination chemistry that we began to truly understand the nature of the coordination bond and the structures and stereochemistries of metal complexes. We can now readily manipulate and fine-tune their properties. This had led to a multitude of complexes with wide-ranging biomedical applications. This review will focus on the use and potential of metal complexes as important therapeutic agents for the treatment of cancer. With major advances in technologies and a deeper understanding of the human genome, we are now in a strong position to more fully understand carcinogenesis at a molecular level. We can now also rationally design and develop drug molecules that can either selectively enhance or disrupt key biological processes and, in doing so, optimize their therapeutic potential. This has heralded a new era in drug design in which we are moving from a single- toward a multitargeted approach. This approach lies at the very heart of medicinal inorganic chemistry. In this review, we have endeavored to showcase how a "multitargeted" approach to drug design has led to new families of metallodrugs which may not only reduce systemic toxicities associated with modern day chemotherapeutics but also address resistance issues that are plaguing many chemotherapeutic regimens. We have focused our attention on metallodrugs incorporating platinum and ruthenium ions given that complexes containing these metal ions are already in clinical use or have advanced to clinical trials as anticancer agents. The "multitargeted" complexes described herein not only target DNA but also contain either vectors to enable them to target cancer cells selectively and/or moieties that target enzymes, peptides, and intracellular proteins. Multitargeted complexes which have been designed to target the mitochondria or complexes inspired by natural product activity are also described. A summary of advances in this field over the past decade or so will be provided.
Collapse
Affiliation(s)
- Reece G Kenny
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| |
Collapse
|
289
|
Jain NK, R. S. P, Bavya MC, Prasad R, Bandyopadhyaya R, Naidu VGM, Srivastava R. Niclosamide encapsulated polymeric nanocarriers for targeted cancer therapy. RSC Adv 2019; 9:26572-26581. [PMID: 35528602 PMCID: PMC9070431 DOI: 10.1039/c9ra03407b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022] Open
Abstract
Localized cancer rates are on an upsurge, severely affecting mankind across the globe. Timely diagnosis and adopting appropriate treatment strategies could improve the quality of life significantly reducing the mortality and morbidity rates. Recently, nanotherapeutics has precipitously shown increased efficacy for controlling abnormal tissue growth in certain sites in the body, among which ligand functionalized nanoparticles (NP) have caught much attention for improved survival statistics via active targeting. Our focus was to repurpose the antihelminthic drug, niclosamide (NIC), which could aid in inhibiting the abnormal growth of cells restricted to a specific region. The work here presents a one-pot synthesis of niclosamide encapsulated, hyaluronic acid functionalized core–shell nanocarriers [(NIC-PLGA NP)HA] for active targeting of localized cancer. The synthesized nanocarriers were found to possess spherical morphology with mean size of 150.8 ± 9 nm and zeta potential of −24.9 ± 7.21 mV. The encapsulation efficiency was found to be 79.19 ± 0.16% with a loading efficiency of 7.19 ± 0.01%. The nanohybrids exhibited extreme cytocompatibility upon testing with MDA-MB-231 and L929 cell lines. The rate of cancer cell elimination was approximately 85% with targeted cell imaging results being highly convincing. [(NIC-PLGA NP)HA] demonstrates increased cellular uptake leading to a hike in reactive oxygen species (ROS) generation, combating tumour cells aiding in the localized treatment of cancer and associated therapy. Localized binding of nanoparticulate formulation, actively targeting the receptors present on the cell surface.![]()
Collapse
Affiliation(s)
- Nishant Kumar Jain
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Bombay (IIT-B)
- Mumbai
- India
| | - Prabhuraj R. S.
- Centre for Research in Nanotechnology and Science
- Indian Institute of Technology Bombay (IIT-B)
- Mumbai
- India
| | - M. C. Bavya
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Bombay (IIT-B)
- Mumbai
- India
| | - Rajendra Prasad
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Bombay (IIT-B)
- Mumbai
- India
| | - Rajdip Bandyopadhyaya
- Department of Chemical Engineering
- Indian Institute of Technology Bombay (IIT-B)
- Mumbai
- India
| | - V. G. M. Naidu
- Department of Pharmacology & Toxicology
- National Institute of Pharmaceutical Education and Research (NIPER)
- Guwahati
- India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Bombay (IIT-B)
- Mumbai
- India
| |
Collapse
|
290
|
Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv 2018; 16:69-78. [PMID: 30496697 DOI: 10.1080/17425247.2019.1554647] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION For many years, the controlled delivery of therapeutic compounds has been a matter of great interest in the field of nanomedicine. Among the wide amount of drug nanocarriers, magnetic iron oxide nanoparticles (IONs) stand out from the crowd and constitute robust nanoplatforms since they can achieve high drug loading as well as targeting abilities stemming from their remarkable properties (magnetic and biological properties). These applications require precise design of the nanoparticles regarding several parameters which must be considered together in order to attain highest therapeutic efficacy. AREAS COVERED This short review presents recent developments in the field of cancer targeted drug delivery using magnetic nanocarriers as drug delivery systems. EXPERT OPINION The design of nanocarriers enabling efficient delivery of therapeutic compounds toward targeted locations is one of the major area of research in the targeted drug delivery field. By precisely shaping the structural properties of the iron oxide nanoparticles, drugs loaded onto the nanoparticles can be efficiently guided and selectively delivered toward targeted locations. With these goals in mind, special attention should be given to the pharmacokinetics and in vivo behavior of the developed nanocarriers.
Collapse
Affiliation(s)
- Thomas Vangijzegem
- a Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory , University of Mons , Mons , Belgium
| | - Dimitri Stanicki
- a Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory , University of Mons , Mons , Belgium
| | - Sophie Laurent
- a Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory , University of Mons , Mons , Belgium.,b Center for Microscopy and Molecular Imaging (CMMI) , Gosselies , Belgium
| |
Collapse
|
291
|
Chiesa E, Dorati R, Pisani S, Conti B, Bergamini G, Modena T, Genta I. The Microfluidic Technique and the Manufacturing of Polysaccharide Nanoparticles. Pharmaceutics 2018; 10:pharmaceutics10040267. [PMID: 30544868 PMCID: PMC6321127 DOI: 10.3390/pharmaceutics10040267] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
The microfluidic technique has emerged as a promising tool to accelerate the clinical translation of nanoparticles, and its application affects several aspects, such as the production of nanoparticles and the in vitro characterization in the microenvironment, mimicking in vivo conditions. This review covers the general aspects of the microfluidic technique and its application in several fields, such as the synthesis, recovering, and samples analysis of nanoparticles, and in vitro characterization and their in vivo application. Among these, advantages in the production of polymeric nanoparticles in a well-controlled, reproducible, and high-throughput manner have been highlighted, and detailed descriptions of microfluidic devices broadly used for the synthesis of polysaccharide nanoparticles have been provided. These nanoparticulate systems have drawn attention as drug delivery vehicles over many years; nevertheless, their synthesis using the microfluidic technique is still largely unexplored. This review deals with the use of the microfluidic technique for the synthesis of polysaccharide nanoparticles; evaluating features of the most studied polysaccharide drug carriers, such as chitosan, hyaluronic acid, and alginate polymers. The critical assessment of the most recent research published in literature allows us to assume that microfluidics will play an important role in the discovery and clinical translation of nanoplatforms.
Collapse
Affiliation(s)
- Enrica Chiesa
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Gloria Bergamini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
292
|
Lee H, Park H, Noh GJ, Lee ES. pH-responsive hyaluronate-anchored extracellular vesicles to promote tumor-targeted drug delivery. Carbohydr Polym 2018; 202:323-333. [DOI: 10.1016/j.carbpol.2018.08.141] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
|
293
|
Malik P, Mukherjee TK. Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers. Int J Pharm 2018; 553:483-509. [DOI: 10.1016/j.ijpharm.2018.10.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/20/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
|
294
|
Siddiqui L, Mishra H, Mishra PK, Iqbal Z, Talegaonkar S. Novel 4-in-1 strategy to combat colon cancer, drug resistance and cancer relapse utilizing functionalized bioinspiring lignin nanoparticle. Med Hypotheses 2018; 121:10-14. [DOI: 10.1016/j.mehy.2018.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
|
295
|
Lee SY, Ko SH, Shim JS, Kim DD, Cho HJ. Tumor Targeting and Lipid Rafts Disrupting Hyaluronic Acid-Cyclodextrin-Based Nanoassembled Structure for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36628-36640. [PMID: 30298719 DOI: 10.1021/acsami.8b08243] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CD44 receptor targeting and lipid rafts destroying nanoassembly (NA) was developed for breast cancer therapy. Methyl-β-cyclodextrin (MbCD), as a cholesterol depletion moiety, was conjugated to hyaluronic acid-ceramide (HACE) structure via an ester linkage. HACE-MbCD NA with 198 nm hydrodynamic size, unimodal size distribution, and spherical shape was fabricated by self-assembly strategy. By filipin III staining, it was identified that HACE-MbCD NA extracted cholesterol from the cellular membrane of MDA-MB-231 (human breast adenocarcinoma) cells more efficiently rather than MbCD and HACE NA. Efficient lipid rafts disruption of HACE-MbCD NA compared to MbCD and HACE NA groups seems to lead to the increment in apoptosis and antiproliferation efficiencies in MDA-MB-231 cells. Improvement in tumor targeting efficiency of HACE-MbCD NA compared to HACE NA in MDA-MB-231 tumor-bearing mice can be explained by the extraction process of cellular cholesterol by MbCD. Following intravenous injection in MDA-MB-231 tumor-bearing mice, the most efficient suppression of tumor growth and highest apoptotic region were observed in HACE-MbCD NA group rather than MbCD group. All of these findings suggest that CD44 receptor-targetable HACE-MbCD NA retaining cholesterol depletion activity from cancer cells may be one of the remarkable nanosystems for breast cancer therapy.
Collapse
Affiliation(s)
- Song Yi Lee
- College of Pharmacy , Kangwon National University , Chuncheon , Gangwon 24341 , Republic of Korea
| | - Seung-Hak Ko
- Biogenics Inc. , Daejeon 34027 , Republic of Korea
| | - Jae-Seong Shim
- Biogenics Inc. , Daejeon 34027 , Republic of Korea
- Skin & Tech Inc. , Cheongju 28116 , Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences , Seoul National University , Seoul 08826 , Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy , Kangwon National University , Chuncheon , Gangwon 24341 , Republic of Korea
| |
Collapse
|
296
|
Piperno A, Scala A, Mazzaglia A, Neri G, Pennisi R, Sciortino MT, Grassi G. Cellular Signaling Pathways Activated by Functional Graphene Nanomaterials. Int J Mol Sci 2018; 19:E3365. [PMID: 30373263 PMCID: PMC6274994 DOI: 10.3390/ijms19113365] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The paper reviews the network of cellular signaling pathways activated by Functional Graphene Nanomaterials (FGN) designed as a platform for multi-targeted therapy or scaffold in tissue engineering. Cells communicate with each other through a molecular device called signalosome. It is a transient co-cluster of signal transducers and transmembrane receptors activated following the binding of transmembrane receptors to extracellular signals. Signalosomes are thus efficient and sensitive signal-responding devices that amplify incoming signals and convert them into robust responses that can be relayed from the plasma membrane to the nucleus or other target sites within the cell. The review describes the state-of-the-art biomedical applications of FGN focusing the attention on the cell/FGN interactions and signalosome activation.
Collapse
Affiliation(s)
- Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Antonino Mazzaglia
- CNR-ISMN c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20131 Milan, Italy.
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Giovanni Grassi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
297
|
Kim JH, Moon MJ, Kim DY, Heo SH, Jeong YY. Hyaluronic Acid-Based Nanomaterials for Cancer Therapy. Polymers (Basel) 2018; 10:polym10101133. [PMID: 30961058 PMCID: PMC6403826 DOI: 10.3390/polym10101133] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/22/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022] Open
Abstract
Hyaluronic acid (HA) is a nonsulfated glycosaminoglycan and a major component of the extracellular matrix. HA is overexpressed by numerous tumor cells, especially tumor-initiating cells. HA-based nanomaterials play in importance role in drug delivery systems. HA is used in various types of nanomaterials including micelle, polymersome, hydrogel, and inorganic nanoparticle formulations. Many experiments show that HA-based nanomaterials can serve as a platform for targeted chemotherapy, gene therapy, immunotherapy, and combination therapy with good potential for future biomedical applications in cancer treatment.
Collapse
Affiliation(s)
- Jin Hong Kim
- Department of Surgery, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Myeong Ju Moon
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
| | - Dong Yi Kim
- Department of Surgery, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Suk Hee Heo
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
| |
Collapse
|
298
|
Tian Y, Zhang H, Qin Y, Li D, Liu Y, Wang H, Gan L. Overcoming drug-resistant lung cancer by paclitaxel-loaded hyaluronic acid-coated liposomes targeted to mitochondria. Drug Dev Ind Pharm 2018; 44:2071-2082. [DOI: 10.1080/03639045.2018.1512613] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yongfeng Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Hua Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yanmei Qin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Dong Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Hao Wang
- National Pharmaceutical Engineering Research Center (NPERC), Shanghai, China
| | - Li Gan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
- National Pharmaceutical Engineering Research Center (NPERC), Shanghai, China
| |
Collapse
|
299
|
Marengo A, Forciniti S, Dando I, Dalla Pozza E, Stella B, Tsapis N, Yagoubi N, Fanelli G, Fattal E, Heeschen C, Palmieri M, Arpicco S. Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes. Biochim Biophys Acta Gen Subj 2018; 1863:61-72. [PMID: 30267751 DOI: 10.1016/j.bbagen.2018.09.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches. METHODS Hyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate‑copper (Cu(DDC)2), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC)2 liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed. RESULTS Liposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu(DDC)2 crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu(DDC)2. CONCLUSIONS The obtained results show that the encapsulation of Cu(DDC)2 complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs. GENERAL SIGNIFICANCE This paper describes for the first time the use of HA decorated liposomes containing Cu(DDC)2 against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches.
Collapse
Affiliation(s)
| | - Stefania Forciniti
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Elisa Dalla Pozza
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Barbara Stella
- Department of Drug Science and Technology, University of Torino, Italy
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Najet Yagoubi
- EA 401, Matériaux et Santé, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Christopher Heeschen
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Marta Palmieri
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Torino, Italy.
| |
Collapse
|
300
|
Muterspaugh R, Price D, Esckilsen D, McEachern S, Guthrie J, Heyl D, Evans HG. Interaction of Insulin-Like Growth Factor-Binding Protein 3 With Hyaluronan and Its Regulation by Humanin and CD44. Biochemistry 2018; 57:5726-5737. [PMID: 30184438 DOI: 10.1021/acs.biochem.8b00635] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin-like growth factor-binding protein-3 (IGFBP-3) belongs to a family of IGF-binding proteins. Humanin is a peptide known to bind residues 215-232 of mature IGFBP-3 in the C-terminal region of the protein. This region of IGFBP-3 was shown earlier to bind certain glycosaminoglycans including hyaluronan (HA). Here, we characterized the binding affinities of the IGFBP-3 protein and peptide (215-KKGFYKKKQCRPSKGRKR-232) to HA and to humanin and found that HA binds with a weaker affinity to this region than does humanin. Either HA or humanin could bind to this IGFBP-3 segment, but not simultaneously. The HA receptor, CD44, blocked HA binding to IGFBP-3 but had no effect on binding of humanin to either IGFBP-3 or its peptide. Upon incubation of HA with CD44 and either IGFBP-3 protein or peptide, humanin was effective at binding and sequestering IGFBP-3 or peptide, thereby enabling access of CD44 to HA. We show that IGFBP-3 and humanin in the medium of A549 lung cancer cells can immunoprecipitate in a complex. However, the fraction of IGFBP-3 in the medium that is able to bind HA was not complexed with humanin suggesting that HA binding to the 215-232 segment renders it inaccessible for binding to humanin. Moreover, while the cytotoxic effects of IGFBP-3 on cell viability were reversed by humanin, blocking HA-CD44 interaction with an anti-CD44 antibody in combination with IGFBP-3 did not have an additive negative effect on cell viability suggesting that IGFBP-3 exerts its cytotoxic effects on cell survival through a mechanism that depends on HA-CD44 interactions.
Collapse
Affiliation(s)
- Robert Muterspaugh
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Deanna Price
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Daniel Esckilsen
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Sydney McEachern
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Jeffrey Guthrie
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Deborah Heyl
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Hedeel Guy Evans
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| |
Collapse
|