251
|
Edderkaoui M, Chheda C, Soufi B, Zayou F, Hu RW, Krishnan Ramanujan V, Pan X, Boros LG, Tajbakhsh J, Madhav A, Bhowmick NA, Wang Q, Lewis M, Tuli R, Habtezion A, Murali R, Pandol SJ. An Inhibitor of GSK3B and HDACs Kills Pancreatic Cancer Cells and Slows Pancreatic Tumor Growth and Metastasis in Mice. Gastroenterology 2018; 155:1985-1998.e5. [PMID: 30144430 PMCID: PMC6328046 DOI: 10.1053/j.gastro.2018.08.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 06/14/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Growth, progression, and drug resistance of pancreatic ductal adenocarcinomas (PDACs) have been associated with increased levels and activity of glycogen synthase kinase 3 beta (GSK3B) and histone deacetylases (HDACs). We designed and synthesized molecules that simultaneously inhibit the activities of both enzymes. We tested the effects of one of these molecules, Metavert, in pancreatic cancer cells and mice with pancreatic tumors. METHODS We tested the ability of Metavert to bind GSK3B and HDACs using surface plasmon resonance. MIA PaCa-2, Bx-PC3, HPAF-II, and HPDE6 cell lines were incubated with different concentrations of Metavert, with or without paclitaxel or gemcitabine, or with other inhibitors of GSK3B and HDACs; cells were analyzed for apoptosis and migration and by immunoblotting, immunofluorescence, and real-time polymerase chain reaction. Krasþ/LSLG12D;Trp53þ/LSLR172H;Pdx-1-Cre (KPC) mice (2 months old) were given injections of Metavert (5 mg/kg, 3 times/week) or vehicle (control). B6.129J mice with tumors grown from UN-KPC961-Luc cells were given injections of Metavert or vehicle. Tumors and metastases were counted and pancreata were analyzed by immunohistochemistry. Glucose metabolism was measured using 13C-glucose tracer and mass spectroscopy and flow cytometry. Cytokine levels in blood samples were measured using multiplexing enzyme-linked immunosorbent assay. RESULTS Metavert significantly reduced survival of PDAC cells but not nontransformed cells; the agent reduced markers of the epithelial-to-mesenchymal transition and stem cells in PDAC cell lines. Cells incubated with Metavert in combination with irradiation and paclitaxel or gemcitabine had reduced survival compared with cells incubated with either agent alone; Metavert increased killing of drug-resistant PDAC cells by paclitaxel and gemcitabine. PDAC cells incubated with Metavert acquired normalized glucose metabolism. Administration of Metavert (alone or in combination with gemcitibine) to KPC mice or mice with syngeneic tumors significantly increased their survival times, slowed tumor growth, prevented tumor metastasis, decreased tumor infiltration by tumor-associated macrophages, and decreased blood levels of cytokines. CONCLUSIONS In studies of PDAC cells and 2 mouse models of PDAC, we found a dual inhibitor of GSK3B and HDACs (Metavert) to induce cancer cell apoptosis, reduce migration and expression of stem cell markers, and slow growth of tumors and metastases. Metavert had synergistic effects with gemcitabine.
Collapse
Affiliation(s)
- Mouad Edderkaoui
- Departments of Medicine, Biomedical Sciences, Radiation Oncology, and Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California; Department of Pediatrics, University of California at Los Angeles, Los Angeles, California.
| | - Chintan Chheda
- Departments of Medicine, Biomedical Sciences, Radiation Oncology and Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Badr Soufi
- Departments of Medicine, Biomedical Sciences, Radiation Oncology and Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Fouzia Zayou
- Departments of Medicine, Biomedical Sciences, Radiation Oncology and Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Robert W. Hu
- Departments of Medicine, Biomedical Sciences, Radiation Oncology and Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - V. Krishnan Ramanujan
- Departments of Medicine, Biomedical Sciences, Radiation Oncology and Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Xinlei Pan
- Departments of Medicine, Biomedical Sciences, Radiation Oncology and Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Laszlo G. Boros
- Department of Pediatrics, University of California at Los Angeles, California
| | - Jian Tajbakhsh
- Departments of Medicine, Biomedical Sciences, Radiation Oncology and Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Anisha Madhav
- Departments of Medicine, Biomedical Sciences, Radiation Oncology and Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Neil A. Bhowmick
- Departments of Medicine, Biomedical Sciences, Radiation Oncology and Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Qiang Wang
- Departments of Medicine, Biomedical Sciences, Radiation Oncology and Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Richard Tuli
- Departments of Medicine, Biomedical Sciences, Radiation Oncology and Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Ramachandran Murali
- Departments of Medicine, Biomedical Sciences, Radiation Oncology and Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen J. Pandol
- Departments of Medicine, Biomedical Sciences, Radiation Oncology and Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California,Department of Pediatrics, University of California at Los Angeles, California
| |
Collapse
|
252
|
Saleh M, Rüschenbaum S, Welsch C, Zeuzem S, Moradpour D, Gouttenoire J, Lange CM. Glycogen Synthase Kinase 3β Enhances Hepatitis C Virus Replication by Supporting miR-122. Front Microbiol 2018; 9:2949. [PMID: 30542341 PMCID: PMC6278592 DOI: 10.3389/fmicb.2018.02949] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) infection is associated with alterations in host lipid and insulin signaling cascades, which are partially explained by a dependence of the HCV life cycle on key molecules in these metabolic pathways. Yet, little is known on the role in the HCV life cycle of glycogen synthase kinase 3 (GSK3), one of the most important kinases in cellular metabolism. Therefore, the impact of GSK3 on the HCV life cycle was assessed in human hepatoma cell lines harboring subgenomic genotype 1b and 2a replicons or producing cell culture-derived HCV genotype 2a by exposure to synthetic GSK3 inhibitors, GSK3 gene silencing, overexpression of GSK3 constructs and immunofluorescence analyses. In addition, the role of GSK3 in hepatitis E virus (HEV) replication was investigated to assess virus specificity of the observed findings. We found that both inhibition of GSK3 function by synthetic inhibitors as well as silencing of GSK3β gene expression resulted in a decrease of HCV replication and infectious particle production, whereas silencing of the GSK3α isoform had no relevant effect on the HCV life cycle. Conversely, overexpression of GSK3β resulted in enhanced HCV replication. In contrast, GSK3β had no effect on replication of subgenomic HEV replicon. The pro-viral effect of GSK3β on HCV replication was mediated by supporting expression of microRNA-122 (miR-122), a micro-RNA which is mandatory for wild-type HCV replication, as GSK3 inhibitors suppressed miR-122 levels and as inhibitors of GSK3 had no antiviral effect on a miR-122-independent HCV mutant. In conclusion, we have identified GSK3β is a novel host factor supporting HCV replication by maintaining high levels of hepatic miR-122 expression.
Collapse
Affiliation(s)
- Maged Saleh
- Department of Internal Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Sabrina Rüschenbaum
- Department of Internal Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Christoph Welsch
- Department of Internal Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Christian M Lange
- Department of Internal Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
253
|
Hugon J, Mouton-Liger F, Cognat E, Dumurgier J, Paquet C. Blood-Based Kinase Assessments in Alzheimer's Disease. Front Aging Neurosci 2018; 10:338. [PMID: 30487744 PMCID: PMC6246745 DOI: 10.3389/fnagi.2018.00338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is marked by memory disturbances followed by aphasia, apraxia and agnosia. Brain lesions include the accumulation of the amyloid peptide in extracellular plaques, neurofibrillary tangles with abnormally phosphorylated tau protein and synaptic and neuronal loss. New findings have suggested that brain lesions could occur one or two decades before the first clinical signs. This asymptomatic preclinical phase could be an opportunity to put in place a secondary prevention but the detection of these brain lesions can only be achieved so far by cerebrospinal fluid (CSF) evaluation or molecular amyloid and tau PET imaging. There is an urgent need to find out simple and easily accessible new biomarkers to set up an efficient screening in adult and aging population. Neuropathological and biochemical studies have revealed that abnormal accumulations of potentially toxic kinases are present in the brains of AD patients. Kinase activation leads to abnormal tau phosphorylation, amyloid production, apoptosis and neuroinflammation. Increased levels of these kinases are present in the CSF of mild cognitive impairment (MCI) and AD patients. Over the last years the search for abnormal kinase levels was performed in the blood of patients. Glycogen synthase kinase 3 (GSK 3), protein kinase R (PKR), mamalian target of rapamycin (mTOR), dual specificity tyrosine-phosphorylation-regulated kinase 1A (DIRK1A), c-Jun N-terminal kinase (JNK), protein 70 kD ribosomal protein S6 kinase (P70S6K), ERK2 and other kinase concentrations were evaluated and abnormal levels were found in many studies. For example, GSK3 levels are increased in MCI and AD patients. PKR levels are also augmented in peripheral blood mononuclear cells (PBMC) of AD patients. In the future, the assessment of several blood kinase levels in large cohorts of patients will be needed to confirm the usefulness of this test at an early phase of the disease.
Collapse
Affiliation(s)
- Jacques Hugon
- Center of Cognitive Neurology, Lariboisiere Fernand-Widal Hospital, APHP, University Paris Diderot, Paris, France.,INSERM U 942, Paris, France
| | - François Mouton-Liger
- Center of Cognitive Neurology, Lariboisiere Fernand-Widal Hospital, APHP, University Paris Diderot, Paris, France.,INSERM U 942, Paris, France
| | - Emmanuel Cognat
- Center of Cognitive Neurology, Lariboisiere Fernand-Widal Hospital, APHP, University Paris Diderot, Paris, France.,INSERM U 942, Paris, France
| | - Julien Dumurgier
- Center of Cognitive Neurology, Lariboisiere Fernand-Widal Hospital, APHP, University Paris Diderot, Paris, France.,INSERM U 942, Paris, France
| | - Claire Paquet
- Center of Cognitive Neurology, Lariboisiere Fernand-Widal Hospital, APHP, University Paris Diderot, Paris, France.,INSERM U 942, Paris, France
| |
Collapse
|
254
|
Thibault S, Hu W, Hirakawa B, Kalabat D, Franks T, Sung T, Khoh-Reiter S, Lu S, Finkelstein M, Jessen B, Sacaan A. Intestinal Toxicity in Rats Following Administration of CDK4/6 Inhibitors Is Independent of Primary Pharmacology. Mol Cancer Ther 2018; 18:257-266. [DOI: 10.1158/1535-7163.mct-18-0734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/18/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022]
|
255
|
Rosenqvist N, Asuni AA, Andersson CR, Christensen S, Daechsel JA, Egebjerg J, Falsig J, Helboe L, Jul P, Kartberg F, Pedersen LØ, Sigurdsson EM, Sotty F, Skjødt K, Stavenhagen JB, Volbracht C, Pedersen JT. Highly specific and selective anti-pS396-tau antibody C10.2 targets seeding-competent tau. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:521-534. [PMID: 30386817 PMCID: PMC6205114 DOI: 10.1016/j.trci.2018.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction The abnormal hyperphosphorylation of the microtubule-associated protein tau plays a crucial role in neurodegeneration in Alzheimer's disease (AD) and other tauopathies. Methods Highly specific and selective anti-pS396-tau antibodies have been generated using peptide immunization with screening against pathologic hyperphosphorylated tau from rTg4510 mouse and AD brains and selection in in vitro and in vivo tau seeding assays. Results The antibody C10.2 bound specifically to pS396-tau with an IC50 of 104 pM and detected preferentially hyperphosphorylated tau aggregates from AD brain with an IC50 of 1.2 nM. C10.2 significantly reduced tau seeding of P301L human tau in HEK293 cells, murine cortical neurons, and mice. AD brain extracts depleted with C10.2 were not able to seed tau in vitro and in vivo, demonstrating that C10.2 specifically recognized pathologic seeding-competent tau. Discussion Targeting pS396-tau with an antibody like C10.2 may provide therapeutic benefit in AD and other tauopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pia Jul
- H. Lundbeck A/S, Valby, Denmark
| | | | | | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.,Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | - Karsten Skjødt
- Department of Cancer and Inflammarion Research, University of Southern Denmark, Odense C, Denmark
| | | | | | | |
Collapse
|
256
|
Discovery and anti-inflammatory evaluation of benzothiazepinones (BTZs) as novel non-ATP competitive inhibitors of glycogen synthase kinase-3β (GSK-3β). Bioorg Med Chem 2018; 26:5479-5493. [PMID: 30293796 DOI: 10.1016/j.bmc.2018.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/12/2018] [Accepted: 09/22/2018] [Indexed: 12/31/2022]
Abstract
Glycogen synthase kinase-3β (GSK-3β) has been identified to promote inflammation and its inhibitors have also been proven to treat some inflammatory mediated diseases in animal models. Non-ATP competitive inhibitors inherently have better therapeutical value due to their higher specificity than ATP competitive ones. In this paper, we designed and synthesized a series of new BTZ derivatives as non-ATP competitive GSK-3β inhibitors. Kinetic analysis revealed two typical compounds 6j and 3j showed the different non-ATP competitive mechanism of substrate competition or allosteric modulation to GSK-3β, respectively. As expected, the two compounds showed good specificity in a panel test of 16 protein kinases, even to the closest enzymes, like CDK-1/cyclin B and CK-II. The in vivo results proved that both compounds can greatly attenuate the LPS-induced acute lung injury (ALI) and diminish inflammation response in mice by inhibiting the mRNA expression of IL-1β and IL-6. Western blot analysis demonstrated that they negatively regulated GSK-3β, and the mechanism of the observed beneficial effects of the inhibitors may involve both the increased phosphorylation of the Ser9 residue on GSK-3β and protein expression of Sirtuin 1 (SIRT1). The results support that such novel BTZ compounds have a protective role in LPS-induced ALI, and might be attractive candidates for further development of inflammation pharmacotherapy, which greatly thanks to their inherently high selectivities by the non-ATP competitive mode of action. Finally, we proposed suggesting binding modes by Docking study to well explain the impacts of compounds on the target site.
Collapse
|
257
|
Novel Protein Kinase Inhibitors Related to Tau Pathology Modulate Tau Protein-Self Interaction Using a Luciferase Complementation Assay. Molecules 2018; 23:molecules23092335. [PMID: 30213139 PMCID: PMC6225193 DOI: 10.3390/molecules23092335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 02/03/2023] Open
Abstract
The current number of drugs available for the treatment of Alzheimer’s disease (AD) is strongly limited and their benefit for therapy is given only in the early state of the disease. An effective therapy should affect those processes which mainly contribute to the neuronal decay. There have been many approaches for a reduction of toxic Aβ peptides which mostly failed to halt cognitive deterioration in patients. The formation of neurofibrillary tangles (NFT) and its precursor tau oligomers have been suggested as main cause of neuronal degeneration because of a direct correlation of their density to the degree of dementia. Reducing of tau aggregation may be a viable approach for the treatment of AD. NFT consist of hyperphosphorylated tau protein and tau hyperphosphorylation reduces microtubule binding. Several protein kinases are discussed to be involved in tau hyperphosphorylation. We developed novel inhibitors of three protein kinases (gsk-3β, cdk5, and cdk1) and discussed their activity in relation to tau phosphorylation and on tau–tau interaction as a nucleation stage of a tau aggregation in cells. Strongest effects were observed for those inhibitors with effects on all the three kinases with emphasis on gsk-3β in nanomolar ranges.
Collapse
|
258
|
Kerr F, Bjedov I, Sofola-Adesakin O. Molecular Mechanisms of Lithium Action: Switching the Light on Multiple Targets for Dementia Using Animal Models. Front Mol Neurosci 2018; 11:297. [PMID: 30210290 PMCID: PMC6121012 DOI: 10.3389/fnmol.2018.00297] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
Lithium has long been used for the treatment of psychiatric disorders, due to its robust beneficial effect as a mood stabilizing drug. Lithium’s effectiveness for improving neurological function is therefore well-described, stimulating the investigation of its potential use in several neurodegenerative conditions including Alzheimer’s (AD), Parkinson’s (PD) and Huntington’s (HD) diseases. A narrow therapeutic window for these effects, however, has led to concerted efforts to understand the molecular mechanisms of lithium action in the brain, in order to develop more selective treatments that harness its neuroprotective potential whilst limiting contraindications. Animal models have proven pivotal in these studies, with lithium displaying advantageous effects on behavior across species, including worms (C. elegans), zebrafish (Danio rerio), fruit flies (Drosophila melanogaster) and rodents. Due to their susceptibility to genetic manipulation, functional genomic analyses in these model organisms have provided evidence for the main molecular determinants of lithium action, including inhibition of inositol monophosphatase (IMPA) and glycogen synthase kinase-3 (GSK-3). Accumulating pre-clinical evidence has indeed provided a basis for research into the therapeutic use of lithium for the treatment of dementia, an area of medical priority due to its increasing global impact and lack of disease-modifying drugs. Although lithium has been extensively described to prevent AD-associated amyloid and tau pathologies, this review article will focus on generic mechanisms by which lithium preserves neuronal function and improves memory in animal models of dementia. Of these, evidence from worms, flies and mice points to GSK-3 as the most robust mediator of lithium’s neuro-protective effect, but it’s interaction with downstream pathways, including Wnt/β-catenin, CREB/brain-derived neurotrophic factor (BDNF), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and toll-like receptor 4 (TLR4)/nuclear factor-κB (NFκB), have identified multiple targets for development of drugs which harness lithium’s neurogenic, cytoprotective, synaptic maintenance, anti-oxidant, anti-inflammatory and protein homeostasis properties, in addition to more potent and selective GSK-3 inhibitors. Lithium, therefore, has advantages as a multi-functional therapy to combat the complex molecular pathology of dementia. Animal studies will be vital, however, for comparative analyses to determine which of these defense mechanisms are most required to slow-down cognitive decline in dementia, and whether combination therapies can synergize systems to exploit lithium’s neuro-protective power while avoiding deleterious toxicity.
Collapse
Affiliation(s)
- Fiona Kerr
- Department of Life Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Ivana Bjedov
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Oyinkan Sofola-Adesakin
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
259
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
260
|
Ryan P, Patel B, Makwana V, Jadhav HR, Kiefel M, Davey A, Reekie TA, Rudrawar S, Kassiou M. Peptides, Peptidomimetics, and Carbohydrate-Peptide Conjugates as Amyloidogenic Aggregation Inhibitors for Alzheimer's Disease. ACS Chem Neurosci 2018; 9:1530-1551. [PMID: 29782794 DOI: 10.1021/acschemneuro.8b00185] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder accounting for 60-80% of dementia cases. For many years, AD causality was attributed to amyloid-β (Aβ) aggregated species. Recently, multiple therapies that target Aβ aggregation have failed in clinical trials, since Aβ aggregation is found in AD and healthy patients. Attention has therefore shifted toward the aggregation of the tau protein as a major driver of AD. Numerous inhibitors of tau-based pathology have recently been developed. Diagnosis of AD has shifted from measuring late stage senile plaques to early stage biomarkers, amyloid-β and tau monomers and oligomeric assemblies. Synthetic peptides and some derivative structures are being explored for use as theranostic tools as they possess the capacity both to bind the biomarkers and to inhibit their pathological self-assembly. Several studies have demonstrated that O-linked glycoside addition can significantly alter amyloid aggregation kinetics. Furthermore, natural O-glycosylation of amyloid-forming proteins, including amyloid precursor protein (APP), tau, and α-synuclein, promotes alternative nonamyloidogenic processing pathways. As such, glycopeptides and related peptidomimetics are being investigated within the AD field. Here we review advancements made in the last 5 years, as well as the arrival of sugar-based derivatives.
Collapse
Affiliation(s)
- Philip Ryan
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Bhautikkumar Patel
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Hemant R. Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani-333031, Rajasthan, India
| | - Milton Kiefel
- Institute for Glycomics, Griffith University, Gold Coast 4222, Australia
| | - Andrew Davey
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
| | | | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
261
|
Prion-Like Propagation of Post-Translationally Modified Tau in Alzheimer’s Disease: A Hypothesis. J Mol Neurosci 2018; 65:480-490. [DOI: 10.1007/s12031-018-1111-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/20/2018] [Indexed: 12/25/2022]
|
262
|
Rate of β-amyloid accumulation varies with baseline amyloid burden: Implications for anti-amyloid drug trials. Alzheimers Dement 2018; 14:1387-1396. [PMID: 30420035 DOI: 10.1016/j.jalz.2018.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/06/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION This study examined a longitudinal trajectory of β-amyloid (Aβ) accumulation at the predementia stage of Alzheimer's disease in the context of clinical trials. METHODS Analyzed were baseline (BL) and 2 years' follow-up 18F-florbetapir positron emission tomography data of 246 Aβ-positive subjects with normal cognition and mild cognitive impairment. We studied the relationship between annual accumulation rates of 18F-florbetapir and BL standard uptake value ratios in whole gray matter (SUVRGM). RESULTS Subjects with BL SUVRGM of 0.56 to 0.92 (n = 134) appeared to accumulate Aβ approximately 1.5 times faster than remaining subjects. In subjects with SUVRGM above 0.95, most regions with the highest annual accumulation rate were outside the established set of Alzheimer's disease typical regions. CONCLUSION There are global and regional variations in annual accumulation rate at the predementia stage of Alzheimer's disease. When taken into account, the sample size in anti-amyloid trials can be substantially reduced. Critically, treated and placebo groups should be matched for BL SUVRGM.
Collapse
|
263
|
Abstract
Alzheimer disease (AD) is the most common form of dementia. Pathologically, AD is characterized by amyloid plaques and neurofibrillary tangles in the brain, with associated loss of synapses and neurons, resulting in cognitive deficits and eventually dementia. Amyloid-β (Aβ) peptide and tau protein are the primary components of the plaques and tangles, respectively. In the decades since Aβ and tau were identified, development of therapies for AD has primarily focused on Aβ, but tau has received more attention in recent years, in part because of the failure of various Aβ-targeting treatments in clinical trials. In this article, we review the current status of tau-targeting therapies for AD. Initially, potential anti-tau therapies were based mainly on inhibition of kinases or tau aggregation, or on stabilization of microtubules, but most of these approaches have been discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting therapies in clinical trials are immunotherapies, which have shown promise in numerous preclinical studies. Given that tau pathology correlates better with cognitive impairments than do Aβ lesions, targeting of tau is expected to be more effective than Aβ clearance once the clinical symptoms are evident. With future improvements in diagnostics, these two hallmarks of the disease might be targeted prophylactically.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
264
|
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, which is considered as one of the most intractable medical problems with heavy social and economic costs. The current drugs for AD, including acetylcholinesterase inhibitors (AChEIs) and memantine, a NMDA receptor antagonist, only temporarily ameliorate cognitive decline, but are unable to stop or reverse the progression of dementia. This paper reviewed the recent advance in AD drug development. The drug discovery programs under clinical trials targeting cholinergic system, α7 nicotinic acetylcholine receptors (nAChRs), N-methyl-d-aspartate receptor (NMDAR), β-secretase, γ-secretase modulators, tau, inflammatory mediators and glucagon-like peptide-1 (GLP-1) were discussed. Though several drug discovery programs are ongoing, the high failure rate is an outstanding issue. Novel techniques and strategies are desperately needed to significantly accelerate this process.
Collapse
Affiliation(s)
- Kejing Lao
- a Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University , Xi'an , China
| | - Naichun Ji
- a Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University , Xi'an , China
| | - Xiaohua Zhang
- a Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University , Xi'an , China
| | - Wenwei Qiao
- a Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University , Xi'an , China
| | - Zhishu Tang
- b Institute of Holistic Integrated Medicine, Shaanxi University of Chinese Medicine , Shaanxi , Xianyang , China
| | - Xingchun Gou
- a Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University , Xi'an , China.,b Institute of Holistic Integrated Medicine, Shaanxi University of Chinese Medicine , Shaanxi , Xianyang , China
| |
Collapse
|
265
|
Giacomini C, Koo CY, Yankova N, Tavares IA, Wray S, Noble W, Hanger DP, Morris JDH. A new TAO kinase inhibitor reduces tau phosphorylation at sites associated with neurodegeneration in human tauopathies. Acta Neuropathol Commun 2018; 6:37. [PMID: 29730992 PMCID: PMC5937037 DOI: 10.1186/s40478-018-0539-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/21/2018] [Indexed: 11/18/2022] Open
Abstract
In Alzheimer’s disease (AD) and related tauopathies, the microtubule-associated protein tau is highly phosphorylated and aggregates to form neurofibrillary tangles that are characteristic of these neurodegenerative diseases. Our previous work has demonstrated that the thousand-and-one amino acid kinases (TAOKs) 1 and 2 phosphorylate tau on more than 40 residues in vitro. Here we show that TAOKs are phosphorylated and active in AD brain sections displaying mild (Braak stage II), intermediate (Braak stage IV) and advanced (Braak stage VI) tau pathology and that active TAOKs co-localise with both pre-tangle and tangle structures. TAOK activity is also enriched in pathological tau containing sarkosyl-insoluble extracts prepared from AD brain. Two new phosphorylated tau residues (T123 and T427) were identified in AD brain, which appear to be targeted specifically by TAOKs. A new small molecule TAOK inhibitor (Compound 43) reduced tau phosphorylation on T123 and T427 and also on additional pathological sites (S262/S356 and S202/T205/S208) in vitro and in cell models. The TAOK inhibitor also decreased tau phosphorylation in differentiated primary cortical neurons without affecting markers of synapse and neuron health. Notably, TAOK activity also co-localised with tangles in post-mortem frontotemporal lobar degeneration (FTLD) brain tissue. Furthermore, the TAOK inhibitor decreased tau phosphorylation in induced pluripotent stem cell derived neurons from FTLD patients, as well as cortical neurons from a transgenic mouse model of tauopathy (Tau35 mice). Our results demonstrate that abnormal TAOK activity is present at pre-tangles and tangles in tauopathies and that TAOK inhibition effectively decreases tau phosphorylation on pathological sites. Thus, TAOKs may represent a novel target to reduce or prevent tau-associated neurodegeneration in tauopathies.
Collapse
|
266
|
Gao YL, Wang N, Sun FR, Cao XP, Zhang W, Yu JT. Tau in neurodegenerative disease. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:175. [PMID: 29951497 DOI: 10.21037/atm.2018.04.23] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Tau, a microtubule-associated protein, is the main component of the intracellular filamentous inclusions that are involved in neurodegenerative diseases known as tauopathies, including Alzheimer disease (AD), frontotemporal dementia with parkinsonism-17 (FTDP-17), Pick disease (PiD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Hyperphosphorylated, aggregated tau proteins form the core of neurofibrillary tangles (NFTs), which are shown to be one of the pathological hallmarks of AD. The discovery of mutations in the microtubule-associated protein tau (MAPT) gene in patients with FTDP-17 also contributes to a better understanding of the dysfunctional tau as a cause of diseases. Although recent substantial progress has been made in the tau pathology of tauopathies, the mechanisms underlying tau-induced neurodegeneration remain unclear. Here, we present an overview of the biochemical properties of tau protein and the pathogenesis underlying tau-induced neurodegenerative diseases. Meanwhile, we will discuss the tau-related biomarkers and ongoing tau-targeted strategies for therapeutic modulation.
Collapse
Affiliation(s)
- Yong-Lei Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Nan Wang
- Endoscopy Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Fu-Rong Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Wei Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China.,Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| |
Collapse
|
267
|
Zhao Y, Chen X, Wu Y, Wang Y, Li Y, Xiang C. Transplantation of Human Menstrual Blood-Derived Mesenchymal Stem Cells Alleviates Alzheimer's Disease-Like Pathology in APP/PS1 Transgenic Mice. Front Mol Neurosci 2018; 11:140. [PMID: 29740283 PMCID: PMC5928234 DOI: 10.3389/fnmol.2018.00140] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Extracellular β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) are the pathological hallmarks of Alzheimer’s disease (AD). Mesenchymal stem cells (MSCs) have shown therapeutic efficacy in many neurodegenerative diseases, including AD. Human menstrual blood-derived stem cells (MenSCs) are a novel source of MSCs advantageous for their higher proliferation rate and because they are easy to obtain without ethical concerns. Although MenSCs have exhibited therapeutic efficacy in some diseases, their effects on AD remain elusive. In the present study, we showed that intracerebral transplantation of MenSCs dramatically improved the spatial learning and memory of APP/PS1 mice. In addition, MenSCs significantly ameliorated amyloid plaques and reduced tau hyperphosphorylation in APP/PS1 mice. Remarkably, we also found that intracerebral transplantation of MenSCs markedly increased several Aβ degrading enzymes and modulated a panel of proinflammatory cytokines associated with an altered microglial phenotype, suggesting an Aβ degrading and anti-inflammatory impact of MenSCs in the brains of APP/PS1 mice. In conclusion, these findings suggest that MenSCs are a promising therapeutic candidate for AD.
Collapse
Affiliation(s)
- Yongjia Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yichen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanling Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
268
|
Medina M. An Overview on the Clinical Development of Tau-Based Therapeutics. Int J Mol Sci 2018; 19:ijms19041160. [PMID: 29641484 PMCID: PMC5979300 DOI: 10.3390/ijms19041160] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 01/25/2023] Open
Abstract
Tauopathies such as Alzheimer's disease (AD), frontotemporal lobar degeneration, or progressive supranuclear palsy constitute a group of brain disorders defined by neurodegeneration and the presence of tau aggregates in the affected brains regions. Tau is a microtubule-associated protein that accumulates in the cytosol under pathological conditions, steering the formation of aggregates or inclusions thought to be involved in the degeneration and neuronal death associated with these diseases. Despite a substantial and unmet medical need for novel, more effective disease-modifying therapies for the treatment of AD and tauopathies, the last couple of decades have seen numerous drug development undertakings primarily focused on β-amyloid, with disappointing results to date. On the other hand, tau-focused approaches have not received much attention until recently, notwithstanding that the presence of extensive tau pathology is fundamental for the disease and tau pathology shows a better correlation with impaired cognitive function than with amyloid pathology in AD patients. The last few years have brought us advances in our comprehension of tau biological functions beyond its well-established role as a microtubule-associated protein, unveiling novel physiological tau functions that may also be involved in pathogenesis and thus provide novel targets for therapeutic intervention. This review describes several emerging, encouraging therapeutic approaches aimed at tackling the underlying causes of tau pathology in AD and other tauopathies that have recently reached the clinical development stage.
Collapse
Affiliation(s)
- Miguel Medina
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Queen Sofia Foundation Alzheimer Center, CIEN Foundation, Carlos III Institute of Health, 28031 Madrid, Spain.
| |
Collapse
|
269
|
Abstract
PURPOSE OF REVIEW Tauopathies represent a spectrum of incurable and progressive age-associated neurodegenerative diseases that currently are diagnosed definitively only at autopsy. Few clinical diagnoses, such as classic Richardson's syndrome of progressive supranuclear palsy, are specific for underlying tauopathy and no clinical syndrome is fully sensitive to reliably identify all forms of clinically manifest tauopathy. Thus, a major unmet need for the development and implementation of tau-targeted therapies is precise antemortem diagnosis. This article reviews new and emerging diagnostic therapies for tauopathies including novel imaging techniques and biomarkers and also reviews recent tau therapeutics. RECENT FINDINGS Building evidence from animal and cell models suggests that prion-like misfolding and propagation of pathogenic tau proteins between brain cells are central to the neurodegenerative process. These rapidly growing developments build rationale and motivation for the development of therapeutics targeting this mechanism through altering phosphorylation and other post-translational modifications of the tau protein, blocking aggregation and spread using small molecular compounds or immunotherapy and reducing or silencing expression of the MAPT tau gene. New clinical criteria, CSF, MRI, and PET biomarkers will aid in identifying tauopathies earlier and more accurately which will aid in selection for new clinical trials which focus on a variety of agents including immunotherapy and gene silencing.
Collapse
Affiliation(s)
- David Coughlin
- Frontotemporal Dementia Center (FTDC), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Frontotemporal Dementia Center (FTDC), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
270
|
Iqbal K, Liu F, Gong CX. Recent developments with tau-based drug discovery. Expert Opin Drug Discov 2018; 13:399-410. [DOI: 10.1080/17460441.2018.1445084] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
271
|
Stepanov A, Karelina T, Markevich N, Demin O, Nicholas T. A mathematical model of multisite phosphorylation of tau protein. PLoS One 2018; 13:e0192519. [PMID: 29408874 PMCID: PMC5800643 DOI: 10.1371/journal.pone.0192519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/24/2018] [Indexed: 11/18/2022] Open
Abstract
Abnormal tau metabolism followed by formation of tau deposits causes a number of neurodegenerative diseases called tauopathies including Alzheimer's disease. Hyperphosphorylation of tau protein precedes tau aggregation and is a topic of interest for the development of pharmacological interventions to prevent pathology progression at early stages. The development of a mathematical model of multisite phosphorylation of tau would be helpful for searching for the targets of pharmacological interventions and candidates for biomarkers of pathology progression. In the present study, we for the first time developed a model of multisite phosphorylation of tau protein and elucidated the relative contribution of kinases to phosphorylation of distinct sites. The model describes phosphorylation of tau or PKA-prephosphorylated tau by GSK3β and CDK5 and dephosphorylation by PP2A, accurately reproducing the data for short-term kinetics of tau (de)phosphorylation. Our results suggest that kinase inhibition may more specifically prevent tau hyperphosphorylation, e.g., on PHF sites, which are key biomarkers of pathological changes in Alzheimer's disease. The main features of our model are partial phosphorylation of tau residues and merging of random and sequential mechanisms of multisite phosphorylation within the framework of the probability-based approach assuming independent phosphorylation events.
Collapse
Affiliation(s)
| | | | | | | | - Timothy Nicholas
- Pfizer Global R&D, Groton, Connecticut, United States of America
| |
Collapse
|
272
|
Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav Brain Res 2018; 339:57-65. [DOI: 10.1016/j.bbr.2017.11.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/08/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022]
|
273
|
Inhibition of hippocampal long-term potentiation by high-fat diets: is it related to an effect of palmitic acid involving glycogen synthase kinase-3? Neuroreport 2018; 28:354-359. [PMID: 28328738 DOI: 10.1097/wnr.0000000000000774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High-fat diets (HFD) impair hippocampal-dependent learning and memory and produce important changes in synaptic transmission by enhancing glutamate uptake, decreasing synaptic efficacy, and inhibiting plasticity mechanisms such as N-methyl-D-aspartate-mediated long-term depression (LTD) within the hippocampus. Adolescent animals seem to be particularly susceptible to the detrimental effect of HFD as dietary treatments carried out between weaning and early adulthood are much more efficient in terms of hippocampal damage that those carried out during the adult period. As palmitic acid is the most abundant saturated fatty acid in HFD, its effect on hippocampal function needs to be studied. However, glycogen synthase kinase-3 (GSK-3), a pleiotropic enzyme highly expressed in the central nervous system, modulates both hippocampal long-term potentiation (LTP) and LTD, and has been implicated in neurological disorders including Alzheimer's disease. In this study, we have characterized in mice hippocampus the effect of (i) a 48 h HFD intervention and (ii) in-vitro palmitic acid, as well as the possible involvement of GSK-3 in the above-mentioned plasticity mechanisms. Our results show that both 48 h HFD and palmitic acid inhibit LTP in hippocampal slices, whereas no effect on LTD was observed. Moreover, tideglusib, an ATP-noncompetitive inhibitor of GSK-3, induced hippocampal LTP and partially reversed the impairment of LTP induced by palmitic acid.
Collapse
|
274
|
Dou X, Jiang L, Wang Y, Jin H, Liu Z, Zhang L. Discovery of new GSK-3β inhibitors through structure-based virtual screening. Bioorg Med Chem Lett 2018; 28:160-166. [DOI: 10.1016/j.bmcl.2017.11.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/18/2017] [Accepted: 11/23/2017] [Indexed: 01/22/2023]
|
275
|
Wang F, Feng J, Yang Y, Liu J, Liu M, Wang Z, Pei H, Wei Y, Li H. The Chinese herbal formula Fuzheng Quxie Decoction attenuates cognitive impairment and protects cerebrovascular function in SAMP8 mice. Neuropsychiatr Dis Treat 2018; 14:3037-3051. [PMID: 30519025 PMCID: PMC6233692 DOI: 10.2147/ndt.s175484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE This study was designed to explore the underlying mechanism of action for a Fuzheng Quxie Decoction (FQD) in Alzheimer's disease (AD), to validate its neuroprotective effects, and to provide experimental support for its predicted mechanism of action. METHODS An integrative approach to network pharmacology was performed to predict the mechanism of action for treatment of AD with FQD. The predicted mechanism was validated in SAMP8 mice. RESULTS With predicted putative FQD targets and a collection of AD-related genes, 245 possible regulatory targets of FQD were identified for the treatment of AD. Pathway-enrichment analysis for the possible regulatory targets indicated that vascular endothelial growth factor (VEGF) and VEGF-receptor signaling were pivotal in the treatment of AD with FQD. In vivo experiments confirmed the neuroprotective effect and the predicted mechanism of action for treatment of AD with FQD. CONCLUSION This study contributes to an understanding of the neuroprotective effect of FQD and its potential mechanism of action for the treatment of AD.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Jianchao Feng
- Intensive Care Unit, Heze Hospital of Traditional Chinese Medicine, Heze, Shandong, China
| | - Yang Yang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Jiangang Liu
- Department of Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Meixia Liu
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Zhiyong Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Yun Wei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| |
Collapse
|
276
|
Yu CC, Wang Y, Shen F, Kong LH, Wang YW, Zhou H, Tang L. High-frequency (50 Hz) electroacupuncture ameliorates cognitive impairment in rats with amyloid beta 1-42-induced Alzheimer's disease. Neural Regen Res 2018; 13:1833-1841. [PMID: 30136700 PMCID: PMC6128060 DOI: 10.4103/1673-5374.238620] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acupuncture has been shown to ameliorate cognitive impairment of Alzheimer's disease. Acupoints and stimulation frequency influence the therapeutic effect of electroacupuncture. Rat models of Alzheimer's disease were established by injecting amyloid beta 1–42 (Aβ1–42) into the bilateral lateral ventricles. Electroacupuncture at 2, 30, and 50 Hz was carried out at Baihui (GV20; 15° obliquely to a depth of 2 mm) and Shenshu (BL23; perpendicularly to 4–6 mm depth), once a day for 20 minutes (each), for 15 days, taking a break every 7 days. The Morris water maze test was conducted to assess the learning and memory. The expression levels of glycogen synthase kinase-3β (GSK-3β), pSer9-GSK-3β, pTyr216-GSK-3β, amyloid precursor protein and Aβ1–40 in the hippocampus were determined by western blot assay. Results demonstrated that electroacupuncture treatment at different frequencies markedly improved learning and memory ability, increased synaptic curvatures, decreased the width of synaptic clefts, thickened postsynaptic densities, and downregulated the expression of GSK-3β, amyloid precursor protein, and Aβ1–40. pSer9-GSK-3β expression markedly decreased, while pTyr216-GSK-3β expression increased. High-frequency (50 Hz) electroacupuncture was more effective than low (2 Hz) or medium-frequency (30 Hz) electroacupuncture. In conclusion, electroacupuncture treatment exerts a protective effect against Aβ1–42-induced learning and memory deficits and synapse-ultrastructure impairment via inhibition of GSK-3β activity. Moreover, high-frequency electroacupuncture was the most effective therapy.
Collapse
Affiliation(s)
- Chao-Chao Yu
- Hubei University of Chinese Medicine, Wuhan, Hubei Province, China
| | - Ying Wang
- Hubei University of Chinese Medicine, Wuhan, Hubei Province, China
| | - Feng Shen
- Department of Acupuncture and Moxibustion, College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei Province, China
| | - Li-Hong Kong
- Department of Acupuncture and Moxibustion, College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei Province, China
| | - Ya-Wen Wang
- Department of Acupuncture and Moxibustion, College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei Province, China
| | - Hua Zhou
- Department of Acupuncture and Moxibustion, College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei Province, China
| | - Lei Tang
- Department of Rehabilitation, Wuhan Central Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
277
|
Failure to Inactivate Nuclear GSK3β by Ser 389-Phosphorylation Leads to Focal Neuronal Death and Prolonged Fear Response. Neuropsychopharmacology 2018; 43:393-405. [PMID: 28832021 PMCID: PMC5729567 DOI: 10.1038/npp.2017.187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/25/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022]
Abstract
GSK3β plays an essential role in promoting cell death and is emerging as a potential target for neurological diseases. Understanding the mechanisms that control neuronal GSK3β is critical. A ubiquitous mechanism to repress GSK3β involves Akt-mediated phosphorylation of Ser9. Here we show that phosphorylation of GSK3β on Ser389 mediated by p38 MAPK specifically inactivates nuclear GSK3β in the cortex and hippocampus. Using GSK3β Ser389 to Ala mutant mice, we show that failure to inactivate nuclear GSK3β by Ser389 phosphorylation causes neuronal cell death in subregions of the hippocampus and cortex. Although this focal neuronal death does not impact anxiety/depression-like behavior or hippocampal-dependent spatial learning, it leads to an amplified and prolonged fear response. This phenotype is consistent with some aspects of post-traumatic stress disorder (PTSD). Our studies indicate that inactivation of nuclear GSK3β by Ser389 phosphorylation plays a key role in fear response, revealing new potential therapeutic approaches to target PTSD.
Collapse
|
278
|
Wu XL, Piña-Crespo J, Zhang YW, Chen XC, Xu HX. Tau-mediated Neurodegeneration and Potential Implications in Diagnosis and Treatment of Alzheimer's Disease. Chin Med J (Engl) 2017; 130:2978-2990. [PMID: 29237931 PMCID: PMC5742926 DOI: 10.4103/0366-6999.220313] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To review recent research advances on tau, a major player in Alzheimer's disease (AD) pathogenesis, a biomarker for AD onset, and potential target for AD therapy. DATA SOURCES This review was based on a comprehensive search using online literature databases, including PubMed, Web of Science, and Google Scholar. STUDY SELECTION Literature search was based on the following keywords: Alzheimer's disease, tau protein, biomarker, cerebrospinal fluid (CSF), therapeutics, plasma, imaging, propagation, spreading, seeding, prion, conformational templating, and posttranslational modification. Relevant articles were carefully reviewed, with no exclusions applied to study design and publication type. RESULTS Amyloid plaques enriched with extracellular amyloid beta (Aβ) and intracellular neurofibrillary tangles comprised of hyperphosphorylated tau proteins are the two main pathological hallmarks of AD. Although the Aβ hypothesis has dominated AD research for many years, clinical Aβ-targeting strategies have consistently failed to effectively treat AD or prevent AD onset. The research focus in AD has recently shifted to the role of tau in AD. In addition to phosphorylation, tau is acetylated and proteolytically cleaved, which also contribute to its physiological and pathological functions. Emerging evidence characterizing pathological tau propagation and spreading provides new avenues for research into the molecular and cellular mechanisms underlying AD pathogenesis. Techniques to detect tau at minute levels in CSF and blood have been developed, and improved tracers have facilitated tau imaging in the brain. These advances have potential to accurately determine tau levels at early diagnostic stages in AD. Given that tau is a potential therapeutic target, anti-tau immunotherapy may potentially be a viable treatment strategy in AD intervention. CONCLUSION Detecting changes in tau and targeting tau pathology represent a promising lead in the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Xi-Lin Wu
- Neuroscience Initiative, Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Juan Piña-Crespo
- Neuroscience Initiative, Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiao-Chun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Hua-Xi Xu
- Neuroscience Initiative, Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
279
|
Multifaceted Roles of GSK-3 in Cancer and Autophagy-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4629495. [PMID: 29379583 PMCID: PMC5742885 DOI: 10.1155/2017/4629495] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/07/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
GSK-3 is a ubiquitously expressed serine/threonine kinase existing as GSK-3α and GSK-3β isoforms, both active under basal conditions and inactivated upon phosphorylation by different upstream kinases. Initially discovered as a regulator of glycogen synthesis, GSK-3 is also involved in several signaling pathways controlling many different key functions. Here, we discuss recent advances regarding (i) GSK-3 structure, function, regulation, and involvement in several cancers, including hepatocarcinoma, cholangiocarcinoma, breast cancer, prostate cancer, leukemia, and melanoma (active GSK-3 has been shown to induce apoptosis in some cases or inhibit apoptosis in other cases and to induce cancer progression or inhibit tumor cell proliferation, suggesting that different GSK-3 modulators may address different specific targets); (ii) GSK-3 involvement in autophagy modulation, reviewing signaling pathways involved in neurodegenerative and liver diseases; (iii) GSK-3 role in oxidative stress and autophagic cell death, focusing on liver injury; (iv) GSK-3 as a possible therapeutic target of natural substances and synthetic inhibitors in many diseases; and (v) GSK-3 role as modulator of mammalian aging, related to metabolic alterations characterizing senescent cells and age-related diseases. Studies summarized here underline the GSK-3 multifaceted role and indicate such kinase as a molecular target in different pathologies, including diseases associated with autophagy dysregulation.
Collapse
|
280
|
Vohwinkel CU, Buchäckert Y, Al-Tamari HM, Mazzocchi LC, Eltzschig HK, Mayer K, Morty RE, Herold S, Seeger W, Pullamsetti SS, Vadász I. Restoration of Megalin-Mediated Clearance of Alveolar Protein as a Novel Therapeutic Approach for Acute Lung Injury. Am J Respir Cell Mol Biol 2017; 57:589-602. [PMID: 28678521 DOI: 10.1165/rcmb.2016-0358oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute respiratory distress syndrome constitutes a significant disease burden with regard to both morbidity and mortality. Current therapies are mostly supportive and do not address the underlying pathophysiologic mechanisms. Removal of protein-rich alveolar edema-a clinical hallmark of acute respiratory distress syndrome-is critical for survival. Here, we describe a transforming growth factor (TGF)-β-triggered mechanism, in which megalin, the primary mediator of alveolar protein transport, is negatively regulated by glycogen synthase kinase (GSK) 3β, with protein phosphatase 1 and nuclear inhibitor of protein phosphatase 1 being involved in the signaling cascade. Inhibition of GSK3β rescued transepithelial protein clearance in primary alveolar epithelial cells after TGF-β treatment. Moreover, in a bleomycin-based model of acute lung injury, megalin+/- animals (the megalin-/- variant is lethal due to postnatal respiratory failure) showed a marked increase in intra-alveolar protein and more severe lung injury compared with wild-type littermates. In contrast, wild-type mice treated with the clinically relevant GSK3β inhibitors, tideglusib and valproate, exhibited significantly decreased alveolar protein concentrations, which was associated with improved lung function and histopathology. Together, we discovered that the TGF-β-GSK3β-megalin axis is centrally involved in disturbances of alveolar protein clearance in acute lung injury and provide preclinical evidence for therapeutic efficacy of GSK3β inhibition.
Collapse
Affiliation(s)
- Christine U Vohwinkel
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany.,2 Department of Pediatrics, University of Colorado at Denver, Aurora, Colorado
| | - Yasmin Buchäckert
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Hamza M Al-Tamari
- 3 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and
| | - Luciana C Mazzocchi
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Holger K Eltzschig
- 4 Organ Protection Program, Department of Anesthesiology, University of Colorado at Denver, Aurora, Colorado
| | - Konstantin Mayer
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany.,3 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and
| | - Susanne Herold
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Werner Seeger
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany.,3 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and
| | - Soni S Pullamsetti
- 3 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and
| | - István Vadász
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
281
|
Jan AT, Azam M, Rahman S, Almigeiti AMS, Choi DH, Lee EJ, Haq QMR, Choi I. Perspective Insights into Disease Progression, Diagnostics, and Therapeutic Approaches in Alzheimer's Disease: A Judicious Update. Front Aging Neurosci 2017; 9:356. [PMID: 29163138 PMCID: PMC5671974 DOI: 10.3389/fnagi.2017.00356] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/18/2017] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the progressive accumulation of β-amyloid fibrils and abnormal tau proteins in and outside of neurons. Representing a common form of dementia, aggravation of AD with age increases the morbidity rate among the elderly. Although, mutations in the ApoE4 act as potent risk factors for sporadic AD, familial AD arises through malfunctioning of APP, PSEN-1, and−2 genes. AD progresses through accumulation of amyloid plaques (Aβ) and neurofibrillary tangles (NFTs) in brain, which interfere with neuronal communication. Cellular stress that arises through mitochondrial dysfunction, endoplasmic reticulum malfunction, and autophagy contributes significantly to the pathogenesis of AD. With high accuracy in disease diagnostics, Aβ deposition and phosphorylated tau (p-tau) are useful core biomarkers in the cerebrospinal fluid (CSF) of AD patients. Although five drugs are approved for treatment in AD, their failures in achieving complete disease cure has shifted studies toward a series of molecules capable of acting against Aβ and p-tau. Failure of biologics or compounds to cross the blood-brain barrier (BBB) in most cases advocates development of an efficient drug delivery system. Though liposomes and polymeric nanoparticles are widely adopted for drug delivery modules, their use in delivering drugs across the BBB has been overtaken by exosomes, owing to their promising results in reducing disease progression.
Collapse
Affiliation(s)
- Arif Tasleem Jan
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Mudsser Azam
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Angham M S Almigeiti
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Duk Hwan Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | | | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
282
|
Suber T, Mallampalli RK. An Emerging Role for Megalin as a Regulator of Protein Leak in Acute Lung Injury. Am J Respir Cell Mol Biol 2017; 57:504-505. [PMID: 29090957 DOI: 10.1165/rcmb.2017-0224ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Tomeka Suber
- 1 Department of Medicine University of Pittsburgh Pittsburgh, Pennsylvania and
| | - Rama K Mallampalli
- 1 Department of Medicine University of Pittsburgh Pittsburgh, Pennsylvania and.,2 Medical Specialty Service Line Veterans Affairs Pittsburgh Healthcare System Pittsburgh, Pennsylvania
| |
Collapse
|
283
|
Baruah J, Hitzman R, Zhang J, Chaudhuri S, Mastej V, Wary KK. The allosteric glycogen synthase kinase-3 inhibitor NP12 limits myocardial remodeling and promotes angiogenesis in an acute myocardial infarction model. J Biol Chem 2017; 292:20785-20798. [PMID: 29070680 DOI: 10.1074/jbc.m117.814376] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
A key feature of acute myocardial infarction (AMI) is an alteration in cardiac architecture. Signaling events that result in the inhibition of glycogen synthase kinase-3 (GSK-3)β represent an adaptive response that might limit the extent of adverse remodeling in the aftermath of AMI. Here, we report that an allosteric inhibitor of GSK-3β, 4-benzyl-2-(naphthalene-1-yl)-1,2,4-thiadiazolidine-3,5-dione (NP12), lessens the magnitude of adverse myocardial remodeling and promotes angiogenesis. Male and female mice 8-10 weeks old were grouped (six animals in each group) into sham surgery (sham group), left anterior descending (LAD) ligation of the coronary artery followed by intramyocardial PBS injections (control group), and LAD ligation followed by NP12 administration (NP12 group). After 7 and 14 days, the extents of fibrosis and integrity of blood vessels were determined. Intramyocardial administration of NP12 increased phosphorylation of GSK-3β, reduced fibrosis, and restored diastolic function in the mice that had experienced an AMI. Morphometric analyses revealed increased CD31+ and Ki67+ vascular structures and decreased apoptosis in these mice. NP12 administration mediated proliferation of reparative cells in the AMI hearts. In a time-course analysis, Wnt3a and NP12 stabilized β-catenin and increased expression of both Nanog and VEGFR2. Moreover, NP12 increased the expression of β-catenin and Nanog in myocardium from AMI mice. Finally, loss- and gain-of-function experiments indicated that the NP12-mediated benefit is, in part, Nanog-specific. These findings indicate that NP12 reduces fibrosis, reestablishes coronary blood flow, and improves ventricular function following an AMI. We conclude that NP12 might be useful for limiting ventricular remodeling after an AMI.
Collapse
Affiliation(s)
- Jugajyoti Baruah
- From the Department of Pharmacology, University of Illinois, Chicago, Illinois 60612
| | - Ryan Hitzman
- From the Department of Pharmacology, University of Illinois, Chicago, Illinois 60612
| | - Jane Zhang
- From the Department of Pharmacology, University of Illinois, Chicago, Illinois 60612
| | - Suhnrita Chaudhuri
- From the Department of Pharmacology, University of Illinois, Chicago, Illinois 60612
| | - Victoria Mastej
- From the Department of Pharmacology, University of Illinois, Chicago, Illinois 60612
| | - Kishore K Wary
- From the Department of Pharmacology, University of Illinois, Chicago, Illinois 60612
| |
Collapse
|
284
|
Tau-based therapies in neurodegeneration: opportunities and challenges. Nat Rev Drug Discov 2017; 16:863-883. [DOI: 10.1038/nrd.2017.155] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
285
|
Chakravarthy M, Chen S, Dodd PR, Veedu RN. Nucleic Acid-Based Theranostics for Tackling Alzheimer's Disease. Theranostics 2017; 7:3933-3947. [PMID: 29109789 PMCID: PMC5667416 DOI: 10.7150/thno.21529] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid-based technologies have received significant interest in recent years as novel theranostic strategies for various diseases. The approval by the United States Food and Drug Administration (FDA) of Nusinersen, an antisense oligonucleotide drug, for the treatment of spinal muscular dystrophy highlights the potential of nucleic acids to treat neurological diseases, including Alzheimer's disease (AD). AD is a devastating neurodegenerative disease characterized by progressive impairment of cognitive function and behavior. It is the most common form of dementia; it affects more than 20% of people over 65 years of age and leads to death 7-15 years after diagnosis. Intervention with novel agents addressing the underlying molecular causes is critical. Here we provide a comprehensive review on recent developments in nucleic acid-based theranostic strategies to diagnose and treat AD.
Collapse
Affiliation(s)
- Madhuri Chakravarthy
- Centre for Comparative Genomics, Murdoch University, Murdoch, Perth, Australia 6150
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, Perth, Australia 6005
| | - Suxiang Chen
- Centre for Comparative Genomics, Murdoch University, Murdoch, Perth, Australia 6150
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, Perth, Australia 6005
| | - Peter R. Dodd
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Australia 4072
| | - Rakesh N. Veedu
- Centre for Comparative Genomics, Murdoch University, Murdoch, Perth, Australia 6150
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, Perth, Australia 6005
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Australia 4072
| |
Collapse
|
286
|
Grizzell JA, Patel S, Barreto GE, Echeverria V. Cotinine improves visual recognition memory and decreases cortical Tau phosphorylation in the Tg6799 mice. Prog Neuropsychopharmacol Biol Psychiatry 2017; 78:75-81. [PMID: 28536070 DOI: 10.1016/j.pnpbp.2017.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is associated with the progressive aggregation of hyperphosphorylated forms of the microtubule associated protein Tau in the central nervous system. Cotinine, the main metabolite of nicotine, reduced working memory deficits, synaptic loss, and amyloid β peptide aggregation into oligomers and plaques as well as inhibited the cerebral Tau kinase, glycogen synthase 3β (GSK3β) in the transgenic (Tg)6799 (5XFAD) mice. In this study, the effect of cotinine on visual recognition memory and cortical Tau phosphorylation at the GSK3β sites Serine (Ser)-396/Ser-404 and phospho-CREB were investigated in the Tg6799 and non-transgenic (NT) littermate mice. Tg mice showed short-term visual recognition memory impairment in the novel object recognition test, and higher levels of Tau phosphorylation when compared to NT mice. Cotinine significantly improved visual recognition memory performance increased CREB phosphorylation and reduced cortical Tau phosphorylation. Potential mechanisms underlying theses beneficial effects are discussed.
Collapse
Affiliation(s)
- J Alex Grizzell
- Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA
| | - Sagar Patel
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996, USA
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia; Center for Biomedical Research, Universidad Autónoma de Chile, Carlos Antúnez 1920, Providencia, Santiago, Chile
| | - Valentina Echeverria
- Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA; Fac. Cs de la Salud, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile.
| |
Collapse
|
287
|
Panza F, Solfrizzi V, Seripa D, Imbimbo BP, Lozupone M, Santamato A, Tortelli R, Galizia I, Prete C, Daniele A, Pilotto A, Greco A, Logroscino G. Tau-based therapeutics for Alzheimer's disease: active and passive immunotherapy. Immunotherapy 2017; 8:1119-34. [PMID: 27485083 DOI: 10.2217/imt-2016-0019] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pharmacological manipulation of tau protein in Alzheimer's disease included microtubule-stabilizing agents, tau protein kinase inhibitors, tau aggregation inhibitors, active and passive immunotherapies and, more recently, inhibitors of tau acetylation. Animal studies have shown that both active and passive approaches can remove tau pathology and, in some cases, improve cognitive function. Two active vaccines targeting either nonphosphorylated (AAD-vac1) and phosphorylated tau (ACI-35) have entered Phase I testing. Notwithstanding, the recent discontinuation of the monoclonal antibody RG7345 for Alzheimer's disease, two other antitau antibodies, BMS-986168 and C2N-8E12, are also currently in Phase I testing for progressive supranuclear palsy. After the recent impressive results in animal studies obtained by salsalate, the dimer of salicylic acid, inhibitors of tau acetylation are being actively pursued.
Collapse
Affiliation(s)
- Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, & Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Clinical Research in Neurology, University of Bari Aldo Moro, 'Pia Fondazione Cardinale G. Panico,' Tricase, Lecce, Italy.,Geriatric Unit & Laboratory of Gerontology & Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza,' San Giovanni Rotondo, Foggia, Italy
| | - Vincenzo Solfrizzi
- Geriatric Medicine-Memory Unit & Rare Disease Centre, University of Bari Aldo Moro, Bari, Italy
| | - Davide Seripa
- Geriatric Unit & Laboratory of Gerontology & Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza,' San Giovanni Rotondo, Foggia, Italy
| | - Bruno P Imbimbo
- Research & Development Department, Chiesi Farmaceutici, Parma, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, & Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Andrea Santamato
- Physical Medicine & Rehabilitation Section, 'OORR' Hospital, University of Foggia, Foggia, Italy
| | - Rosanna Tortelli
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, & Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Clinical Research in Neurology, University of Bari Aldo Moro, 'Pia Fondazione Cardinale G. Panico,' Tricase, Lecce, Italy
| | - Ilaria Galizia
- Psychiatric Unit, Department of Basic Medicine, Neuroscience, & Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Camilla Prete
- Department of OrthoGeriatrics, Rehabilitation & Stabilization, Frailty Area, E.O. Galliera NR-HS Hospital, Genova, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Alberto Pilotto
- Department of OrthoGeriatrics, Rehabilitation & Stabilization, Frailty Area, E.O. Galliera NR-HS Hospital, Genova, Italy
| | - Antonio Greco
- Geriatric Unit & Laboratory of Gerontology & Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza,' San Giovanni Rotondo, Foggia, Italy
| | - Giancarlo Logroscino
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, & Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Clinical Research in Neurology, University of Bari Aldo Moro, 'Pia Fondazione Cardinale G. Panico,' Tricase, Lecce, Italy.,Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
288
|
Olsson B, Schott JM, Blennow K, Zetterberg H. The use of cerebrospinal fluid biomarkers to measure change in neurodegeneration in Alzheimer’s disease clinical trials. Expert Rev Neurother 2017; 17:767-775. [DOI: 10.1080/14737175.2017.1341311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Bob Olsson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jonathan M. Schott
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute, London, UK
| |
Collapse
|
289
|
Gowda C, Soliman M, Kapadia M, Ding Y, Payne K, Dovat S. Casein Kinase II (CK2), Glycogen Synthase Kinase-3 (GSK-3) and Ikaros mediated regulation of leukemia. Adv Biol Regul 2017. [PMID: 28623166 DOI: 10.1016/j.jbior.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Signaling networks that regulate cellular proliferation often involve complex interactions between several signaling pathways. In this manuscript we review the crosstalk between the Casein Kinase II (CK2) and Glycogen Synthase Kinase-3 (GSK-3) pathways that plays a critical role in the regulation of cellular proliferation in leukemia. Both CK2 and GSK-3 are potential targets for anti-leukemia treatment. Previously published data suggest that CK2 and GSK-3 act synergistically to promote the phosphatidylinositol-3 kinase (PI3K) pathway via phosphorylation of PTEN. More recent data demonstrate another mechanism through which CK2 promotes the PI3K pathway - via transcriptional regulation of PI3K pathway genes by the newly-discovered CK2-Ikaros axis. Together, these data suggest that the CK2 and GSK-3 pathways regulate AKT/PI3K signaling in leukemia via two complementary mechanisms: a) direct phosphorylation of PTEN and b) transcriptional regulation of PI3K-promoting genes. Functional interactions between CK2, Ikaros and GSK3 define a novel signaling network that regulates proliferation of leukemia cells. This regulatory network involves both direct posttranslational modifications (by CK and GSK-3) and transcriptional regulation (via CK2-mediated phosphorylation of Ikaros). This information provides a basis for the development of targeted therapy for leukemia.
Collapse
Affiliation(s)
- Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Mario Soliman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Malika Kapadia
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Kimberly Payne
- Department of Anatomy, Loma Linda University, Loma Linda, CA, USA.
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
290
|
Peña-Altamira E, Petralla S, Massenzio F, Virgili M, Bolognesi ML, Monti B. Nutritional and Pharmacological Strategies to Regulate Microglial Polarization in Cognitive Aging and Alzheimer's Disease. Front Aging Neurosci 2017. [PMID: 28638339 PMCID: PMC5461295 DOI: 10.3389/fnagi.2017.00175] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The study of microglia, the immune cells of the brain, has experienced a renaissance after the discovery of microglia polarization. In fact, the concept that activated microglia can shift into the M1 pro-inflammatory or M2 neuroprotective phenotypes, depending on brain microenvironment, has completely changed the understanding of microglia in brain aging and neurodegenerative diseases. Microglia polarization is particularly important in aging since an increased inflammatory status of body compartments, including the brain, has been reported in elderly people. In addition, inflammatory markers, mainly derived from activated microglia, are widely present in neurodegenerative diseases. Microglial inflammatory dysfunction, also linked to microglial senescence, has been extensively demonstrated and associated with cognitive impairment in neuropathological conditions related to aging. In fact, microglia polarization is known to influence cognitive function and has therefore become a main player in neurodegenerative diseases leading to dementia. As the life span of human beings increases, so does the prevalence of cognitive dysfunction. Thus, therapeutic strategies aimed to modify microglia polarization are currently being developed. Pharmacological approaches able to shift microglia from M1 pro-inflammatory to M2 neuroprotective phenotype are actually being studied, by acting on many different molecular targets, such as glycogen synthase kinase-3 (GSK3) β, AMP-activated protein kinase (AMPK), histone deacetylases (HDACs), etc. Furthermore, nutritional approaches can also modify microglia polarization and, consequently, impact cognitive function. Several bioactive compounds normally present in foods, such as polyphenols, can have anti-inflammatory effects on microglia. Both pharmacological and nutritional approaches seem to be promising, but still need further development. Here we review recent data on these approaches and propose that their combination could have a synergistic effect to counteract cognitive aging impairment and Alzheimer's disease (AD) through immunomodulation of microglia polarization, i.e., by driving the shift of activated microglia from the pro-inflammatory M1 to the neuroprotective M2 phenotype.
Collapse
Affiliation(s)
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Marco Virgili
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Maria L Bolognesi
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| |
Collapse
|
291
|
Palomo V, Perez DI, Roca C, Anderson C, Rodríguez-Muela N, Perez C, Morales-Garcia JA, Reyes JA, Campillo NE, Perez-Castillo AM, Rubin LL, Timchenko L, Gil C, Martinez A. Subtly Modulating Glycogen Synthase Kinase 3 β: Allosteric Inhibitor Development and Their Potential for the Treatment of Chronic Diseases. J Med Chem 2017; 60:4983-5001. [PMID: 28548834 DOI: 10.1021/acs.jmedchem.7b00395] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycogen synthase kinase 3 β (GSK-3β) is a central target in several unmet diseases. To increase the specificity of GSK-3β inhibitors in chronic treatments, we developed small molecules allowing subtle modulation of GSK-3β activity. Design synthesis, structure-activity relationships, and binding mode of quinoline-3-carbohydrazide derivatives as allosteric modulators of GSK-3β are presented here. Furthermore, we show how allosteric binders may overcome the β-catenin side effects associated with strong GSK-3β inhibition. The therapeutic potential of some of these modulators has been tested in human samples from patients with congenital myotonic dystrophy type 1 (CDM1) and spinal muscular atrophy (SMA) patients. We found that compound 53 improves delayed myogenesis in CDM1 myoblasts, while compounds 1 and 53 have neuroprotective properties in SMA-derived cells. These findings suggest that the allosteric modulators of GSK-3β may be used for future development of drugs for DM1, SMA, and other chronic diseases where GSK-3β inhibition exhibits therapeutic effects.
Collapse
Affiliation(s)
- Valle Palomo
- Centro de Investigaciones Biológicas-CSIC , Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Daniel I Perez
- Centro de Investigaciones Biológicas-CSIC , Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carlos Roca
- Centro de Investigaciones Biológicas-CSIC , Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Cara Anderson
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Hospital , Cincinnati, Ohio 45219, United States
| | - Natalia Rodríguez-Muela
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Concepción Perez
- Instituto de Quimica Médica-CSIC , Juan del Cierva 3, 28006 Madrid, Spain
| | - Jose A Morales-Garcia
- Instituto de Investigaciones Biomedicas-CSIC , Arturo Duperier 4, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Calle de Valderrebollo 5, 28031 Madrid, Spain
| | - Julio A Reyes
- Instituto de Quimica Médica-CSIC , Juan del Cierva 3, 28006 Madrid, Spain
| | - Nuria E Campillo
- Centro de Investigaciones Biológicas-CSIC , Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana M Perez-Castillo
- Instituto de Investigaciones Biomedicas-CSIC , Arturo Duperier 4, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Calle de Valderrebollo 5, 28031 Madrid, Spain
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Lubov Timchenko
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Hospital , Cincinnati, Ohio 45219, United States
| | - Carmen Gil
- Centro de Investigaciones Biológicas-CSIC , Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas-CSIC , Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
292
|
Wary A, Wary N, Baruah J, Mastej V, Wary KK. Chromatin-modifying agents convert fibroblasts to OCT4+ and VEGFR-2+ capillary tube-forming cells. PLoS One 2017; 12:e0176496. [PMID: 28467484 PMCID: PMC5415225 DOI: 10.1371/journal.pone.0176496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/10/2017] [Indexed: 12/13/2022] Open
Abstract
RATIONALE The human epigenome is plastic. The goal of this study was to address if fibroblast cells can be epigenetically modified to promote neovessel formation. METHODS AND RESULTS Here, we used highly abundant human adult dermal fibroblast cells (hADFCs) that were treated with the chromatin-modifying agents 5-aza-2'-deoxycytidine and trichostatin A, and subsequently subjected to differentiation by activating Wnt signaling. Our results show that these epigenetically modified hADFCs increasingly expressed β-catenin, pluripotency factor octamer-binding transcription factor-4 (OCT4, also known as POU5F1), and endothelial cell (EC) marker called vascular endothelial growth factor receptor-2 (VEGFR-2, also known as Fetal Liver Kinase-1). In microscopic analysis, β-catenin localized to cell-cell contact points, while OCT4 was found to be localized primarily to the nucleus of these cells. Furthermore, in a chromatin immunoprecipitation experiment, OCT4 bound to the VEGFR-2/FLK1 promoter. Finally, these modified hADFCs also transduced Wnt signaling. Importantly, on a two-dimensional (2D) gel substrate, a subset of the converted cells formed vascular network-like structures in the presence of VEGF. CONCLUSION Chromatin-modifying agents converted hADFCs to OCT4+ and VEGFR-2+ capillary tube-forming cells in a 2D matrix in VEGF-dependent manner.
Collapse
Affiliation(s)
- Anita Wary
- York Community High School, Elmhurst, Illinois, United States of America
| | - Neil Wary
- Illinois Mathematics and Science Academy, Aurora, Illinois, United States of America
| | - Jugajyoti Baruah
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Victoria Mastej
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Kishore K. Wary
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
293
|
Webster L, Groskreutz D, Grinbergs-Saull A, Howard R, O'Brien JT, Mountain G, Banerjee S, Woods B, Perneczky R, Lafortune L, Roberts C, McCleery J, Pickett J, Bunn F, Challis D, Charlesworth G, Featherstone K, Fox C, Goodman C, Jones R, Lamb S, Moniz-Cook E, Schneider J, Shepperd S, Surr C, Thompson-Coon J, Ballard C, Brayne C, Burke O, Burns A, Clare L, Garrard P, Kehoe P, Passmore P, Holmes C, Maidment I, Murtagh F, Robinson L, Livingston G. Development of a core outcome set for disease modification trials in mild to moderate dementia: a systematic review, patient and public consultation and consensus recommendations. Health Technol Assess 2017; 21:1-192. [PMID: 28625273 PMCID: PMC5494514 DOI: 10.3310/hta21260] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is currently no disease-modifying treatment available to halt or delay the progression of the disease pathology in dementia. An agreed core set of the best-available and most appropriate outcomes for disease modification would facilitate the design of trials and ensure consistency across disease modification trials, as well as making results comparable and meta-analysable in future trials. OBJECTIVES To agree a set of core outcomes for disease modification trials for mild to moderate dementia with the UK dementia research community and patient and public involvement (PPI). DATA SOURCES We included disease modification trials with quantitative outcomes of efficacy from (1) references from related systematic reviews in workstream 1; (2) searches of the Cochrane Dementia and Cognitive Improvement Group study register, Cochrane Central Register of Controlled Trials, Cumulative Index to Nursing and Allied Health Literature, EMBASE, Latin American and Caribbean Health Sciences Literature and PsycINFO on 11 December 2015, and clinical trial registries [International Standard Randomised Controlled Trial Number (ISRCTN) and clinicaltrials.gov] on 22 and 29 January 2016; and (3) hand-searches of reference lists of relevant systematic reviews from database searches. REVIEW METHODS The project consisted of four workstreams. (1) We obtained related core outcome sets and work from co-applicants. (2) We systematically reviewed published and ongoing disease modification trials to identify the outcomes used in different domains. We extracted outcomes used in each trial, recording how many used each outcome and with how many participants. We divided outcomes into the domains measured and searched for validation data. (3) We consulted with PPI participants about recommended outcomes. (4) We presented all the synthesised information at a conference attended by the wider body of National Institute for Health Research (NIHR) dementia researchers to reach consensus on a core set of outcomes. RESULTS We included 149 papers from the 22,918 papers screened, referring to 125 individual trials. Eighty-one outcomes were used across trials, including 72 scales [31 cognitive, 12 activities of daily living (ADLs), 10 global, 16 neuropsychiatric and three quality of life] and nine biological techniques. We consulted with 18 people for PPI. The conference decided that only cognition and biological markers are core measures of disease modification. Cognition should be measured by the Mini Mental State Examination (MMSE) or the Alzheimer's Disease Assessment Scale - Cognitive subscale (ADAS-Cog), and brain changes through structural magnetic resonance imaging (MRI) in a subset of participants. All other domains are important but not core. We recommend using the Neuropsychiatric Inventory for neuropsychiatric symptoms: the Disability Assessment for Dementia for ADLs, the Dementia Quality of Life Measure for quality of life and the Clinical Dementia Rating scale to measure dementia globally. LIMITATIONS Most of the trials included participants with Alzheimer's disease, so recommendations may not apply to other types of dementia. We did not conduct economic analyses. The PPI consultation was limited to members of the Alzheimer's Society Research Network. CONCLUSIONS Cognitive outcomes and biological markers form the core outcome set for future disease modification trials, measured by the MMSE or ADAS-Cog, and structural MRI in a subset of participants. FUTURE WORK We envisage that the core set may be superseded in the future, particularly for other types of dementia. There is a need to develop an algorithm to compare scores on the MMSE and ADAS-Cog. STUDY REGISTRATION The project was registered with Core Outcome Measures in Effectiveness Trials [ www.comet-initiative.org/studies/details/819?result=true (accessed 7 April 2016)]. The systematic review protocol is registered as PROSPERO CRD42015027346. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Collapse
Affiliation(s)
- Lucy Webster
- Division of Psychiatry, University College London, London, UK
| | - Derek Groskreutz
- Division of Psychology and Language Sciences, University College London, London, UK
| | | | - Rob Howard
- Division of Psychiatry, University College London, London, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Gail Mountain
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Sube Banerjee
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Bob Woods
- Dementia Services Development Centre Wales, Bangor University, Bangor, UK
| | - Robert Perneczky
- Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Louise Lafortune
- Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Charlotte Roberts
- International Consortium for Health Outcomes Measurement, London, UK
| | | | | | - Frances Bunn
- Centre for Research in Primary and Community Care, University of Hertfordshire, Hatfield, UK
| | - David Challis
- Personal Social Services Research Unit, University of Manchester, Manchester, UK
| | - Georgina Charlesworth
- Research Department of Clinical, Educational, and Health Psychology, University College London, London, UK
| | | | - Chris Fox
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Claire Goodman
- Centre for Research in Primary and Community Care, University of Hertfordshire, Hatfield, UK
| | - Roy Jones
- Research Institute for the Care of Older People, University of Bath, Bath, UK
| | - Sallie Lamb
- Oxford Clinical Trials Research Unit, University of Oxford, Oxford, UK
| | - Esme Moniz-Cook
- Faculty of Health and Social Care, University of Hull, Hull, UK
| | - Justine Schneider
- Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Sasha Shepperd
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Claire Surr
- School of Health & Community Studies, Leeds Beckett University, Leeds, UK
| | - Jo Thompson-Coon
- Collaboration for Leadership in Applied Health Research and Care South West Peninsula, University of Exeter, Exeter, UK
| | - Clive Ballard
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Carol Brayne
- Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Orlaith Burke
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Alistair Burns
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Linda Clare
- Collaboration for Leadership in Applied Health Research and Care South West Peninsula, University of Exeter, Exeter, UK
- School of Psychology, University of Exeter, Exeter, UK
- Centre for Research in Ageing and Cognitive Health, University of Exeter Medical School, Exeter, UK
| | - Peter Garrard
- Neuroscience Research Centre, St George's, University of London, UK
| | - Patrick Kehoe
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Peter Passmore
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Clive Holmes
- School of Medicine, University of Southampton, Southampton, UK
| | - Ian Maidment
- Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK
| | - Fliss Murtagh
- Cicely Saunders Institute, King's College London, London, UK
| | - Louise Robinson
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - Gill Livingston
- Division of Psychiatry, University College London, London, UK
- Camden and Islington NHS Foundation Trust, London, UK
- North Thames Collaboration for Leadership in Applied Health Research and Care, London, UK
| |
Collapse
|
294
|
de Matos AM, de Macedo MP, Rauter AP. Bridging Type 2 Diabetes and Alzheimer's Disease: Assembling the Puzzle Pieces in the Quest for the Molecules With Therapeutic and Preventive Potential. Med Res Rev 2017; 38:261-324. [PMID: 28422298 DOI: 10.1002/med.21440] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/18/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two age-related amyloid diseases that affect millions of people worldwide. Broadly supported by epidemiological data, the higher incidence of AD among type 2 diabetic patients led to the recognition of T2D as a tangible risk factor for the development of AD. Indeed, there is now growing evidence on brain structural and functional abnormalities arising from brain insulin resistance and deficiency, ultimately highlighting the need for new approaches capable of preventing the development of AD in type 2 diabetic patients. This review provides an update on overlapping pathophysiological mechanisms and pathways in T2D and AD, such as amyloidogenic events, oxidative stress, endothelial dysfunction, aberrant enzymatic activity, and even shared genetic background. These events will be presented as puzzle pieces put together, thus establishing potential therapeutic targets for drug discovery and development against T2D and diabetes-induced cognitive decline-a heavyweight contributor to the increasing incidence of dementia in developed countries. Hoping to pave the way in this direction, we will present some of the most promising and well-studied drug leads with potential against both pathologies, including their respective bioactivity reports, mechanisms of action, and structure-activity relationships.
Collapse
Affiliation(s)
- Ana Marta de Matos
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal.,CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Maria Paula de Macedo
- CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Amélia Pilar Rauter
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
295
|
Kweon JH, Kim S, Lee SB. The cellular basis of dendrite pathology in neurodegenerative diseases. BMB Rep 2017; 50:5-11. [PMID: 27502014 PMCID: PMC5319658 DOI: 10.5483/bmbrep.2017.50.1.131] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 01/30/2023] Open
Abstract
One of the characteristics of the neurons that distinguishes them from other cells is their complex and polarized structure consisting of dendrites, cell body, and axon. The complexity and diversity of dendrites are particularly well recognized, and accumulating evidences suggest that the alterations in the dendrite structure are associated with many neurodegenerative diseases. Given the importance of the proper dendritic structures for neuronal functions, the dendrite pathology appears to have crucial contribution to the pathogenesis of neurodegenerative diseases. Nonetheless, the cellular and molecular basis of dendritic changes in the neurodegenerative diseases remains largely elusive. Previous studies in normal condition have revealed that several cellular components, such as local cytoskeletal structures and organelles located locally in dendrites, play crucial roles in dendrite growth. By reviewing what has been unveiled to date regarding dendrite growth in terms of these local cellular components, we aim to provide an insight to categorize the potential cellular basis that can be applied to the dendrite pathology manifested in many neurodegenerative diseases. [BMB Reports 2017; 50(1): 5-11].
Collapse
Affiliation(s)
- Jung Hyun Kweon
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Sunhong Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141; Department of Biomolecular Science, University of Science and Technology, Daejeon 34141, Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea
| |
Collapse
|
296
|
Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer's disease. PLoS Genet 2017; 13:e1006593. [PMID: 28253260 PMCID: PMC5333801 DOI: 10.1371/journal.pgen.1006593] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/21/2017] [Indexed: 12/13/2022] Open
Abstract
Nrf2, a transcriptional activator of cell protection genes, is an attractive therapeutic target for the prevention of neurodegenerative diseases, including Alzheimer’s disease (AD). Current Nrf2 activators, however, may exert toxicity and pathway over-activation can induce detrimental effects. An understanding of the mechanisms mediating Nrf2 inhibition in neurodegenerative conditions may therefore direct the design of drugs targeted for the prevention of these diseases with minimal side-effects. Our study provides the first in vivo evidence that specific inhibition of Keap1, a negative regulator of Nrf2, can prevent neuronal toxicity in response to the AD-initiating Aβ42 peptide, in correlation with Nrf2 activation. Comparatively, lithium, an inhibitor of the Nrf2 suppressor GSK-3, prevented Aβ42 toxicity by mechanisms independent of Nrf2. A new direct inhibitor of the Keap1-Nrf2 binding domain also prevented synaptotoxicity mediated by naturally-derived Aβ oligomers in mouse cortical neurons. Overall, our findings highlight Keap1 specifically as an efficient target for the re-activation of Nrf2 in AD, and support the further investigation of direct Keap1 inhibitors for the prevention of neurodegeneration in vivo. As our population ages the incidence of neurodegenerative diseases, including Alzheimer’s disease (AD), is predicted to increase dramatically. Despite providing important symptomatic relief, existing treatments for such conditions do not slow-down disease progression, and this will cause an overwhelming future burden on our healthcare system and immense suffering for many more patients and their families. Nrf2 is a gene that normally protects cells from stressful conditions. Although we don’t know why, Nrf2 is reduced in the brains of AD patients and this may explain the increased susceptibility of neurons to damage in neurodegenerative diseases. Our research, using a fruit fly model, identifies Keap1, a negative regulator of Nrf2, as a valid target for the rescue of AD-related Nrf2 defects and the subsequent prevention of neuronal degeneration. Moreover, we show that a new compound, which directly blocks the binding between Nrf2 and Keap1, can prevent toxicity of the AD-initiating Aβ peptide in mouse neurons. Hence, our study provides strong evidence that direct Keap1-Nrf2 disruptors can specifically target the defects in Nrf2 activity observed in neurodegenerative diseases, and supports the further development of such compounds as potential new drugs to prevent neuronal decline AD and other neurodegenerative conditions.
Collapse
|
297
|
Abstract
Originally thought to be nondruggable, kinases represent attractive drug targets for pharmaceutical companies and academia. To date, there are over 40 kinase inhibitors approved by the US FDA, with 32 of these being small molecules, in addition to the three mammalian target of rapamycin inhibitor macrolides (sirolimus, temsirolimus and everolimus). Despite the rapid development of kinase inhibitors for cancer, presently none of these agents are approved for CNS indications. This mini perspective highlights selected kinase targets for CNS disorders, of which brain-permeable small-molecule inhibitors are reported, with demonstrated preclinical proof-of-concept efficacy. This is followed by a brief discussion on the key challenges of blood–brain barrier penetration and selectivity profiles in developing kinase inhibitors for CNS disorders.
Collapse
|
298
|
Abstract
Glycogen synthase kinase-3 (GSK-3) is a ubiquitously expressed protein kinase that sits at the nexus of multiple signaling pathways. Its deep integration into cellular control circuits is consummate to its implication in diseases ranging from mood disorders to diabetes to neurodegenerative diseases and cancers. The selectivity and insulation of such a promiscuous kinase from unwanted crosstalk between pathways, while orchestrating a multifaceted response to cellular stimuli, offer key insights into more general mechanisms of cell regulation. Here, we review recent advances that have contributed to the understanding of GSK-3 and its role in driving appreciation of intracellular signal coordination.
Collapse
Affiliation(s)
- Kevin W Cormier
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| |
Collapse
|
299
|
Wang Z, Xiong L, Wan W, Duan L, Bai X, Zu H. Intranasal BMP9 Ameliorates Alzheimer Disease-Like Pathology and Cognitive Deficits in APP/PS1 Transgenic Mice. Front Mol Neurosci 2017; 10:32. [PMID: 28228716 PMCID: PMC5296319 DOI: 10.3389/fnmol.2017.00032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/27/2017] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and has no effective therapies. Previous studies showed that bone morphogenetic protein 9 (BMP9), an important factor in the differentiation and phenotype maintenance of cholinergic neurons, ameliorated the cholinergic defects resulting from amyloid deposition. These findings suggest that BMP9 has potential as a therapeutic agent for AD. However, the effects of BMP9 on cognitive function in AD and its underlying mechanisms remain elusive. In the present study, BMP9 was delivered intranasally to 7-month-old APP/PS1 mice for 4 weeks. Our data showed that intranasal BMP9 administration significantly improved the spatial and associative learning and memory of APP/PS1 mice. We also found that intranasal BMP9 administration significantly reduced the amyloid β (Aβ) plaques overall, inhibited tau hyperphosphorylation, and suppressed neuroinflammation in the transgenic mouse brain. Furthermore, intranasal BMP9 administration significantly promoted the expression of low-density lipoprotein receptor-related protein 1 (LRP1), an important membrane receptor involved in the clearance of amyloid β via the blood-brain barrier (BBB), and elevated the phosphorylation levels of glycogen synthase kinase-3β (Ser9), which is considered the main kinase involved in tau hyperphosphorylation. Our results suggest that BMP9 may be a promising candidate for treating AD by targeting multiple key pathways in the disease pathogenesis.
Collapse
Affiliation(s)
- Zigao Wang
- Department of Neurology, Jinshan Hospital, Fudan University Shanghai, China
| | - Lu Xiong
- Department of Anesthesiology, Tinglin Hospital Shanghai, China
| | - Wenbin Wan
- Department of Neurology, Zhongshan Hospital, Fudan University Shanghai, China
| | - Lijie Duan
- Department of Neurology, Jinshan Hospital, Fudan University Shanghai, China
| | - Xiaojing Bai
- Department of Neurology, Jinshan Hospital, Fudan University Shanghai, China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital, Fudan University Shanghai, China
| |
Collapse
|
300
|
McHardy SF, Wang HYL, McCowen SV, Valdez MC. Recent advances in acetylcholinesterase Inhibitors and Reactivators: an update on the patent literature (2012-2015). Expert Opin Ther Pat 2017; 27:455-476. [PMID: 27967267 DOI: 10.1080/13543776.2017.1272571] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Acetylcholinesterase (AChE) is the major enzyme that hydrolyzes acetylcholine, a key neurotransmitter for synaptic transmission, into acetic acid and choline. Mild inhibition of AChE has been shown to have therapeutic relevance in Alzheimer's disease (AD), myasthenia gravis, and glaucoma among others. In contrast, strong inhibition of AChE can lead to cholinergic poisoning. To combat this, AChE reactivators have to be developed to remove the offending AChE inhibitor, restoring acetylcholine levels to normal. Areas covered: This article covers recent advances in the development of acetylcholinesterase modulators, including both inhibitors of acetylcholinesterase for the efforts in development of new chemical entities for treatment of AD, as well as re-activators for resurrection of organophosphate bound acetylcholinesterase. Expert opinion: Over the past three years, research efforts have continued to identify novel small molecules as AChE inhibitors for both CNS and peripheral diseases. The more recent patent activity has focused on three AChE ligand design areas: derivatives of known AChE ligands, natural product based scaffolds and multifunctional ligands, all of which have produced some unique chemical matter with AChE inhibition activities in the mid picomolar to low micromolar ranges. New AChE inhibitors with polypharmacology or dual inhibitory activity have also emerged as highlighted by new AChE inhibitors with dual activity at L-type calcium channels, GSK-3, BACE1 and H3, although most only show low micromolar activity, thus further research is warranted. New small molecule reactivators of organophosphate-inhibited AChE have also been disclosed, which focused on the design of neutral ligands with improved pharmaceutical properties and blood-brain barrier (BBB) penetration. Gratifyingly, some research in this area is moving away from the traditional quaternary pyridinium oximes AChE reactivators, while still employing the necessary reactivation group (oximes). However, selectivity over inhibition of native AChE enzyme, effectiveness of reactivation, broad-spectrum reactivation against multiple organophosphates and reactivation of aged-enzyme continue to be hurdles for this area of research.
Collapse
Affiliation(s)
- Stanton F McHardy
- a Center for Innovative Drug Discovery, Department of Chemistry , University of Texas San Antonio, One UTSA Circle , San Antonio , TX , USA
| | - Hua-Yu Leo Wang
- a Center for Innovative Drug Discovery, Department of Chemistry , University of Texas San Antonio, One UTSA Circle , San Antonio , TX , USA
| | - Shelby V McCowen
- a Center for Innovative Drug Discovery, Department of Chemistry , University of Texas San Antonio, One UTSA Circle , San Antonio , TX , USA
| | - Matthew C Valdez
- a Center for Innovative Drug Discovery, Department of Chemistry , University of Texas San Antonio, One UTSA Circle , San Antonio , TX , USA
| |
Collapse
|