251
|
Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci 2019; 11:30. [PMID: 31685798 PMCID: PMC6828663 DOI: 10.1038/s41368-019-0064-z] [Citation(s) in RCA: 335] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease involving the destruction of both soft and hard tissue in the periodontal region. Although dysbiosis of the local microbial community initiates local inflammation, over-activation of the host immune response directly activates osteoclastic activity and alveolar bone loss. Many studies have reported on the cytokine network involved in periodontitis and its crucial and pleiotropic effect on the recruitment of specific immunocytes, control of pathobionts and induction or suppression of osteoclastic activity. Nonetheless, particularities in the stimulation of pathogens in the oral cavity that lead to the specific and complex periodontal cytokine network are far from clarified. Thus, in this review, we begin with an up-to-date aetiological hypothesis of periodontal disease and summarize the roles of cytokines in the host immune response. In addition, we also summarize the latest cytokine-related therapeutic measures for periodontal disease.
Collapse
Affiliation(s)
- Weiyi Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
252
|
Abstract
Chronic inflammation is one of the most evident and common pathological conditions leading to deregulated osteoclastogenesis and bone remodeling. Tumor necrosis factor (TNF) as a pleiotropic cytokine plays a key role, not only in inflammation, but also in bone erosion in diseases associated with bone loss. TNF can stimulate the proliferation of osteoclast precursors and, in most conditions, act together with other cytokines and growth factors such as receptor activator of nuclear factor (NF)-[kappa]B ligand (RANKL), interleukin-6, and transforming growth factor beta to synergistically promote osteoclast formation and bone resorption in vivo. A longstanding enigma in the field is why TNF alone is not able to induce osteoclast differentiation as effectively as the same superfamily member RANKL, a physiological master osteoclastogenic cytokine. Recent studies have highlighted several lines of evidence showing the intrinsic mechanisms through RBP-J, NF-[kappa]B p100/TNF receptor-associated factor 3, or interferon regulatory factor-8 that restrain TNF-induced osteoclast differentiation and bone resorption. These feedback inhibitory mechanisms driven by TNF shed light into the current paradigm of osteoclastogenesis and would provide novel therapeutic implications on controlling inflammatory bone resorption.
Collapse
Affiliation(s)
- Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, and Department of Medicine, Weill Cornell Medical College, 535 E. 70th Street New York, New York 10021
| |
Collapse
|
253
|
de Souza Malta F, Napimoga MH, Marins LM, Miranda TS, de Oliveira FB, Posch AT, Feres M, Duarte PM. Lithium chloride assuages bone loss in experimental periodontitis in estrogen-deficient rats. Clin Oral Investig 2019; 24:2025-2036. [DOI: 10.1007/s00784-019-03067-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/27/2019] [Indexed: 11/27/2022]
|
254
|
The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cell Immunol 2019; 343:103711. [DOI: 10.1016/j.cellimm.2017.10.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
|
255
|
Asano T, Okamoto K, Nakai Y, Tsutsumi M, Muro R, Suematsu A, Hashimoto K, Okamura T, Ehata S, Nitta T, Takayanagi H. Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone. Nat Metab 2019; 1:868-875. [PMID: 32694743 DOI: 10.1038/s42255-019-0104-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/19/2019] [Indexed: 12/22/2022]
Abstract
Receptor activator of NF-κB ligand (RANKL) is a multifunctional cytokine known to affect immune and skeletal systems, as well as oncogenesis and metastasis1-4. RANKL is synthesized as a membrane-bound molecule, and cleaved into its soluble form by proteases5-7. As the soluble form of RANKL does not contribute greatly to bone remodelling or ovariectomy-induced bone loss8, whether soluble RANKL has a role in pathological settings remains unclear. Here we show that soluble RANKL promotes the formation of tumour metastases in bone. Mice that selectively lack soluble RANKL (Tnfsf11ΔS/ΔS)5-7,9 have normal bone homoeostasis and develop a normal immune system but display markedly reduced numbers of bone metastases after intracardiac injection of RANK-expressing melanoma and breast cancer cells. Deletion of soluble RANKL does not affect osteoclast numbers in metastatic lesions or tumour metastasis to non-skeletal tissues. Therefore, soluble RANKL is dispensable for physiological regulation of bone and immune systems, but has a distinct and pivotal role in the promotion of bone metastases.
Collapse
Affiliation(s)
- Tatsuo Asano
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Yuta Nakai
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masanori Tsutsumi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayako Suematsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoko Hashimoto
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Section of Animal Models, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
256
|
Rochette L, Meloux A, Rigal E, Zeller M, Malka G, Cottin Y, Vergely C. The Role of Osteoprotegerin in Vascular Calcification and Bone Metabolism: The Basis for Developing New Therapeutics. Calcif Tissue Int 2019; 105:239-251. [PMID: 31197415 DOI: 10.1007/s00223-019-00573-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
Osteoporosis (OP) and cardiovascular diseases (CVD) are both important causes of mortality and morbidity in aging patients. There are common mechanisms underlying the regulation of bone remodeling and the development of smooth muscle calcification; a temporal relationship exists between osteoporosis and the imbalance of mineral metabolism in the vessels. Vascular calcification appears regulated by mechanisms that include both inductive and inhibitory processes. Multiple factors are implicated in both bone and vascular metabolism. Among these factors, the superfamily of tumor necrosis factor (TNF) receptors including osteoprotegerin (OPG) and its ligands has been established. OPG is a soluble decoy receptor for receptor activator of nuclear factor-kB ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL). OPG binds to RANKL and TRAIL, and inhibits the association with their receptors, which have been labeled as the receptor activator of NF-kB (RANK). Sustained release of OPG from vascular endothelial cells (ECs) has been demonstrated in response to inflammatory proteins and cytokines, suggesting that OPG/RANKL/RANK system plays a modulatory role in vascular injury and inflammation. For the development of potential therapeutic strategies targeting vascular calcification, critical consideration of the implications for bone metabolism must be taken into account to prevent potentially detrimental effects to bone metabolism.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000, Dijon, France.
| | - Alexandre Meloux
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| | - Eve Rigal
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| | - Marianne Zeller
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| | - Gabriel Malka
- Institut de formation en Biotechnologie et Ingénierie Biomédicale (IFR2B), Université Mohammed VI Polytechnique, 43 150, Ben-Guerir, Morocco
| | - Yves Cottin
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000, Dijon, France
- Service de Cardiologie-CHU-Dijon, Dijon, France
| | - Catherine Vergely
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| |
Collapse
|
257
|
Wu D, Meng B, Cheng Y, Gan L, Huang P, Cao Y. The effect of risedronate on orthodontic tooth movement in ovariectomized rats. Arch Oral Biol 2019; 105:59-64. [DOI: 10.1016/j.archoralbio.2019.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/15/2019] [Accepted: 06/25/2019] [Indexed: 01/16/2023]
|
258
|
Jeong HM, Kim DJ. Bone Diseases in Patients with Chronic Liver Disease. Int J Mol Sci 2019; 20:E4270. [PMID: 31480433 PMCID: PMC6747370 DOI: 10.3390/ijms20174270] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a frequently observed complication in patients with chronic liver disease, particularly liver cirrhosis and cholestatic liver diseases. In addition, osteoporosis is critical in patients receiving a liver transplant. Nevertheless, few studies have evaluated bone diseases in patients with more frequently observed chronic liver disease, such as chronic viral hepatitis, nonalcoholic fatty liver disease and alcoholic liver disease. Osteoporosis is a disease caused by an imbalance in the activities of osteoblasts and osteoclasts. Over the last few decades, many advances have improved our knowledge of the pathogenesis of osteoporosis. Importantly, activated immune cells affect the progression of osteoporosis, and chronic inflammation may exert an additional effect on the existing pathophysiology of osteoporosis. The microbiota of the intestinal tract may also affect the progression of bone loss in patients with chronic liver disease. Recently, studies regarding the effects of chronic inflammation on dysbiosis in bone diseases have been conducted. However, mechanisms underlying osteoporosis in patients with chronic liver disease are complex and precise mechanisms remain unknown. The following special considerations in patients with chronic liver disease are reviewed: bone diseases in patients who underwent a liver transplant, the association between chronic hepatitis B virus infection treatment and bone diseases, the association between sarcopenia and bone diseases in patients with chronic liver disease, and the association between chronic liver disease and avascular necrosis of the hip. Few guidelines are currently available for the management of low bone mineral density or bone diseases in patients with chronic liver disease. Due to increased life expectancy and therapeutic advances in chronic liver disease, the importance of managing osteoporosis and other bone diseases in patients with chronic liver disease is expected to increase. Consequently, specific guidelines need to be established in the near future.
Collapse
Affiliation(s)
- Hae Min Jeong
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do 24253, Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Gangwon-do 24253, Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Gangwon-do 24253, Korea.
- Department of Internal Medicine, Hallym University College of Medicine, Seoul 05355, Korea.
| |
Collapse
|
259
|
Azizieh FY, Shehab D, Jarallah KA, Gupta R, Raghupathy R. Circulatory Levels of RANKL, OPG, and Oxidative Stress Markers in Postmenopausal Women With Normal or Low Bone Mineral Density. Biomark Insights 2019; 14:1177271919843825. [PMID: 31452599 PMCID: PMC6700864 DOI: 10.1177/1177271919843825] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: Receptor activator of nuclear factor κB ligand (RANKL), osteoprotegerin (OPG), and oxidative stress markers are suggested to contribute to bone loss in osteoporosis that occurs in menopause. However, the association between these markers and bone mineral density (BMD) is controversial. The aim of this study was to measure circulatory levels of these parameters in postmenopausal women with normal or low BMD. Methods: The study population included 71 postmenopausal women, of whom 25 had normal BMD, 31 had osteopenia, and 15 had osteoporosis. Serum levels of RANKL, OPG, and 5 oxidative stress markers (catalase, peroxiredoxin 2 [PRX2], superoxide dismutase 1 [SOD1], superoxide dismutase 2 [SOD2], and thioredoxin [TRx1]) were measured using the Multiplex system. Results: As compared with subjects having normal BMD, subjects with low BMD had significantly lower median serum levels of OPG, catalase, SOD2, and PRX2 (P = .004, .031, .044, and .041 respectively). Although levels of RANKL were not different between the 2 groups, the RANKL/OPG ratio was higher in women with low BMD (P = .027). Conclusions: These data provide insights into the possible roles of OPG, RANKL, and oxidative stress in the pathogenesis of postmenopausal osteoporosis. However, the lack of association between these markers and BMD indicates that osteoporosis is complex and multivariate.
Collapse
Affiliation(s)
- Fawaz Y Azizieh
- Department of Mathematics and Natural Sciences, International Centre for Applied Mathematics and Computational Bioengineering, Gulf University for Science and Technology, Hawally, Kuwait
| | - Diaa Shehab
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Khaled Al Jarallah
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Renu Gupta
- Department of Radiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Raj Raghupathy
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
260
|
Porwal K, Pal S, Tewari D, Pal China S, Singh P, Chandra Tewari M, Prajapati G, Singh P, Cheruvu S, Khan YA, Sanyal S, Gayen JR, Ampapathi R, Mridha AR, Chattopadhyay N. Increased Bone Marrow-Specific Adipogenesis by Clofazimine Causes Impaired Fracture Healing, Osteopenia, and Osteonecrosis Without Extraskeletal Effects in Rats. Toxicol Sci 2019; 172:167-180. [PMID: 31393584 DOI: 10.1093/toxsci/kfz172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022] Open
Abstract
AbstractMycobacterium leprae infection causes bone lesions and osteoporosis, however, the effect of antileprosy drugs on the bone is unknown. We, therefore, set out to address it by investigating osteogenic differentiation from bone marrow (BM)-derived mesenchymal stem cells (MSCs). Out of 7 antileprosy drugs, only clofazimine (CFZ) reduced MSCs viability (IC50 ∼ 1 μM) and their osteogenic differentiation but increased adipogenic differentiation on a par with rosiglitazone, and this effect was blocked by a peroxisome proliferator-activated receptor gamma antagonist, GW9662. CFZ also decreased osteoblast viability and resulted in impaired bone regeneration in a rat femur osteotomy model at one-third human drug dose owing to increased callus adipogenesis as GW9662 prevented this effect. CFZ treatment decreased BM MSC population and homing of MSC to osteotomy site despite drug levels in BM being much less than its in vitro IC50 value. In adult rats, CFZ caused osteopenia in long bones marked by suppressed osteoblast function due to enhanced adipogenesis and increased osteoclast functions. A robust increase in marrow adipose tissue (MAT) by CFZ did not alter the hematologic parameters but likely reduced BM vascular bed leading to osteonecrosis (ON) characterized by empty osteocyte lacunae. However, CFZ had no effect on visceral fat content and was not associated with any metabolic and hematologic changes. Levels of unsaturated fatty acids in MAT were higher than saturated fatty acids and CFZ further increased the former. From these data, we conclude that CFZ has adverse skeletal effects and could be used for creating a rodent ON model devoid of extraskeletal effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | | | | | - Asit R Mridha
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110023, India
| | | |
Collapse
|
261
|
Gao X, Zheng J, Tu S, Cai B, Zeng R, Xiang L. Role of osteoprotegerin in the regulation of dental epithelial‑mesenchymal signaling during tooth development. Mol Med Rep 2019; 20:3035-3042. [PMID: 31432164 PMCID: PMC6755199 DOI: 10.3892/mmr.2019.10567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
Dental epithelial-mesenchymal signaling is crucial for tooth development, but the detailed mechanism is not fully understood. Using microarray analysis, it was revealed that the expression of osteoprotegerin, an important factor regulating bone remodeling, significantly increased after removal of the dental epithelium. Immunohistochemical staining revealed that osteoprotegerin expression within the dental mesenchyme was quite low during the prenatal period, but significantly increased after birth. To investigate the influence of osteoprotegerin upon tooth development, first-molar tooth germs from embryonic day 14.5 (E14.5) Chinese Kunming mice were treated with different concentrations of osteoprotegerin. It was revealed that osteoprotegerin could inhibit the expression of odontogenic markers while promoting the expression of osteogenic markers, thereby disrupting tooth morphogenesis. These findings were further supported by in vitro and in vivo cultures. Finally, quantitative reverse transcription-polymerase chain reaction and immunofluorescence studies revealed that, after osteoprotegerin treatment, the activity of the wingless/integrated (Wnt)/β-catenin pathway increased, indicating that increased osteoprotegerin expression in prenatal tooth development could lead to uncontrolled upregulation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xin Gao
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Junming Zheng
- Research Management Office, Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong 528000, P.R. China
| | - Shaoqin Tu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Bin Cai
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Rongsheng Zeng
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Lusai Xiang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
262
|
Vargas-Franco JW, Castaneda B, Gama A, Mueller CG, Heymann D, Rédini F, Lézot F. Genetically-achieved disturbances to the expression levels of TNFSF11 receptors modulate the effects of zoledronic acid on growing mouse skeletons. Biochem Pharmacol 2019; 168:133-148. [PMID: 31260659 DOI: 10.1016/j.bcp.2019.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/26/2019] [Indexed: 01/17/2023]
Abstract
Zoledronic acid (ZOL), a nitrogen bisphosphonate (N-BP), is currently used to treat and control pediatric osteolytic diseases. Variations in the intensity of the effects and side effects of N-BPs have been reported with no clear explanations regarding their origins. We wonder if such variations could be associated with different levels of RANKL signaling activity in growing bone during and after the treatment with N-BPs. To answer this question, ZOL was injected into neonate C57BL/6J mice with different genetically-determined RANKL signaling activity levels (Opg+/+\RankTg-, Opg+/+\RankTg+, Opg+/-\RankTg-, Opg+/-\RankTg+, Opg-/-\RankTg- and Opg-/-\RankTg+ mice) following a protocol (4 injections from post-natal day 1 to 7 at the dose of 50 μg/kg) that mimics those used in onco-pediatric patients. At the end of pediatric growth (1 and half months) and at an adult age (10 months), the bone morphometric and mineral parameters were measured using μCT in the tibia and skull for the different mice. A histologic analysis of the dental and periodontal tissues was also performed. At the end of pediatric growth, a delay in long bone and skull bone growth, a blockage of tooth eruption, some molar root alterations and a neoplasia-like structure associated with incisor development were found. Interestingly, the magnitude of these side effects was reduced by Opg deficiency (Opg-/-) but increased by Rank overexpression (RankTg). Analysis of the skeletal phenotype at ten months confirmed respectively the beneficial and harmful effects of Opg deficiency and Rank overexpression. These results validated the hypothesis that the RANKL signaling activity level in the bone microenvironment is implicated in the modulation of the response to ZOL. Further studies will be necessary to understand the underlying molecular mechanisms, which will help decipher the variability in the effects of N-BPs reported in the human population. SIGNIFICANT STATEMENTS: The present study establishes that in mice the RANKL signaling activity level is a major modulator of the effects and side-effects of bisphosphonates on the individual skeleton during growth. However, the modulatory actions are dependent on the ways in which this level of activity is increased. A decrease in OPG expression is beneficial to the skeletal phenotype observed at the end of growth, while RANK overexpression deteriorates it. Far removed from pediatric treatment, in adults, the skeletal phenotypes initially observed at the end of growth for the different levels of RANKL signaling activity were maintained, although significant improvement was associated only with reductions in OPG expression.
Collapse
Affiliation(s)
- Jorge William Vargas-Franco
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, Nantes F-44035, France; Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin, Colombia
| | - Beatriz Castaneda
- Service d'Odontologie-Stomatologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris F-75013, France
| | - Andrea Gama
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, Paris F-75006, France; Odontology Center of District Federal Military Police, Brasília, Brazil; Oral Histopathology Laboratory, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Christopher G Mueller
- CNRS, UPR 9021, Institut de Biologie Moléculaire et Cellulaire (IBMC), Laboratoire Immunologie et Chimie Thérapeutiques, Université de Strasbourg, Strasbourg F-67084, France
| | - Dominique Heymann
- INSERM, LEA Sarcoma Research Unit, University of Sheffield, Department of Oncology and Human Metabolism, Medical School, Sheffield S10 2RX, UK; INSERM, UMR 1232, LabCT, Université de Nantes, Université d'Angers, Institut de Cancérologie de l'Ouest, site René Gauducheau, Saint-Herblain F-44805, France
| | - Françoise Rédini
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, Nantes F-44035, France
| | - Frédéric Lézot
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, Nantes F-44035, France.
| |
Collapse
|
263
|
Abstract
PURPOSE OF REVIEW Pancreatic β-cells play a critical role in whole-body glucose homeostasis by regulating the release of insulin in response to minute by minute alterations in metabolic demand. As such, β-cells are staunchly resilient but there are circumstances where they can become functionally compromised or physically lost due to pathophysiological changes which culminate in overt hyperglycemia and diabetes. RECENT FINDINGS In humans, β-cell mass appears to be largely defined in the postnatal period and this early replicative and generative phase is followed by a refractory state which persists throughout life. Despite this, efforts to identify physiological and pharmacological factors which might re-initiate β-cell replication (or cause the replenishment of β-cells by neogenesis or transdifferentiation) are beginning to bear fruit. Controlled manipulation of β-cell mass in humans still represents a holy grail for therapeutic intervention in diabetes, but progress is being made which may lead to ultimate success.
Collapse
Affiliation(s)
- Giorgio Basile
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Rohit N. Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Noel G. Morgan
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| |
Collapse
|
264
|
Hai L, Szwarc MM, Lonard DM, Rajapakshe K, Perera D, Coarfa C, Ittmann M, Fernandez-Valdivia R, Lydon JP. Short-term RANKL exposure initiates a neoplastic transcriptional program in the basal epithelium of the murine salivary gland. Cytokine 2019; 123:154745. [PMID: 31226438 DOI: 10.1016/j.cyto.2019.154745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
Although salivary gland cancers comprise only ∼3-6% of head and neck cancers, treatment options for patients with advanced-stage disease are limited. Because of their rarity, salivary gland malignancies are understudied compared to other exocrine tissue cancers. The comparative lack of progress in this cancer field is particularly evident when it comes to our incomplete understanding of the key molecular signals that are causal for the development and/or progression of salivary gland cancers. Using a novel conditional transgenic mouse (K5:RANKL), we demonstrate that Receptor Activator of NFkB Ligand (RANKL) targeted to cytokeratin 5-positive basal epithelial cells of the salivary gland causes aggressive tumorigenesis within a short period of RANKL exposure. Genome-wide transcriptomic analysis reveals that RANKL markedly increases the expression levels of numerous gene families involved in cellular proliferation, migration, and intra- and extra-tumoral communication. Importantly, cross-species comparison of the K5:RANKL transcriptomic dataset with The Cancer Genome Atlas cancer signatures reveals the strongest molecular similarity with cancer subtypes of the human head and neck squamous cell carcinoma. These studies not only provide a much needed transcriptomic resource to mine for novel molecular targets for therapy and/or diagnosis but validates the K5:RANKL transgenic as a preclinical model to further investigate the in vivo oncogenic role of RANKL signaling in salivary gland tumorigenesis.
Collapse
Affiliation(s)
- Lan Hai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou, Henan Province, PR China
| | - Maria M Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Dimuthu Perera
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Michael Ittmann
- Department of Pathology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
265
|
Liang C, Yang T, Wu G, Li J, Geng W. Therapeutic effect of low-intensity pulsed ultrasound on temporomandibular joint injury induced by chronic sleep deprivation in rats. Am J Transl Res 2019; 11:3328-3340. [PMID: 31312347 PMCID: PMC6614610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/07/2019] [Indexed: 06/10/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) treatment is an emerging physical therapy for treating bone, nerve, and muscle disorders. However, there have been no reports on the effectiveness of LIPUS for the treatment of temporomandibular joint injury, and the mechanisms of LIPUS remain unclear. The purpose of this study was to examine the therapeutic effects of LIPUS on temporomandibular joint injury in rats subjected to chronic sleep deprivation (CSD). In this study, after 2 weeks of chronic sleep deprivation in rats, the condylar cartilage exhibited rough surfaces, with a disorganized arrangement and partial sloughing of collagen fibers, decreased proliferation of chondrocytes, increased osteoclast activity in the calcified cartilage layer, and increased ratios of MMP-3/TIMP-1 and RANKL/OPG expression. After 4 weeks of LIPUS intervention in rats, the condylar cartilage displayed prominent reductions in these pathological changes, including noticeable repair of the injured cartilage structure, increased chondrocyte proliferation, a reduced number of osteoclasts, and marked reductions in the expression ratios of MMP-3/TIMP-1 and RANKL/OPG. These results demonstrated that LIPUS can effectively inhibit CSD-induced injury to condylar cartilage in rats. The therapeutic mechanism of LIPUS may involve promoting the repair function of chondrocytes and reducing the expression ratios of MMP-3/TIMP-1 and RANKL/OPG in condylar tissue, thus inhibiting the cleavage activity of MMP-3 on the condylar cartilage matrix and inhibiting osteoclast activation.
Collapse
Affiliation(s)
- Chao Liang
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical UniversityBeijing, China
| | - Tao Yang
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical UniversityBeijing, China
| | - Gaoyi Wu
- Department of Stomatology, Jinan Military General HospitalShandong, China
| | - Jun Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical UniversityBeijing, China
| | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical UniversityBeijing, China
| |
Collapse
|
266
|
Clinical Impact of RANK Signalling in Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11060791. [PMID: 31181781 PMCID: PMC6627676 DOI: 10.3390/cancers11060791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 01/14/2023] Open
Abstract
Ovarian cancer (OC) is a gynaecological malignancy with poor clinical outcome and limited treatment options. The receptor activator of nuclear factor-κB (RANK) pathway, activated by RANK ligand (RANKL), critically controls bone metabolism, tumourigenesis and tumour immune responses. Denosumab, a monocloncal RANKL antibody, exerts tumour-suppressive effects in mice and humans. Here, we investigated the relevance of RANK signalling in OC. RANK, RANKL and OPG expression in 192 epithelial OC tissues was compared to expression in 35 non-malignant control tissues and related to clinico-pathological characteristics. Findings were validated in a cohort of 563 OC patients from The Cancer Genome Atlas (TCGA). The expression of RANK, RANKL and OPG was studied in four OC cell lines and the impact of RANK ligation or blockade on OC cell proliferation was determined. RANK, RANKL and OPG were expressed in epithelial and stromal cells in OC. RANKL expression was elevated in OC tissue, particularly in BRCA1/2 mutated tumours. High RANKL expression independently predicted reduced progression-free (PFS, p = 0.017) and overall survival (OS, p = 0.007), which could be validated in the TCGA cohort (PFS, p = 0.022; OS, p = 0.046, respectively). Expression of RANK and OPG in OC cells was induced by inflammatory cytokines IL-1β and TNFα. Neither recombinant RANK ligation nor denosumab treatment affected OC cell proliferation. Our study independently links RANKL expression with poor clinical outcome in two unrelated OC cohorts. These findings implicate RANK signalling in the immunopathogenesis of OC and warrant clinical trials with denosumab in OC.
Collapse
|
267
|
Camara A, Cordeiro OG, Alloush F, Sponsel J, Chypre M, Onder L, Asano K, Tanaka M, Yagita H, Ludewig B, Flacher V, Mueller CG. Lymph Node Mesenchymal and Endothelial Stromal Cells Cooperate via the RANK-RANKL Cytokine Axis to Shape the Sinusoidal Macrophage Niche. Immunity 2019; 50:1467-1481.e6. [DOI: 10.1016/j.immuni.2019.05.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/06/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
|
268
|
Qi Y, An F, Wang J, Liu Y, Gao H, Ge Z, Jiang E, Cai D, Shi J, Wang J. Association of OPG gene polymorphisms with the risk of knee osteoarthritis among Chinese people. Mol Genet Genomic Med 2019; 7:e662. [PMID: 30972968 PMCID: PMC6565555 DOI: 10.1002/mgg3.662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/01/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is usually recognized to have a genetic factor, and in our study, we performed a case-control study to analyze the association between 14 single nucleotide polymorphisms (SNPs) in OPG and the risk of knee OA in a Chinese Han population. METHODS Fourteen OPG SNPs were assayed using MassARRAY in 393 patients clinically and radiographically diagnosed with knee OA and in 500 controls. Allelic and genotypic frequencies were compared between the groups. Logistic regression adjusting for age and gender was used to estimate risk associations between specific genotypes and knee OA by computing odds ratios (ORs) and 95% confidence intervals (95% CIs). RESULTS We found that the minor alleles of six SNPs in OPG were associated with an increased or decreased risk of knee OA in the allelic model analysis. In the genetic model analysis, we found that rs1905786, rs1032128, rs3134058, rs11573828, rs11573849, rs3134056, and rs1564861 were associated with an increased or decreased risk of knee OA before adjusted by sex and age. And after adjustment, three SNPs (rs1485286, rs1905786, and rs1032128) were identified to have a negative effect on knee OA. CONCLUSION Our results verify that genetic variants of OPG contribute to knee OA susceptibility in the population of northern China. These genetic associations may identify individuals at a particularly high risk of developing knee OA.
Collapse
Affiliation(s)
- Yuxin Qi
- Inner Mongolia Medical UniversityHohhotInner MongoliaChina
- The 2nd affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Feimeng An
- Inner Mongolia Medical UniversityHohhotInner MongoliaChina
- The 2nd affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Jiaqi Wang
- Inner Mongolia Medical UniversityHohhotInner MongoliaChina
- The 2nd affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Yuan Liu
- Inner Mongolia Medical UniversityHohhotInner MongoliaChina
- The 2nd affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Hongyan Gao
- The 2nd affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Zhe Ge
- Department of OrthopaedicsJinshan Hospital, Fudan UniversityShanghai CityChina
| | - Enze Jiang
- Shanghai Changzheng hospitalShanghaiChina
| | - Donggao Cai
- Shengjing Hospital affiliated to China Medical UniversityShenyangChina
| | - Jianping Shi
- Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Jianzhong Wang
- The 2nd affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| |
Collapse
|
269
|
Human Enriched Serum Following Hydrolysed Collagen Absorption Modulates Bone Cell Activity: from Bedside to Bench and Vice Versa. Nutrients 2019; 11:nu11061249. [PMID: 31159319 PMCID: PMC6627680 DOI: 10.3390/nu11061249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/03/2023] Open
Abstract
Collagen proteins are crucial components of the bone matrix. Since collagen-derived products are widely used in the food and supplement industry, one may raise the question whether collagen-enriched diets can provide benefits for the skeleton. In this study, we designed an innovative approach to investigate this question taking into account the metabolites that are formed by the digestive tract and appear in the circulation after ingestion of hydrolysed collagen. Blood samples collected in clinical and pre-clinical trials following ingestion and absorption of hydrolysed collagen were processed and applied on bone-related primary cell cultures. This original ex vivo methodology revealed that hydrolysed collagen-enriched serum had a direct impact on the behaviour of cells from both human and mouse origin that was not observed with controls (bovine serum albumin or hydrolysed casein-enriched serum). These ex vivo findings were fully in line with in vivo results obtained from a mouse model of post-menopausal osteoporosis. A significant reduction of bone loss was observed in mice supplemented with hydrolysed collagen compared to a control protein. Both the modulation of osteoblast and osteoclast activity observed upon incubation with human or mouse serum ex vivo and the attenuation of bone loss in vivo, clearly indicates that the benefits of hydrolysed collagen for osteoporosis prevention go beyond the effect of a simple protein supplementation.
Collapse
|
270
|
Koehler MI, Hartmann ES, Schluessel S, Beck F, Redeker JI, Schmitt B, Unger M, van Griensven M, Summer B, Fottner A, Mayer-Wagner S. Impact of Periprosthetic Fibroblast-Like Cells on Osteoclastogenesis in Co-Culture with Peripheral Blood Mononuclear Cells Varies Depending on Culture System. Int J Mol Sci 2019; 20:E2583. [PMID: 31130703 PMCID: PMC6567687 DOI: 10.3390/ijms20102583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
Co-culture studies investigating the role of periprosthetic fibroblasts (PPFs) in inflammatory osteoclastogenesis reveal contrary results, partly showing an osteoprotective function of fibroblasts and high OPG expression in monolayer. These data disagree with molecular analyses of original periosteolytic tissues. In order to find a more reliable model, PPFs were co-cultivated with peripheral blood mononuclear cells (PBMCs) in a transwell system and compared to conventional monolayer cultures. The gene expression of key regulators of osteoclastogenesis (macrophage colony-stimulating factor (MCSF), receptor activator of NF-κB ligand (RANK-L), osteoprotegerin (OPG), and tumor necrosis factor alpha (TNFα)) as well as the ability of bone resorption were analyzed. In monolayer co-cultures, PPFs executed an osteoprotective function with high OPG-expression, low RANK-L/OPG ratios, and a resulting inhibition of osteolysis even in the presence of MCSF and RANK-L. For transwell co-cultures, profound changes in gene expression, with a more than hundredfold decrease of OPG and a significant upregulation of TNFα were observed. In conclusion, we were able to show that a change of culture conditions towards a transwell system resulted in a considerably more osteoclastogenic gene expression profile, being closer to findings in original periosteolytic tissues. This study therefore presents an interesting approach for a more reliable in vitro model to examine the role of fibroblasts in periprosthetic osteoclastogenesis in the future.
Collapse
Affiliation(s)
- Miriam I Koehler
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Eliza S Hartmann
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Sabine Schluessel
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Felicitas Beck
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Julia I Redeker
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Baerbel Schmitt
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Marina Unger
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Burkhard Summer
- Department of Dermatology, Ludwig-Maximilians-University, Frauenlobstr. 9-11, 80337 Munich, Germany.
| | - Andreas Fottner
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| |
Collapse
|
271
|
Ukon Y, Makino T, Kodama J, Tsukazaki H, Tateiwa D, Yoshikawa H, Kaito T. Molecular-Based Treatment Strategies for Osteoporosis: A Literature Review. Int J Mol Sci 2019; 20:E2557. [PMID: 31137666 PMCID: PMC6567245 DOI: 10.3390/ijms20102557] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is an unavoidable public health problem in an aging or aged society. Anti-resorptive agents (calcitonin, estrogen, and selective estrogen-receptor modulators, bisphosphonates, anti-receptor activator of nuclear factor κB ligand antibody along with calcium and vitamin D supplementations) and anabolic agents (parathyroid hormone and related peptide analogs, sclerostin inhibitors) have major roles in current treatment regimens and are used alone or in combination based on the pathological condition. Recent advancements in the molecular understanding of bone metabolism and in bioengineering will open the door to future treatment paradigms for osteoporosis, including antibody agents, stem cells, and gene therapies. This review provides an overview of the molecular mechanisms, clinical evidence, and potential adverse effects of drugs that are currently used or under development for the treatment of osteoporosis to aid clinicians in deciding how to select the best treatment option.
Collapse
Affiliation(s)
- Yuichiro Ukon
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takahiro Makino
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Joe Kodama
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Tsukazaki
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Daisuke Tateiwa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideki Yoshikawa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
272
|
Luo Y, Wu W, Gu J, Zhang X, Dang J, Wang J, Zheng Y, Huang F, Yuan J, Xue Y, Fu Q, Kandalam U, Colello J, Zheng SG. Human gingival tissue-derived MSC suppress osteoclastogenesis and bone erosion via CD39-adenosine signal pathway in autoimmune arthritis. EBioMedicine 2019; 43:620-631. [PMID: 31076346 PMCID: PMC6558261 DOI: 10.1016/j.ebiom.2019.04.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bone destruction is one of many severe complications that occurs in patients with rheumatoid arthritis (RA) and current therapies are unable to cure this manifestation. This study here aims to determine whether GMSC can directly inhibit osteoclast formation and eventually attenuate osteoclastogenesis and bone erosion in an inflammatory milieu. METHOD GMSC were co-cultured with osteoclast precursors with or without CD39 inhibitor, CD73 inhibitor or adenosine receptors inhibitors pretreatment and osteoclast formation were evaluated in vitro. 2×10^6 GMSC per mouse were transferred to CIA mice and pathology scores, the frequency of osteoclasts, bone erosion in joints were assessed in vivo. FINDING GMSC but not control cells, markedly suppressed human or mice osteoclastogenesis in vitro. GMSC treatment also resulted in a dramatically decreased level of NF-κB p65/p50 in osteoclasts in vitro. Infusion of GMSC to CIA significantly attenuated the severity of arthritis, pathology scores, frequency of osteoclasts, particularly bone erosion, as well as a decreased expression of RANKL in synovial tissues in vivo. Blockade of CD39/CD73 or adenosine receptors has significantly abrogated the suppressive ability of GMSC in vitro and therapeutic effect of GMSC on bone erosion during CIA in vivo. INTERPRETATION GMSC inhibit osteoclast formation in vitro and in vivo partially via CD39-CD73-adenosine signals. Manipulation of GMSC may have a therapeutic implication on rheumatoid arthritis and other bone erosion related diseases. FUND: This study was supported by grants from the National Key R&D Program of China (2017YFA0105801 to F.H); the Zhujiang Innovative and Entrepreneurial Talent Team Award of Guangdong Province (2016 ZT 06S 252 to F·H) and National Institutes of Health (R01 AR059103, R61 AR073409 and NIH Star Award to S.G.Z).
Collapse
Affiliation(s)
- Yang Luo
- Department of Clinical Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou 510000, PR China; Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey 17033, USA; Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wenbin Wu
- Department of Clinical Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou 510000, PR China
| | - Jian Gu
- Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey 17033, USA; Division of Rheumatology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ximei Zhang
- Department of Clinical Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou 510000, PR China; Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey 17033, USA; Division of Rheumatology and Immunology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, PA 43201, USA
| | - Junlong Dang
- Department of Clinical Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou 510000, PR China; Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey 17033, USA
| | - Julie Wang
- Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey 17033, USA; Division of Rheumatology and Immunology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, PA 43201, USA
| | - Yongjiang Zheng
- Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey 17033, USA
| | - Feng Huang
- Department of Clinical Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou 510000, PR China
| | - Jia Yuan
- Department of Clinical Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou 510000, PR China
| | - Youqiu Xue
- Department of Clinical Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou 510000, PR China; Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey 17033, USA; Division of Rheumatology and Immunology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, PA 43201, USA
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, PR China
| | - Umadevi Kandalam
- Department of Pediatric Dentistry, College of Dental Medicine, Nova Southeastern University, Davie, FL 33328, USA
| | - Jacob Colello
- Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey 17033, USA
| | - Song Guo Zheng
- Division of Rheumatology and Immunology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, PA 43201, USA.
| |
Collapse
|
273
|
van Dam PA, Verhoeven Y, Jacobs J, Wouters A, Tjalma W, Lardon F, Van den Wyngaert T, Dewulf J, Smits E, Colpaert C, Prenen H, Peeters M, Lammens M, Trinh XB. RANK-RANKL Signaling in Cancer of the Uterine Cervix: A Review. Int J Mol Sci 2019; 20:E2183. [PMID: 31052546 PMCID: PMC6540175 DOI: 10.3390/ijms20092183] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
RANK ligand (RANKL) is a member of the tumor necrosis factor alpha superfamily of cytokines. It is the only known ligand binding to a membrane receptor named receptor activator of nuclear factor-kappa B (RANK), thereby triggering recruitment of tumor necrosis factor (TNF) receptor associated factor (TRAF) adaptor proteins and activation of downstream pathways. RANK/RANKL signaling is controlled by a decoy receptor called osteoprotegerin (OPG), but also has additional more complex levels of regulation. The existing literature on RANK/RANKL signaling in cervical cancer was reviewed, particularly focusing on the effects on the microenvironment. RANKL and RANK are frequently co-expressed in cervical cancer cells lines and in carcinoma of the uterine cervix. RANKL and OPG expression strongly increases during cervical cancer progression. RANKL is directly secreted by cervical cancer cells, which may be a mechanism they use to create an immune suppressive environment. RANKL induces expression of multiple activating cytokines by dendritic cells. High RANK mRNA levels and high immunohistochemical OPG expression are significantly correlated with high clinical stage, tumor grade, presence of lymph node metastases, and poor overall survival. Inhibition of RANKL signaling has a direct effect on tumor cell proliferation and behavior, but also alters the microenvironment. Abundant circumstantial evidence suggests that RANKL inhibition may (partially) reverse an immunosuppressive status. The use of denosumab, a monoclonal antibody directed to RANKL, as an immunomodulatory strategy is an attractive concept which should be further explored in combination with immune therapy in patients with cervical cancer.
Collapse
Affiliation(s)
- Peter A van Dam
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Yannick Verhoeven
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Julie Jacobs
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - An Wouters
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Wiebren Tjalma
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Tim Van den Wyngaert
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, B2650 Edegem, Belgium.
| | - Jonatan Dewulf
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, B2650 Edegem, Belgium.
| | - Evelien Smits
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Cécile Colpaert
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Department of Histopathology, Antwerp University Hospital, B2650 Edegem, Belgium.
- Department of Histopathology, Gasthuiszusters Antwerpen (GZA) Hospitals, B2610 Wilrijk, Belgium.
| | - Hans Prenen
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Marc Peeters
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Martin Lammens
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Department of Histopathology, Antwerp University Hospital, B2650 Edegem, Belgium.
| | - Xuan Bich Trinh
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| |
Collapse
|
274
|
He ZC, Li XY, Guo YL, Ma D, Fang Q, Ren LL, Zhang ZY, Wang W, Yu ZY, Zhao P, Wang JS. Heme oxygenase-1 attenuates the inhibitory effect of bortezomib against the APRIL-NF-κB-CCL3 signaling pathways in multiple myeloma cells: Corelated with bortezomib tolerance in multiple myeloma. J Cell Biochem 2019; 120:6972-6987. [PMID: 30368867 DOI: 10.1002/jcb.27879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/21/2018] [Indexed: 01/24/2023]
Abstract
Osteoclasts (OCs) play an essential role in bone destruction in patients with multiple myeloma (MM). Bortezomib can ameliorate bone destruction in patients with MM, but advanced MM often resists bortezomib. We studied the molecular mechanisms of bortezomib tolerance in MM. The expression of the MM-related genes in newly diagnosed patients with MM and normal donors were studied. C-C motif chemokine ligand 3 (CCL3) is a cytokine involved in the differentiation of OCs, and its expression is closely related to APRIL (a proliferation-inducing ligand). We found that bortezomib treatment inhibited APRIL and CCL3. But the heme oxygenase-1 (HO-1) activator hemin attenuated the inhibitory effects of bortezomib on APRIL and CCL3. We induced mononuclear cells to differentiate into OCs, and the enzyme-linked immunosorbent assay showed that the more OCs differentiated, the higher the levels CCL3 secretions detected. Animal experiments showed that hemin promoted MM cell infiltration in mice. The weight and survival rate of tumor mice were associated with HO-1 expression. Immunohistochemical staining showed that HO-1, APRIL, and CCL3 staining were positively stained in the tumor infiltrating sites. Then, MM cells were transfected with L-HO-1/si-HO-1 expression vectors and cultured with an nuclear factor (NF)-kappa B (κB) pathway inhibitor, QNZ. The results showed that HO-1 was the upstream gene of APRIL, NF-κB, and CCL3. We showed that HO-1 could attenuate the inhibitory effect of bortezomib against the APRIL-NF-κB-CCL3 signaling pathways in MM cells, and the tolerance of MM cells to bortezomib and the promotion of bone destruction are related to HO-1.
Collapse
Affiliation(s)
- Zheng C He
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xin Y Li
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong L Guo
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qin Fang
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ling L Ren
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhao Y Zhang
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Weili Wang
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zheng Y Yu
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Peng Zhao
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ji S Wang
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
275
|
Nam SY, Kim HY, Min JY, Kim HM, Jeong HJ. An osteoclastogenesis system, the RANKL/RANK signalling pathway, contributes to aggravated allergic inflammation. Br J Pharmacol 2019; 176:1664-1679. [PMID: 30737962 DOI: 10.1111/bph.14615] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE As an osteoclast differentiation factor, receptor activator of NF-κB ligand (RANKL) is produced by various immune cells and may be involved in the pathogenesis of osteoporosis and inflammation. Although RANKL is expressed in most immune cells and tissues, it is not clear how this might affect allergic inflammation. EXPERIMENTAL APPROACH The roles of RANKL in allergic rhinitis (AR) were analysed in an ovalbumin (OVA)-induced animal model, human subjects, and a human mast cell line (HMC-1). Small interfering RNA experiments were performed in an OVA-induced AR model. KEY RESULTS RANKL and RANKL receptor (RANK) were up-regulated in serum or nasal mucosal tissues of AR patients and AR mice. RANKL and RANK were colocalised in mast cells of nasal mucosa tissue. Depletion of RANKL by RANKL siRNA ameliorated AR symptoms and reduced AR-related biomarkers, including thymic stromal lymphopoietin (TSLP), IgE, histamine, and inflammatory cell infiltration, whereas recombinant RANKL increased AR responses and TSLP levels. In addition, functional deficiency of TSLP decreased AR responses induced by RANKL. In human mast cells, interaction of RANKL with RANK increased production of TSLP and inflammatory cytokines. Production of TSLP by RANKL stimulation was mediated through activation of the PI3K, MAPK, caspase-1, and NF-κB pathways. Furthermore, dexamethasone alleviated RANKL-induced inflammatory reactions in AR models. CONCLUSION AND IMPLICATIONS Collectively, these data suggest that RANKL may induce development of AR through up-regulation of TSLP.
Collapse
Affiliation(s)
- Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Hee-Yun Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jin-Young Min
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University, School of Medicine, Seoul, Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun-Ja Jeong
- Division of Food and Pharmaceutical Engineering, Biochip Research Center and Inflammatory Diseases Research Center, Hoseo University, Asan, Korea
| |
Collapse
|
276
|
Pires GO, Vieira IO, Hernandes FR, Teixeira AL, Oliveira IB, Dominguez WV, Dos Reis LM, Montenegro FM, Moysés RM, Carvalho AB, Jorgetti V. Effects of parathyroidectomy on the biology of bone tissue in patients with chronic kidney disease and secondary hyperparathyroidism. Bone 2019; 121:277-283. [PMID: 30738215 DOI: 10.1016/j.bone.2019.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/10/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
Secondary hyperparathyroidism is a complication of chronic kidney disease that compromises skeletal integrity. In patients with secondary hyperparathyroidism undergoing parathyroidectomy, parathyroid hormone levels dramatically decrease. The effects of parathyroidectomy on bone tissue are poorly understood, especially regarding the proteins expressed by osteocytes, such as fibroblast growth factor 23, dentin matrix protein 1, matrix extracellular phosphoglycoprotein, sclerostin, receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin, which regulate bone turnover. The objective of this study was to characterize the bone expression of these proteins by immunohistochemistry and correlate these results with those of bone histomorphometry before and after parathyroidectomy. We studied bone biopsies that were obtained from 23 patients before and 12 months after parathyroidectomy. We observed an improvement in bone microarchitecture, but impaired mineralization after parathyroidectomy. We found significant increases in sclerostin and osteoprotegerin expression and a decrease in the RANKL/osteoprotegerin ratio after parathyroidectomy, suggesting that their expression is regulated by parathormone. These proteins correlated with structural and bone formation parameters. We conclude that after parathyroidectomy, significant changes occur in the bone expression of osteocyte proteins and that these proteins potentially regulate bone remodeling.
Collapse
Affiliation(s)
- Geovanna O Pires
- LIM 16 - Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Itamar O Vieira
- LIM 16 - Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Fabiana R Hernandes
- Divisao de Nefrologia, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | - Andre L Teixeira
- LIM 16 - Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ivone B Oliveira
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Wagner V Dominguez
- LIM 16 - Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Luciene M Dos Reis
- LIM 16 - Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Fábio M Montenegro
- Departamento de Cirurgia, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, Brazil
| | - Rosa M Moysés
- LIM 16 - Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Programa de Pos-Graduaçao em Medicina, Universidade Nove de Julho (UNINOVE), Sao Paulo, SP, Brazil
| | - Aluizio B Carvalho
- Divisao de Nefrologia, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | - Vanda Jorgetti
- LIM 16 - Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Hospital Samaritano Americas Serviços Medicos, Sao Paulo, SP, Brazil.
| |
Collapse
|
277
|
Sobacchi C, Menale C, Villa A. The RANKL-RANK Axis: A Bone to Thymus Round Trip. Front Immunol 2019; 10:629. [PMID: 30984193 PMCID: PMC6450200 DOI: 10.3389/fimmu.2019.00629] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
The identification of Receptor activator of nuclear factor kappa B ligand (RANKL) and its cognate receptor Receptor activator of nuclear factor kappa B (RANK) during a search for novel tumor necrosis factor receptor (TNFR) superfamily members has dramatically changed the scenario of bone biology by providing the functional and biochemical proof that RANKL signaling via RANK is the master factor for osteoclastogenesis. In parallel, two independent studies reported the identification of mouse RANKL on activated T cells and of a ligand for osteoprotegerin on a murine bone marrow-derived stromal cell line. After these seminal findings, accumulating data indicated RANKL and RANK not only as essential players for the development and activation of osteoclasts, but also for the correct differentiation of medullary thymic epithelial cells (mTECs) that act as mediators of the central tolerance process by which self-reactive T cells are eliminated while regulatory T cells are generated. In light of the RANKL-RANK multi-task function, an antibody targeting this pathway, denosumab, is now commonly used in the therapy of bone loss diseases including chronic inflammatory bone disorders and osteolytic bone metastases; furthermore, preclinical data support the therapeutic application of denosumab in the framework of a broader spectrum of tumors. Here, we discuss advances in cellular and molecular mechanisms elicited by RANKL-RANK pathway in the bone and thymus, and the extent to which its inhibition or augmentation can be translated in the clinical arena.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Ciro Menale
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Anna Villa
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
278
|
Hasegawa T, Kikuta J, Ishii M. Imaging the Bone-Immune Cell Interaction in Bone Destruction. Front Immunol 2019; 10:596. [PMID: 30972080 PMCID: PMC6443987 DOI: 10.3389/fimmu.2019.00596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/05/2019] [Indexed: 11/13/2022] Open
Abstract
Bone is a highly dynamic organ that is continuously being remodeled by the reciprocal interactions between bone and immune cells. We have originally established an advanced imaging system for visualizing the in vivo behavior of osteoclasts and their precursors in the bone marrow cavity using two-photon microscopy. Using this system, we found that the blood-enriched lipid mediator, sphingosine-1-phosphate, controlled the migratory behavior of osteoclast precursors. We also developed pH-sensing chemical fluorescent probes to detect localized acidification by bone-resorbing osteoclasts on the bone surface in vivo, and identified two distinct functional states of differentiated osteoclasts, "bone-resorptive" and "non-resorptive." Here, we summarize our studies on the dynamics and functions of bone and immune cells within the bone marrow. We further discuss how our intravital imaging techniques can be applied to evaluate the mechanisms of action of biological agents in inflammatory bone destruction. Our intravital imaging techniques would be beneficial for studying the cellular dynamics in arthritic inflammation and bone destruction in vivo and would also be useful for evaluating novel therapies in animal models of bone-destroying diseases.
Collapse
Affiliation(s)
- Tetsuo Hasegawa
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
279
|
Klisuric A, Thierry B, Delon L, Prestidge CA, Gibson RJ. Identifying human and murine M cells in vitro. Exp Biol Med (Maywood) 2019; 244:554-564. [PMID: 30907132 DOI: 10.1177/1535370219838674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IMPACT STATEMENT The study of M cells, a specialized epithelial cell type found in the follicle-associated epithelium, is hampered by the lack of a universal M cell marker. As such, many studies lack reliable and universally recognized methods to identify M cells in their proposed models. As a result of this it is difficult to ascertain whether the effects observed are due to the presence of M cells or an unaccounted variable. The outcome of this review is the thorough evaluation of the many M cell markers that have been used in the literature thus far and a proposed criterion for the identification of M cells for future publications. This will hopefully lead to an improvement in the quality of future publications in this field.
Collapse
Affiliation(s)
- Ana Klisuric
- 1 Division of Health Sciences, University of South Australia, Adelaide 5000, Australia.,2 ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Frome Road, Adelaide 5000, Australia.,3 School of Pharmacy and Medical Science, University of South Australia, Adelaide 5000, Australia
| | - Benjamin Thierry
- 2 ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Frome Road, Adelaide 5000, Australia.,4 Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Ludivine Delon
- 1 Division of Health Sciences, University of South Australia, Adelaide 5000, Australia.,2 ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Frome Road, Adelaide 5000, Australia.,4 Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Clive A Prestidge
- 1 Division of Health Sciences, University of South Australia, Adelaide 5000, Australia.,2 ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Frome Road, Adelaide 5000, Australia
| | - Rachel J Gibson
- 1 Division of Health Sciences, University of South Australia, Adelaide 5000, Australia
| |
Collapse
|
280
|
Tilkeridis K, Kiziridis G, Ververidis A, Papoutselis M, Kotsianidis I, Kitsikidou G, Tousiaki NE, Drosos G, Kapetanou A, Rechova KV, Kazakos K, Spanoudakis E. Immunoporosis: A New Role for Invariant Natural Killer T (NKT) Cells Through Overexpression of Nuclear Factor-κB Ligand (RANKL). Med Sci Monit 2019; 25:2151-2158. [PMID: 30903656 PMCID: PMC6441308 DOI: 10.12659/msm.912119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Osteoporosis affects millions of postmenopausal women worldwide. Invariant natural killer T cells (iNKT) are important cells for bone homeostasis. The sim of this study was to investigate the contribution of invariant natural killer T cells (iNKT) in the increased receptor activator of the nuclear factor-κB ligand (RANKL) pool and bone resorption, a characteristic of patients with osteoporosis. Material/Methods Whole blood was collected from 79 female patients. The dual energy x-absorptiometry scan was performed in all patients, and the T-score was calculated in order to classify our patients according to the World Human Organization (WHO) criteria for diagnosis and classification of osteoporosis. Eleven patients had a T-score <−1.0 and were encompassed in our normal donors (ND) group, 46 patients had a T-score between −1 and −2.5 and were included in the osteopenia group, while 22 patients had a T-score > −2.5 and were included in the osteoporosis group. We performed a-galactosylceramide activation of iNKT cells in vitro. Surface RANKL expression was detected by multicolor flow cytometry in naive and activated lymphocytes. Beta-Crosslaps (β-CTx) levels were measured in whole blood plasma by ELISA (enzyme-linked immunosorbent assay). Results Although iNKT cells were not clonally expanded in patients with osteoporosis, iNKT cells from osteoporotic patients overexpressed RANKL compared to ND and osteopenic patients. This is a distinctive feature of iNKT cells and is not seen in conventional T-lymphocytes. RANKL expression in iNKT cells was not related to β-CTx levels in the blood. Finally, iNKT cell activation by the prototypal glycolipid ligand α-galactosylceramide increased by 8 times their RANKL expression. Conclusions In patients with osteoporosis, iNKT cells specifically overexpress RANKL, a cytokine that regulates osteoclast activity. It seems that iNKT cells have a long-standing effect of on the bone physiology, which plays an important role in the bone loss of patients with osteoporosis.
Collapse
Affiliation(s)
- Konstantinos Tilkeridis
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Georgios Kiziridis
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Athanasios Ververidis
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Menelaos Papoutselis
- Department of Haematology, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Ioannis Kotsianidis
- Department of Haematology, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Gesthimani Kitsikidou
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | | | - Georgios Drosos
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Artemis Kapetanou
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | | | - Konstantinos Kazakos
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Emmanouil Spanoudakis
- Department of Haematology, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| |
Collapse
|
281
|
Kimura S, Kobayashi N, Nakamura Y, Kanaya T, Takahashi D, Fujiki R, Mutoh M, Obata Y, Iwanaga T, Nakagawa T, Kato N, Sato S, Kaisho T, Ohno H, Hase K. Sox8 is essential for M cell maturation to accelerate IgA response at the early stage after weaning in mice. J Exp Med 2019; 216:831-846. [PMID: 30877171 PMCID: PMC6446867 DOI: 10.1084/jem.20181604] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/29/2018] [Accepted: 02/07/2019] [Indexed: 12/22/2022] Open
Abstract
Microfold (M) cells residing in the follicle-associated epithelium (FAE) of the gut-associated lymphoid tissue are specialized for antigen uptake to initiate mucosal immune responses. The molecular machinery and biological significance of M cell differentiation, however, remain to be fully elucidated. Here, we demonstrate that Sox8, a member of the SRY-related HMG box transcription factor family, is specifically expressed by M cells in the intestinal epithelium. The expression of Sox8 requires activation of RANKL-RelB signaling. Chromatin immunoprecipitation and luciferase assays revealed that Sox8 directly binds the promoter region of Gp2 to increase Gp2 expression, which is the hallmark of functionally mature M cells. Furthermore, genetic deletion of Sox8 causes a marked decrease in the number of mature M cells, resulting in reduced antigen uptake in Peyer's patches. Consequently, juvenile Sox8-deficient mice showed attenuated germinal center reactions and antigen-specific IgA responses. These findings indicate that Sox8 plays an essential role in the development of M cells to establish mucosal immune responses.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuhide Kobayashi
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Yutaka Nakamura
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Ryoji Fujiki
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Mami Mutoh
- Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Yuuki Obata
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shintaro Sato
- Mucosal Vaccine Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| |
Collapse
|
282
|
Fernandes MT, Caroço LS, Pacheco-Leyva I, Dos Santos NR. NF-κB-dependent RANKL expression in a mouse model of immature T-cell leukemia. Biochem Biophys Res Commun 2019; 510:272-277. [PMID: 30711250 DOI: 10.1016/j.bbrc.2019.01.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 10/27/2022]
Abstract
Activation of the receptor activator of nuclear factor-κB (RANK) by its ligand (RANKL) is involved in both solid and hematological malignancies, including multiple myeloma, acute myeloid leukemia and B-cell leukemia. Although RANKL expression has been described in normal T cells, a potential role in T-cell leukemia remains undefined. Here, we used a model of immature T-cell leukemia/lymphoma, the TEL-JAK2 transgenic mice, to assess RANKL expression in leukemic cells and its regulatory mechanisms. We found that Rankl mRNA was significantly overexpressed in leukemic T cells when compared to wild-type thymocytes, their nonmalignant counterparts. Moreover, Rankl mRNA and RANKL surface expression in leukemic cells was induced by T-cell receptor (TCR) signaling activation, dependently on the NF-κB signaling pathway. These results indicate that TCR-activated leukemic T cells express high levels of RANKL and are potential inducers of RANK signaling in microenvironmental cells.
Collapse
Affiliation(s)
- Mónica T Fernandes
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139, Faro, Portugal; PhD Program in Biomedical Sciences, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal.
| | - Lara S Caroço
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139, Faro, Portugal.
| | - Ivette Pacheco-Leyva
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139, Faro, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| | - Nuno R Dos Santos
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139, Faro, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
283
|
Colonna M. Innate Lymphoid Cells: Diversity, Plasticity, and Unique Functions in Immunity. Immunity 2019; 48:1104-1117. [PMID: 29924976 DOI: 10.1016/j.immuni.2018.05.013] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/13/2018] [Accepted: 05/30/2018] [Indexed: 01/12/2023]
Abstract
Type 1, 2, and 3 innate lymphoid cells (ILCs) have emerged as tissue-resident innate correlates of T helper 1 (Th1), Th2, and Th17 cells. Recent studies suggest that ILCs are more diverse than originally proposed; this might reflect truly distinct lineages or adaptation of ILCs to disparate tissue microenvironments, known as plasticity. Given that ILCs strikingly resemble T cells, are they redundant? While the regulation, timing, and magnitude of ILC and primary T cell responses differ, tissue-resident memory T cells may render ILCs redundant during secondary responses. The unique impact of ILCs in immunity is probably embodied in the extensive array of surface and intracellular receptors that endow these cells with the ability to distinguish between normal and pathogenic components, interact with other cells, and calibrate their cytokine secretion accordingly. Here I review recent advances in elucidating the diversity of ILCs and discuss their unique and redundant functions.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
284
|
The Role of Osteoprotegerin and Its Ligands in Vascular Function. Int J Mol Sci 2019; 20:ijms20030705. [PMID: 30736365 PMCID: PMC6387017 DOI: 10.3390/ijms20030705] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 12/15/2022] Open
Abstract
The superfamily of tumor necrosis factor (TNF) receptors includes osteoprotegerin (OPG) and its ligands, which are receptor activators of nuclear factor kappa-B ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL). The OPG/RANKL/RANK system plays an active role in pathological angiogenesis and inflammation as well as cell survival. It has been demonstrated that there is crosstalk between endothelial cells and osteoblasts during osteogenesis, thus establishing a connection between angiogenesis and osteogenesis. This OPG/RANKL/RANK/TRAIL system acts on specific cell surface receptors, which are then able to transmit their signals to other intracellular components and modify gene expression. Cytokine production and activation of their receptors induce mechanisms to recruit monocytes and neutrophils as well as endothelial cells. Data support the role of an increased OPG/RANKL ratio as a possible marker of progression of endothelial dysfunction in metabolic disorders in relationship with inflammatory marker levels. We review the role of the OPG/RANKL/RANK triad in vascular function as well as molecular mechanisms related to the etiology of vascular diseases. The potential therapeutic strategies may be very promising in the future.
Collapse
|
285
|
Moxibustion of Zusanli (ST36) and Shenshu (BL23) Alleviates Cartilage Degradation through RANKL/OPG Signaling in a Rabbit Model of Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6436420. [PMID: 30719064 PMCID: PMC6335855 DOI: 10.1155/2019/6436420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic and chronic autoimmune inflammatory disease characterized by severe synovial hyperplasia associated with progressive cartilage degradation. Due to the severe pain and disability caused by RA, effective therapeutic strategies that could simultaneously alleviate the inflammatory response and delay the disease progression are urgently needed. As a major alternative therapy in traditional Chinese medicine, moxibustion has been demonstrated that it could reduce the chronic inflammatory responses of a series of musculoskeletal diseases; however, whether moxibustion has protective effects on RA is still unclear. To investigate the effects of moxibustion on RA, moxibustion was applied to Zusanli (ST36) and Shenshu (BL23) acupoints in a RA rabbit model. HE staining of articular cartilage showed that moxibustion alleviated the cartilage degradation and bone destruction. In addition, moxibustion decreased the osteoclast number in RA rabbits. Real-time PCR revealed that moxibustion decreased the expression of RANKL mRNA while increased the expression of OPG mRNA, indicating a restoration of the balance between osteogenesis and osteoclastogenesis. Taken together, our results indicated that moxibustion had promising antiarthritic effects and could be an useful alternative method in RA therapeutics.
Collapse
|
286
|
Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Current Advances in Immunomodulatory Biomaterials for Bone Regeneration. Adv Healthc Mater 2019; 8:e1801106. [PMID: 30328293 DOI: 10.1002/adhm.201801106] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/19/2018] [Indexed: 12/14/2022]
Abstract
Biomaterials with suitable surface modification strategies are contributing significantly to the rapid development of the field of bone tissue engineering. Despite these encouraging results, utilization of biomaterials is poorly translated to human clinical trials potentially due to lack of knowledge about the interaction between biomaterials and the body defense mechanism, the "immune system". The highly complex immune system involves the coordinated action of many immune cells that can produce various inflammatory and anti-inflammatory cytokines. Besides, bone fracture healing initiates with acute inflammation and may later transform to a regenerative or degenerative phase mainly due to the cross-talk between immune cells and other cells in the bone regeneration process. Among various immune cells, macrophages possess a significant role in the immune defense, where their polarization state plays a key role in the wound healing process. Growing evidence shows that the macrophage polarization state is highly sensitive to the biomaterial's physiochemical properties, and advances in biomaterial research now allow well controlled surface properties. This review provides an overview of biomaterial-mediated modulation of the immune response for regulating key bone regeneration events, such as osteogenesis, osteoclastogenesis, and inflammation, and it discusses how these strategies can be utilized for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering; Hanyang University; 222 Wangsimni-ro Seongdong-gu Seoul 04763 Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering; Hanyang University; 222 Wangsimni-ro Seongdong-gu Seoul 04763 Republic of Korea
| | | | - Sangmin Lee
- Department of Bioengineering; Hanyang University; 222 Wangsimni-ro Seongdong-gu Seoul 04763 Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering; Hanyang University; 222 Wangsimni-ro Seongdong-gu Seoul 04763 Republic of Korea
| |
Collapse
|
287
|
Peng W, Zhang J, Zhang F, Zhao Y, Dong W. Expression of osteoprotegerin and receptor activator for the nuclear factor-κB ligand in XACB/LV-bFGF/MSCs transplantation for repair of rabbit femoral head defect necrosis. J Cell Biochem 2019; 120:1427-1434. [PMID: 30335890 DOI: 10.1002/jcb.27201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/24/2018] [Indexed: 01/24/2023]
Abstract
The aim of this study is to observe the changes in osteoprotegerin (OPG) and receptor activator for the nuclear factor-κB ligand (RANKL) in a rabbit model, and to explore the therapeutic effect of tissue engineering bone on femoral head necrosis. A total of 60 rabbits were randomly divided into 5 groups. The necrosis model of femoral head defects was created by dexamethasone combined with a horse serum injection. The model of femoral head necrosis was reconstructed by tissue engineering bone. The protein expressions of OPG and RANKL were detected by Western blot analysis. The expression of OPG and the RANKL protein in group E was higher than that in the other 4 groups (P < .05); there was no significant difference between groups C and D ( P > .05). The expression of OPG protein in the rabbit femoral head necrosis group was improved by xenogeneic antigens of cancellous bone/lentiviral-basic fibroblast growth factor/mesenchymal stem cells, which were expected to be used as an effective tissue engineering material to repair the necrosis of the femoral head.
Collapse
Affiliation(s)
- Wuxun Peng
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Zhang
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fei Zhang
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yin Zhao
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wentao Dong
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
288
|
Balanta-Melo J, Toro-Ibacache V, Kupczik K, Buvinic S. Mandibular Bone Loss after Masticatory Muscles Intervention with Botulinum Toxin: An Approach from Basic Research to Clinical Findings. Toxins (Basel) 2019; 11:toxins11020084. [PMID: 30717172 PMCID: PMC6409568 DOI: 10.3390/toxins11020084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
The injection of botulinum toxin type A (BoNT/A) in the masticatory muscles, to cause its temporary paralysis, is a widely used intervention for clinical disorders such as oromandibular dystonia, sleep bruxism, and aesthetics (i.e., masseteric hypertrophy). Considering that muscle contraction is required for mechano-transduction to maintain bone homeostasis, it is relevant to address the bone adverse effects associated with muscle condition after this intervention. Our aim is to condense the current and relevant literature about mandibular bone loss in fully mature mammals after BoNT/A intervention in the masticatory muscles. Here, we compile evidence from animal models (mice, rats, and rabbits) to clinical studies, demonstrating that BoNT/A-induced masticatory muscle atrophy promotes mandibular bone loss. Mandibular bone-related adverse effects involve cellular and metabolic changes, microstructure degradation, and morphological alterations. While bone loss has been detected at the mandibular condyle or alveolar bone, cellular and molecular mechanisms involved in this process must still be elucidated. Further basic research could provide evidence for designing strategies to control the undesired effects on bone during the therapeutic use of BoNT/A. However, in the meantime, we consider it essential that patients treated with BoNT/A in the masticatory muscles be warned about a putative collateral mandibular bone damage.
Collapse
Affiliation(s)
- Julián Balanta-Melo
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
- School of Dentistry, Universidad del Valle, Cali 760043, Colombia.
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
| | - Viviana Toro-Ibacache
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
- Center for Quantitative Analysis in Dental Anthropology, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
| | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
- Center for Quantitative Analysis in Dental Anthropology, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
| | - Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
- Center for Exercise, Metabolism and Cancer Studies CEMC2016, Faculty of Medicine, Universidad de Chile, Independencia 8380453, Chile.
| |
Collapse
|
289
|
Force-induced decline of TEA domain family member 1 contributes to osteoclastogenesis via regulation of Osteoprotegerin. Arch Oral Biol 2019; 100:23-32. [PMID: 30771694 DOI: 10.1016/j.archoralbio.2019.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This study aims to investigate the responsiveness of transcription factor TEA domain family member 1 (TEAD1) to mechanical force and its impact on osteoclastogenesis as well as expression of Osteoprotegerin (OPG), an inhibitor for osteoclastogenesis playing crucial roles in mechanical stress-induced bone remodeling and orthodontic tooth movement (OTM). METHODS We first analyzed the correlation between several transcription factors and OPG expression in human periodontal ligament cells (PDLCs). Then dynamic expression changes of TEAD1 with force application were analyzed due to its high correlation with OPG. Loss-of-function experiments were performed to demonstrate the role of TEAD1 in regulation of RANKL/OPG, as well as osteoclastogenesis by tartrate-resistant acid phosphatase (TRAP) staining. Combination of bioinformatics analyzes and chromatin immunoprecipitation assay was utilized to investigate occupancy of TEAD1 on the enhancer elements of OPG and the dynamic change in response to force stimuli. Involvement of Hippo signaling in regulation of OPG was further demonstrated by pharmacologic inhibitors of several components. RESULTS Expression of TEAD1 highly correlates with that of OPG and decreases in response to mechanical force in human PDLCs. Knockdown of TEAD1 downregulates expression of OPG and promotes osteoclast differentiation. Mechanical force induced decreased binding of TEAD1 on an enhancer element ˜22 kilobases upstream of OPG promoter. OPG was also affected by pharmaceutical disruption of Hippo signaling pathway. CONCLUSIONS TEAD1 is a novel mechano-responsive gene and plays an important role in force-induced osteoclastogenesis, which is dependent, as least partially, on transcriptional regulation of OPG.
Collapse
|
290
|
Hathaway-Schrader JD, Steinkamp HM, Chavez MB, Poulides NA, Kirkpatrick JE, Chew ME, Huang E, Alekseyenko AV, Aguirre JI, Novince CM. Antibiotic Perturbation of Gut Microbiota Dysregulates Osteoimmune Cross Talk in Postpubertal Skeletal Development. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:370-390. [PMID: 30660331 DOI: 10.1016/j.ajpath.2018.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/01/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022]
Abstract
Commensal gut microbiota-host immune responses are experimentally delineated via gnotobiotic animal models or alternatively by antibiotic perturbation of gut microbiota. Osteoimmunology investigations in germ-free mice, revealing that gut microbiota immunomodulatory actions critically regulate physiologic skeletal development, highlight that antibiotic perturbation of gut microbiota may dysregulate normal osteoimmunological processes. We investigated the impact of antibiotic disruption of gut microbiota on osteoimmune response effects in postpubertal skeletal development. Sex-matched C57BL/6T mice were administered broad-spectrum antibiotics or vehicle-control from the age of 6 to 12 weeks. Antibiotic alterations in gut bacterial composition and skeletal morphology were sex dependent. Antibiotics did not influence osteoblastogenesis or endochondral bone formation, but notably enhanced osteoclastogenesis. Unchanged Tnf or Ccl3 expression in marrow and elevated tumor necrosis factor-α and chemokine (C-C motif) ligand 3 in serum indicated that the pro-osteoclastic effects of the antibiotics are driven by increased systemic inflammation. Antibiotic-induced broad changes in adaptive and innate immune cells in mesenteric lymph nodes and spleen demonstrated that the perturbation of gut microbiota drives a state of dysbiotic hyperimmune response at secondary lymphoid tissues draining local gut and systemic circulation. Antibiotics up-regulated the myeloid-derived suppressor cells, immature myeloid progenitor cells known for immunosuppressive properties in pathophysiologic inflammatory conditions. Myeloid-derived suppressor cell-mediated immunosuppression can be antigen specific. Therefore, antibiotic-induced broad suppression of major histocompatibility complex class II antigen presentation genes in bone marrow discerns that antibiotic perturbation of gut microbiota dysregulates critical osteoimmune cross talk.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Endocrinology Division, Department of Pediatrics, Medical University of South Carolina College of Medicine, Charleston, South Carolina
| | - Heidi M Steinkamp
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Division of Pediatric Dentistry, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Michael B Chavez
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Nicole A Poulides
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Endocrinology Division, Department of Pediatrics, Medical University of South Carolina College of Medicine, Charleston, South Carolina
| | - Joy E Kirkpatrick
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina
| | - Michael E Chew
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina
| | - Emily Huang
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina
| | - Alexander V Alekseyenko
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Department of Public Health Sciences, Medical University of South Carolina College of Medicine, Charleston, South Carolina
| | - Jose I Aguirre
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Chad M Novince
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Endocrinology Division, Department of Pediatrics, Medical University of South Carolina College of Medicine, Charleston, South Carolina.
| |
Collapse
|
291
|
Infante M, Fabi A, Cognetti F, Gorini S, Caprio M, Fabbri A. RANKL/RANK/OPG system beyond bone remodeling: involvement in breast cancer and clinical perspectives. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:12. [PMID: 30621730 PMCID: PMC6325760 DOI: 10.1186/s13046-018-1001-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
Abstract
RANKL/RANK/OPG system consists of three essential signaling molecules: i) the receptor activator of nuclear factor (NF)-kB-ligand (RANKL), ii) the receptor activator of NF-kB (RANK), and iii) the soluble decoy receptor osteoprotegerin (OPG). Although this system is critical for the regulation of osteoclast differentiation/activation and calcium release from the skeleton, different studies have elucidated its specific role in mammary gland physiology and hormone-driven epithelial proliferation during pregnancy. Of note, several data suggest that progesterone induces mammary RANKL expression in mice and humans. In turn, RANKL controls cell proliferation in breast epithelium under physiological conditions typically associated with higher serum progesterone levels, such as luteal phase of the menstrual cycle and pregnancy. Hence, RANKL/RANK system can be regarded as a major downstream mediator of progesterone-driven mammary epithelial cells proliferation, potentially contributing to breast cancer initiation and progression. Expression of RANKL, RANK, and OPG has been detected in breast cancer cell lines and in human primary breast cancers. To date, dysregulation of RANKL/RANK/OPG system at the skeletal level has been widely documented in the context of metastatic bone disease. In fact, RANKL inhibition through the RANKL-blocking human monoclonal antibody denosumab represents a well-established therapeutic option to prevent skeletal-related events in metastatic bone disease and adjuvant therapy-induced bone loss in breast cancer. On the other hand, the exact role of OPG in breast tumorigenesis is still unclear. This review focuses on molecular mechanisms linking RANKL/RANK/OPG system to mammary tumorigenesis, highlighting pre-clinical and clinical evidence for the potential efficacy of RANKL inhibition as a prevention strategy and adjuvant therapy in breast cancer settings.
Collapse
Affiliation(s)
- Marco Infante
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, CTO A. Alesini Hospital, ASL Roma 2, University Tor Vergata, Via San Nemesio, 21, 00145, Rome, Italy
| | - Alessandra Fabi
- Division of Medical Oncology 1, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy
| | - Francesco Cognetti
- Division of Medical Oncology 1, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy
| | - Stefania Gorini
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166, Rome, Italy.,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - Andrea Fabbri
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, CTO A. Alesini Hospital, ASL Roma 2, University Tor Vergata, Via San Nemesio, 21, 00145, Rome, Italy.
| |
Collapse
|
292
|
Zendehdel A, Arefi M. Molecular evidence of role of vitamin D deficiency in various extraskeletal diseases. J Cell Biochem 2019; 120:8829-8840. [PMID: 30609168 DOI: 10.1002/jcb.28185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Role of vitamin D is not only limited to skeletal system but various other systems of the body, such as immune system, endocrine system, and cardiopulmonary system. MATERIALS AND METHODS It is supported by the confirmations of systems-wide expression of vitamin D receptor (VDR), endocrinal effect of calcitriol, and its role in immune responses. RESULTS Expression of VDR in various systems, immunoregulatory and hormonal response of vitamin D and deficiency of vitamin D may establish various pathologies in the body. CONCLUSION This review provides molecular evidence of relation of vitamin D with extra skeletal.
Collapse
Affiliation(s)
- Abolfazl Zendehdel
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Arefi
- Department of Clinical Toxicology, School of Medicine, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
293
|
Ma Z, Yu R, Zhao J, Sun L, Jian L, Li C, Liu X. Constant hypoxia inhibits osteoclast differentiation and bone resorption by regulating phosphorylation of JNK and IκBα. Inflamm Res 2019; 68:157-166. [PMID: 30604211 DOI: 10.1007/s00011-018-1209-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/19/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteoclasts are responsible for the bone loss in rheumatoid arthritis (RA). Hypoxia has been suggested to play key roles in pathological bone loss. However, the current understanding of the effects of hypoxia on osteoclastogenesis is controversial. Effects of hypoxia on both the formation and function of osteoclasts requires examination. In the current study, we aimed to explore the effect of hypoxia on osteoclast differentiation and the underlying mechanisms. METHODS RAW264.7 cells and murine bone-marrow-derived monocytes were used to induce osteoclastogenesis in the presence of macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa B ligand (RANKL). Hypoxic conditions were maintained in a hypoxic chamber at 5% CO2 and 1% O2, balanced with N2. Osteoclasts were detected by tartrate-resistant acid phosphatase (TRAP) staining. A bone resorption assay was carried out in vitro using bone slices. RT-PCR was conducted to detect osteoclast markers and transcription factors. The phosphorylation of nuclear factor-κBα (IκBα), c-Jun N-terminal kinase (JNK), extracellular regulated protein kinase (ERK), and p38 was detected by western blotting. Mann-Whitney U test or Student's t test was used to compare differences between the two groups. RESULTS TRAP staining and the bone resorption assay revealed that hypoxia-restrained osteoclast differentiation and bone resorption. Expression of osteoclast markers including cathepsin K, RANK, and TRAP decreased during osteoclast differentiation under hypoxic conditions (all P < 0.05). Hypoxia at 1% O2 did not affect cell viability, whereas it dramatically abated RANKL-dependent phosphorylation of the JNK-mitogen-activated protein kinases (MAPK) and IκBα pathways. Moreover, the expression of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) was inhibited under hypoxic conditions (all P < 0.05). CONCLUSIONS These results suggest that constant hypoxia at 1% O2 significantly restrains osteoclast formation and resorbing function without affecting cell viability. Constant hypoxia might inhibit RANKL-induced osteoclastogenesis by regulating NFATc1 expression via interfering the phosphorylation of JNK and IκBα.
Collapse
Affiliation(s)
- Zhenzhen Ma
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Ruohan Yu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Lin Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Leilei Jian
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Changhong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China.
| | - Xiangyuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
294
|
Dostert C, Grusdat M, Letellier E, Brenner D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol Rev 2019; 99:115-160. [DOI: 10.1152/physrev.00045.2017] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies (TNFSF/TNFRSF) include 19 ligands and 29 receptors that play important roles in the modulation of cellular functions. The communication pathways mediated by TNFSF/TNFRSF are essential for numerous developmental, homeostatic, and stimulus-responsive processes in vivo. TNFSF/TNFRSF members regulate cellular differentiation, survival, and programmed death, but their most critical functions pertain to the immune system. Both innate and adaptive immune cells are controlled by TNFSF/TNFRSF members in a manner that is crucial for the coordination of various mechanisms driving either co-stimulation or co-inhibition of the immune response. Dysregulation of these same signaling pathways has been implicated in inflammatory and autoimmune diseases, highlighting the importance of their tight regulation. Investigation of the control of TNFSF/TNFRSF activities has led to the development of therapeutics with the potential to reduce chronic inflammation or promote anti-tumor immunity. The study of TNFSF/TNFRSF proteins has exploded over the last 30 yr, but there remains a need to better understand the fundamental mechanisms underlying the molecular pathways they mediate to design more effective anti-inflammatory and anti-cancer therapies.
Collapse
Affiliation(s)
- Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Melanie Grusdat
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Elisabeth Letellier
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
295
|
Chaugule S, Kashipathi Sureshbabu S, Dakave S, Krishna CM, Chaudhari P, Indap M, Chiplunkar S. Hexane Fraction of Turbo brunneus Inhibits Intermediates of RANK-RANKL Signaling Pathway and Prevent Ovariectomy Induced Bone Loss. Front Endocrinol (Lausanne) 2019; 10:608. [PMID: 31555218 PMCID: PMC6742724 DOI: 10.3389/fendo.2019.00608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023] Open
Abstract
Osteoporosis is a "silent disease" characterized by fragile and impaired bone quality. Bone fracture results in increased mortality and poor quality of life in aged people particularly in postmenopausal women. Bone is maintained through the delicate balance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. The imbalance is caused most often by overly active osteoclasts due to estrogen deficiency. Natural products have long been used to prevent and treat osteoporosis since they have fewer side effects. The marine environment is a potential source of biologically and structurally novel biomolecules with promising biological activities but is less explored for the treatment of bone-related diseases. The present study aims to evaluate the antiosteoporotic effect of Hexane fraction of Turbo brunneus methanolic extract (HxTME) and to investigate its role in RANK-RANKL signaling pathway using in vitro osteoclasts cultures and in vivo ovariectomized (OVX) Swiss mice model. The present study demonstrated that the HxTME significantly inhibited RANKL induced osteoclast differentiation and maturation in vitro. HxTME completely downregulated the mRNA expression of key transcription factors such as NFATc1, c-FOS, and osteoclasts related genes involved in osteoclastogenesis. In vivo studies also depicted the effectiveness of HxTME in ovariectomized mice by preserving bone microarchitecture, mineral content, and inhibiting bone loss in treated mice as analyzed by Histomorphometry, MicroCT, and Raman spectroscopy. Oral administration of HxTME fraction resulted in the decreased percentage of F4/80+, CD11b+, and CD4+ RANKL+ T cells in OVX mice whereas pro-osteoclastic cytokine, IL6 was markedly reduced upon treatment with HxTME. On stimulation with PMA/Io and PHA, a significant decrease in proliferative response in the splenocytes of HxTME treated OVX mice was observed. Fatty acid profiling revealed that HxTME is rich in ω3 and ω6 polyunsaturated fatty acids (PUFAs), which have high nutraceutical properties and are known to play important role in growth, development and maintenance of health. Therefore, HxTME may be a good source of nutraceutical in the treatment of bone-related diseases particularly in postmenopausal osteoporosis and may be pursued as a potential candidate for treatment and management of osteoporosis.
Collapse
Affiliation(s)
- Sachin Chaugule
- Chiplunkar Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Central Research Laboratory, D. G. Ruparel College, Mumbai, India
| | - Shalini Kashipathi Sureshbabu
- Chiplunkar Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Suresh Dakave
- Chiplunkar Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - C. Murali Krishna
- Homi Bhabha National Institute, Mumbai, India
- Chilakapati Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Pradip Chaudhari
- Homi Bhabha National Institute, Mumbai, India
- Comparative Oncology Program and Small Animal Imaging Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Madhavi Indap
- Central Research Laboratory, D. G. Ruparel College, Mumbai, India
- *Correspondence: Madhavi Indap
| | - Shubhada Chiplunkar
- Chiplunkar Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
- Shubhada Chiplunkar
| |
Collapse
|
296
|
Skarlis C, Palli E, Nezos A, Koutsilieris M, Mavragani CP. Study of the incidence of osteoporosis in patients with Sjögren's syndrome (pSS) and investigation of activation of the RANKL /RANK and osteoprotegerin (OPG) system. Mediterr J Rheumatol 2018; 29:224-227. [PMID: 32185332 PMCID: PMC7045933 DOI: 10.31138/mjr.29.4.224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
| | | | | | - Michail Koutsilieris
- Department of Physiology.,Department of Pathophysiology, School of Medicine, National University of Athens, Athens, Greece
| | | |
Collapse
|
297
|
Western-type diet differentially modulates osteoblast, osteoclast, and lipoblast differentiation and activation in a background of APOE deficiency. J Transl Med 2018; 98:1516-1526. [PMID: 30206314 DOI: 10.1038/s41374-018-0107-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/26/2018] [Accepted: 06/20/2018] [Indexed: 11/08/2022] Open
Abstract
During the past few years, considerable evidence has uncovered a strong relationship between fat and bone metabolism. Consequently, alterations in plasma lipid metabolic pathways strongly affect bone mass and quality. We recently showed that the deficiency of apolipoprotein A-1 (APOA1), a central regulator of high-density lipoprotein cholesterol (HDL-C) metabolism, results in reduced bone mass in C57BL/6 mice. It is documented that apolipoprotein E (APOE), a lipoprotein know for its atheroprotective functions and de novo biogenesis of HDL-C, is associated with the accumulation of fat in the liver and other organs and regulates bone mass in mice. We further studied the mechanism of APOE in bone metabolism using well-characterized APOE knockout mice. We found that bone mass was remarkably reduced in APOE deficient mice fed Western-type diet (WTD) compared to wild type counterparts. Static (microCT-based) and dynamic histomorphometry showed that the reduced bone mass in APOΕ-/- mice is attributed to both decreased osteoblastic bone synthesis and elevated osteoclastic bone resorption. Interestingly, histologic analysis of femoral sections revealed a significant reduction in the number of bone marrow lipoblasts in APOΕ-/- compared to wild type mice under WTD. Analyses of whole bone marrow cells obtained from femora of both animal groups showed that APOE null mice had significantly reduced levels of the osteoblastic (RUNX2 and Osterix) and lipoblastic (PPARγ and CEBPα) cardinal regulators. Additionally, the modulators of bone remodeling RANK, RANKL, and cathepsin K were greatly increased, while OPG and the OPG/RANKL ratio were remarkably decreased in APOΕ-/- mice fed WTD, compared to their wild-type counterparts. These findings suggest that APOE deficiency challenged with WTD reduces osteoblastic and lipoblastic differentiation and activity, whereas it enhances osteoclastic function, ultimately resulting in reduced bone mass, in mice.
Collapse
|
298
|
Longoni A, Knežević L, Schepers K, Weinans H, Rosenberg AJWP, Gawlitta D. The impact of immune response on endochondral bone regeneration. NPJ Regen Med 2018; 3:22. [PMID: 30510772 PMCID: PMC6265275 DOI: 10.1038/s41536-018-0060-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Tissue engineered cartilage substitutes, which induce the process of endochondral ossification, represent a regenerative strategy for bone defect healing. Such constructs typically consist of multipotent mesenchymal stromal cells (MSCs) forming a cartilage template in vitro, which can be implanted to stimulate bone formation in vivo. The use of MSCs of allogeneic origin could potentially improve the clinical utility of the tissue engineered cartilage constructs in three ways. First, ready-to-use construct availability can speed up the treatment process. Second, MSCs derived and expanded from a single donor could be applied to treat several patients and thus the costs of the medical interventions would decrease. Finally, it would allow more control over the quality of the MSC chondrogenic differentiation. However, even though the envisaged clinical use of allogeneic cell sources for bone regeneration is advantageous, their immunogenicity poses a significant obstacle to their clinical application. The aim of this review is to increase the awareness of the role played by immune cells during endochondral ossification, and in particular during regenerative strategies when the immune response is altered by the presence of implanted biomaterials and/or cells. More specifically, we focus on how this balance between immune response and bone regeneration is affected by the implantation of a cartilaginous tissue engineered construct of allogeneic origin.
Collapse
Affiliation(s)
- A Longoni
- 1Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, G05.222, PO Box 85500, 3508 GA The Netherlands.,Regenerative Medicine Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - L Knežević
- 1Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, G05.222, PO Box 85500, 3508 GA The Netherlands.,3Faculty of Health Sciences, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD UK
| | - K Schepers
- 4Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - H Weinans
- 5Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands.,6Department of Rheumatology, University Medical Center Utrecht, Utrecht University, 3584CX Utrecht, The Netherlands.,7Department of Biomechanical Engineering, Delft University of Technology, 2628CD Delft, The Netherlands
| | - A J W P Rosenberg
- 1Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, G05.222, PO Box 85500, 3508 GA The Netherlands
| | - D Gawlitta
- 1Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, G05.222, PO Box 85500, 3508 GA The Netherlands.,Regenerative Medicine Center Utrecht, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
299
|
Lenarčič Živković M, Rozman J, Plavec J. Adenine-Driven Structural Switch from a Two- to Three-Quartet DNA G-Quadruplex. Angew Chem Int Ed Engl 2018; 57:15395-15399. [PMID: 30222243 PMCID: PMC6563693 DOI: 10.1002/anie.201809328] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 12/15/2022]
Abstract
A G-rich sequence found in the regulatory region of the RANKL gene, which is associated with homeostasis of bone metabolism, folds into a two-quartet basket-type G-quadruplex stabilized by A⋅G⋅A and G⋅G⋅G base-triads. Perusal of local structural features together with G/A-to-T modifications uncovered the critical role of A5 for the formation of a distinct antiparallel two-quartet topology and not the three-quartet topology that would be expected based on the sequence with four GGG-tracts alone. The structural changes induced by the A5-to-T5 modification include a switch in orientation and relative positions of G-strands that together with anti to syn reorientation of G12 provide insights into the complexity of the interactions that influence the folding of G-rich DNA. Understanding the impact of loop residues on the stability and formation of G-quadruplexes advances our knowledge and ability to predict structures adopted by G-rich sequences, which are involved in regulatory mechanisms in the cell, and may also facilitate drug design.
Collapse
Affiliation(s)
| | - Jan Rozman
- Slovenian NMR CentreNational Institute of ChemistryHajdrihova 9LjubljanaSlovenia
| | - Janez Plavec
- Slovenian NMR CentreNational Institute of ChemistryHajdrihova 9LjubljanaSlovenia
- EN- FIST Centre of ExcellenceTrg OF 13LjubljanaSlovenia
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 113LjubljanaSlovenia
| |
Collapse
|
300
|
Lenarčič Živković M, Rozman J, Plavec J. Adenine‐Driven Structural Switch from a Two‐ to Three‐Quartet DNA G‐Quadruplex. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Jan Rozman
- Slovenian NMR CentreNational Institute of Chemistry Hajdrihova 9 Ljubljana Slovenia
| | - Janez Plavec
- Slovenian NMR CentreNational Institute of Chemistry Hajdrihova 9 Ljubljana Slovenia
- EN- FIST Centre of Excellence Trg OF 13 Ljubljana Slovenia
- Faculty of Chemistry and Chemical TechnologyUniversity of Ljubljana Večna pot 113 Ljubljana Slovenia
| |
Collapse
|